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Problem-solving strategies, defined as actions people select intentionally to 

achieve desired objectives, are distinguished from skills that are implemented 

unintentionally. In education, strategy-oriented instructions that guide students to 

form problem-solving strategies are found to be more effective for low-achievement 

students than the skill-oriented instructions designed for enhancing the skill 

implementation ability. However, conventional cognitive diagnosis models (CDMs) 

seldom distinguish the concept of skills from strategies. While the existing 

longitudinal CDMs can model students’ dynamic skill mastery status change over 

time, they did not intend to model the shift in students’ problem-solving strategies. 

Thus, it is hard to use conventional CDMs to identify students who need strategy-

oriented instructions or evaluate the effectiveness of the education intervention 



 

 

programs that aim at training students’ problem-solving strategies. This study 

proposes a longitudinal CDM that takes into account both between-person multiple 

strategies and within-person strategy shift. The model, separating the strategy choice 

process from the skill implementation process, is intended to provide diagnostic 

information on strategy choice as well as skill mastery status. A simulation study is 

conducted to evaluate the parameter recovery of the proposed model and investigate 

the consequences of ignoring the presence of multiple strategies or strategy shift. 

Further, an empirical data analysis is conducted to demonstrate the use of the 

proposed model to measure strategy shift, growth in the skill implementation ability 

and skill mastery status. 
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Chapter 1: Introduction 

1.1 Statement of Problem 

Problem-solving strategies, defined as actions people select intentionally to 

achieve desired objectives (Alexander et al., 1998), have been distinguished from 

skills that are applied unintentionally (e.g., Paris et al., 1991). In contrast to strategies, 

skills are “applied unconsciously for many reasons including expertise, repeated 

practice, compliance with directions, luck, and naive use” (Paris et al., 1991). 

Afflerbach et al. (2008) used an example to clarify the difference between strategies 

and skills in the reading tasks: when a reader intends to understand the meaning of the 

text by self-questioning “Does that make sense?” , this is a strategy; when the reader 

comprehends the text “automatically” without deliberate control on awareness, this is 

a skill. Therefore, one way of determining whether an action is a strategy or a skill is 

to ask the question: “Is the action under deliberate control or automatic?” A strategy 

that requires deliberate control could turn into a skill that is implemented 

automatically with repeated practices (Afflerbach et al., 2008). From the problem-

solving perspective, forming a strategy and carrying out the skills required by the 

strategy can be treated as two steps in solving a problem. For example, in the IDEAL 

problem-solving model proposed by Bransford and Stein (1993) where the problem-

solving process is divided into five steps, “explore possible strategies” and “act” are 

two of the key steps which correspond to forming the strategies and implementing the 

skills, respectively.  

Instructions have been designed to guide students to develop problem-solving 

strategies (e.g., Bottge et al., 2003; Jitendra et al., 2002; Mercer & Mercer, 2001; 
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Paris et al., 1984). For instance, the schema-based instruction guides students through 

the process of problem solving, including identifying the key part of the problems and 

forming tentative solutions (Jitendra et al., 2002). This study refers to these 

instructions as strategy-oriented instructions. In contrast, skill-oriented instructions 

refer to the instructions that train students to turn the problem-solving process 

demanding deliberate control into a more automatic process (Afflerbach et al., 2008). 

Both strategy-oriented and skill-oriented instructions are beneficial to the 

students’ problem solving performance (Paris et al., 1983; Pressley, 2000), but their 

effectiveness may differ across students with different achievement levels. Skill-

oriented instructions may help the general students to solve problems more 

efficiently, but they may be less effective to some low-achievement students. For 

example, while conventional reading programs tend to be skill-oriented, strategy-

oriented instructions may be more effective for some struggling readers (Afflerbach 

et al., 2008). Strategy-oriented instructions have been found to be effective especially 

at the initial learning stage and for students with low achievement or learning 

disabilities (e.g., Coughlin & Montague, 2011; Swanson, 2001). Therefore, in 

educational practice and cognitive diagnosis, it is necessary to identify the type of 

instructions needed by students. In addition, to assess the effectiveness of the 

instructions, students’ changes in strategy and skill use over time need to be 

measured. 

As skills and strategies are unobservable mental processes, instruments that 

provide observable indicators paired with latent variable models are needed to 

measure them. Analyzing the response data to items in an instrument with appropriate 
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latent variable models makes it possible to draw inferences about unobservable skills 

and strategies. Given that the concepts of strategies and skills are seldom 

distinguished in existing latent variable models, the overall goal of this study is to 

develop a latent variable model that better distinguishes the role of the strategies and 

skills in the problem-solving process. 

Given the complex nature of the problem-solving process, it is indispensable 

to make assumptions about the nature of the skills and strategies in the latent variable 

models in order to draw valid inferences from the model parameters. In general, latent 

variable models designed for understanding skills and strategies explicitly or 

implicitly make assumptions about the following three questions based on their 

specific purposes and cognitive theory:  

1) How is the problem-solving strategy operationally defined (how to 

distinguish different strategies)?  

2) What is the relationship between the strategies and skills?  

3) How to define multiple strategies? The rest of this section reviews the 

assumptions made in the existing latent variable models and introduces the 

assumptions to be made in this study about each of the three questions. 

These assumptions lay a foundation to the proposed model.  

How is the problem-solving strategy operationally defined? In the latent 

variable models for problem-solving strategies, the strategy is usually represented as a 

discrete variable in a mixture-distribution model (e.g., Mislevy & Verhelst, 1990; 

Rost, 1990; Yamamoto, 1989). Different strategies are distinguished by their unique 

cognitive processes and/or by the unique “outcome” they result in, such as different 
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item functioning. An example drawn from Mislevy (1996) is given below to 

demonstrate that different strategies can be distinguished by different sets of skills 

that are intentionally chosen to solve a problem. Table 1 displays a mixed-number 

subtraction item that can be solved with two approaches. As side notes, this study 

refers “strategy” as a person property and “approach” as an item property in order to 

distinguish the person property from the item property; items that can be solved with 

more than one approach are referred to as “multiple-approach items”. Tatsuoka 

(1987, 1990) found that middle-school students employ two different strategies to 

solve the mixed-number subtraction problems like the one shown in Table 1. 

Specifically, using Strategy A, students would convert the mixed numbers into 

improper fractions and then do the subtraction; using Strategy B, students would 

separate the mixed numbers into two parts, i.e., a whole number and a fraction, and 

then do the subtraction separately for each part. Compared to Strategy A, Strategy B 

is less demanding on the computational skills (Tatsuoka, 1987). In Table 2, Strategy 

A and Strategy B are distinguished by two matrices where each row represents an 

item and each column represents a skill. Each entry in the matrix indicates whether a 

strategy involves a skill to solve an item. For example, to solve the item 
1

2
3

− , 

Strategy A involves skills 1, 2 and 5 while Strategy B involves skills 1, 3, 4 and 5. 

Thus, various problem-solving strategies are operationally defined as various 

cognitive processes and can be represented as different Q-matrices in cognitive 

diagnosis models (CDMs) (e.g., de la Torre & Douglas, 2008). Mislevy and Huang 

(2007) refer to the mixture models designed for such mixed problem-solving 

strategies as measurement models with narrative structures, the narrative theme of 
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which is that “Different persons may use different strategies but are presumed to use 

the same strategy for all items. It is not known which strategy a person is using. 

Features of tasks that render them difficult are posited for each strategy.” 

Table 1 
An Example Multiple-Approach Item with Step-by-Step Solutions 

Step Strategy A Strategy B 

1 
 

1
2

3
−  

(5) Convert whole number to 

fraction 

6 1

3 3
= −  

1
2

3
−  

(3) Separate whole number from 

fraction; 

(4) Borrow one from whole number 

to fraction; 

(5) Convert whole number to 

fraction; 

3 1
1

3 3
= −  

2 (1) Basic fraction subtraction 

5

3
=  

(1) Basic fraction subtraction 

2
1

3
=  

3 (2) Simplify/Reduce 

2
1

3
=  

 

Note. The numbers in parentheses correspond to the numbering of the skills in 

Mislevy (1996).  

 

Table 2 

An Example of Strategy Operationally Defined as a Unique Set of Skills 

Item 

 Strategy A  Strategy B 

Skill 1 Skill 

2 

Skill 

5 

Skill 

6 

Skill 

7 
 

Skill 

2 

Skill 

3 

Skill 

4 

Skill 

5 

1
2

3
−  1 1 1 0 0  0 1 1 1 

1
3 2

5
−  1 0 1 1 0  1 1 1 1 

7
3 2

8
−  1 1 1 1 1  0 1 0 0 

In contrast, different strategies can be distinguished by different item 

parameters (e.g., items are deemed more difficult for the subpopulation employing 

one strategy than another); thus, the strategy is operationally defined by its outcome 
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in terms of item functioning. Such definition is more likely to be adopted when the 

measurement model is an item response theory (IRT) model where no parameter 

directly represents the cognitive process. In sum, the way to distinguish different 

strategies is dependent on the characteristics of the measurement model, which will 

be further elaborated in the literature review section.  

This study chooses to use the cognitive process (i.e., a set of skills) to 

operationally define the strategy mainly for two reasons. On one hand, such 

operational definition of strategy is more aligned with its theoretical definition given 

that Paris et al. (1983) refer strategies as “skills under consideration”. On the other 

hand, the proposed model is in the CDM framework; the characteristics of CDMs 

make it more convenient to define the strategy with its cognitive process as opposed 

to its outcome. 

What is the relationship between strategy and skills? Most existing latent 

variable models designed for measuring strategies do not explicitly distinguish 

between the concepts of strategies and skills. However, the model specifications 

imply that the skills and strategies are assumed to be dependent on each other. In the 

existing CDMs for studying problem-solving strategies, the attribute mastery status is 

assumed to be dependent on the problem-solving strategies. “Attribute” is a 

commonly used term for the discrete latent variable in CDMs; it will be used 

interchangeably with the term “skill” in the subsequent text. In some models, the 

distributions of the attribute mastery profiles are allowed to vary across strategies 

(e.g., von Davier, 2007). Alternatively, the choice of strategy can be conditional on 

the attribute mastery status (e.g., de la Torre & Douglas, 2008; Ma & Guo, 2019). For 
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instance, individuals who have mastered an attribute could be more likely to choose 

strategies that involve a specific attribute. However, without explicitly specifying the 

roles that skills and strategies play in the problem-solving process, it would be hard to 

verify or assess the modeling assumptions about the relationships between the 

strategy and attributes. Furthermore, the validity of the strategy and attribute 

classification results could be questionable. 

In order to distinguish the roles of skills and strategies, this study adapts the 

IDEAL problem-solving model proposed by Bransford and Stein (1993) to model the 

item responding process. As shown in Figure 1, The IDEAL model consists of five 

steps required to solve a problem: 1) Identify the problem (I); 2) Define the cause 

(D); 3) Explore possible strategies (E); 4) Act (A); 5) Look and learn (L). This study, 

utilizing a simplified version of the IDEAL model (Figure 1), divides the item 

responding process into two independent stages: strategy choice and skill 

implementation. The strategy choice stage corresponds to the first three steps of the 

IDEAL model where respondents intentionally form a strategy by analyzing the item 

and identifying the skills required to solve the item. The skill implementation stage 

corresponds to the last two steps in the IDEAL model where respondents utilize the 

chosen skills to solve the item. In this study, a strategy is said to be successfully 

applied when all the skills required by the strategy are implemented.  
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Figure 1. The IDEAL model for problem solving and a simplified IDEAL model. 

1. Identify the 

problem 

2. Define the 

cause 

3. Explore 

possible 

strategies 

4. Act 
5. Look and 

learn 

IDEAL Model (Bransford & Stein, 1984): 

Strategy Choice Skill Implementation A Simplified 

IDEAL Model  
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From a cognitive diagnostic perspective, the separation of the strategy choice 

process from the skill implementation process is desirable as more targeted 

instructions could be designed if the diagnostic results can indicate, for example, 

whether the students have difficulty in choosing a strategy or implementing a skill. As 

an initial attempt to explicitly separate the roles of the strategy and the skill in a 

measurement model, this study assumes that the strategy choice and the skill 

implementation processes are independent for simplicity, given that there is not a 

consistent theory about the correlational or causal relationships between the strategy 

choice and skill implementation. While this study does not impose a correlational or 

causal relationship between the strategy choice and skill implementation, the 

proposed model will serve as a basis to future studies that have a more compelling 

theory or hypothesis about the relationship between the strategy choice and skill 

implementation. 

Figure 2 shows the structure underlying an item response. The latent 

components (i.e., strategy choice, skill implementation and attribute mastery status) 

that are not directly linked with each other are assumed to be independent. The 

independence between the strategy choice and skill implementation has two aspects. 

On one hand, the strategy choice is assumed to be independent from the attribute 

mastery status that affects the item response probability through the skill 

implementation stage. Figure 3 elaborates on the independence between the strategy 

choice ( q ) and attribute mastery status ( ). When solving an item, different 

combinations of strategy choices and attribute mastery statuses result in 2*2=4 

possible mental statuses involving an attribute. In the strategy choice stage, an 
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individual attempting to use a skill (i.e., identifying the attribute to be required) to 

solve the item ( 1q = ) may ( 1 = ) or may not ( 0 = ) be able to implement the skill. 

Similarly, an individual who does not identify an attribute to be required for solving 

the item may ( 1 = ) or may not ( 0 = ) have mastered the attribute.  

On the other hand, it is assumed that the strategy choice and skill 

implementation stages do not have an interaction effect on the probability of correct 

item response. While this study makes a strong assumption that the strategy choice 

and skill implementation processes are completely independent from each other in 

order to simplify the model structure, such an assumption could be relaxed by 

allowing the two processes to have some interaction that affects the probability of a 

correct response. Thus, the proposed model can be easily extended to scenarios where 

some correlational or causal relationships are hypothesized between strategy choice 

and skill implementation. 
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Figure 2. The structure underlying an item response. 
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Figure 3. Cross-classified status of an attribute in the problem-solving process. 
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How to define multiple strategies? The definitions of multiple strategies can 

be dependent on the nature of the tasks or items. For example, Mislevy and Verhelst 

(1990) and Yamamoto (1989) assume that different subpopulations can choose 

different strategies, but each respondent only uses one strategy throughout a test. In 

contrast, Rijkes and Kelderman (2007) proposed a strategy-shift model where an 

examinee may choose to use different strategies for different items within the same 

test administration. Cho et al. (2010) modeled the shift of strategy over time. In the 

vocational education setting, Abele and von Davier (2019) have found that the car 

mechatronics shifted their diagnostic strategies based on the difficulty of the 

problems. In sum, there is not a universal definition about multiple strategies and 

different models are designed for different scenarios of multiple strategies.  

This study focuses on two types of multiple strategies, the between-person 

multiple strategies and within-person strategy shift. The between-person multiple 

strategies refer to the scenario where different respondents on the same test 

administration choose different strategies to solve an item. It is assumed that each 

respondent only uses one strategy in one test administration. The within-person 

strategy shift refers to the scenario where a respondent chooses different strategies to 

solve the same problems over time; in other words, the respondent shifts his or her 

strategy over time.  

1.2 Purpose 

This study proposes a longitudinal CDM that takes into account both between-

person multiple strategies and within-person strategy shift. The model, separating the 

strategy choice process from the skill implementation process, aims at providing 
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richer diagnostic information compared to the traditional CDMs. In particular, while 

traditional CDMs diagnose students’ skill mastery status, they do not provide 

information on students’ strategy choice especially the shift in their strategy over 

time. The proposed model, in addition to providing information on whether attributes 

are mastered as skills, informs that whether attributes are chosen as part of the 

problem-solving strategy. 

A Monte Carlo simulation study is conducted to examine the parameter 

recovery of the proposed model under several simulated conditions and to investigate 

the effects of ignoring between-person multiple strategies and within-person strategy 

shift on the classification accuracy and growth estimates of the longitudinal CDM. 

As an empirical data demonstration, the proposed model is applied to the 

response data from a study with repeated measure pretest-posttest design (Bottge et 

al., 2015) that assessed the effectiveness of the Enhanced Anchored Instruction (EAI; 

Bottge, 2001) and compared effectiveness of EAI with that of business as usual 

(BAU). The empirical data analysis intends to demonstrate the use of the proposed 

model to provide diagnostic information about strategy choice and skill 

implementation, respectively.  

Specifically, this study aims at addressing the following five research 

questions, the first three of which are based on the simulation study while the last two 

of which are based on the empirical data analysis:  

1) How do the relative model fit indices perform in identifying the proposed 

model as the best-fitting model in the presence of both between-person 

multiple strategies and within-person strategy shift?  
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2) What is the impact of ignoring between-person multiple strategies and/or 

within-person strategy shift on the recovery of the model parameters, 

especially those parameters relevant to diagnostic inferences, of the 

longitudinal CDMs? 

3) How is the parameter recovery of the proposed model affected by the 

manipulated factors (i.e., the sample size, the initial mixing proportions of 

strategies, the strategy latent transition probability and the correlation between 

the initial ability and ability change) in the simulation study?  

4) According to the empirical data analysis, how do students’ strategy choice, 

overall skill implementation ability and attribute mastery status change from 

the pretest to the posttest?  

5) According to the empirical data analysis, do Enhanced Anchored Instruction 

(EAI) and Business as usual (BAU) differ in terms of their effects on students’ 

learning outcomes regarding the strategy choice, overall skill implementation 

ability and attribute mastery status?  
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Chapter 2: Literature Review 

Given that this study aims at developing a longitudinal CDM for multiple 

strategies, the literature review is conducted in two topic areas, CDMs and latent 

variable models for multiple strategies. Within each area, the models are further 

categorized based on their application settings, that is, whether they are designed for 

the data from a single time point or for data from multiple time points.  

It should be noted that the models in these two areas are not mutually 

exclusive. Instead, CDMs and the latent variable models for multiple strategies are 

closely related: 1) Both of them are embraced in the latent variable modeling 

framework; 2) Both of them are based on mixture-distribution models (McLachlan & 

Basford, 1988); 3) CDMs can be used as the measurement model in the multiple-

strategy models; and 4) In the longitudinal settings, both of them can be extended to 

model the sequential change of the latent variables by incorporating the latent 

transition analysis (LTA; Collins & Wugalter, 1992).  

2.1 Theoretical Foundation 

A brief introduction to the latent variable modeling framework, mixture-

distribution model and LTA is provided as the theoretical foundation.  

Latent variable modeling framework. By definition, latent variables refer to 

the variables that are not observable but the values of which can be inferred from the 

observed variables. Latent variable models are statistical models containing latent 

variables, and these models are the linkage between the latent and observed variables 

(Spearman, 1904). Psychometric models are latent variable models and they are used 

for psychological and educational measurement. In the field of educational 
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measurement, categorical item responses are usually used as observed variables. This 

review focuses on the models designed for dichotomous item responses as the 

proposed model is to be applied to dichotomous response data, but it should be noted 

most of the models introduced below have been extended to accommodate 

polytomous responses. 

Latent variables can be continuous or categorical. Examples of latent variables 

are persons’ ability and skills. Different psychometric models can be used to measure 

latent variables of different nature. For instance, when the latent variables are 

continuous latent traits, IRT models can be used; when the latent variables are 

attributes or skills whose mastery status is categorical (binary in most cases), CDMs 

should be considered. 

Mixture-distribution model. Mixture-distribution models (McLachlan & 

Basford, 1988) are used when the sample consists of subjects from different 

subpopulations or latent classes. The term “latent” is used if the class membership is 

unobservable. The distribution of the observed data is conditional on the latent class 

membership. Mathematically, in the mixture model, the marginal probability of the 

observed data can be written as: 

 

1

( ) ( | )
C

c

c

P P c
=

=Y y Y y= = ,  

where c is the discrete latent class variable. 
c  is the mixing proportion of class c, 

which corresponds to the class size. ( | )P cY y=  is the conditional probability of the 

observed data given class c. When the observed data are categorical, the mixture 
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model can be referred to as latent class analysis (LCA; e.g., Lazarsfeld & Henry, 

1968) 

Latent transition analysis. LTA (Collins & Wugalter, 1992) can be treated 

as a longitudinal extension of the LCA. In the LTA, the data at each time point is 

modeled with an LCA, but the latent class membership of an individual is allowed to 

change over time. The latent class progressions are represented with latent transition 

probabilities. The marginal probability of the observed data in the LTA is specified as 

 1

(1) ( ') ( ' 1)

(1) ( )

( ' 1) *

|
' 21 1

( ) ... ( | )
T

t t

T

C C T
t

c c c
tc c

P P c  −

−

== =

=   Y y Y y= =   

where (1)c
 is the mixing proportion of latent class (1)c at the initial time point. ( ) ( 1)

( 1)

|
t t

t

c c
 −

−

is the latent transition probability from the latent class ( 1)tc − to ( )tc  at time point ( 1)t −

; that is, for an individual who is classified as ( 1)tc −  at time point ( 1)t − , the 

probability of this individual transitioning to latent class ( )tc  at time point 't is 

( ) ( 1)

( 1)

|
t t

t

c c
 −

−
. * (1) ( )( ,..., )Tc c c= represents the latent class progression pattern. *( | )P cY y=  

is the conditional probability of the observed data given latent class pattern *c .  

2.2 CDM for a Single Time Point 

CDMs are psychometric models that aim at providing fine-grained diagnostic 

information about students’ mastery status on a series of attributes. When applied to 

response data from cognitive diagnostic assessments, CDMs can be used to classify 

students into latent classes, each of which is defined by a unique attribute mastery 

profile. Thus, inferences can be made about students’ attribute mastery status. CDMs 

can be treated as special cases of the discrete mixture-distribution model (McLachlan 
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& Basford, 1988) where the latent classes are defined by attribute profiles and the 

outcome variables are categorical (e.g., Rupp et al., 2010). In CDMs, the marginal 

probability of the observed response patterns of respondent j is given as  

 

1

( ) ( | )
I

ij ij

i

P P Y y
 =

= = = c

c

j j α c

α A

Y y α ,  

where
1( ,..., )K =

c
α indicates the latent class defined by an attribute mastery status 

pattern, assuming that K attributes are measured by the assessment and each attribute 

only has two mastery statuses, i.e., mastery ( 1k = ) and non-mastery ( 0k = ). For 

example, when two attributes are measured, (1,0)=
c

α represents a latent class of 

respondents who have mastered the first attribute but have not mastered the second 

one. A  represents all the permissible attribute mastery status patterns; the maximum 

number of latent classes is 2K
, if all the attribute profile patterns are permissible. 

cα

is the mixing proportion of class 
c

α and ( | )ij ijP Y y= cα represents the conditional 

response probability given the latent class.  

There are numerous ways to specify the distribution of latent classes,
c

α . In a 

saturated form, the mixing proportion parameter, 
cα
, of every latent class (except the 

reference latent class) can be freely estimated, with the constraint, 1


= c

c

α

α A

. If one 

or more attribute profile patterns are known to be impermissible, the corresponding 

mixing proportion(s) can be constrained to zero (e.g., Liu & Huggins-Manley, 2016); 

the mixing proportions of the remaining classes are freely estimated. Alternatively, a 

general unidimensional ability parameter, 
j , can be assumed to underlie all the 
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attributes as in the higher-order structure specified by de la Torre and Douglas 

(2004): 

 exp( )
( 1| )

1 exp( )

k j k

jk j

k j k

P
  

 
  

+
= =

+ +
, (1) 

where k  and k  represent the factor loading and intercept corresponding to attribute 

k, respectively. As the parameterization in equation 1 resembles the two parameter 

logistic (2PL; Birnbaum, 1968) IRT model, k  and k  are referred to as the attribute 

discrimination and easiness parameters in the subsequent sections. It is assumed that 

the attribute mastery probabilities are locally independent given the ability (de la 

Torre & Douglas, 2004). When the higher-order structure is used, the marginal 

probability of the observed response patterns is written as  

 

1

( ) ( 1| ) ( | ) ( )
K

jk

k

P P P f d   
=

 
= = = = 

 
j j j j cY y Y y α .  

Under the higher-order structure, the attribute discrimination and easiness parameters, 

instead of the latent class mixing proportions, are to be estimated. Thus, the higher-

order structure results in fewer model parameters than the saturated form, which can 

improve the estimation efficiency when using the Bayesian Markov chain Monte 

Carlo (MCMC) estimation method (de la Torre & Douglas, 2004).  

A variety of CDMs have been proposed to model the item response 

probability, ( | )ij ijP Y y= cα , and CDMs were originally used to model data from a 

single time point. Examples of the commonly-used CDMs are deterministic input, 

noisy “and” gate (DINA; Junker & Sijtsma, 2001; Macready & Dayton, 1977) model, 

deterministic input, noisy “or” gate (DINO; Templin & Henson, 2006), log-linear 
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cognitive diagnosis model (LCDM; Henson et al., 2009) and general diagnostic 

model (GDM; von Davier, 2005). Different CDMs are designed for different 

purposes and rest on various assumptions. The DINA model is one of the simplest 

and most widely-used CDMs. It is a non-compensatory CDM assuming that, ideally, 

a student can correctly respond to an item only if he or she masters all the required 

attributes of the item. Specifically, the ideal item response of respondent j to item i is 

given as  

 

1

ik

K
q

ij jk

k

 
=

= ,  

where jk  is an indicator of whether respondent j masters attribute k; and 
ikq , as an 

element in the Q-matrix, indicates whether item i requires attribute k. The Q-matrix is 

an item-by-attribute matrix. Each element in the Q-matrix, also referred to as “q-

entry”, is a binary entry with the following denotation: 

1,

0,
ikq


= 


the th item requires the th attribute

the th item does not require the th attribute

i k

i k
 

The Q-matrix is an important component in CDMs, as it describes the mapping 

relationships between items and attributes (Tatsuoka, 1983, 1985) and reflects the 

cognitive specification of a test (Leighton et al., 2004). Thus, in the DINA model, the 

probability of a correct response is written as 

 
1 1

1
1
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α ,  

where 
c(j)α  is the attribute mastery status pattern of respondent j; ( 1| 0)i ij ijg P Y = = =  

and ( 0 | 1)i ij ijs P Y = = =  represent the guessing and slipping probabilities, 
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respectively. The constraint, 1i ig s − , is set to ensure that individuals who lack one 

or more required attributes have a lower probability of success than those who master 

all the required attributes (Junker & Sijtsma, 2001). A compensatory counterpart of 

the DINA model is the DINO model. The DINO model assumes that students can 

correctly respond to an item as long as he or she masters one of the required 

attribute(s), when slipping does not occur. 

Both the DINA and DINO models are highly restricted models relying on 

strong assumptions. For example, the DINA model does not differentiate the correct 

response probabilities among respondents who lack one or more attributes; the DINO 

model does not differentiate the correct response probabilities among respondents 

who master one or more attributes. These assumptions hardly hold true in reality. 

Some more generalized CDMs based on weaker assumptions have been developed. 

The LCDM is a generalized CDM where the correct response probability is written as 

 T
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where ,0i is the item intercept parameter; it can be interpreted as a guessing 

parameter in the sense that it is the logit of the correct response probability when no 

attribute is mastered. 
T ( , )hi c(j) iα q is a linear combination of the main and interaction 

effects of the required attributes, i.e., 
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where 
,1,( )i k  is the main effect of attribute k. 

1 2,2,( , )i k k  is the two-way interaction 

effect of attributes 
1k  and 

2k . The higher-order interactions can be represented by 
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1, ,( ,..., )di d k k  , 3,...,d K= , where d is the order of the interaction. In the saturated form 

of the LCDM, all the main and interaction effects are included. Alternatively, main 

and/or interaction terms can be dropped to reduce the number of estimated 

parameters. The LCDM is more generalized than the DINA or DINO models as it 

allows each attribute to uniquely contribute to the correct response probability. In 

fact, the DINA model can be written as a constrained version of the LCDM where 

only the highest-order interaction term is retained for the complex items (Rupp et al., 

2010). Another special case of the LCDM is the linear logistic model (LLM; 

Hagenaars, 1990, 1993; Maris, 1999) that only retains the main effect terms of the 

LCDM. Note that the ordering constraints need to be set on the main effect and each 

interaction effect in order to ensure model identification for the LCDM: all the main 

effects are constrained to be positive; interactions are constrained to ensure that 

respondents who master more required attributes would have higher success 

probabilities (Lao, 2016). 

The GDM is a generalized model which encompasses the LCDM as a special 

case (von Davier, 2014). In addition, the GDM allows the latent attributes to be 

continuous or discrete. A number of other CDMs are not elaborated here as the 

purpose of this literature review is to provide an overview and to lay a foundation to 

the proposed model. A more comprehensive review of CDMs that are designed for 

data from a single time point can be found in Rupp and Templin (2008b). 

2.3 CDM for Multiple Time Points 

Recent years have seen the development of longitudinal CDMs that model 

data from multiple time points (Hansen, 2013; Huang, 2017; Kaya & Leite, 2017; 
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Lee, 2017; F. Li et al., 2016; Madison & Bradshaw, 2018a, 2018b; Pan, 2018; S. 

Wang et al., 2018; Zhan, Jiao, Liao, et al., 2019). In general, these longitudinal CDMs 

can be divided into two categories, one based on the LTA and the other based on the 

growth modeling. The two categories of models assume different attribute 

distributions: the LTA-based CDMs assume that the attributes follow a discrete 

distribution, while the growth-model-based CDMs rest on higher-order structures 

underlying the attributes. Accordingly, the operational definitions of “growth” vary 

across the two categories of CDMs. 

The LTA-based CDMs (Kaya & Leite, 2017; F. Li et al., 2016; Madison & 

Bradshaw, 2018a, 2018b; S. Wang et al., 2018), using the concept of “transition”, 

assume that the attributes follow a discrete distribution. This category of longitudinal 

CDMs focuses on the probabilities of respondents transitioning from one attribute 

mastery status latent class to another over time (usually over adjacent time points). In 

the LTA-based CDMs, the marginal probability of the observed response pattern is 

specified as 
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is the latent transition probability from the latent class (t-1)

c
α to (t)

cα  at time point (t-1); 

that is, for a respondent who is classified as (t-1)

c
α  at time point (t-1), the probability of 

this respondent switching to latent class (t)

cα  at time point t is ( 1)

|

t −
(t) (t-1)
c cα α

. The latent 

transition probability can be directly estimated (e.g., Li et al., 2016; Madison & 
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Bradshaw, 2018) or further decomposed as a combination of covariates (S. Wang et 

al., 2018). Different measurement models have been used to model 
( ) ( )( | )t t

ij ijP Y y= (t)

cα  

in the LTA-based CDMs, including the DINA (F. Li et al., 2016), DINO (Kaya & 

Leite, 2017) and LCDM (Madison & Bradshaw, 2018b). The growth in the LTA-

based CDMs can be quantified as the change in the proportion of examinees who are 

classified as attribute mastery over time (Madison & Bradshaw, 2018a, 2018b). 

Madison and Bradshaw (2018a) further incorporated a multigroup structure into an 

LTA-based CDM to assess the differential growth among multiple manifest groups 

(e.g., a control group and a treatment group).  

In contrast, most growth-model-based CDMs assume a higher-order structure 

(de la Torre & Douglas, 2004) with continuous latent trait(s) underlying the attributes 

(e.g., Lee, 2017; Zhan, Jiao, Liao, et al., 2019), so that the growth can be defined as 

the change in the continuous latent trait(s) over time. The marginal probability of the 

observed response pattern is given as 

 
( ) ( ) ( )

1 1

( ) ( 1| ) ( | , ) ( )
K I

t t t

jk ij ij

k i

P P P Y y f d
= =

 
= = = 

 
 

(t) (t) (t)

j j cY y α=     ,  

where the latent ability,  , is multidimensional given that multiple time points are 

involved.  

The denotation, parameterization and structure of   vary across different 

studies. Hansen (2013) applied the hierarchical diagnostic model to model data from 

multiple time points. Only one attribute is measured at each time point. Correlations 

of the attribute across time points are allowed by specifying continuous latent 

variables,  , underlying the attribute across time points. Zhan, Jiao, Liao, et al. 
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(2019), following the model of Andersen (1985), denoted   as a vector of ability at 

multiple time points, i.e., 
(1) ( )( ,..., ) 'T

j j =j , and specified that 
j  follows a 

multivariate normal distribution, i.e., ~ ( , )MVNj (θ) (θ)μ Σ . Lee (2017) used a growth 

curve model to model the change of latent ability over time. The growth curve model 

allows individual-specific growth curves. Statistically, the ability parameter at each 

time point is a function of a time covariate, and that the slope and intercept are 

random, i.e.,  

 ( ) ( ) ( )

0 1( ) timet t t

j j j j j    = + +  +   

where 
( )time t

j is the time covariate. 
( )t

j is the error term. In this model, both intercept 

and slope are specified as random parameters: 
0j  is the random intercept; 

1( )j +

is the slope consisting of a fixed component,  , and a random component, 
1j . The 

random effects of the intercept and slope follow a multivariate normal distribution, 

0

1

0
~ ,

0

j

j

MVN




    
    

    
(ς)

Σ , and the error term follows a normal distribution,

( ) 2

( )~ (0, )t

j tN   . Further, a multivariate version of the growth curve model can be 

used to directly model the change of attribute mastery probability over time, without 

assuming a latent trait underlying the attributes (Pan, 2018). 

In the longitudinal CDM studies, there is not a consistent rule of whether and 

how to handle the dependencies of the repeated items over time. Madison and 

Bradshaw (2018) did not consider the dependencies of the repeated items over time, 

while Hansen (2013) and Zhan, Jiao, Liao, et al. (2019) included random effects to 

account for the dependencies of the repeated items over time. However, all the studies 
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above assume that the repeated items are measurement invariant, i.e., have the same 

item parameters over time. 

The measurement invariance is an important assumption in longitudinal 

modeling in the education studies as it is a prerequisite to the meaningful comparison 

of the latent trait or attribute mastery status across timepoints (e.g., Meredith & Horn, 

2001). In the longitudinal CDMs, the measurement invariance assumption holds when 

the conditional distribution of the observed response patterns given the attribute 

profile remain identical across time points (Madison & Bradshaw, 2018b). The 

majority of existing studies on the longitudinal CDM assume measurement invariance 

without testing the assumption with Madison and Bradshaw (2018) as an exception. 

Madison and Bradshaw (2018) examined the robustness of an LTA-based CDM to 

the violation of the measurement invariance assumption due to item parameter drift 

(IPD). They found that, under the simulated conditions, the item parameter estimates 

are less accurate when the IPD exists, but the classification accuracy is robust to IPD. 

Specifically, In the simulation study conducted by Madison and Bradshaw (2018), 

three manipulated factors considered were related to the item parameter drift (IPD) 

over time. Specifically, they considered the percentages of items with IPD (0%, 20%, 

40%, 60%, 80%, and 100%), the magnitude of IPD (i.e., difference in item 

parameters) over time (0.5 and 1) and the IPD type (IPD only in the item intercept 

parameters, IPD only in the main and interaction parameters and IPD in all the item 

parameters). They found that, in their proposed model (i.e., Transition Diagnostic 

Classification Model), the classification accuracy rates were higher than 0.9 in all the 



27 

 

simulated conditions. Further, the classification accuracy rate only decreased by 0.01 

in the 100% IPD conditions compared to the 0% IPD conditions. 

Nevertheless, IPD may not be the only factor leading to the violation of 

measurement invariance. The shift in problem-solving strategy, manifested as a 

difference in the Q-matrix (e.g., de la Torre & Douglas, 2008), could also result in the 

violation of measurement invariance. No study has investigated the impact of the drift 

of Q-matrix on the performance of longitudinal CDMs. In addition, the drift of Q-

matrix could be associated with the Q-matrix misspecification issues in longitudinal 

CDMs. Studies on single-time-point CDMs have found that misspecified Q-matrices 

can result in inaccurate item parameter estimates and lower the classification 

accuracy (Im & Corter, 2011; Rupp & Templin, 2008a). Therefore, the variability of 

the Q-matrix over time is worth exploring. 

Using the same Q-matrix for all the individuals and for all the time points, 

existing studies on longitudinal CDMs (e.g., Li et al., 2016; Madison & Bradshaw, 

2018b; Zhan, Jiao, Liao, et al., 2019) assume that all the respondents employ a 

uniform type of problem-solving strategy at each time point and each individual 

would not change the problem-solving strategy over time. Such assumptions may not 

be realistic given that individuals may choose to use different strategies at different 

stages of cognitive development (Siegler et al., 1981) and a number of educational 

programs have been designed for improving students’ problem-solving strategies 

(e.g., Mercer & Mercer, 2001). Thus, it is reasonable to expect that there are a variety 

of problem-solving strategies among the population at a single time point and an 
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individual’s strategy can change over time, which motivates the proposal of a 

longitudinal CDM incorporating the multiple strategies and strategy shift. 

2.4 Modeling Multiple Strategies at a Single Time Point 

Discrete mixture-distribution models combined with the IRT models or 

CDMs, have been used to model multiple strategies (de la Torre & Douglas, 2008; 

Mislevy & Verhelst, 1990; Rost, 1990; von Davier, 2010; Yamamoto, 1989). Such 

mixture models for problem-solving strategies are referred to as measurement models 

with narrative structures by Mislevy and Huang (2007). 

In a single-time-point scenario, the problem-solving process generally consists 

of two stages. In the first stage, a respondent chooses a strategy; in the second stage, 

the respondent implements the required skills and makes a response. As the strategy 

chosen by a person is unobservable, the strategy is treated as a categorical latent 

variable in the discrete mixture-distribution model and the mixing proportions of the 

categories are to be estimated. Mathematically, the marginal probability of the 

observed response pattern of respondent j is written as  

 

1 1

( ) ( | )
IM

m ij ij

m i

P P Y y m
= =

= = = j j
Y y ,  

where 
m  is the mixing proportion of strategy m, indicating the proportion of 

respondents choosing strategy m; ( | )ij ijP Y y m= is the item response probability 

conditional on strategy m, which can be modeled with a chosen measurement model, 

such as an IRT model or a CDM.  

IRT models as the measurement model. When IRT models are used as the 

measurement model, the item response probability is a function of the continuous 
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person ability parameter,  . Different strategies can be characterized by different 

item parameters, ability distributions and/or different measurement models (e.g., 

Mislevy & Verhelst, 1990; Rost, 1990; Yamamoto, 1989). One of the simplest 

mixture IRT models is the mixed Rasch model (Rost, 1990) where the marginal 

probability of the observed response pattern of respondent j is given as (assuming 

local item independence): 

 

1 1

( ) ( | , ) ( | )
IM

m ij ij

m i

P P Y y m f m d   
= =

= = = j j
Y y ,  

where ( | )f m is the distribution of the ability parameter conditional on strategy m. 

The response probability of an individual item is written as the Rasch model (Rasch, 

1960): 

 exp( )
( 1| , , )

1 exp( )

j im

ij j im

j im

P Y m
 

 
 

−
= =

+ −
, (3) 

 ( 0 | , , ) 1 ( 1| , , )ij j im ij j imP Y m P Y m   = = − = .  

As in the Rasch model,
im  is the item difficulty parameter. However, in the mixture 

Rasch model for multiple strategies, 
im  is also dependent on the discrete latent class 

variable, m, and, therefore, is strategy-specific.  

Mislevy and Verhelst (1990) noted that the strategy-specific item difficulty 

parameter could be associated with the nature of the strategy and the characteristics of 

the item. Therefore, they proposed the mixture linear logistic test model (MLLTM). 

Specifically, the item difficulty parameter in the mixed Rasch model is decomposed 

as a linear combination of item features associated with the strategy: 
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1

( )
L

im iml ml

l

R 
=

=   

where each element in matrix 
im

R  indicates whether a strategy-related feature l is 

present in item i; the value of the element can be dichotomous or polytomous. 
ml  

represents the contribution of feature l to the item difficulty parameter. Both 
im

R  and 

ml  can be predetermined based on theories. 

While both the mixed Rasch model and the MLLTM used the Rasch-type 

models as measurement models for all the strategies, different types of measurement 

models could be used for different strategies. In the HYBRID IRT model proposed by 

Yamamoto (1987, 1989), two subpopulations (i.e., normal respondents and random 

guessers) who implement different strategies are assumed. The normal respondents 

are modeled with an IRT model while the random guessers are modeled with a latent 

class analysis (LCA) model. As a special case, the HYBRID Rasch model ( von 

Davier & Yamamoto, 2007) consists of the “RASCH” and “LCA” latent classes. In 

the HYBRID Rasch model, the marginal probability of the observed response pattern 

is written as 

 ( | )

    ( | , ) ( | ) ( | ),RASCH RASCH RASCH m

m

P

P M f M d P m    


= =

= + =
LCA

j j

j j j j

M

Y y

Y y Y y



  

The measurement model of the “RASCH” class is the same as that of the mixed 

Rasch model (equation 3). The measurement model of the “LCA” class is written as: 

 ( 1| ) ,  ij mP Y m g m= =  LCAM .  

CDMs as the measurement model. When CDMs are used as the 

measurement model, the conditional item response probability is a function of the 
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person attribute profiles,α . Different strategies can be characterized by different Q-

matrices as well as different distributions of attribute profiles (e.g., de la Torre & 

Douglas, 2008; von Davier, 2007). As a natural extension of the mixture IRT models 

to the CDM framework, the mixture GDM (von Davier, 2007) has the marginal 

probability of the observed response pattern: 

 

1 1 1

( ) ( | ) ( | , )
IM C

m ij ij

m c i

P P m P Y y m
= = =

= = =  j j c c
Y y α α ,  

where each strategy m corresponds to a unique Q-matrix. In some multiple-strategy 

CDMs, the strategy choice is specified to be dependent on the attribute mastery status 

(e.g., de la Torre & Douglas, 2008; Ma & Guo, 2019). When the strategy choice is 

conditional on the person attribute profiles, α , the marginal probability of the 

response pattern is specified as 

 
|

1 1 1

( ) ( ) ( | , )
IC M

m ij ij

c m i

P P P Y y m
= = =

= = =  cj j c α c
Y y α α ,  

where 
| ( | )m P m =

cα cα  is the probability of choosing strategy m given the attribute 

profiles,
c

α . The relationship between strategy choice and the attribute mastery 

statuses,α , can be either deterministic or probabilistic. In the multiple-strategy DINA 

(MS-DINA; de la Torre & Douglas, 2008) model, it is assumed that respondents 

would choose a strategy as long as they master all the attributes required by the 

strategy. Mathematically, the ideal response in the MS-DINA model is specified as 

 
1 2max{ , ,..., }ij ij ij ijM   = ,  
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where 
1

ikm

K
q

ijm jk

k

 
=

= is the ideal item response corresponding to strategy m and its Q-

matrix, m
Q . In this sense, respondents’ strategy choice is determined by their 

attribute mastery statuses. In contrast, Ma and Guo (2019) relates the strategy choice 

probability to the conditional correct response probability given the attribute profile 

and strategy: 

 

1

( 1| , )
( | )

( 1| , )
i

u

ij

M
u

ij

m

P Y m
P m

P Y m
=

=
=

=

j

j

j

α
α

α

, 
 

where u is referred to as the “strategy selection” parameter. In particular, when u=0, 

all the strategies are equally likely to be chosen; when u=1, the probability of 

choosing a strategy is proportional to the conditional correct response probability 

given this strategy.  

Comparisons between IRT models and CDMs as measurement model. 

The mixture-distribution models, incorporating the IRT models or CDMs as 

measurement models, have been used for multiple-strategy modeling. Regardless of 

the type of the measurement model, the strategy is indicated by a discrete latent 

variable in the mixture models. However, the operational definitions of problem-

solving strategy can vary across different measurement models. In the CDM 

framework, strategies are defined by their unique cognitive processes. In particular, 

each strategy, characterized by a Q-matrix, is defined by a unique combination of 

attributes involved in the problem-solving process. In contrast, strategies tend to be 

defined based on their “outcomes” of item functioning in the IRT framework. For 
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example, items could be deemed more difficult for the subpopulation employing one 

strategy than another. 

2.5 Modeling Multiple Strategies at Multiple Time Points 

In the longitudinal setting, the LTA-mixture Rasch model has been proposed 

to model strategy shift over time and has been used to evaluate the effectiveness of an 

education intervention (Cho et al., 2010). In the LTA-mixture Rasch model, the 

marginal probability of the response pattern at time point t is: 

 1

1 ' ' 1

1

( ' 1) *

|

1 1 ' 2

( ) ... ( | )
T

t t

T

M M T
t

m m m

m m t

P P m 
−

−

= = =

=  
(t) (t) (t) (t)

j j j jY y Y y= = ,  

where *

1 2( , ,..., )Tm m m m=  is the strategy progression over time. 
' ' 1

( ' 1)

|t t

t

m m
−

−
 is the latent 

transition probability from strategy 
' 1tm −

to 
'tm at time point ' 1t − , ' 2,...t T= . In the 

LTA-mixture Rasch model, each latent class is a strategy pattern, and the mixing 

proportion of a latent class is 
1 1

( ' 1)

|

' 2
t t

T
t

m m m

t

 
−

−

=

 . The conditional probability of the 

response pattern given a latent class is specified as 

 *

( ) ( ) * * (1) ( )

1

( | )

    ( | , ) ( | ) ,  ( ,..., ) ',
I

t t T

ij ij

i

P m

P Y y m f m d  
=

=

= =

(t) (t)

j jY y=

   
  

where the ability,  , is multidimensional and follows the structure specified by 

Andersen (1985). Specifically, within each latent class *m , the ability parameters 

follow a multivariate normal distribution, i.e., *

*| ~ ( , )
j m

m MVN
 * *(θ)m (θ)m

μ Σ . The 

mean and variance of the ability parameter at the first time point in the first latent 

class are set to be 0 and 1, respectively, for scale identification. The conditional 

probability of a correct item response at time point t is given as 
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The item parameter, *

( )t

im
 , is allowed to vary across latent classes but is constrained to 

be invariant over time, i.e., * *

( )t

im im
 = , for scale comparability. Cho et al. (2013) 

extended the LTA-mixture Rasch model to accommodate a multilevel structure. 

2.6 Parameter Estimation of the CDMs for Multiple Time Points or Multiple 

Strategies 

The maximum likelihood estimation (MLE) with the Expectation-

Maximization (EM) algorithm and the Bayesian MCMC method are two frequently 

used parameter estimation methods for the CDMs with multiple strategies or multiple 

time points (e.g., de la Torre & Douglas, 2008; Huo & de la Torre, 2014; Madison & 

Bradshaw, 2018b; Zhan, Jiao, Liao, et al., 2019; Zhan, Jiao, Man, et al., 2019). The 

two estimation methods differ in their assumptions and optimization algorithms. The 

MLE is a frequentist approach which assumes that each parameter is fixed. The MLE 

finds the parameter values that maximize the likelihood function and uses them as the 

parameter estimates. In contrast, the Bayesian approach assumes that each parameter 

is a random variable which is represented by a probability distribution. In the 

Bayesian estimation, the prior knowledge about a parameter (i.e., the prior 

distribution) is updated with the knowledge gained from the observed data (i.e., the 

likelihood) to yield the updated knowledge about the parameter (i.e., the posterior 

distribution). Thus, in the Bayesian estimation methods, the estimate and standard 

error of a parameter is obtained by summarizing the mean and standard deviation, 

respectively, of the posterior distribution of the parameter. However, despite the 
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difference in the estimation algorithm, evidence has been found that the MLE and the 

Bayesian estimation methods yield comparable parameter estimates in the CDMs 

(e.g., Huo & de la Torre, 2014). 

Given that the comparative efficiencies of the two estimation methods vary 

from case to case, the choice between the MLE and the Bayesian MCMC method 

depends on a variety of factors. One factor that could affect the choice of the 

estimation method is the distribution assumed underlying the attribute profile latent 

classes. In general, the MLE is more likely to be chosen when the attribute profiles 

are assumed to follow a discrete distribution (e.g., Huo & de la Torre, 2014; Madison 

& Bradshaw, 2018b), while the Bayesian MCMC is favored when a higher-order 

structure (equation 1) is assumed underlying the attributes (e.g., de la Torre & 

Douglas, 2008; Zhan, Jiao, Man, et al., 2019) with Zhan, Jiao, Liao, et al. (2019) 

being an exception. The MLE tends to be more efficient than the Bayesian MCMC 

when the attribute distribution is discrete for the MS-DINA model (Huo & de la 

Torre, 2014). However, the memory required by the MLE increases as the number of 

the attributes increases and, thus, even the MLE could become burdensome when the 

number of attributes is extremely large. Compared to the MLE, the Bayesian MCMC 

is more flexible to be applied to different formulations of the models. For example, it 

is straightforward to estimate the parameters of the HO-DINA model with the 

Bayesian MCMC method, which is relatively hard with the MLE (de la Torre, 2009). 

As for the software program, flexMIRT (Houts & Cai, 2015) and Mplus 

(Muthén & Muthén, 2007) have been used to carry out the MLE for the longitudinal 

CDMs (Madison & Bradshaw, 2018b; Zhan, Jiao, Liao, et al., 2019); JAGS 
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(Plummer, 2015) has been used to carry out the Bayesian MCMC estimation for the 

longitudinal CDMs (Zhan, Jiao, Man, et al., 2019). Ox (Doornik, 2009) has been used 

to implement both the MLE and the Bayesian MCMC for estimating the multiple-

strategy CDMs (de la Torre & Douglas, 2008; Huo & de la Torre, 2014). The 

function and accessibility of the estimation tools could also be taken into account 

while choosing the appropriate estimation method.  

2.7 Summary of the Literature Review 

This chapter reviews the literature on CDMs and models for multiple 

strategies. Three limitations are identified and this study is motivated to filling the 

gaps in the existing literature. First, the existing longitudinal CDMs, using a single Q-

matrix for all the respondents over time, are prone to the Q-matrix misspecification 

issues. The between-person multiple strategies could result in different Q-matrices for 

different subpopulations and the within-person strategy shift could result in a drift of 

Q-matrix over time. Using the same Q-matrix for all the respondents across time 

points could render the Q-matrix misspecified for at least some of the respondents. 

Second, the existing models for within-person strategy shift (e.g., Cho et al., 

2010) are originated in the IRT framework and are limited in providing fine-grained 

diagnostic information. Like the mixture IRT models designed for a single time point, 

the LTA-mixture Rasch model distinguished different problem-solving strategies by 

different item functioning as opposed to different cognitive processes. Thus, a shift in 

strategy is characterized by a shift in the item functioning. For example, a research 

question that can be answered using the LTA-mixture Rasch model is that “For an 

individual shifting from Strategy A to Strategy B, which item(s) become easier for 
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this individual?” However, in the IRT framework, it is hard to answer questions like 

“For an individual shifting from Strategy A to Strategy B, does this individual tend to 

utilize additional attributes to solve the problems?” Using CDMs that define 

strategies as unique cognitive processes could make it possible to answer the latter 

type of research questions. Currently, no study has been done to model strategy shift 

over time in the CDM framework.  

Third, previous latent variable models seldom explicitly distinguish the 

concept of strategies from skills. The model specifications (e.g., Rost, 1990; von 

Davier, 2007) imply dependencies among strategies and skills. For example, von 

Davier (2007) allowed the distributions of the attribute mastery profiles and/or item 

parameters to vary across strategy latent classes. Alternatively, Ma and Guo (2019) 

specified the probability of the strategy choice as a function of the attribute mastery 

statuses. However, from a diagnostic perspective, it may be worthwhile to separate 

strategies from skills: diagnostic models that separate the strategy choice process 

(identifying the attributes required to solve the problem) from the skill 

implementation process (implementing the attributes to solve the problems) could 

indicate, for example, whether the students have difficulty in choosing a strategy or in 

implementing a skill. Thus, skill-oriented or strategy-oriented instructions could be 

designed accordingly to meet students’ needs. 

Regarding the limitations of previous studies, this study aims at proposing a 

longitudinal CDM that makes three contributions. First, the proposed model is 

designed to reduce the risk of Q-matrix misspecification due to differential problem-

solving strategies by considering multiple Q-matrices. While studies with similar 
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purposes have been done in the IRT framework (e.g., Mislevy & Huang, 2007) or 

single-time-point CDMs (e.g., de la Torre & Douglas, 2008), this study addresses the 

purpose in the longitudinal CDMs. Second, the proposed model is intended to 

measure strategy shift in the CDM framework, which could serve as a measure for the 

effectiveness of some strategy-oriented intervention programs. Finally, the proposed 

model aims at providing more informative diagnostic information: In addition to 

informing students’ strengths and weaknesses in terms of their skill implementation, 

the model provides information on students’ strategy choice. This diagnostic 

information could potentially inform whether strategy-oriented or skill-oriented 

instructions are needed. 
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Chapter 3: Methods 

3.1 The Proposed Model 

This study proposes a longitudinal CDM that takes into account both between-

person multiple strategies and within-person strategy transition. The model, 

separating the strategy choice process from the skill implementation process, aims at 

providing more fine-grained diagnostic information compared to traditional CDMs. 

More specifically, in addition to providing diagnostic information on the attribute 

mastery status, the model is intended to inform the cognitive process underlying the 

strategy choice and skill implementation, respectively. 

Figure 4 demonstrates the relations among strategy choice, skill 

implementation, Q-matrices, attribute mastery status and item responses. In this 

study, the strategy choice is represented with a discrete latent variable, m, and 

different strategy choices distinguished by different Q-matrices. The underlying 

assumption is that people who choose different strategies attempt to use different sets 

of attributes to solve the same multiple-approach problem. When a Q-matrix 

represents a problem-solving strategy, each q-entry, 
ikmq , can be interpreted as 

“whether a person who chooses strategy m would attempt to use attribute k to solve 

item i”. Whether the attempt would be successful is determined by the attribute 

mastery status that affects the skill implementation process. In Figure 4, the value of 

ikmq  determines whether or not the path from attribute 
k  to item response 

iY is 

present. Specifically, 0ikmq =  denotes that respondents who choose strategy m would 

not attempt to apply attribute k to solve item i , thus the path from 
k  to 

iY is absent 
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for respondents who choose strategy m; when the path is absent, the mastery of 
k  

does not contribute to the correct item response probability. When 1ikmq = , the path 

from 
k  to 

iY is present for respondents who choose strategy m; the mastery of 
k  is 

expected to increase the correct item response probability. A continuous latent 

variable   is used to represent the skill implementation ability underlying the mastery 

statuses of all the attributes. Given that the strategy choice and skill implementation 

stages are assumed to be independent, the attempt to apply an attribute does not imply 

that attribute is mastered; the mastery of an attribute does not imply the attempt to 

apply the attribute. 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. The relations among strategy choice, skill implementation ability, Q-

matrices, attribute mastery status and item responses. The strategy choice is 

represented with a discrete latent variable m; the skill implementation ability is 

represented with a continuous latent variable  . The dashed lines indicate that the 

paths may or may not be present, depending on the values of q. 
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As one of the goals of the proposed model is to quantify the growth of the 

ability of skill implementation, the model is based on growth modeling and a higher-

order structure is specified to underlie the attributes as shown in Figure 4. The 

continuous ability parameter   in the higher-order structure render it feasible to 

quantify the growth on a continuous scale. The LLM is used as the measurement 

model as it is flexible to incorporate the unique contribution of each attribute to the 

correct response probability. Nevertheless, as the LLM can be easily generalized to 

the LCDM – one of the most widely-used generalized CDMs – by incorporating the 

attribute interaction terms, the proposed model is presented in the form of the LCDM 

for the convenience of future generalization. Following the model specification of the 

mixture GDM (von Davier, 2007), this study assumes that the population consists of 

subpopulations who choose different strategies (i.e., between-person multiple 

strategies) and the Q-matrices are different for different subpopulations. In a mixture 

CDM (MCDM) with a higher-order attribute structure (equation 1) and with the 

LCDM as the measurement model (equation 2), the marginal probability of the 

observed item responses is written as 

 

1 1 1

( )

        ( 1| , ) ( | , , ) ( | ) ,
K IM

m jk ij ij

m k i

P

P m P Y y m f m d     
= = =

= =

 
= = 

 
  

j j

c

Y y

α  
 

where 
m  is the mixing proportion of strategy m. The conditional item response 

probability given strategy m is: 
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= =
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 

 

c(j)
α

 (4) 

where 
ikmq  denotes whether individuals who chooses strategy m would attempt to use 

attribute k to solve item i. ,0im  is the item intercept parameter and equals to the logit 

of the correct response probability when no attributes are attempted and/or mastered. 

,1,( )im k  and 
1 2,2,( , )im k k  are the main and interaction effects of the attributes on the 

correct response probability of item i when the attributes are attempted. When ,0im , 

,1,( )im k  and 
1 2,2,( , )im k k  are strategy-specific, another way of interpreting these 

parameters is that they are the interaction effects of the strategy choice and skill 

implementation on the correct response probability. Recall that this study assumes 

that the strategy choice and skill implementation stages are independent and no 

interaction between strategy choice and implementation is considered for simplicity, 

,0im , 
,1,( )im k  and 

1 2,2,( , )im k k  are constrained to be equal across strategies, i.e., 

,0 ,0im i =
,1,( ) ,1,( )im k i k = , 

1 2 1 2,2,( , ) ,2,( , )im k k i k k = ; thus, 
,1,( )i k  and 

1 2,2,( , )i k k  denote the 

main and interaction effects of the skill implementation on the correct response 

probability. When dependencies between the strategy choice and skill implementation 

are considered, the above equality constraints imposed on ,0im , 
,1,( )im k  and 

1 2,2,( , )im k k  

can be relaxed. In the LLM, the interaction term, 
1 2,2,( , )i k k , is dropped.  

Empirical data analyses using the LCDM have yielded two-way attribute 

interaction estimates of different sizes and directions, but most of these empirical 
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findings supported the compensatory relationships among the required attributes (e.g., 

Templin & Hoffman, 2013; Toprak et al., 2019). Templin and Hoffman (2013) 

indicated that the attribute interactions being zero has suggested a compensatory item 

response function. Further, Toprak et al. (2019) pointed out that the LCDM with 

negative attribute interaction terms resembled the DINO model where, when one of 

the required attributes is mastered, the mastery of additional required attribute will 

not increase the correct item response probability. Templin and Hoffman (2013) 

applied the LCDM to the Examination for the Certificate of Proficiency in English 

(ECPE) dataset and found that, among the 9 items requiring two attributes, 4 items 

had attribute interaction effects being negative or positive but smaller than 0.1. 

Templin and Hoffman (2013) also suggested removing the interaction terms when 

their estimates are close to 0. Toprak et al. (2019) analyzed the Michigan English Test 

data and found negative attribute interaction estimates for all the four items requiring 

more than one attributes. In sum, conclusions about whether the attribute interaction 

terms should be included in the model vary across items and datasets. However, given 

that it is challenging to accurately recover the interaction term in the LCDM (e.g., 

Sen & Bradshaw, 2017), the data-generating and data-fitting models in this study are 

based on the LLM that does not contain the interaction terms in order to reduce 

estimation difficulty. Constraining the interaction terms at 0 implies the assumption 

that the non-mastery of a required attribute can be compensated, at least partially, by 

the mastery of the other required attributes when an item requires more than one 

attributes (Templin & Hoffman, 2013). Future studies could consider including some 

two-way attribute interactions and examine how the specification of the interaction 
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terms affects the estimation accuracy. Nevertheless, three-way interactions or 

interactions of an even higher order are likely to cause estimation issues, thus are 

seldom included (e.g., Templin & Hoffman, 2013; Toprak et al., 2019). To ensure 

model identification, all the attribute main effects in the LLM are constrained to be 

positive, i.e., 
,1,( ) 0im k  . Such constraint is adapted from the ordering constraints 

required for the LCDM to ensure model identification and prevent label switching 

issue (Lao, 2016). 

The conditional attribute mastery probability given the general ability and 

strategy m is specified as  

 exp( )
( 1| , )

1 exp( )

km j km

jk j

km j km

P m
  

 
  

+
= =

+ +
.  

Given that the strategy choice is assumed to be independent from attribute mastery 

status, the attribute discrimination and easiness parameters are constrained equal 

across strategies, i.e., 
km k = , 

km k = . Such equality constraints denote the 

assumption that the relationships between the general skill implementation ability and 

the attribute mastery statuses are invariant across different strategies. Furthermore, 

the distribution of the latent ability parameter is independent from the strategy latent 

class membership, i.e., ( | ) ( )f m f = , implying that   affects the item response 

probability only through the skill implementation stage and that   does not affects 

the strategy choice. Therefore, in this study,   is interpreted as the ability to 

implement the strategy. With these equality constraints, the conditional attribute 

mastery probability is written as 



45 

 

 exp( )
( 1| , ) ( 1| )

1 exp( )

k j k

jk j jk j

k j k

P m P
  

   
  

+
= = =

+ +
.  

Incorporating between-person multiple strategies into longitudinal 

CDMs. When response data from multiple time points are available, growth-model-

based longitudinal CDMs (e.g., Lee, 2017; Zhan, Jiao, Liao, et al., 2019) can be used 

to provide diagnostic information on the attribute mastery status as well as estimate 

the growth in the latent ability underlying the attributes. This study illustrates the 

longitudinal models under a repeated-measure pretest-posttest design as it is a simple 

and widely-used study design for effectiveness studies on education intervention 

programs (e.g., Bottge et al., 2015) and the data to be used in our empirical data 

analysis example have been collected with such design. Extensions could be made to 

accommodate other assessment designs such as parallel forms with anchor items and 

to scenarios with more than two time points. 

Taking into account the between-person multiple strategies in longitudinal 

CDMs is advantageous as it potentially attenuates the undesirable effect of the Q-

matrix misspecification induced by multiple strategies (de la Torre & Douglas, 2008). 

In particular, the Q-matrix misspecification can jeopardize the classification accuracy 

and item parameter estimates in CDMs (Rupp & Templin, 2008a). The between-

person multiple strategies at each time point can be modelled by incorporating the 

MCDM into the longitudinal CDMs. A Longitudinal MCDM is yielded by extending 

the longitudinal DINA model (Zhan, Jiao, Liao, et al., 2019) to the LCDM case and 

incorporating a mixture-distribution structure. Specifically, in the Longitudinal 

MCDM, the marginal probability of the response pattern at time t is given as 
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Y y Y y= = , (5) 

and, assuming that individuals do not change their problem-solving strategies over 

time, the conditional probability of response pattern given strategy m at time t is: 
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where is a vector of ability parameters at all the t time points, i.e., (1) ( )( ,..., ) 't = . 

The measurement model is specified as 
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m
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 (6) 

Given that the item parameters have been assumed to be time-invariant in most 

existing studies on longitudinal CDMs (Cho et al., 2010; Kaya & Leite, 2017; S. 

Wang et al., 2018; Zhan, Jiao, Liao, et al., 2019) and that Madison and Bradshaw 

(2018) did not find evidence suggesting that the violation of measurement invariance 

due to IPD would diminish the attribute classification accuracy, this study specifies 

the item parameters to be invariant across time points, i.e., 
( )

,0 ,0

t

i i = , 
( )

,1,( ) ,1,( )

t

i k i k = , 

1 2 1 2

( )

,2,( , ) ,2,( , )

t

i k k i k k = .  

The higher-order structure underlying the attributes is parameterized 

differently from that in Zhan, Jiao, Liao, et al. (2019). While Zhan, Jiao, Liao, et al. 

(2019) follows the Anderson-type parameterization (Andersen, 1985), specifying that 

the latent abilities at different time points follow a T-dimensional multivariate normal 
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distribution, this study follows the Embretson-type parameterization (Embretson, 

1991) specifying a multivariate normal distribution for the initial ability and ability 

changes, as shown in Figure 5. Specifically, Embretson (1991) proposed the 

multidimensional Rasch model for learning and change (MRMLC) where the ability 

at the tth time point, 
tT  (t>1), is written as a linear combination of the initial ability 

and ability changes: 

 
1

2

( ) ( ) ( )
t

t

T
T T t

j j j

t T

  
=

= +  , (7) 

where 
( )t

j , referred to as “modifiabilities” by Embretson (1991), represents the 

change in ability from the (t-1)th time point to the tth time point. The advantage of 

using the Embretson-type parameterization is that it enables the ability change to be 

directly estimated and the hypotheses about ability change to be tested. While the 

interpretation of the parameters are different between the Embretson-type 

parameterization and the Andersen-type parameterization, the two parameterizations 

are statistically equivalent: W.-C. Wang et al. (1998) have found that the two 

parameterizations yielded comparable model-data fit when fitted to an empirical 

dataset; and W.-C. Wang (2014) has established equations for converting the mean 

and variance of the ability parameters between the two parameterizations. See von 

Davier et al. (2011) and W.-C. Wang (2014) for more detailed contrasts between the 

Anderson-type and Embretson-type parameterizations. Another advantage of utilizing 

the Embretson-type parameterization is that it overcomes the paradoxical reliability 

issue, noted by Bereiter (1963), of measuring change using the observed change 

scores. Specifically, as explained by W.-C. Wang and Wu (2004), the paradoxical 
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reliability refers to the phenomenon where the higher correlation between the pretest 

and posttest scores is associated with the lower reliability of the change scores. The 

paradoxical reliability results from the fact that the measurements at different 

occasions are incorrectly assumed to be unidimensional, thus this issue is hard to be 

resolved in the classical test theory (CTT) framework. However, the paradoxical 

reliability issue can be resolved by formulating the initial ability and ability change as 

separate latent dimensions in the IRT framework as demonstrated by Embretson 

(1991).  

This study, incorporated a 2PL version of the MRMLC (Embretson, 1997) 

into the higher-order structure. When only two time points, 
1T  and 

2T , are involved, 

the conditional probability of attribute mastery given the latent ability is specified as: 

                      
1 1 1

1

1 1 1
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j j

   (8) 

where 1( )T

j  represents the initial ability; j  represents the ability change from time 

point 
1T  to time point 

2T . 1( )* ( , ) '
T

j j = j  is specified to follow a multivariate 

normal distribution: 

1 ( )1( )1

( )1

2
( )

2
~ ,

TT

T

T

j

j

MVN


 



   

    
                

. 

The mean and variance of 1( )T

j  are constrained at 0 and 1, respectively, for scale 

identification. The attribute discrimination and easiness parameters are set to be 
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invariant across time points, i.e., 1 2( ) ( )

,1 ,1 ,1

T T

k k k  = =  , and 1 2( ) ( )T T

k k k  = = . When 

more than two time points are involved, the conditional probability of attribute 

mastery given the latent ability at the tth time point, 
tT  (t>1), is specified as 
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where 
( )t

j  is the ability change from the (t-1) th time point to the tth time point.  
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Figure 5. Model structure of the Longitudinal MCDM under a repeated-measure pretest-posttest design. 
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Measuring within-person strategy shift. A shift in problem-solving strategy 

could occur over time as a result of learning and education intervention (e.g., Cho et 

al., 2010; Siegler et al., 1981). From a modeling perspective, a strategy shift can be 

operationally defined by a shift in the strategy latent class membership, m, over time 

in the Longitudinal MCDM (equation 5), as shown in Figure 6. Thus, the LTA model 

can be incorporated into the Longitudinal MCDM to model the shift in the strategy 

choice over time. In the proposed LTA-longitudinal-MCDM, the marginal probability 

of the response pattern is given as 

 1

1 ' ' 1

1

(1) ( ' 1)

|

1 1 ' 2

( ) ... ( | )
T

t t

T

M M T
t

m m m

m m t

P P 
−

−

= = =
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(t) (t) (t) (t) *

j j j jY y Y y m= = , (9) 

where 
tm  indicates the strategy choice at time point t, 1,2,...,t T= ; 

tM  having the 

subscript, t, implies that the options of strategies are allowed to vary across time 

points. 
1

(1)

m  represents the mixing proportion of respondents who choose strategy 
1m

at the first time point. 
' ' 1

( ' 1)

|t t

t

m m
−

−
 is the latent transition probability from strategy 

' 1tm −
 to 

'tm  at time point ' 1t − , ' 2,...,t T= ; in other words, for a respondent who chooses 

strategy 
' 1tm −

 at ' 1t − , the probability of this respondent choosing strategy 
'tm  at time 

point 't  is 
' ' 1

( ' 1)

|t t

t

m m
−

−
.

*
m , represented as a pattern of chosen strategies over time, i.e.,

1 2( , ,..., )Tm m m , is referred to as the “strategy choice trajectory”. In the LTA-

longitudinal-MCDM, each latent class is a strategy choice trajectory as opposed to a 

static strategy choice, and the mixing proportion of a strategy choice trajectory is 

1 1

( ' 1)

|

' 2
t t

T
t

m m m

t

 
−

−

=

 . The maximum number of strategy choice trajectories is 
1

T

t

t

M
=

 .  
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The conditional probability of an observed response pattern given a strategy choice 

trajectory is written as 
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where the measurement model is the LCDM: 
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 (10) 

The measurement model is similar to the one in the Longitudinal MCDM 

(equation 6) except the subscripts of q. Specifically, the q-entries are invariant across 

time points in the Longitudinal MCDM. In contrast, in the LTA-longitudinal-MCDM, 

( )

ik

tq
*

m

 is specific to strategy choice trajectories; the values of ( )

ik

tq
*

m

 can vary across time 

points in the trajectories involving strategy shift. The higher-order attribute structure 

is specified in a similar way as that of the longitudinal-MCDM (equation 8). 
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Figure 6. Model structure of the LTA-longitudinal-MCDM under a repeated-measure pretest-posttest design. 
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3.2 Model Parameter Estimation 

Given that a higher-order structure is assumed underlying the attribute profiles 

and that the Bayesian MCMC estimation method, compared to the MLE, is more 

suitable for the higher-order structure as introduced in Section 2.6, the model 

parameters in this study are estimated using the Bayesian MCMC method. The model 

parameter estimation is implemented in JAGS (Plummer, 2015) with the default 

Gibbs sampler (Gelfand & Smith, 1990). The JAGS program is called from R 3.5.3 

(R Development Core Team, 2013) with the R2jags package v0.5-7 (Su & Yajima, 

2015).  

Prior specifications. The priors of the model parameters are set based on 

previous studies that utilized the Bayesian MCMC method for longitudinal model 

parameter estimation (Kadengye et al., 2013; F. Li et al., 2016; Zhan, Jiao, Man, et 

al., 2019). As the item parameters and the higher-order structural parameters are 

specified as time- and strategy-invariant, the prior distributions of these parameters 

are the same between the single-time-point model (i.e., MCDM) and the multiple-

timepoint models (i.e., Longitudinal MCDM and LTA-longitudinal-MCDM):  

,0

,1,( )

~ ( 1.096, 4),

~ (0, 4) (0, ),

~ (0, 4),

~ (0, 4) (0, ),

i

i k

k

k

Normal

Normal T

Normal

Normal T









−

+

+

 

where “Normal” indicates that a parameter follows a normal distribution; the two 

parameters specified in the parentheses following “Normal” denote the mean and 

variance of the distribution, respectively. For instance, the prior distribution of ,0i  is 
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a normal distribution with mean and variance being -1.096 and 4, respectively. “T” 

indicates that the distribution is truncated and the two elements in the parentheses 

following “T” denote the lower bound and upper bound of the truncated distribution, 

respectively. For example, ,1,( ) ~ (0,4) (0, )i k Normal T +  means that the main effect 

parameter, ,1,( )i k , is constrained to be positive which corresponds to the model’s 

ordering constraints (e.g., Rupp et al., 2010). The prior distributions for the ability 

and attribute parameters are specified differently between the single-time-point and 

the multiple-time-point models. In the MCDM, the prior distributions of attributes 

and the underlying ability parameter are specified as: 
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In the Longitudinal MCDM and LTA-longitudinal-MCDM, the prior 

distributions of attributes are specified as: 
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where the multidimensional ability parameters are drawn from a multivariate normal 

distribution: 

1
( )1

( )

~ ,
T

T

j

j

MVN






 

   
            

*(θ )
Σ . 
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( )1

( )1

2

2

T

T



 



  

 
 =
 
 

*(θ )
Σ  is the variance-covariance matrix of the ability parameters. 

( )1T


 and ( )1

2
T


  need to be set at 0 and 1, respectively, for scale identification. The 

mean of the ability change parameter is drawn from a univariate normal distribution, 

i.e., ~ (0,2)Normal
. Since it is hard to impose the constraint of 

( )1

2 1T


 =  if *(θ )
Σ  

were drawn from the commonly used Wishart distribution (Wishart, 1928), this study 

utilizes the prior configuration proposed by Azevedo et al. (2016), which has been 

based on the work of McCulloch et al. (2000), to draw *(θ )
Σ . Azevedo et al. (2016)’s 

prior specification for *(θ )
Σ  was found to be effective in handling the restricted 

variance-covariance matrix for identification purpose in the longitudinal IRT model 

and achieved good parameter recovery. Specifically, 2


 in *(θ )

Σ  is reparameterized 

conditioning on ( )1

2 1T


 = , i.e., ( ) ( ) ( )1 1 1

2 2 * 2 2 2 * 2/T T T      
        

= + = + , where the 

priors of 2 *


 and ( )1T

 



 are 2 * ~ (1,1)InvGamma

 and ( )1
~ (0,1)T Normal

 



, 

respectively. According to Azevedo et al. (2016), such reparameterization of 2


 is 

equivalent for j  to have a conditional distribution of 

1( ) * 2 *| ~ ( , )
T

j j Normal       , where 1
( ) ( )1 1

( )* ( )T T

T

j    
      

= + −  and 

( ) ( )1 1

2 * 2 2 2/T T    
     

= − . 

As for the mixing proportions of strategies, the prior distributions are Dirichlet 

distributions: 

1~ ( ,..., )MDirichlet   , 
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where 
m  is set at 1, for 1,2,...m M= , which satisfies the criteria of a sparse prior 

(i.e., / 2m d  , where d is the number of latent class-specific parameters). Such 

sparse priors have been found to possess a property: they can make the redundant 

latent classes empty when a mixture model is overfitted through the MCMC sampling 

process (Nasserinejad et al., 2017; Rousseau & Mengersen, 2011). The implication of 

such property is that if the number of strategy options are overspecified (e.g., experts 

identify two different strategies among the population but the respondents only 

choose to use one of them), the estimated mixing proportion of the unused strategy 

will be extremely small when a sparse prior is specified for  . Thus, the estimates of 

the mixing proportions may serve as indicators to verify the theory about problem-

solving strategies. The prior distribution of the latent transition probability in the 

LTA-longitudinal-CDM is specified as 

1 1 1

( 1) ( 1) ( 1)

| 1| | 1( ,..., ) ~ ( ,..., )
t t t t t t

t t t

m m m M m MDirichlet   
− − −

− − −= , 

where 
1 1 11,  for 1,2,...,

tm t tm M
− − −= = .  

The number of MCMC chains, iterations and convergence check. Two 

MCMC chains are run. To ensure that the sampled iterations adequately represent the 

posterior distributions of interest, the convergence of the iterative parameter draws 

from the two MCMC chains is evaluated by inspecting the trace plots of the MCMC 

draws and calculating the potential scale reduction factor (PSRF; Gelman & Rubin, 

1992). A trace plot is a time series plot that displays the parameter draws at each 

iteration of the MCMC chains; traces of draws from different chains are often 

displayed in different colors. Thus, one can observe the mixing of the MCMC chains 

in the trace plot and the trace plot can serve as a graphical diagnostic of convergence. 
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In particular, if the location and spread of the traces are stable and the traces of 

different chains converge to the same location, it will be a piece of evidence for 

convergence; if different parts of the traces are stuck around different locations, a lack 

of convergence is suggested. The PSRF, also denoted as R̂ , is the ratio of the 

estimated pooled posterior variance of the MCMC draws (i.e., a weighted mean of the 

estimated between-chain and within-chain variances of the MCMC draws) to the 

estimated within-chain variance of the MCMC draws. An R̂  close to 1 indicates that 

the inferences drawn from different chains are close to each other, which is a sign of 

convergence; by contrast, an R̂  much greater than 1 suggests the lack of 

convergence. Brooks and Gelman (1998) and Gelman and Rubin (1992) suggested 

using the criterion of ˆ 1.2R   for all the model parameters to determine the MCMC 

convergence; this study applies a more stringent and commonly-used criterion in 

practice, ˆ 1.1R  . 

Five thousand iterations are run for each MCMC chain, including 2,500 burn-

in iterations. The chains are thinned by 2 iterations to reduce the autocorrelation of 

the draws before summarizing the parameter estimates. As a result, each parameter 

estimate is summarized based on a total of 2,5002 iterations. The chain length is 

determined based on a pilot study where one replication was run for every simulated 

condition and the convergence has been achieved with 5,000 iterations each chain 

including 2,500 burn-in and a thinning of 2 for all the three data-fitting models under 

 

 
2 In JAGS, the number of iterations retained in each chain=(the total number of iterations of each chain 

– the number of burn-in iterations)/the number of thinning. Thus, the total number of iterations used to 

summarize each parameter estimate is calculated as: [(5000 total – 2500 burn-in)/2 thinning]*2 

chains=2500 
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all the conditions. Since it is possible that, the number of MCMC iterations required 

for convergence varies across simulation study replications, R̂ is monitored for all 

the parameters in all the replications in the full study to ensure model convergence. If 

one or more parameters have R̂  greater than 1.1 after the first 5,000 iterations, 

additional iterations will be run until the R̂  convergence criterion is met before 

summarizing the parameter estimates.  

3.3 Simulation Study Design 

A Monte Carlo simulation study is conducted to examine the parameter 

recovery of the LTA-longitudinal-MCDM under several simulated conditions and 

investigate the effects of ignoring multiple strategies and strategy shift on the 

classification accuracy and growth estimate. 

Due to the complex nature of human cognition and problem-solving 

strategies, this study simulates a simplified scenario of an education intervention in 

order to make the simulation study manageable. The goals and effects of the 

hypothesized education intervention are specified in light of the Enhanced Anchored 

Instruction (EAI; Bottge, 2001) which aims at improving students’ performance on 

problem-solving. Some instructions designed in EAI are strategy-oriented in the sense 

that they guide students to first solve a problem in the multimedia and then to 

generalize the problem-solving methods to relevant hands-on problems (Hickey et al., 

2001). An effectiveness study has found that students who were under the EAI 

condition tend to perform better on problems requiring complex skills than those who 

were not (Bottge et al., 2007). Thus, this study simulates an intervention that consists 

of both skill-oriented and strategy-oriented instructions. The intervention is designed 
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to improve students’ problem-solving performance by guiding them to choose a more 

complex strategy as well as enhancing their skill implementation ability. In particular, 

the more complex strategy tends to involve more difficult and more various skills to 

solve a problem. In the simulated scenario, two strategies are assumed, labelled as 

“Strategy A” and “Strategy B”: Strategy A is the simpler strategy that involves easier 

and fewer skills to solve the problems; Strategy B is the more complex strategy that 

involves more difficult and more various skills. It should be emphasized that, in this 

study, the strategy choice is independent from the skill implementation ability or the 

attribute mastery status. That is, choosing to use the simpler strategy does not imply 

the lower ability to implement the skills required by the more complex strategy and 

vice versa. Furthermore, the strategy choice and skill implementation process are 

assumed to independently contribute to the correct response probability as shown in 

Figure 2.  

Thus, to operationally define the desired effects of the hypothesized 

intervention, compared to the pretest, a larger proportion of students are expected to 

choose Strategy B in the posttest; a growth is expected to be in students’ average skill 

implementation ability and the probabilities of attribute mastery. 

3.3.1 Fixed factors 

A repeated-measure pretest-posttest (i.e., two time points) study design is 

simulated, the configuration of which reflects the design of the EAI effectiveness 

study (Bottge et al., 2015). At each time point, two groups of simulees who choose 

either Strategy A or Strategy B are simulated. After specifying the group 

membership, ability parameters, attribute profiles and item parameters, the response 



61 

 

data of each group at each time point are generated using the LLM (i.e., equation 2 

without the attribute interaction terms). To make the simulation study manageable, 

factors that have been studied by previous longitudinal modeling studies (e.g., Cho et 

al., 2010; Lee, 2017; Madison & Bradshaw, 2018; Zhan, Jiao, Liao, et al., 2019) or 

are not expected to affect the parameter recovery performance are fixed across 

conditions, as listed in Table 3. The fixed factors include item intercepts, main 

effects, attribute easiness and discrimination parameters, the Q-matrix design, the 

types of strategy choice trajectories and the distribution of latent abilities and attribute 

profiles.  
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Table 3 

Fixed Factors in the Simulation Study 

Factor Value 

Test length (I) 20 

The number of attributes (K) 4 

The number of time points (T) 2 

Strategy types Strategy A (
AM ),  

Strategy B (
BM ) 

Strategy choice trajectory types * ( , )AA A AM M M= , 
* ( , )AB A BM M M= ,  
* ( , )BB B BM M M=  

Data generating Q-matrices 
A

Q , 
B

Q  

The proportion of simulees who switch from 

Strategy B to Strategy A ( |A BM Mp ) 
| 0

A BM Mp =  

Item intercept parameter ( ,0i ) ,0 2.2i = −   

(It corresponds to a correct 

item response probability of 

0.1 when no attribute is 

mastered.) 

Attribute interaction parameter (
1 2,2,( , )i k k ) 

1 2,2,( , ) 0i k k =  

Attribute easiness parameter (
k ) 

1 1 = , 
2 0.5 = ,  

3 0.5 = − , 4 1 = −  

Attribute discrimination parameter ( ,1k , ,2k ) ,1 ,2 1k k = =  

Mean and variance of the initial ability ( 1( )T ) ( )1
0T


 = , ( )1

2 1T


 =    

Mean and variance of the ability change (  ) 0.5 = , 2 1  =    

 

Item intercept parameters and higher-order structural parameters. Each 

test contains 20 items measuring 4 attributes. The first ten items are single-approach 

items while the others are multiple-approach items. To simplify the relations between 

the attributes and item response probabilities and render the data generation feasible, 

each item-solving approach requires no more than two attributes (i.e., the maximum 

number of required attributes in a q-vector is 2) and no interaction effect is assumed 

among the attributes on the correct response probabilities (i.e., 
1 2,2,( , ) 0i k k = ). The true 
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item intercepts are set at -2.2, which corresponds to a correct item response 

probability of 0.1 when no attribute is mastered. Among the four attributes, the first 

two attributes, 
1  and 

2 , are relatively easy to master; the last two attributes, 
3  

and 
4 , are difficult to master. The easiness of the attributes is controlled by the 

attribute easiness parameter, 
k . The true values of 

k  are set at 1, 0.5, -0.5 and -1 

for k = 1, 2, 3, 4; these parameter values correspond to the attribute mastery 

probabilities of 0.73, 0.62, 0.38 and 0.27, respectively, when the latent ability,  , is 

zero. The attribute discrimination parameters, ,1k  and ,2k , are set at 1, indicating 

that if curves of attribute mastery probability are drawn as a function of  , these 

curves would not intersect with each other; the order of the attribute mastery 

probabilities remain uniform across different latent ability levels.  

The Q-matrix design and attribute main effect parameters. Two Q-

matrices, 
A

Q  and 
B

Q , are designed for Strategy A and Strategy B, respectively. As 

shown in Table 4, 
A

Q  and 
B

Q  only differ in the q-vectors of the multiple-approach 

items (i.e., Items 11-20). The q-vectors of the single-approach items are designed to 

ensure the completeness of the Q-matrix (Chiu et al., 2009), which is relevant to 

ensure the identifiability of the CDMs. For the multiple-approach items, Strategy A 

and Strategy B involve different sets of attributes (i.e., 
A

Q  only involves 
1  and 

2 , 

whereas 
B

Q  only involves 
2 , 

3  and 
4 ), which are designed based on the findings 

about multiple strategies involved in math multiple-approach items (Tatsuoka, 1987) 

and the Q-matrices designed for these items (Mislevy, 1996).  
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Based on the findings that students tended to perform better on items 

involving complex skills after the EAI treatment (Bottge et al., 2007) and that 

students tend to make fewer mistakes in reading tasks after some strategy-oriented 

instructions (Afflerbach et al., 2008), the conditional correct response probabilities of 

the multiple-approach items given the successful application of the more complex 

strategy (i.e., Strategy B) are set to be higher than that of the simpler strategy (i.e., 

Strategy A). To control the effects of strategies on the conditional correct item 

response probabilities, the true main effect parameters, ,1,( )i k , are set as Table 5; the 

q-vectors of each multiple-approach item are designed to satisfy one or both of the 

following rules: 1) more difficult attributes are required by Strategy B than Strategy 

A; 2) more attributes are needed to solve the item using Strategy B than Strategy A. 

Specifically, as shown in Table 4, Items 11-16, satisfying the first rule, can be solved 

with the same number of attributes using both strategies but require more difficult 

attribute(s) under Strategy B. The correct item response probabilities given the 

successful application of Strategy A and Strategy B are 0.8 and 0.9, respectively, for 

Items 11-16. Items 17-20, satisfying both rules, are solved by more difficult and more 

various attributes when using Strategy B than Strategy A. The correct item response 

probabilities given the successful application of Strategy A and Strategy B are 0.8 and 

0.95, respectively, for Items 17-20. While the conditional correct response 

probabilities given the successful application of Strategy B are higher than those of 

Strategy A, it is more difficult to implement skills required by Strategy B than 

Strategy A. As shown in Table 5, the probabilities of mastering all the required 

attributes of Strategy B are lower than those of Strategy A when the latent ability is 
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zero. Such relations remain the same for other levels of ability given that the attribute 

discrimination parameters are uniform across attributes. 

Table 4 

Q-matrices for Data Generation 

Item 

Type 
Item 

Strategy A (
A

Q )  Strategy B (
B

Q ) 

1  2  3  4   1  2  3  4  

Single-

approach 

items 

1 1     1    

2 1     1    

3  1     1   

4  1     1   

5   1     1  

6   1     1  

7    1     1 

8    1     1 

9 1     1    

10  1     1   

Multiple-

approach 

items 

11 1       1  

12 1       1  

13  1       1 

14  1       1 

15 1 1     1  1 

16 1 1      1 1 

17 1       1 1 

18 1       1 1 

19  1     1  1 

20  1     1  1 

Note. The “0” entries are omitted from the Q-matrices. 
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Table 5 

Main Parameters of Multiple-Approach Items for Data Generation, Conditional Item 

Correct Response Probability Given Successful Strategy Application and Skill 

Implementation Difficulty 

Item 

Main effect 

parameters ( ,1,( )i k ) 

 Conditional probability 

of correct response 

given the successful 

strategy application 

 Probability of simulees 

with 0 =  mastering 

all the required 

attributes of a strategy 

1  2  3  4   Strategy A Strategy B  Strategy A Strategy B 

11 3.6  4.4   0.8 0.9  0.73 0.38 

12 3.6  4.4   0.8 0.9  0.73 0.38 

13  4.4  3.6  0.8 0.9  0.62 0.27 

14  4.4  3.6  0.8 0.9  0.62 0.27 

15 1.8 1.8  2.6  0.8 0.9  0.45 0.17 

16 1.8 1.8 2.2 2.2  0.8 0.9  0.45 0.10 

17 3.6  2.6 2.6  0.8 0.95  0.73 0.10 

18 3.6  2.6 2.6  0.8 0.95  0.73 0.10 

19  3.6  1.6  0.8 0.95  0.62 0.17 

20  3.6  1.6  0.8 0.95  0.62 0.17 

Note. A blank entry in the main effect parameters indicates that an attribute does not 

affect the correct item response probability in Strategy A or Strategy B as, based on 

the Q-matrices, the attribute is not required to solve the item by either strategy. 

 

The types of strategy choice trajectories. An assumption made about the 

strategy shift is that respondents who choose the more complex strategy (i.e., Strategy 

B) at the first time point would not shift to the simpler strategy (i.e., Strategy A) at the 

second time point (i.e., | 0
A BM Mp =  and | 1

B BM Mp = ). As a results, there are three unique 

strategy choice trajectories, including consistently choosing Strategy A ( *

AA
M ), 

consistently choosing Strategy B ( *

BB
M ) and shifting from Strategy A to Strategy B (

*

AB
M ). The underlying assumption about the strategy choice made by this study is 

that, for the simulees who have acquired both strategies, they would rationally choose 

the strategy that corresponds to higher correct response probabilities (i.e., Strategy B) 

over the other one (i.e., Strategy A). While not simulated in this study, scenarios 
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where simulees’ strategy choices are affected by other factors, such as the mastery 

statuses of the skills required by the strategies, could be considered in future studies. 

The distribution of latent abilities and attribute profiles. The distribution 

of the underlying abilities (i.e., initial ability and ability change parameters) is 

specified to follow a multivariate normal distribution. The means of the initial ability 

( 1( )T

j ) and ability change (  ) are set at 0 and 0.5, respectively, which correspond to 

attribute mastery probability changes of 0.09, 0.11, 0.12 and 0.11 of the four 

attributes, respectively. These changes in attribute mastery probabilities fall within 

the range of attribute mastery probability changes from the pretest to posttest reported 

by Madison and Bradshaw (2018) based on the data from the EAI effectiveness study 

(Bottge et al., 2015). The variances of the initial ability and ability change parameters 

are set at 1 based on the empirical analysis results that the variance estimates of the 

two parameters are close to each other (Embretson, 1991). 

3.3.2 Manipulated factors 

Four factors, the sample size (small, medium), the mixing proportions of 

strategies at the first time point (balanced, imbalanced), the proportions of simulees 

shifting from Strategy A to Strategy B (low, high) and the correlation between the 

initial ability and ability change (negative, none, positive) are manipulated and fully 

crossed, yielding a total of 2*2*2*3=24 conditions. The values set at each level of the 

manipulated factors are listed in Table 6. The manipulated factors and their values are 

chosen in light of the simulation study design and empirical data analysis findings 

from previous literature on longitudinal CDMs or problem-solving strategies (e.g., 

Bottge et al., 2015; Cho et al., 2010; Zhan, Jiao, Liao, et al., 2019). 
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Sample size. The sample size is manipulated to examine the effect of sample 

size on the parameter recovery. The parameter recovery under extremely small 

sample size is of special interest. While Lee (2017) and Zhan, Jiao, Liao, et al. (2019) 

have found in simulation studies that a smaller sample size is associated with less 

accurate model parameter estimates by manipulating the sample size at 200, 500 

and/or 1000 simulees, no research has been done to study the parameter recovery 

under an extremely small sample size (i.e., smaller than 200). In fact, extremely small 

sample sizes (i.e., around 100) have been observed in empirical data analyses 

especially in those involve longitudinal data (e.g., Cho et al., 2010; Li et al., 2016). 

Thus, in this simulation study, two levels of sample size, 100 and 800, are used to 

represent the extremely small and medium levels of sample size. Sample sizes larger 

than 1000 are not considered in this simulation study as large sample sizes are rarely 

observed in the longitudinal diagnostic assessments (Bottge et al., 2015; F. Li et al., 

2016; Zhan, Jiao, Liao, et al., 2019). 

Initial mixing proportions of strategies. The mixing proportions of 

(1) (1):A B  = 0.8:0.2 and 0.6:0.4 are used to represent the imbalanced and balanced mix 

of Strategy A and Strategy B at the first time point. The two levels of initial mixing 

proportions are chosen based on either theoretical assumptions or empirical 

observations. It is intuitive that the majority of the students who are enrolled into an 

education intervention program would choose to use the simpler strategy before the 

intervention. Cho et al. (2010) specified that the majority (i.e., with a proportion of 

around 0.8) of the simulees belong to the “low-ability” latent class, as opposed to the 

“high-ability” class, at the initial time point when they simulated the response data of 
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an education intervention program. However, the empirical data analysis results show 

a more balanced (i.e., around 0.6:0.4) mix of latent classes at the initial time point 

(Cho et al., 2010). Therefore, this study considers conditions with different mixing 

proportions of strategies at the initial time point. 

Strategy transition probability. The high (i.e., 0.7) and low (i.e., 0.3) 

proportions of the simulees shifting from Strategy A to Strategy B are used to mimic 

the strategy transition with and without the strategy-oriented instructions. These 

values are set based on the finding from an effectiveness study of the EAI involving 

two pretests (i.e., pretest 1 and pretest 2) and a posttest (Cho et al., 2010). Cho et al. 

(2010) found that a larger proportion of students transitioning from latent class 1 to 

latent class 2 after the pretest 2 (around 0.82) than pretest 1 (around 0.45), implying 

that the implementation of the EAI induce a significant strategy shift. However, in 

Cho et al. (2010), latent classes are distinguished by different item parameters and 

different latent ability distributions, implying that an individual’s transition of latent 

class membership over time could be a result of a strategy shift characterized by 

differential item parameters as well as a memory effect characterized by differential 

ability distributions. Therefore, it is expected that the proportions of individuals with 

strategy shift over time is lower than the latent class transition probabilities observed 

in Cho et al. (2010). 

Correlation between the initial ability and ability change. Negative (

( )1T
 



=-0.3), none ( ( )1T

 



=0) and positive ( ( )1T

 



=0.3) correlations are used to 

reflect different intrinsic relations between the initial ability and ability change. 

Although negative correlations between the initial ability and ability change are 
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reported in empirical studies (e.g., Alder et al., 1990), the observed correlation values 

should be taken with caution: The observed correlations between the initial ability 

and ability change are jointly affected by the measurement error and the intrinsic 

relations between the initial ability and ability change (Allison, 1990); it has been 

found that the measurement error can result in a negatively biased correlation 

estimate between the initial ability and ability change (e.g., Alder et al., 1990). 

Positive correlations between the initial ability and ability change have also been 

observed in a few studies (e.g., Thorndike, 1966). In fact, the sign of the observed 

correlations can vary when different time points are chosen as the initial time point 

and there is not a consistent rule for choosing the initial time point (Willett, 1997). 

The intrinsic association between the initial ability and the ability change is affected 

by a variety of factors such as the nature of the test and the social process (Kelly & 

Ye, 2017) and no consensus has been reached on the direction of the association. 

Therefore, different directions of the intrinsic association between the initial ability 

and ability change are considered in this simulation study. 

The range of the true correlation between the initial ability and ability change 

(i.e., from -0.3 to 0.3) was chosen such that it falls within the range of the correlations 

between the initial ability and ability changes observed from the empirical data 

analyses (W.-C. Wang et al., 1998; W.-C. Wang & Wu, 2004). Correlations of -0.3, 0 

and 0.3 between the ability and ability change correspond to correlations of 0.59, 0.71 

and 0.81 between the abilities at the two timepoints, respectively, which are derived 

based on the true variances set for the initial ability and ability change parameters. In 
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other words, in the simulated conditions, the correlations between the abilities at the 

two timepoints range from medium to large. 

Table 6 

Manipulated Factors in Simulation Study 

Factor Levels 

Sample size (J) Small: 100; Medium: 800 

The mixing proportions of strategies 

at the first time point (
1

(1)

m ) 

Balanced: 
(1) 0.6

AM = , 
(1) 0.4

BM = ; 

Imbalanced:
(1) 0.8

AM = , 

(1) 0.2
BM =  

The proportion of simulees shifting from 

Strategy A to Strategy B ( |B AM Mp ) 

Low: 0.3;  

High: 0.7 

The correlation between the initial ability and 

ability change ( ( )1T
 



 ) 

Negative: -0.3 ( ( ) ( )1 2T T
 
 =0.59); 

None: 0 ( ( ) ( )1 2T T
 
 =0.71); 

Positive: 0.3 ( ( ) ( )1 2T T
 
 =0.81). 

 

3.3.3 Data generating procedure 

The data are simulated following the steps below:  

1) Simulate the true item parameters and higher-order structural 

parameters as specified in Tables 3 and 5. Specifically, the item 

parameters include the item intercept ( ,0 2.2i = − ) and main effect 

whose values are listed in Table 5. The higher-order structural 

parameters include the attribute easiness parameters (
1 1 = , 

2 0.5 = , 
3 0.5 = − , 

4 1 = − ) and the attribute discrimination 

parameters ( ,1 ,2 1k k = = ). 

2) Simulate the skill implementation ability parameters,  . The initial 

ability ( 1( )T

j ) and ability change (  ) parameters are simulated 

from a multivariate normal distribution, the mean vector of which 
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is set as 
( )1 0

0.5

T








   
  =      

 and the variance-covariance matrix of 

which is *

( )1
( )

1

1T


 




 
=  
 
 

 , where ( )1T
 




=-0.3, 0 or 0.3 

depending on the simulated condition specification. Note that the 

variance-covariance matrix specified above refers to the empirical 

variance-covariance matrix in order to avoid the potential non-

positive-definite variance-covariance matrix issue. 

3) Simulate the attribute mastery status parameters, α . The attribute 

mastery status parameters are simulated from the Bernoulli 

distributions whose the probability parameters are simulated from 

equation 1 by plugging in the higher-order structural parameters 

generated in step 1) and the skill implementation ability parameters 

generated in step 2). 

4) Simulate the strategy choice membership parameters, *
m . At the 

initial time point, the simulees are randomly assigned to Strategy A 

or Strategy B latent class with the constraint that the empirical 

proportions of simulees choosing Strategy A and Strategy B at the 

initial time points are 
(1)

A  and 
(1)

B , respectively (
(1) (1):A B  = 0.8:0.2 

or 0.6:0.4 depending on the simulated condition specification). As 

for at the second time point, a portion of the simulees who are 

assigned to Strategy A latent class at the initial time point are 

assigned to Strategy B latent class at the second time point, the 
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proportion of whom is either 0.7 or 0.3 depending on the simulated 

condition specification. The strategy choice latent classes of the 

remaining simulees remain unchanged over time. 

5) Simulate the response data using equation 10 by plugging in the 

item parameters, higher-order structural parameters and person 

parameters generated in steps 1) to 4) and the Q-matrices specified 

in Table 4.  

As 30 replications are run in this simulation study, the data generating steps 

above are repeated and performed once for each replication. As a result, a dataset 

containing responses of either 100 or 800 simulees to 20 items is simulated for each 

replication. 

3.3.4 Data-fitting models 

Three models are fitted to the simulated data, including the LTA-longitudinal-

MCDM, Longitudinal MCDM and Longitudinal LLM. The LTA-longitudinal-

MCDM takes into account both between-person multiple strategies and within-person 

strategy shift while the other two models ignore one or both of the multiple-strategy 

scenarios. In particular, the Longitudinal MCDM (equation 5), without a latent 

transition probability parameter, constrains the strategy to be the same overtime and 

thus ignores the within-person strategy shift. In both the LTA-longitudinal-MCDM 

and Longitudinal MCDM, the Q-matrices are correctly specified. Although the Q-

matrix misspecification is an important issue to investigate in CDM studies, it is not 

considered in this simulation study as the focus of the study is on parameter recovery 

and model misspecification.  
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The Longitudinal LLM is an extension of longitudinal DINA model (Zhan, 

Jiao, Liao, et al., 2019) to the LLM with the Embretson-type growth parameterization 

(equation 7), which ignores both between-person multiple strategies and within-

person strategy shift. Only one of the Q-matrices can be used in the Longitudinal 

LLM. Given that the education intervention programs are designed for the students 

who use the simpler strategies, the Strategy A Q-matrix, AQ , is used in the 

Longitudinal LLM. In all the three data-fitting models, the mean and variance of the 

initial ability parameter are set at 0 and 1, respectively, for scale identification. 

3.3.5 Outcome measures and analysis procedure 

Outcome measures and statistical analyses are chosen to address the following 

three research questions: 

1) How do the relative model fit indices perform in identifying the proposed 

model as the best-fitting model in the presence of both between-person 

multiple strategies and within-person strategy shift?  

2) What is the impact of ignoring between-person multiple strategies and/or 

within-person strategy shift on the recovery of the model parameters of the 

longitudinal CDMs? 

3) How is the parameter recovery of the proposed model affected by the 

manipulated factors? 

Before addressing the research questions, the posterior predictive model check 

(Guttman, 1967; Rubin, 1981, 1984) is conducted to evaluate the absolute model-data 

fit of the LTA-longitudinal-MCDM. Although, theoretically speaking, the LTA-

longitudinal-MCDM would fit all the simulated datasets adequately given that it is the 
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true data-generating model, the posterior predictive p-value (PPP) is assessed as the 

absolute fit index in each replication to empirically confirm that each simulated 

dataset possesses the expected characteristics. In this study, the PPP is determined 

based on the distribution of a discrepancy measure between the data and the model – 

the sum of squares of standardized residuals – rather than classical test statistics. The 

major difference between a classical test statistic and a discrepancy measure is that 

the former is only dependent on the data while the latter is dependent on both the data 

and unknown model parameters; the latter is more aligned with the Bayesian 

formulation (Gelman et al., 1996). Specifically, the following procedure is 

implemented for posterior predictive model check: 

i) Simulate item responses (i.e., replicated data, repy ) are generated using 

the sampled model parameters in each MCMC iteration; 

ii) Calculate the discrepancy measures (i.e., ( ; )repD y   and ( ; )D y  ) using 

the replicated data ( repy ) and observed data ( y ), respectively, i.e., 

 2
( ) ( )

,

( ) ( )
1 1 1

( ; ) ,
(1 )

t tT I J
rep ij ij

rep
t t

t i j
ij ij

y P
D y

P P= = =

 −
 =
 −
 

   

 

 2
( ) ( )

( ) ( )
1 1 1

( ; ) ,
(1 )

t tT I J
ij ij

t t
t i j

ij ij

y P
D y

P P= = =

 −
 =
 −
 

   

where   represents all the model parameters, and 
( ) ( )( 1| )t t

ij ijP P y= =  .  

iii) Calculate the PPP value, i.e., ( ) [ ( ; ) ( ; ) | , ]b repp y P D y D y L y=   , where 

L is the proposed model. 
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The PPP value in this study denotes the proportion of ( ; )repD y  s that are 

greater than ( ; )D y  . According to Gelman et al. (2003), a PPP value extremely 

close to 0 or 1 indicates a misfit between the model and the observed data. However, 

given that the sum of squares of standardized residuals is used as the discrepancy 

measure in this study, only extremely small PPP indicates a rejection of the data-

fitting model. Given that no specific suggestion on the PPP cut-off value was found, 

this study rejects a model when the PPP value is lower than 0.05, as 0.05<PPP<0.95 

was mentioned by Gelman et al. (2003) as a reasonable range to accept a model. If the 

LTA-longitudinal-MCDM is not rejected by the simulated data (i.e., having 

extremely small PPP value), one can be more confident that the simulated datasets 

possess the desired characteristics of the true data-generating model and can move on 

to address the research questions.  

Assessing the performance of the model fit indices. To address the first 

research question, the performance of three relative model fit indices, including 

Akaike’s information criterion (AIC; Akaike, 1974), Bayesian information criterion 

(BIC; Schwarz, 1978) and deviance information criterion (DIC; Spiegelhalter et al., 

2002), in correctly identifying the LTA-longitudinal-MCDM as the best-fitting model 

in the presence of both between-person multiple strategies and within-person strategy 

shift is investigated. The performance of a model fit index is operationally defined as 

the frequency (i.e., the number of replications) that the model fit index correctly 

selects the LTA-longitudinal-MCDM as the best-fitting model (i.e., the LTA-

longitudinal-MCDM has the lowest model fit index among the three data-fitting 

models).  
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AIC and BIC have originally been designed for the maximum likelihood 

estimation. According to Congdon (2003), when used in the Bayesian MCMC 

estimation, AIC and BIC can be calculated as:  

 ,AIC D p= +   

 (log 1) ,BIC D J p= + −   

where D  is the posterior mean of the deviance; p is the number of estimated 

parameters; J is the sample size. DIC has been designed for model selection in the 

Bayesian MCMC estimation, which is a generalization of AIC. DIC is calculated as  

 var( ) / 2,eDIC D p D D= + = +   

where 
ep  represents the effective number of parameters.

ep  can be approximated by 

var( ) / 2D (Gelman et al., 2003; Su & Yajima, 2015), where var( )D  is the posterior 

variance of the deviance.  

The evidence ratio (Anderson, 2008) has been proposed to examine whether 

the difference in AIC between two models (among Z data-fitting models) is 

significant. To determine whether the discrepancies in the model fit indices among 

the models in comparison are significant, this study calculated the evidence ratio 

based on AIC and applied the evidence ratio calculation to the other information-

based model fit indices that are evaluated in this study, including BIC and DIC. 

Specifically, the evidence ratio of model 
p  to model 

q  is calculated as 

 
,

( | )
,

( | )

p p

p q

q q

L y
E

L y






= =


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where ( | )pL y  and ( | )qL y  are the likelihood of models 
p  and 

q , 

respectively, given the data y. 
p  and 

q  are the Akaike weights of evidence of 

models 
p  and 

q , respectively, being the best fitting model in the set of models. 

Specifically, 
p  for p=1,2,…,Z, is calculated based on the difference between the 

information-based model fit indices:  

 

1

exp( / 2)
,

exp( / 2)

p

p Z

z

z



=

−
=

−
 

 

 ,p p minIC IC = −   

where IC is a specific type of information-based model fit index (i.e., AIC, BIC or 

DIC in this study). 
pIC  is the model fit index value of model 

p  while 
minIC  is the 

minimum model fit index value among Z data-fitting models. An evidence ratio 

greater than 55 can serve as a piece of evidence for a significant difference in the 

model fit index between two models (Anderson, 2008). 

Assessing the model parameter recovery. To assess the recovery of the 

continuous model parameters such as the skill implementation ability parameters, the 

bias, empirical standard error (SE) and root mean squared error (RMSE) of the 

parameter estimates are calculated. Specifically, the bias, SE and RMSE are 

calculated as  

 

1

1
ˆ( ) ,

R

true

r

Bias y y y
R =

= −   
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2

1

1
ˆ( ) ( ) ,

R

true

r

RMSE y y y
R =

= −   

where y is the parameter to be evaluated, 
truey  is the simulated true value of the 

parameter, ŷ  is the parameter estimate, and R is the total number of replications. The 

bias and SE quantify the systematic errors and random errors, respectively, of a 

parameter estimate. The RMSE quantifies both the systematic and random errors, as, 

for a particular parameter, the square of RMSE equals to the sum of squares of bias 

and SE, i.e., 

 2 2 2( ) ( ) ( ).RMSE y Bias y SE y= +   

As for the discrete model parameters, such as the strategy latent class 

membership and attribute mastery status, the classification accuracies of these 

parameters are assessed. The classification accuracy of the problem-solving strategy 

is evaluated using the proportion of simulees whose strategy trajectories or strategy 

latent class memberships at each timepoint are correctly identified. The classification 

accuracy of the attribute mastery status is quantified with the attribute profile correct 

classification rate (PCCR) and the attribute correct classification rate (ACCR) at each 

time point. The former is the proportion of consistency between the true and 

estimated attribute profiles (i.e., the proportion of simulees with all the attributes 

being correctly classified out of the whole simulated sample) while the latter is the 

proportion of consistency between the true and estimated values of a single attribute 

(i.e., the proportion of simulees being correctly classified in terms of a single attribute 
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out of the whole simulated sample). Specifically, within each replication, the PCCR 

and the ACCR of attribute k are calculated as 

 

1

1
ˆ( ),

J

j

PCCR I
J =

= = j jα α   

 

1

1
ˆ( ),

J

k jk jk

j

ACCR I
J

 
=

= =   

where I(x) is a binary indicator of whether the estimated and true attributes/attribute 

profiles are consistent with each other. J is the simulated sample size.  

Analyses for assessing the impact of ignoring the multiple-strategy 

scenarios. To address the second research question, it is necessary to compare the 

recovery of the parameters of interest across different data-fitting models. This study 

focuses on examining the effect of ignoring between-person multiple strategies and/or 

within-person strategy shift on the recovery of the attribute mastery profile, skill 

implementation ability change and the strategy latent class membership, as these 

parameters are directly relevant to the diagnostic inferences drawn from the 

longitudinal CDMs.  

As it is possible that the impact of ignoring the multiple-strategy scenarios on 

the model parameter recovery could vary across different simulated conditions (i.e., 

there are interaction effects between the data-fitting model type and the manipulated 

factors on the model parameter recovery), the outcome measures of each type of 

parameters are plotted against different levels of the manipulated factors and/or the 

data-fitting model type to help discover the possible interactions between the data-

fitting model type and the manipulated factors [i.e., sample size (J), initial mixing 

proportions of the strategies (
(1) (1):

A BM M  ), the transition probability from Strategy A to 
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Strategy B ( |B AM Mp ) and the correlation between the initial ability and ability change (

( )1T
 



)].  

To further investigate the statistical and practical significance of the effects of 

the data-fitting model type and its interactions with the manipulated factors, the 

mixed-effect analyses of variance (ANOVAs) are planned to be conducted for the 

parameter types with sufficient sample sizes3, including the initial ability ( 1( )T

j , 

1,2,...,j J= ), ability change ( j , 1,2,...,j J= ), item intercept ( ,0i , 1,2,...,i I= ), 

and attribute main effects4 ( ,1,( )i k , 1,2,...,i I= , 1,2,...,k K= , ,1,( ) 0i k  ), provided 

that the required assumptions for the ANOVAs are met or the ANOVA inferences are 

robust to the violation of assumptions. The ANOVAs and the corresponding 

assumption checks are implemented with IBM SPSS Statistics 20 (IBM Corporation, 

2011). Specifically, in the mixed-effect ANOVA, each parameter is treated as a 

“subject”. Given that three models (i.e. Longitudinal LLM, Longitudinal MCDM and 

LTA-longitudinal-MCDM) are fitted to the same dataset in each replication, the data-

fitting model type is treated as the repeated-measure factor (i.e., within-subject 

factor). The recovery outcome measures (i.e., bias/SE/RMSE) of the parameters are 

treated as repeated measurements (i.e., the dependent variable) taken on each subject 

(i.e., parameter). The manipulated factors are treated as between-subject factors. 

Thus, there are 3 24 72 =  cells of the design in the mixed-effect ANOVAs, and each 

 

 
3 The number of parameters of the parameter type is greater than 20. 
4 Twenty-two attribute main effect parameters are present in all the three data-fitting models, and 

thirteen attribute main effect parameters are present only in the Longitudinal MCDM and LTA-

longitudinal-MCDM. The mixed-effect ANOVA was performed on the 22 attribute main effect 

parameters that are present in all the three models. 
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cell contains a parameter recovery outcome measure yielded from one of the three 

data-fitting models under one of the twenty-four simulated conditions.  

Before conducting the mixed-effect ANOVAs, three assumptions of the 

ANOVAs are checked, including the normality of residuals, the homogeneity of 

residual variances and sphericity. The assumption of residual normality is assessed by 

testing whether the dependent variable in each cell is normally distributed with the 

Shapiro-Wilk test of normality (Shapiro & Wilk, 1965). Nevertheless, since the F-test 

in the ANOVA is considered to be fairly robust to the violation of the normality 

assumption (Pearson, 1931; Tiku, 1964), the ANOVA will be carried out in this study 

even if the normality assumption is violated, as long as the nonnormality is not 

extreme. The assumption of homogeneous residual variances means that the residual 

variances of the dependent variable are equal across groups of between-subject 

factors. This assumption is tested with the Levene’s test of equality of error variances 

(Levene, 1960), the null hypothesis of which is that “the error variances of the 

dependent variable are equal across the groups”. Thus, if the test statistics from the 

Levene’s test is significantly different from zero, it can be inferred that the 

assumption of homogeneity is violated. The violation of the assumption of 

homogeneity may affect the Type I error rate of the ANOVA (Box, 1954; Horsnell, 

1953). However, the ANOVA results were found to be robust to the violation of the 

assumption of homogeneity when the sample sizes are approximately equal across the 

groups (Kohr & Games, 1974), and it is also suggested to use equal sample size 

designs to protect against the violation of homogeneity assumption (Maxwell & 

Delaney, 1990). Therefore, given that the sample sizes of the item intercept ( ,0i , 
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1,2,...,i I= ) and attribute main effect ( ,1,( )i k , 1,2,...,i I= , 1,2,...,k K= , ,1,( ) 0i k  ) 

are equal across groups in the ANOVA, the ANOVA will be carried out for these 

parameters even if the assumption of homogeneity is violated. However, when the 

ANOVA is performed on the initial ability ( 1( )T

j , 1,2,...,j J= ) and ability change (

j , 1,2,...,j J= ) parameters, the group sample sizes would differ across different 

levels of the sample size factor (J); thus, if the assumption of homogeneity is violated, 

an alternative design of ANOVA will be carried out for the skill implementation 

ability parameters as elaborated in the following paragraph. The sphericity 

assumption means that the variances of the differences between the levels of the 

within-subject factor are equal, which can be tested with Mauchly’s test of sphericity 

(Mauchly, 1940). If the sphericity assumption is violated, the p-values in the ANOVA 

results will be corrected by adjusting the degrees of freedom with the Greenhouse-

Geisser procedure (Greenhouse & Geisser, 1959). In addition, observations are 

assumed to be randomly and independently sampled in ANOVA. The violation of the 

independence assumption could result in an inflated Type I error rate in the ANOVA 

(e.g., Kenny & Judd, 1986). 

The mixed-effect ANOVA is conducted for each type of model parameters 

separately. If not otherwise specified, all the possible main effects and interactions 

among the data-fitting model type and the four manipulated factors are included in 

the mixed-effect ANOVA design. If the assumption of homogeneous residual 

variances is violated, the inferences about the effects of the factors on the recovery of 

the initial ability ( 1( )T

j ) and ability change ( j ) parameters based on the full 



84 

 

ANOVA design can be misleading due to the unequal sample size issue as mentioned 

in the last paragraph. Thus, if the assumption of homogeneous residual variances is 

violated, the mixed-effect ANOVAs will be performed separately for the small 

sample size (J=100) and large sample size (J=800) conditions to investigate the 

effects of the other three manipulated factors (i.e., 
(1) (1):

A BM M  , |B AM Mp  and ( )1T
 



) and 

data-fitting model type on the recoveries of 1( )T

j  and j . 

A main or interaction effect with a p-value smaller than 0.05 is deemed 

statistically significant. In addition to the statistical significance, this study evaluated 

the effect size quantified by the partial 2  (Cohen, 1965) for each effect. The effect 

size is used as a measure of practical significance of the results. Using the criterion 

suggested by Cohen (1988), i.e., 0.01 ≤ partial 2 < 0.06 for small effect, 0.06 ≤ 

partial 2 < 0.14 for medium effect, and partial 2  ≥ 0.14 for large effect, this study 

only reports and further investigates the effects that are both statistically significant 

and have at least a small effect size (i.e., partial 2  ≥ 0.01). 

Analyses for assessing the effects of the manipulated factors on the 

parameter recovery of the proposed model. To address the third research question, 

effects of the manipulated factors on the LTA-longitudinal-MCDM parameter 

recovery need to be examined. As a graphical inspection, marginal means of the 

outcome measures of each type of parameters are plotted against different levels of 

the manipulated factors. Like in the second research question, the statistical and 

practical significance of the effects of the manipulated factors on the recovery of 

parameters of a sufficient sample size can be examined with the ANOVAs. In 
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particular, four-way ANOVAs, with each manipulated factor as a factor of the design, 

are planned to be conducted on the recovery outcome measures of the initial ability, 

ability change, item intercept and attribute main effect parameters of the LTA-

longitudinal-MCDM. All the ANOVA assumptions described above, except the 

sphericity assumption which is not required by the four-way ANOVAs, are checked 

before conducting the four-way ANOVAs. 

 Checking the stability of the simulation results. Thirty replications are run. 

The number of replications is chosen based on the previous study on the longitudinal 

CDM (Zhan, Jiao, Liao, et al., 2019). To further justify the sufficiency of the number 

of replications, a pilot study was conducted where 70 replications were run in a 

selected simulated condition (J=100, 
(1) (1): 0.6 : 0.4

A BM M  = , |B AM Mp =0.3, ( )1T
 



=-0.3). 

The recovery outcome measures of all the parameters in the proposed model (i.e., the 

LTA-longitudinal-MCDM) are plotted against the number of replications (ranging 

from 2 to 70) to investigate the stability of the simulation study results at the 

replication number of 30. Figure 7 displays the classification accuracy results of the 

categorical model parameter estimates, including the attribute mastery status ( ) and 

the strategy choice (m), whereas Figure 8 displays the bias, SE and RMSE of the 

estimates of the continuous model parameters, such as the initial ability ( 1( )T ), ability 

change (  ), item intercept ( ,0i ), attribute main effect ( ,1,( )i k ) and strategy latent 

transition probability ( 1( )

|B A

T

M M ). Both Figures 7 and 8 demonstrate that the stability in 

recovery outcome measures of the LTA-longitudinal-MCDM parameters has been 

achieved at the 30th replication. The stabilities in the two more constrained alternative 
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models, the Longitudinal LLM and Longitudinal MCDM, have also been reached by 

the 30th replication although not presented here. 

Figure 7. Correct classification rate of the categorical parameter estimates in the 

LTA-longitudinal-MCDM by the number of replications. 
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Figure 8. Bias, SE and RMSE of the continuous parameter estimates in the LTA-

longitudinal-MCDM by the number of replications. 
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3.4 Empirical Data Analyses 

3.4.1 Data and research questions 

The application of the proposed model is demonstrated with the empirical data 

from a study (Bottge et al., 2015) assessing the effectiveness of the Enhanced 

Anchored Instruction (EAI; Bottge, 2001) and comparing the effectiveness EAI to 

that of the business as usual (BAU). The study had a repeated-measure pretest-

posttest design, and the participated schools were randomly assigned into the EAI or 

BAU condition (Bottge et al., 2015). Students in the BAU condition were given 

traditional mathematics instructions while students in the EAI condition were given 

instructions with realistic problems embedded in more interactive formats [See Bottge 

et al. (2014, 2015) for detailed instructional activities involved in the two conditions].  

The empirical dataset contains item responses of 879 middle-school students 

(456 were in the BAU condition and 423 were in the EAI condition). Both the pretest 

and posttest contain 21 dichotomously scored items aiming at measuring students’ 

mathematical problem-solving ability. The items were designed to measure four 

attributes, including 1) ratios and proportional relationships (RPR), 2) measurement 

and data (MD), 3) number system – fractions (NSF) and 4) geometry – graphing 

(GG). The expert-developed Q-matrix is shown in Table 7, which is referred to as the 

theoretical Q-matrix (
T

Q ).  

The proposed LTA-longitudinal-MCDM is applied to the dataset to address 

two research questions:  

1) How do students’ strategy choice, overall skill implementation ability and 

attribute mastery status change from the pretest to the posttest? 
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2) Do EAI and BAU differ in terms of their effects on students’ learning 

outcomes regarding the strategy choice, overall skill implementation 

ability and attribute mastery status?  

Each of the research question has three perspectives, i.e., the strategy choice, 

overall skill implementation ability and attribute mastery status, each of which can be 

inferred from a type of parameters in the LTA-longitudinal-MCDM. Specifically, to 

answer the first research question, the strategy latent transition probability estimates (

ˆ 1

T T2 1

(T )

m |mτ ) are reported to inform students’ shift in the strategy choice over time; the 

mean of ability change estimate ( ˆ


) can provide inferences on students’ skill 

implementation ability change; and the frequencies of attribute mastery status patterns 

(
( )ˆ t

jk ) are summarized to provide information on students’ attribute mastery change 

over time.  

In this study, the learning outcome regarding the strategy choice is 

operationally defined as the distribution of strategy choice trajectory; the learning 

outcome regarding the overall skill implementation ability is operationally defined as 

the ability change estimates of the individuals; the learning outcome regarding the 

attribute mastery status is operationally defined as the proportion of attribute non-

mastery students at the pretest who are classified as attribute mastery at the posttest. 

Thus, to answer the second research question, the distribution of the strategy choice 

trajectory, average ability change estimates of the individuals, and the proportion of 

attribute non-mastery students at the pretest who are classified as attribute mastery at 

the posttest, are compared across the EAI and BAU groups.  
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3.4.2 Data analysis procedure 

3.4.2.1 Data cleaning 

Thirty out of the 879 students have missing item responses, and these students 

have missed 43% to 100% of the items in either the pretest or posttest. As the 

students with missing data only take up a small percentage of the sample (3.4%), 

these students are excluded from the analysis in this demonstration. As a result, the 

analytical sample contains 849 students (435 were in the BAU condition and 414 

were in the EAI condition). 

3.4.2.2 Empirical Q-matrix development 

As improving students’ problem solving is the main goal of either the EAI or 

BAU instructions (Bottge et al., 2014), which include teaching students to choose a 

more effective problem-solving strategies, this study assumes the existence of 

multiple Q-matrices representing different strategies before and after the instructional 

interventions. Given that little expert knowledge is available about alternative 

theoretical Q-matrices, a nonparametric Q-matrix refinement method (Chiu, 2013) is 

used to empirically construct two Q-matrices, one based on the pretest and the other 

based on posttest data. It is expected that the discrepancies in these two empirical Q-

matrices can capture some differences in the problem-solving strategies before and 

after the interventions. An advantage of empirically constructing the Q-matrix is that 

it complements the expert knowledge and has the potential to discover strategies that 

are not expected by experts. In addition, the empirical Q-matrices are less prone to 

subjectivity of human judgment. In general, the nonparametric Q-matrix refinement 

method (Chiu, 2013) is implemented as follows: The theoretical Q-matrix is input as 
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a provisional Q-matrix to estimate the person attribute profiles for the initial iteration, 

and an iterative process is used to find the optimal Q-matrix that minimizes the 

residual sum of squares between the expected response and the observed response. 

The detailed empirical Q-matrix development algorithm can be found in Chiu (2013). 

Compared to the other empirical Q-matrix development methods, this nonparametric 

method is advantageous in that it does not rely on model-based assumptions about the 

observed item responses and it is computationally efficient (Chiu, 2013). As the focus 

of this empirical data analysis is to demonstrate the use of the LTA-longitudinal-

MCDM, other Q-matrix construction methods are not considered. However, future 

research could investigate the effect of the different Q-matrix development methods 

on the results. The resulting Q-matrices from the empirical Q-matrix development 

method are labelled as empirical Q-matrices (
E

Q ) to be distinguished from the 

theoretical Q-matrix. 

To attenuate the overfitting issue, the analytical dataset is randomly split into 

two sub-datasets, labelled as the “training set” (J=100; 53 in BAU and 47 in EAI) and 

“testing set” (J=749; 382 in BAU and 367 in EAI). The training set is used for the 

empirical Q-matrix development while the testing set is used for empirical Q-matrix 

validation and model fit. 

The empirical Q-matrices developed with the nonparametric Q-matrix 

refinement method using the NPCD package (Zheng et al., 2014) are shown in Table 

7. The empirical Q-matrices developed from the pretest (
EpreQ ) and posttest (

EpostQ ) 

have 16 and 4 different q-entries (shaded in yellow in Table 7) from the theoretical Q-

matrix, respectively. For most of the items with discrepant theoretical and empirical 
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q-vectors, the empirical q-vectors involve more attributes than the theoretical q-

vectors do. 

Table 7 

Q-matrices Used in the Empirical Data Analysis 

Item 

T
Q   

(Theoretical Strategy) 

 
EpreQ  

(Empirical Complex 

Strategy) 

 
EpostQ   

(Empirical Simple 

Strategy) 

RPR MD NSF GG  RPR MD NSF GG  RPR MD NSF GG 

1 1 0 0 0  1 1 0 0  1 0 0 0 

2 0 1 0 0  0 1 0 0  0 1 0 0 

3 0 1 0 0  1 1 1 1  0 1 1 0 

4 0 0 1 0  0 1 1 0  0 0 1 0 

5 0 0 1 0  0 1 1 0  0 0 1 0 

6 0 0 1 0  0 0 1 0  0 0 1 0 

7 0 0 1 0  1 0 1 1  0 0 1 0 

8 0 0 1 0  0 0 1 1  0 0 1 0 

9 0 1 0 0  0 1 0 0  0 1 0 0 

10 0 1 0 0  0 1 0 0  0 1 0 0 

11 0 1 0 0  0 1 0 0  0 1 0 0 

12 0 1 0 0  0 1 0 0  0 1 0 0 

13 1 0 0 0  0 1 0 0  1 0 0 0 

14 1 0 0 0  0 1 1 0  1 0 0 0 

15 0 0 0 1  0 0 0 1  0 0 0 1 

16 0 0 0 1  0 0 0 1  0 0 0 1 

17 1 0 0 0  1 0 0 0  1 0 1 1 

18 0 0 0 1  0 0 0 1  0 0 0 1 

19 0 0 0 1  0 0 0 1  0 0 0 1 

20 0 0 0 1  1 0 0 1  0 0 0 1 

21 0 0 0 1  1 0 0 1  0 1 0 1 

Note. RPR=ratios and proportional relationships; MD=measurement and data; 

NSF=number system – fractions; GG=geometry – graphing. The empirical q-entries 

that are different from the theoretical q-entries are shaded in yellow. The item 

numbers of the multiple-approach items (different q-vectors between 
EpreQ  and 

EpostQ ) are shaded in blue. 

 

Eleven items have different q-vectors between 
EpreQ  and 

EpostQ  (The item 

numbers are shaded in blue in Table 7), which suggest that these items may be solved 

in a different approach in the posttest from that in the pretest. As eight out of the 

eleven multiple-approach items involve more attributes in 
EpreQ  than 

EpostQ , the 
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strategies associated with 
EpreQ  than 

EpostQ are labelled as “empirical complex 

strategy (
,E ComplexM )” and “empirical simple strategy (

,E SimpleM )”, respectively, in the 

following sections for the convenience of interpretation. Accordingly, the strategy 

associated with the theoretical Q-matrix is labelled as “theoretical strategy (
TM )”. 

The two empirical Q-matrices are further validated with the testing dataset by 

fitting the following models: Four single-time-point models (the models in Table 8) 

and four longitudinal models (the first four models in Table 9) with different Q-

matrices are fitted to the testing dataset. The four single-time-point models include 

two LLMs with either the theoretical or one of the empirical Q-matrices (i.e., S-LLM-

T and S-LLM-E), an MCDM with the theoretical and one of the empirical Q-matrices 

(S-MCDM-TE) and an MCDM with the two empirical Q-matrices (S-MCDM-EE). 

The four longitudinal models include three Longitudinal LLMs with either the 

theoretical or one of the empirical Q-matrices (i.e., L-LLM-T, L-LLM-E-pre and L-

LLM-E-post) and a Longitudinal MCDM with a mixture of the two empirical Q-

matrices (L-MCDM-EE). The relative model fit indices, AIC, BIC and DIC, were 

compared across the models. The S-MCDM-EE is identified as the best-fitting model 

among the four single-time-point models by both AIC and BIC in both the pretest and 

posttest; the L-MCDM-EE is identified as the best-fitting model among the four 

longitudinal models by both AIC and BIC (The detailed Q-matrix validation results 

will be presented in Tables 34 and 35 in Chapter 5). These model comparison results 

provide a justification for using the empirical Q-matrices, 
EpreQ  and 

EpostQ , in the 

subsequent longitudinal analyses involving the LTA-longitudinal-MCDM. Further, 

the absolute model-data fit is evaluated using the posterior predictive model check, 
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the procedure of which is the same as that carried out in the simulation study (See 

Section 3.3.5). An adequate model-data fit could also serve as evidence supporting 

the appropriateness of the empirical Q-matrices. 

Table 8 

Single-Time-Point Model Specifications for Empirical Q-matrix Validation 

Model 

No. 

Model  

Abbrevation 
Model 

Pretest Data  Posttest Data 

T
Q   EpreQ   

EpostQ    T
Q   EpreQ   

EpostQ   

1 S-LLM-T LLM √    √   

2 S-LLM-E LLM   √     √ 

3 
S-MCDM-

TE 
MCDM 

√ √   √  √ 

4 
S-MCDM-

EE 
MCDM 

 √ √   √ √ 

Note. 
TQ =Theoretical Q-matrix; 

EpreQ =Empirical Q-matrix based on the pretest; 

EpostQ = Empirical Q-matrix based on the posttest. 

 

 

Table 9 

Longitudinal Model Specifications  

Model 

No. 

Model  

Abbrevation 
Model 

Q-matrix 

T
Q   EpreQ   

EpostQ   

1 L-LLM-T Longitudinal LLM √   

2 L-LLM-E-pre Longitudinal LLM   √  

3 L-LLM-E-post Longitudinal LLM    √ 

4 L-MCDM-EE Longitudinal MCDM  √ √ 

5 
LTA-L-MCDM-

EE 

LTA-longitudinal-

MCDM 

 √ √ 

Note. 
TQ =Theoretical Q-matrix; 

EpreQ =Empirical Q-matrix based on the pretest; 

EpostQ = Empirical Q-matrix based on the posttest. 

 

 

3.4.2.3 LTA-longitudinal-MCDM analysis 

In order to answer the research questions, the LTA-longitudinal-MCDM is fit 

to the testing dataset. 
EpreQ  and 

EpostQ , are used as the Q-matrices for both 

timepoints. Thus, there expected to be four unique strategy choice trajectories, i.e., 

, ,( , )E Complex E ComplexM M , , ,( , )E Complex E SimpleM M , , ,( , )E Simple E ComplexM M  and 
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, ,( , )E Simple E SimpleM M . As mentioned in Section 3.4.1, the estimates of the model 

parameters relevant to strategy choice, overall skill implementation ability change 

and attribute mastery status are summarized and reported to address the research 

questions.  

In addition, the relative model fit indices (i.e., AIC, BIC and DIC) of the 

LTA-longitudinal-MCDM are compared to those of the other longitudinal models 

listed in Table 9, including the L-MCDM-EE that ignores within-person strategy shift 

and the L-LLMs that ignore both between-person multiple strategies and within-

person strategy shift.  
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Chapter 4: Simulation Study Results 

The simulation study was conducted to examine 1) the performance of AIC, 

BIC and DIC in correctly selecting the LTA-longitudinal-MCDM as the best-fitting 

model in the presence of between-person multiple strategies and within-person 

strategy shift; 2) the impact of ignoring the multiple-strategy scenarios in the model 

on the parameter recovery of the longitudinal CDMs; and 3) the effect of the 

manipulated factors on the parameter recovery of the LTA-longitudinal-MCDM. 

In particular, the effects of ignoring between-person multiple strategies and 

within-person strategy shift on the parameter recovery were examined by comparing 

the parameter recovery outcome measures across three data-fitting models, including 

i) the LTA-longitudinal-MCDM that models both between-person multiple strategies 

and within-person strategy shift, ii) the Longitudinal-MCDM that ignores within-

person strategy shift and iii) the Longitudinal LLM that ignores both between-person 

multiple strategies and within-person strategy shift. An overview of the model 

specification of the three data-fitting models is presented in Table 10. 

Table 10 

Overview of Model Specifications of the Data-Fitting Model in the Simulation Study 

Model 

 The presence multiple-strategy 

scenario in the models 

 Between-person  

multiple strategies 

Within-person  

strategy shift 

Longitudinal LLM  × × 

Longitudinal MCDM  × √ 

LTA-longitudinal-MCDM  √ √ 

Note. × represents absence; √ represents presence. 

 

Four factors were manipulated (See Table 6 for detailed specifications of the 

manipulated factors) in the simulation study, including the sample size, the initial 

mixing proportions of the strategies, the strategy latent transition probability and the 
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correlation between the initial strategy and strategy change, resulting in a total of 24 

simulated conditions. Thirty replications were run in each simulated condition, 

yielding a total of 30 24 720 = replications. The model parameters were estimated 

with Bayesian MCMC method. Two MCMC chains were run, each of which 

contained 5,000 iterations including 2,500 iterations as burn-in and a thinning of 2. 

As a result, estimates of the model parameters were summarized based on a total of 

2,500 iterations. Convergence was achieved for all the model parameters in all the 

replications and simulated conditions, according to the ˆ 1.1R   criterion and the trace 

plots. As for the computational efficiency, running the LTA-longitudinal-MCDM 

with two MCMC chains each containing 5,000 iterations took around 3 minutes and 

90 minutes for the small sample size (J=100) and large sample size (J=800) 

conditions, respectively.5  

In order to confirm that the simulated datasets possess the desired 

characteristics of the data-generating model (i.e., the LTA-longitudinal-MCDM), the 

absolute fit of the LTA-longitudinal-MCDM to each simulated dataset was inspected. 

Table 11 lists the summary statistics that reflect the distributions of posterior 

predictive p-value (PPP) across the 30 replications for each simulated condition. The 

smallest PPP value of the proposed model among all the replications is 0.47 which is 

not extremely close to 0. The PPP values range from 0.47 to 0.78, meaning that the 

proportion of the replicated data generated from the LTA-longitudinal-MCDM 

having a sum of squares of standardized residuals that are greater than that of the 

 

 
5 The computing time is based on the analyses run on a desktop with Intel Core i7 CPU and 3.2GHz 

processor. Multiple MCMC chains were run in parallel with multiple cores. 
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observed data ranges from 0.47 to 0.78. These PPP value results support that the 

observed datasets are likely to be seen in the replicated data if the LTA-longitudinal-

MCDM is the true data-generating model. In other words, the simulated datasets 

possess the characteristics of the data-generating model from the perspective of the 

sum of squares of standardized residuals. 

Table 11 

Summary of the Posterior Predictive P-Values of the LTA-longitudinal-MCDM under 

the 24 Simulated Conditions 

Condition  

No. 
J 

(1) (1):
A BM M   |B AM Mp  ( )1T

 



 PPP value 

Min Median Mean Max 

1 100 0.6:0.4 0.3 -0.3 0.55 0.67 0.66 0.74 

2    0 0.54 0.67 0.67 0.78 

3    0.3 0.60 0.66 0.67 0.76 

4   0.7 -0.3 0.53 0.66 0.65 0.71 

5    0 0.52 0.65 0.65 0.75 

6    0.3 0.58 0.64 0.66 0.76 

7  0.8:0.2 0.3 -0.3 0.55 0.68 0.67 0.76 

8    0 0.55 0.67 0.67 0.76 

9    0.3 0.54 0.66 0.67 0.78 

10   0.7 -0.3 0.50 0.66 0.66 0.73 

11    0 0.58 0.64 0.66 0.77 

12    0.3 0.54 0.64 0.65 0.76 

13 800 0.6:0.4 0.3 -0.3 0.50 0.56 0.55 0.60 

14    0 0.50 0.57 0.56 0.59 

15    0.3 0.51 0.55 0.56 0.63 

16   0.7 -0.3 0.49 0.54 0.55 0.61 

17    0 0.49 0.56 0.56 0.62 

18    0.3 0.47 0.53 0.54 0.60 

19  0.8:0.2 0.3 -0.3 0.51 0.55 0.55 0.59 

20    0 0.47 0.55 0.55 0.59 

21    0.3 0.51 0.55 0.55 0.62 

22   0.7 -0.3 0.50 0.56 0.56 0.61 

23    0 0.49 0.55 0.56 0.62 

24    0.3 0.49 0.54 0.55 0.63 

Note. PPP=Posterior Predictive P-Values. J=Sample size; 
(1) (1):

A BM M  =initial mixing 

proportions of the strategies; |B AM Mp =transition probability from Strategy A to 

Strategy B; ( )1T
 



=correlation between the initial ability and ability change. 
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The remaining simulation study results are arranged and presented by the type 

of outcomes or model parameters. Table 12 provides an overview of the model 

parameters evaluated in the simulation study. Since some parameters (e.g., the 

strategy choice parameters) are absent in certain data-fitting models, the recovery of 

these parameters was only compared across the models that contain them. If a 

parameter only exists in one model (e.g., the strategy latent transition probability 

parameter only exists in the LTA-longitudinal-MCDM), only the descriptive statistics 

of the parameter recovery outcome measures will be presented. Specifically, the 

remaining part of this chapter is divided into four major sections: (a) the performance 

of the model fit indices, (b) the recovery of the person parameters, (c) the recovery of 

the item parameters and (d) the recovery of the higher-order structural parameters.  
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Table 12 

Overview of the Model Parameters Evaluated in the Simulation Study 

Parameter 

type 
Parameter Description 

The presence of parameter in the 

models 

L-

LLM 

L- 

MCDM 

LTA-L-

MCDM 

Person  

parameter 

( )t

jk  
Attribute mastery status √ √ √ 

1( )T  Initial skill implementation ability √ √ √ 

  Skill implementation ability change √ √ √ 


 Mean of the skill implementation ability change √ √ √ 

2


 Variance of the skill implementation ability change √ √ √ 

( )1T
 




 Covariance between the initial skill implementation ability and 

ability change 

√ √ √ 

m Strategy choice membership × √ √ 

1( )T

m  Initial mixing proportion of the strategy × √ √ 

1

2 1

( )

|T T

T

m m  Strategy latent transition probability (from Timepoint 1 to 

Timepoint 2) 

× × √ 

Item  

parameter 

,0i  Item intercept √ √ √ 

,1,( )i k  Attribute main effect √ √ √ 

Higher-order  

structural  

parameter 

k  Attribute easiness √ √ √ 

k  Attribute discrimination √ √ √ 

Note. L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-MCDM=LTA-longitudinal-MCDM. × represents absence; √ represents presence.



103 

 

4.1 Performance of the Model Fit Indices 

To evaluate the performance of AIC, BIC and DIC in correctly selecting the 

LTA-longitudinal-MCDM as the best-fitting model, the number of replications of 

each data-fitting model (Longitudinal LLM, Longitudinal MCDM and LTA-

longitudinal-MCDM) being identified as the best-fitting model by each relative fit 

index are reported in Table 13. Specifically, the model with the smallest model fit 

index was labeled as the best-fitting model. The LTA-longitudinal-MCDM (i.e., the 

data-generating model) was correctly identified as the best-fitting model by AIC and 

BIC in nearly all the replications (i.e., 29 to 30 out of 30) under all the simulated 

conditions. The performance of DIC varies across conditions. In particular, DIC 

correctly identified the LTA-longitudinal-MCDM as the best-fitting model in nearly 

all the replications (29 to 30 out of 30) under the conditions with a high transition 

probability from Strategy A to Strategy B ( | 0.7
B AM Mp = ). However, DIC incorrectly 

favored the Longitudinal MCDM which only takes into account between-person 

multiple strategies in a small proportion of replications (7 to 10 out of 30) under the 

conditions with a low transition probability from Strategy A to Strategy B, 

imbalanced initial mixing proportions of the strategies and a small sample size, 

simultaneously (i.e., | 0.3
B AM Mp = ; 

(1) (1): 0.8 : 0.2
A BM M  = ; 100J = ). Further, under the 

conditions with both a low transition probability from Strategy A to Strategy B and 

balanced initial mixing proportions of the strategies ( | 0.3
B AM Mp = ; 

(1) (1): 0.6 : 0.4
A BM M  = ), DIC tended to incorrectly identify the Longitudinal MCDM as 

the best-fitting model in most of the replications. In sum, the ability of DIC to 

correctly select the proposed model as the best-fitting model is diminished when the 
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true latent transition probability from Strategy A to Strategy B is low ( | 0.3
B AM Mp = ), 

and such diminishment is more severe under the conditions with more balanced initial 

mixing proportions of strategies (
(1) (1): 0.6 : 0.4

A BM M  = ) . 

While it is convenient to identify the best-fitting model by directly comparing 

the model fit indices, it remains unknown whether the discrepancies in fit indices 

between the LTA-longitudinal-MCDM as the best-fitting model and the alternative 

models are significantly large. Therefore, to examine the significance in 

discrepancies, the evidence ratios of the LTA-longitudinal-MCDM to the alternative 

models were calculated when the LTA-longitudinal-MCDM has the smallest fit index 

among the three data-fitting models. In this study, the evidence ratio being greater 

than 55 was used as a criterion to determine the significant difference in the model fit 

index between two models (Anderson, 2008). Table 14 reports the frequency of the 

evidence ratio of the LTA-longitudinal-MCDM to the alternative models being 

greater than 55 (among the replications where the LTA-longitudinal-MCDM was 

identified as the best-fitting model). 
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Table 13 

The Number of Replications of Each Model Identified as the Best-Fitting Model in the Simulation Study 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 

AIC   BIC    DIC  

L- 

LLM 

L-

MCDM 

LTA-

L-

MCDM 

 
L- 

LLM 

L-

MCDM 

LTA-

L-

MCDM 

 
L-

LLM 

L-

MCDM 

LTA-

L-

MCDM 

100 0.6:0.4 0.3 -0.3 0 0 30  0 0 30  0 22 8 

   0 0 0 30  0 1 29  0 25 5 

   0.3 0 0 30  0 0 30  0 23 7 

  0.7 -0.3 0 0 30  0 0 30  0 0 30 

   0 0 0 30  0 0 30  0 0 30 

   0.3 0 0 30  0 0 30  0 0 30 

 0.8:0.2 0.3 -0.3 0 0 30  0 0 30  0 9 21 

   0 0 0 30  0 0 30  0 10 20 

   0.3 0 0 30  0 0 30  0 7 23 

  0.7 -0.3 0 0 30  0 0 30  0 1 29 

   0 0 0 30  0 0 30  0 0 30 

   0.3 0 0 30  0 0 30  0 1 29 

800 0.6:0.4 0.3 -0.3 0 0 30  0 0 30  0 13 17 

   0 0 0 30  0 0 30  0 21 9 

   0.3 0 0 30  0 0 30  0 23 7 

  0.7 -0.3 0 0 30  0 0 30  0 0 30 

   0 0 0 30  0 0 30  0 0 30 

   0.3 0 0 30  0 0 30  0 0 30 

 0.8:0.2 0.3 -0.3 0 0 30  0 0 30  0 1 29 

   0 0 0 30  0 0 30  0 0 30 

   0.3 0 0 30  0 0 30  0 1 29 

  0.7 -0.3 0 0 30  0 0 30  0 0 30 

   0 0 0 30  0 0 30  0 0 30 

   0.3 0 0 30  0 0 30  0 0 30 
Note. The largest numbers of replications among the three model under each condition are bolded. L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; 

LTA-L-MCDM=LTA-longitudinal-MCDM. 
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The “Total” columns in Table 14 list the frequencies of the LTA-longitudinal-

MCDM having the smallest fit indices among the three models, the values of which 

match those in the “LTA-L-MCDM” columns in Table 13. It can be seen that, among 

the replications where the LTA-longitudinal-MCDM have the smallest AIC, BIC or 

DIC, the differences in the fit indices between the LTA-longitudinal-MCDM and the 

Longitudinal LLM are significant under all the conditions. The differences between 

the LTA-longitudinal-MCDM and the Longitudinal MCDM in terms of AIC and BIC 

are significant in nearly all the replications (with at most one exception) under all the 

conditions. Nevertheless, insignificant DIC discrepancies between the LTA-

longitudinal-MCDM and the Longitudinal MCDM are observed in some of the 

conditions with both a low transition probability from Strategy A to Strategy B and 

balanced initial mixing proportions of the strategies ( | 0.3
B AM Mp = ; 

(1) (1): 0.6 : 0.4
A BM M  = ). 

Further, for the replications where the Longitudinal MCDM has the smallest 

relative fit index among the three models, the evidence ratios of the Longitudinal 

MCDM to the LTA-longitudinal-MCDM were calculated. None of these evidence 

ratios was greater than 55. The small evidence ratios of the Longitudinal MCDM to 

the LTA-longitudinal-MCDM are a result of the small magnitude of difference in 

DIC between the two models, suggesting that, even if the Longitudinal MCDM had a 

smaller fit index than the LTA-longitudinal-MCDM in certain conditions, no 

evidence was found to support a significant discrepancy in model fit between the two 

models. Such results are expected since the LTA-longitudinal-MCDM is the true 

data-generating model, while the Longitudinal MCDM is an under-specified data-
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fitting model. Even though DIC may overly punish the LTA-longitudinal-MCDM for 

its model complexity in certain conditions, resulting in a higher DIC for the LTA-

longitudinal-MCDM than the Longitudinal MCDM, a strong evidence favoring the 

under-specified model to the true data-generating model is not expected. 

In summary, AIC and BIC had a satisfying performance under the simulated 

conditions – they correctly identified the proposed model as the best-fitting model 

such that the proposed model display significant discrepancies against the alternative 

models that ignore the multiple-strategy scenarios. The performance of DIC was 

sensitive to some of the manipulated factors, such as the true initial mixing 

proportions of strategies and the latent transition probability from Strategy A to 

Strategy B. DIC tended to select the Longitudinal MCDM which ignores the within-

person strategy shift as the best-fitting model when the initial mixing proportions of 

strategies was balanced and the latent transition probability from Strategy A to 

Strategy B was low. Even so, the discrepancies in DIC between the Longitudinal 

MCDM as the best-fitting model and the proposed model as the second-best-fitting 

model were not adequately large. 
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Table 14 

The Number of Replications of the Evidence Ratio of the Proposed Model to Each Alternative Model Being Greater than 

55 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 

AIC   BIC    DIC  

Total 
Vs L-

LLM 

Vs L-

MCDM 

 
Total 

Vs L-

LLM 

Vs L-

MCDM 

 
Total 

Vs L-

LLM 

Vs L-

MCDM 

100 0.6:0.4 0.3 -0.3 30 30 30  30 30 30  8 8 4 

   0 30 30 29  29 29 29  5 5 5 

   0.3 30 30 30  30 30 30  7 7 3 

  0.7 -0.3 30 30 30  30 30 30  30 30 29 

   0 30 30 30  30 30 30  30 30 30 

   0.3 30 30 30  30 30 30  30 30 30 

 0.8:0.2 0.3 -0.3 30 30 30  30 30 30  21 21 17 

   0 30 30 30  30 30 30  20 20 18 

   0.3 30 30 30  30 30 29  23 23 23 

  0.7 -0.3 30 30 30  30 30 30  29 29 29 

   0 30 30 30  30 30 30  30 30 30 

   0.3 30 30 30  30 30 30  29 29 29 

800 0.6:0.4 0.3 -0.3 30 30 30  30 30 30  17 17 16 

   0 30 30 30  30 30 30  9 9 8 

   0.3 30 30 30  30 30 30  7 7 6 

  0.7 -0.3 30 30 30  30 30 30  30 30 30 

   0 30 30 30  30 30 30  30 30 30 

   0.3 30 30 30  30 30 30  30 30 30 

 0.8:0.2 0.3 -0.3 30 30 30  30 30 30  29 29 29 

   0 30 30 30  30 30 30  30 30 30 

   0.3 30 30 30  30 30 30  29 29 29 

  0.7 -0.3 30 30 30  30 30 30  30 30 30 

   0 30 30 30  30 30 30  30 30 30 

   0.3 30 30 30  30 30 30  30 30 30 
Total=Total frequency of the LTA-longitudinal-MCDM having the smallest fit index among the three data-fitting models; Vs L-

LLM=LTA-longitudinal-MCDM versus Longitudinal LLM; Vs L-MCDM= LTA-longitudinal-MCDM versus Longitudinal MCDM. 
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4.2 Recovery of the Person Parameters 

The person parameters allow one to draw inferences about each individual 

person or the population and, thus, are directly related to the diagnostic information 

provided by the proposed model. In general, three categories of person parameters are 

examined, including the attribute mastery status (all the parameters relevant to  ), 

skill implementation ability (all the parameters relevant to  ) and strategy choice (all 

the parameters relevant to m), as listed in Table 12. 

4.2.1 Attribute mastery status 

The recovery of the attribute mastery status (
( )t

jk ) is evaluated with the 

attribute correct classification rate (ACCR) and profile correct classification rate 

(PCCR). Given that 
( )t

jk  are estimated in all the three data-fitting models, the ACCRs 

and PCCRs are compared across the three models under all the simulated conditions 

in order to investigate the effects of ignoring the multiple-strategy scenarios on the 

attribute (profile) classification accuracy. As shown in Figure 9, the marginal mean 

ACCRs of LTA-longitudinal-MCDM by the levels of each manipulated factors are 

higher than 0.85, indicating that, on average, the attribute mastery status of over 85% 

of the simulees were correctly classified for each attribute using the proposed model. 

The average-across-replications ACCRs for each of the 24 simulated conditions are 

supplied in Appendix A. According to Figure 9, the marginal means of ACCR of 

Attribute 1 is lower for the Longitudinal LLM which ignore both between-person 

multiple strategies and within-person strategy shift than the other two models.  
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Figure 9. Marginal mean attribute correct classification rates (ACCRs) at each level 

of the manipulated factors. A1 to A4 indicate Attribute 1 to Attribute 4. 

 

In terms of the attribute profile classification accuracy, the average-across-

replications PCCRs of the LTA-longitudinal-MCDM are over 0.75 in all the 

simulated conditions (See Table 15), meaning that, on average, over 75% of the 

simulees’ attribute profile (i.e., attribute mastery status patterns) were successfully 

recovered with the proposed model. In addition, as shown in Table 15, the LTA-

longitudinal-MCDM demonstrates the highest PCCR among the three models under 

all the conditions.  
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Table 15 

Attribute Profile Correct Classification Rate 

J 
(1) (1):

A BM M 
 |B AM Mp

 
( )1T

 


  

PCCR (Timepoint 1)  PCCR (Timepoint 2) 

L-LLM L-MCDM LTA-L-MCDM  L-LLM L-MCDM LTA-L-MCDM 

100 0.6:0.4 0.3 -0.3 0.533 0.763 0.777  0.560 0.777 0.781 

   0 0.592 0.783 0.793  0.652 0.788 0.801 

   0.3 0.643 0.787 0.798  0.620 0.794 0.801 

  0.7 -0.3 0.532 0.721 0.781  0.484 0.790 0.812 

   0 0.597 0.750 0.802  0.584 0.792 0.834 

   0.3 0.642 0.745 0.810  0.536 0.787 0.839 

 0.8:0.2 0.3 -0.3 0.640 0.761 0.763  0.634 0.757 0.783 

   0 0.691 0.776 0.788  0.676 0.777 0.796 

   0.3 0.702 0.764 0.791  0.626 0.769 0.787 

  0.7 -0.3 0.623 0.700 0.763  0.516 0.773 0.821 

   0 0.683 0.733 0.793  0.591 0.770 0.821 

   0.3 0.706 0.734 0.802  0.548 0.748 0.808 

800 0.6:0.4 0.3 -0.3 0.658 0.781 0.805  0.630 0.815 0.821 

   0 0.670 0.785 0.802  0.650 0.819 0.824 

   0.3 0.675 0.795 0.811  0.664 0.832 0.836 

  0.7 -0.3 0.654 0.726 0.804  0.546 0.829 0.852 

   0 0.667 0.731 0.803  0.568 0.832 0.857 

   0.3 0.675 0.740 0.813  0.587 0.841 0.865 

 0.8:0.2 0.3 -0.3 0.732 0.760 0.788  0.669 0.790 0.810 

   0 0.737 0.761 0.786  0.690 0.798 0.817 

   0.3 0.744 0.772 0.797  0.702 0.807 0.828 

  0.7 -0.3 0.731 0.698 0.788  0.589 0.802 0.845 

   0 0.739 0.705 0.787  0.605 0.802 0.847 

   0.3 0.745 0.713 0.800  0.608 0.804 0.857 

Note. PCCR=Profile Correct Classification Rate; L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-

MCDM=LTA-longitudinal MCDM. The highest PCCR among the three data-fitting models is bolded under each condition at each 

time point.  
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To examine the effects of the manipulated factors on the attribute profile 

classification accuracy of the proposed model, the marginal mean PCCRs yielded 

from the proposed model are plotted against different levels of the manipulated 

factors, as shown in Figure 10. The slopes of the solid lines in Figure 10 are close to 

0, implying that the manipulated factors have little effect on the attribute profile 

classification accuracy of the LTA-longitudinal-MCDM.  

To sum up, the ACCR and PCCR results above suggest that ignoring 

between-person and/or within-person multiple strategies does correspond to a 

diminished accuracy in the recovery of the attribute (profile) classification. 

Nevertheless, on average, the attribute (profile) classification accuracy of the 

proposed model tends to be similar across different levels of the manipulated factors. 
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Figure 10. Marginal mean attribute profile correct classification rates (PCCRs) at 

each level of the manipulated factors. 

 

4.2.2 Skill implementation ability  

The skill implementation ability parameters include the initial ability 

parameter ( 1( )T

j ) and ability change parameter ( j ) and their corresponding mean 

vectors, ( )1
( )T

T


  , and variance-covariance matrix ( *( )

 ). This study classifies 

the skill implementation ability parameters into the first-level and second-level 

parameters. The first-level parameters, including 1( )T

j  and j , are individual-

specific. In contrast, the second-level parameters, including ( )1
( )T

T


  and *( )

 , 

delineate the distributions of the first-level parameters and, thus, are population-
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specific. The bias, SE and RMSE are evaluated to examine the recovery of the ability 

parameters6.  

As described in Section 3.3.5, the mixed-effect ANOVAs were conducted to 

examine the effects of the data-fitting model type and the manipulated factors on the 

recovery of 1( )T

j  and j . In particular, investigating the effects of the data-fitting 

model type allow one to draw inferences about the impact of ignoring the multiple-

strategy scenarios in the models on the model parameter recovery. Given that the 

mixed-effect ANOVAs’ assumption of homogenous residual variances was violated 

but that the mixed-effect ANOVA results from groups with nearly equal sample sizes 

are robust to such assumption violation, mixed-effect ANOVAs were performed 

separately for the small sample size (J=100) and large sample size (J=800) conditions 

to investigate the effects of the data-fitting model type and its interaction with the 

other three manipulated factors (i.e., 
(1) (1):

A BM M  , |B AM Mp  and ( )1T
 



) on the recovery 

of 1( )T

j  and j . Specifically, the mixed-effect ANOVAs were set up as follows 

within each level of sample size: each individual ability parameter was treated as a 

subject, the bias/SE/RMSE of the ability parameter was treated as the measurement 

(i.e., dependent variable) taken on each subject, the data-fitting model type was 

treated as the repeated-measure factor (i.e., within-subject factor) and the three 

manipulated factors (i.e., the initial mixing proportions of the strategies, the latent 

 

 
6 The recoveries of the mean and variance parameters of the initial ability are not examined, as these 

parameters have been constrained at 0 and 1, respectively, for scale identification. For the same reason, 

only the SE and RMSE are examined for the initial ability parameter estimates. 
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transition probability from Strategy A to Strategy B, and the correlation between the 

initial ability and ability change) were treated as the between-subject factors. 

The statistically significant effects (i.e., p-value <0.05) with at least a small 

effect size (i.e., partial 
2 ≥0.01) are reported in the following sections. Since the 

interpretation of the lower-order interactions or main effects would be misleading if a 

higher-order interaction were significant, the following sections only visualize and 

elaborate the highest-order significant effects. Table 16 provides an overview of the 

highest-order significant effects found in the mixed-effect ANOVAs along with the 

effect sizes. In general, the significant two-way or three way interactions among the 

correlation between the initial ability and ability change (CORR), latent transition 

probability from Strategy A to Strategy B (TR_Prob) and the data-fitting model type 

(MODEL) are found on the recovery outcome measures of 1( )T

j  and j .  

In addition, the three-way ANOVAs were performed on the recovery outcome 

measures of 1( )T

j  and j  of the LTA-longitudinal-MCDM to investigate the effects 

of the manipulated factors on the first-level ability parameter recovery of the 

proposed model. The three-way ANOVA results regarding 1( )T

j  and j  are 

presented at the end of Sections 4.2.2.1 and 4.2.2.2, respectively. 

As for the recovery of the second-level person parameters, i.e., ( )1
( )T

T


 

and *(θ )
Σ , to which ANOVA was not applicable, the marginal means of the recovery 

outcome measures of these parameters by the levels of each manipulated factor are 

summarized and compared across the models. As the mean ( ( )1T


 ) and variance (
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( )1

2
T


 ) of the initial ability parameter were constrained to be 0 and 1, respectively, the 

estimated second-level person parameters only include the mean ( 
) and variance (

2


) of the ability change, and the covariance between the initial ability and ability 

change ( ( )1T
 




). Biases, SEs and RMSEs of the estimates of all the assessed 

parameters under all the simulated conditions are tabulated in Appendix A. 

Table 16 

Summary of Effect Sizes of the Highest-Order Significant Effects from the Mixed-

Effect ANOVA on the Skill Implementation Ability Parameter Recovery 

J Effect 

Initial Ability 

Parameter ( 1( )T

j ) 

  Ability Change Parameter 

( j ) 

 SE    Bias SE RMSE 

100 TR_Prob*MODEL      0.010   0.061 

 CORR*TR_Prob*MODEL  0.014     0.058  

800 TR_Prob*MODEL      0.012 0.259  0.040 

 CORR*MODEL  0.024       

 

Effect Size 
Small 

(0.01≤partial 
2 <0.06) 

Medium 

(0.06≤partial 
2 <0.14) 

Large 

(partial 
2 ≥0.14) 

Note. J=Sample size; CORR=Correlation between the initial ability and ability change ( ( )1T
 



); 

TR_Prob=Transition probability from Strategy A to Strategy B ( |B AM Mp ); MODEL=Data-fitting 

model type. The values in the cells are partial 
2 . 

 

4.2.2.1 Initial ability estimates 

As an overview, the data-fitting model type interact with one or multiple 

manipulated factors to affect the random error of 1( )ˆ T

j quantified by SE in both the 

small sample size (J=100) and large sample size (J=800) conditions, according to the 

“Initial Ability Parameter” column in Table 16. In particular, when the sample size is 

small (J=100), a significant three-way interaction among CORR, TR_Prob and 

MODEL on the SE of 1( )ˆ T

j  was found with a small effect size (F=8.54, p<0.001, 
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partial 2 =0.014), as shown in Table 17. Moreover, the mixed-effect ANOVA results 

indicate a large two-way interaction effect of CORR*MODEL (F=197.23, p<0.001, 

partial 2 =0.249), a medium main effect of MODEL (F=116.48, p<0.001, partial 2

=0.089) and a small two-way interaction of TR_Prob*MODEL (F=13.81, p<0.001, 

partial 2 =0.011) on the SE of 1( )ˆ T

j . The patterns of the highest-order significant 

effect, the three-way interaction of CORR*TR_Prob*MODEL on the SE of 1( )ˆ T

j , are 

visualized in Figure 11. Specifically, the left, middle and right panels of Figure 11 

display the interactions of MODEL*TR_Prob on the SE of 1( )ˆ T

j  under the conditions 

with negative ( ( )1
0.3T

 



= − ), zero ( ( )1

0T
 



= ) and positive ( ( )1

0.3T
 



= ) true 

correlations between the initial ability and ability change, respectively. Different line 

patterns in Figure 11 represent different data-fitting models. When the true correlation 

between the initial ability and ability change is negative ( ( )1
0.3T

 



= − ), the 

Longitudinal LLM produces the highest mean SE of 1( )ˆ T

j  among the three data-fitting 

models, followed by the LTA-longitudinal-MCDM, regardless of the levels of the 

strategy transition probability (i.e., either | 0.3
B AM Mp =  or | 0.7

B AM Mp = ); the 

discrepancies in the mean SE of 1( )ˆ T

j  among the three models vary across the levels 

of the strategy transition probability. In contrast, when the true correlation between 

the initial ability and ability change is positive ( ( )1
0.3T

 



= ), the Longitudinal LLM 

produces the lowest mean SE of 1( )ˆ T

j  among the three models. When there is no 
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correlation between the initial ability and ability change ( ( )1
0T

 



= ), the three 

models yield similar mean SEs of 1( )ˆ T

j . 

Table 17 

Significant Effects in the Mixed-Effect ANOVA Results of the SE of the Initial Ability 

Estimates (J=100) 

Source 
SE of 1( )ˆ T

j  

 F Statistics  p-value Partial 2  

Within-Subject Effects  

(with Greenhouse-Geisser Adjustment) 
     

MODEL  116.48  <0.001 0.089 

TR_Prob*MODEL  13.81  <0.001 0.011 

CORR*MODEL  197.23  <0.001 0.249 

CORR*TR_Prob*MODEL  8.54  <0.001 0.014 
Note. CORR=Correlation between the initial ability and ability change ( ( )1T

 



); 

TR_Prob=Transition probability from Strategy A to Strategy B ( |B AM Mp ); MODEL=Data-fitting 

model type. 

 

 

Figure 11. Significant three-way interaction of CORR*TR_Prob*MODEL on the SE 

of the initial ability parameter estimates, 1( )ˆ T

j , in the conditions of small sample size 

(J=100). [Note. CORR=Correlation between the initial ability and ability change (

( )1T
 



); TR_Prob=Transition probability from Strategy A to Strategy B ( |B AM Mp ); 

MODEL=Data-fitting model type.] 
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When the sample size is large (J=800), there is a significant CORR*MODEL 

interaction on the SE of 1( )ˆ T

j  with a small effect size (F=115.45, p<0.001, partial 2

=0.024), as shown in Table 18. In addition, a large main effect of MODEL 

(F=4625.72, p<0.001, partial 2 =0.325) is found on the SE of 1( )ˆ T

j . The significant 

two-way interaction of CORR*MODEL on the SE of 1( )ˆ T

j  is plotted in Figure 12. It 

can be seen that, at each level of the true correlation between the initial ability and 

ability change ( ( )1T
 



= -0.3, 0 or 0.3), the LTA-longitudinal-MCDM produces the 

lowest mean SE of 1( )ˆ T

j  among the three data-fitting models, followed by the 

Longitudinal MCDM. However, the magnitude of differences in the SE of 1( )ˆ T

j  

among the three models varies across the levels of the true correlation between the 

initial ability and ability change ( ( )1T
 



). 

Table 18 

Significant Effects in the Mixed-Effect ANOVA Results of the SE of the Initial Ability 

Estimates (J=800) 

Source 
SE of 1( )ˆ T

j  

 F Statistics  p-value Partial 2  

Within-Subject Effects  

(with Greenhouse-Geisser Adjustment) 
     

MODEL  4625.72  <0.001 0.325 

CORR*MODEL  115.45  <0.001 0.024 

Note. CORR=Correlation between the initial ability and ability change ( ( )1T
 



); MODEL=Data-

fitting model type. 
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Figure 12. Significant two-way interaction of CORR*MODEL on the SE of the initial 

ability parameter estimates, 1( )ˆ T

j , in the conditions of large sample size (J=800). 

[Note. MODEL=Data-fitting model type; CORR=Correlation between the initial 

ability and ability change ( ( )1T
 



). ]  

The three-way ANOVAs were performed to investigate the effects of the 

manipulated factors on the initial ability parameter recovery from the proposed 

model. As shown in Table 19, only significant effects with small effect sizes are 

found of the correlation between the initial ability and ability change (CORR) and the 

transition probability from Strategy A to Strategy B (TR_Prob) on the SE of 1( )ˆ T

j  of 

the proposed model. An inspection of the marginal means found that, when the 

sample size is small, the mean SE of 1( )ˆ T

j  is higher in the lower strategy transition 

probability conditions ( |B AM Mp =0.3). No significant effect is found of the manipulated 

factors on the RMSE of 1( )ˆ T

j  of the proposed model. 
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Table 19 

Significant Effects in the Three-Way ANOVA Results of the Recovery of the Initial 

Ability Parameter from the LTA-longitudinal-MCDM 

J Source 
 SE of 1( )ˆ T

j  

 p-value Partial 2  

100 CORR  <0.001 0.013 

 TR_Prob  <0.001 0.014 

800 CORR  <0.001 0.016 

 

Effect Size 
Small 

(0.01≤partial 
2 <0.06) 

Medium 

(0.06≤partial 
2 <0.14) 

Large 

(partial 
2 ≥0.14) 

Note. J=Sample size; CORR=Correlation between the initial ability and ability change ( ( )1T
 



); 

TR_Prob=Transition probability from Strategy A to Strategy B ( |B AM Mp ). 

 

4.2.2.2 Ability change estimates 

Overall, as shown by the columns under “Ability Change Parameter” in Table 

16, the data-fitting model interacted with one of the manipulated factors, the latent 

transition probability from Strategy A to Strategy B (TR_Prob), to affect the bias and 

RMSE of ˆ
j  in both the small sample size (J=100) and large sample size (J=800) 

conditions. However, under conditions of different sample sizes, the data-fitting 

model interacted with different sets of manipulated factors to affect the SE of ˆ
j .  

In particular, when the sample size is small (J=100), significant 

TR_Prob*MODEL interactions are found on both the bias (F=12.30, p<0.001, partial 

2 =0.010) and RMSE (F=77.13, p<0.001, partial 2 =0.061) of ˆ
j , according to 

Table 20. In addition, MODEL is found to have medium main effects on both the bias 

(F=85.51, p<0.001, partial 2 =0.067) and RMSE (F=126.37, p<0.001, partial 2

=0.096) of ˆ
j . CORR has small main effects on both bias (F=10.73, p<0.001, 

partial 2 =0.018) and RMSE (F=11.24, p<0.001, partial 2 =0.019) of ˆ
j . Figure 
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13 displays the patterns of the significant two-way interactions of TR_Prob and 

MODEL on the bias and RMSE of ˆ
j . The Longitudinal LLM that ignores both 

between-person multiple strategies and within-person strategy shift yield the highest 

absolute mean bias and RMSE of ˆ
j  at each level of the strategy transition 

probability (i.e., either | 0.3
B AM Mp =  or | 0.7

B AM Mp = ). Nevertheless, the model 

discrepancies in terms of the mean bias and RMSE of ˆ
j  appear to be larger in the 

higher strategy transition probability conditions ( | 0.7
B AM Mp = ). 

Table 20 

Significant Effects in the Mixed-Effect ANOVA Results of the Bias and RMSE of the 

Ability Change Estimates (J=100) 

Source 

Bias of ˆ
j   RMSE of ˆ

j  

F 
p-

value 

Partial 
2  

 F 
p-

value 

Partial 
2  

Within-Subject Effects  

(with Greenhouse-

Geisser Adjustment) 

       

MODEL 85.51 <0.001 0.067  126.37 <0.001 0.096 

TR_Prob*MODEL 12.30 <0.001 0.010  77.13 <0.001 0.061 

Between-Subject Effects        

CORR 10.73 <0.001 0.018  11.24 <0.001 0.019 

Note. CORR=Correlation between the initial ability and ability change ( ( )1T
 



); 

TR_Prob=Transition probability from Strategy A to Strategy B ( |B AM Mp ); MODEL=Data-fitting 

model type. 
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Figure 13. Significant two-way interactions of TR_Prob*MODEL on the bias and 

RMSE of the ability change parameter estimates, ˆ
j , in the conditions of small 

sample size (J=100). [Note. TR_Prob=Transition probability from Strategy A to 

Strategy B ( |B AM Mp ); MODEL=Data-fitting model type.] 

 

As for the random errors of ˆ
j  in the small sample size conditions (J=100), 

a significant three-way interaction is found among CORR, TR_Prob and MODEL on 

the SE of ˆ
j  (F=36.48, p<0.001, partial 2 =0.058) as shown in Table 21. The 

lower-order interactions and main effects of these three factors (i.e., CORR, TR_Prob 

and MODEL) on the SE of ˆ
j  are also significant according to Table 21. The 

patterns of the highest-order significant interaction, i.e., the three-way interaction of 

CORR*TR_Prob*MODEL on the SE of ˆ
j , are displayed in Figure 14. The 

Longitudinal LLM tends to produce higher mean SE of ˆ
j  than the other two 

models except in the conditions with a positive correlation between the initial ability 

and ability change and a low strategy transition probability (i.e., ( )1
0.3T

 



=  and 

| 0.3
B AM Mp = ). 
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Table 21 

Significant Effects in the Mixed-Effect ANOVA Results of the SE of the Ability Change 

Estimates (J=100) 

Source 
SE of ˆ

j  

 F Statistics  p-value Partial 2  

Within-Subject Effects  

(with Greenhouse-Geisser Adjustment) 
     

MODEL  1386.62  <0.001 0.325 

CORR*MODEL  342.75  <0.001 0.366 

TR_Prob*MODEL  347.21  <0.001 0.226 

CORR*TR_Prob*MODEL  36.48  <0.001 0.058 

Between-Subject Effects      

CORR  99.48  <0.001 0.143 

TR_Prob  32.13  <0.001 0.026 

CORR*TR_Prob  19.29  <0.001 0.031 
Note. CORR=Correlation between the initial ability and ability change ( ( )1T

 



); 

TR_Prob=Transition probability from Strategy A to Strategy B ( |B AM Mp ); MODEL=Data-fitting 

model type. 

 

 

Figure 14. Significant three-way interactions of CORR*TR_Prob*MODEL on the SE 

of the ability change parameter estimates, ˆ
j , in the conditions of small sample size 

(J=100). [Note: MODEL=Data-fitting model type; TR_Prob=Transition probability 

from Strategy A to Strategy B ( |B AM Mp ); CORR=Correlation between the initial 

ability and ability change ( ( )1T
 



).] 
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In the large sample size conditions (J=800), significant two-way interactions 

are found of TR_Prob and MODEL on the bias (F=119.73, p<0.001, partial 2

=0.012), SE (F=3355.56, p<0.001, partial 2 =0.259) and RMSE (F=403.31, 

p<0.001, partial 2 =0.040) of ̂ , according to Tables 22 and 23. Moreover, 

MODEL has a small main effect on RMSE (F=539.48, p<0.001, partial 2 =0.053), a 

medium main effect on bias (F=796.46, p<0.001, partial 2 =0.077) and a large main 

effect on SE (F=11254.17, p<0.001, partial 2 =0.540) of ̂ . Figure 15 plots the 

significant two-way interactions of TR_Prob*MODEL on the bias, SE and RMSE of 

ˆ
j . The upper left panel of Figure 15 shows that the mean biases of ˆ

j  produced 

by the LTA-longitudinal-MCDM are close to 0 regardless of the strategy transition 

probability (i.e., either | 0.3
B AM Mp =  or | 0.7

B AM Mp = ), while those produced by the 

Longitudinal LLM and Longitudinal MCDM are negative, the magnitudes of which 

increase as the strategy transition probability increases. Such results imply that j  

tends to be underestimated by the models that ignore multiple-strategy scenarios. The 

upper right panel of Figure 15 indicates that the Longitudinal LLM produces higher 

mean SEs of ˆ
j  than the other two models do at both levels of strategy transition 

probability (i.e., either | 0.3
B AM Mp =  or | 0.7

B AM Mp = ), implying that ignoring within-

person strategy shift may result in an increase in the random errors of ˆ
j . 

Nevertheless, the magnitude of the difference in the mean SE of ˆ
j  between the 

Longitudinal LLM and the other two models appears to be larger in the higher 
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strategy transition probability conditions ( | 0.7
B AM Mp = ). The lower left panel of 

Figure 15 shows that the Longitudinal LLM yields higher mean RMSE of ˆ
j  than 

the other two models in the high strategy transition probability conditions (

| 0.7
B AM Mp = ), while the three models yield similar mean RMSEs of ˆ

j  in the low 

strategy transition conditions ( | 0.3
B AM Mp = ). 

Table 22 

Significant Effects in the Mixed-Effect ANOVA Results of the Bias and RMSE of the 

Ability Change Estimates (J=800) 

Source 

Bias of ˆ
j   RMSE of ˆ

j  

F 
p-

value 

Partial 
2  

 F 
p-

value 

Partial 
2  

Within-Subject Effects  

(with Greenhouse-

Geisser Adjustment) 

       

MODEL 796.46 <0.001 0.077  539.48 <0.001 0.053 

TR_Prob*MODEL 119.72 <0.001 0.012  403.31 <0.001 0.040 

Note. TR_Prob=Transition probability from Strategy A to Strategy B ( |B AM Mp ); MODEL=Data-

fitting model type. 

 

 

Table 23 

Significant Effects in the Mixed-Effect ANOVA Results of the SE of the Ability Change 

Estimates (J=800) 

Source 
SE of ˆ

j  

 F Statistics  p-value Partial 2  

Within-Subject Effects  

(with Greenhouse-Geisser Adjustment) 
     

MODEL  11254.17  <0.001 0.540 

TR_Prob*MODEL  3355.56  <0.001 0.259 

Between-Subject Effects      

CORR  99.36  <0.001 0.020 

TR_Prob  1066.11  <0.001 0.100 
Note. CORR=Correlation between the initial ability and ability change ( ( )1T

 



); 

TR_Prob=Transition probability from Strategy A to Strategy B ( |B AM Mp ); MODEL=Data-fitting 

model type. 

 

 



127 

 

 

Figure 15. Significant two-way interactions of TR_Prob*MODEL on the bias, SE and 

RMSE of the ability change parameter estimates, ˆ
j , in the conditions of large 

sample size (J=800). [Note: MODEL=Data-fitting model type; TR_Prob=Transition 

probability from Strategy A to Strategy B ( |B AM Mp ).] 

 

Similar to the findings about the initial ability parameter recovery of the 

proposed model, the three-way ANOVA results on the ability change parameter 

indicate that the correlation between the initial ability and ability change (CORR) and 

transition probability from Strategy A to Strategy B (TR_Prob) have significant 

effects on the SE of ˆ
j  from the LTA-longitudinal-MCDM (See Table 24). An 

inspection in the marginal mean SEs indicated that, when the sample size is small, the 
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mean SE of ˆ
j  is higher in the lower strategy transition probability conditions (

|B AM Mp =0.3). Additionally, in the small sample size conditions, the correlation 

between the initial ability and ability change (CORR) has significant effects on the 

bias and RMSE of ˆ
j  from the proposed model.  

Table 24 

Significant Effects in the Three-Way ANOVA Results of the Recovery of the Ability 

Change Parameter from the LTA-longitudinal-MCDM 

J Source 

Bias of ˆ
j   SE of ˆ

j   RMSE of ˆ
j  

 
p-

value 

Partial 
2  

  
p-

value 

Partial 
2  

  
p-

value 

Partial 
2  

100 CORR  <0.001 0.019   <0.001 0.025   <0.001 0.017 

 TR_Prob      <0.001 0.028     

800 CORR      <0.001 0.021     

 

Effect Size 
Small 

(0.01≤partial 
2 <0.06) 

Medium 

(0.06≤partial 
2 <0.14) 

Large 

(partial 
2 ≥0.14) 

Note. J=Sample size; CORR=Correlation between the initial ability and ability change ( ( )1T
 



); 

TR_Prob=Transition probability from Strategy A to Strategy B ( |B AM Mp ). 

 

4.2.2.3 The mean estimate of the ability change 

To examine how the under-specification of the multiple-strategy scenarios in 

the model affect the recovery of the mean ability change parameter, 
, under 

various simulated conditions, the mean bias, SE and RMSE of ˆ


 are plotted against 

each level of the manipulated factors for each data-fitting model, as shown in Figures 

16, 17 and 18. The impact of ignoring the multiple-strategy scenarios on the recovery 

of 
 can be inferred by comparing the recovery outcome measures of 

 across 

different data-fitting model types which are manifested as different line patterns in 

Figures 16, 17 and 18. Overall, the systematic errors of the ˆ
  quantified by bias are 



129 

 

sensitive to the data-fitting model type, compared to its random errors quantified by 

SE that are relatively invariant across different models. To be specific, Figure 16 

indicate that, the marginal mean biases of ˆ


 from the LTA-longitudinal-MCDM 

are closer to 0 than those from the other two models, when averaged by sample size 

(J), initial mixing proportions of the strategies (
1

(1)

m ) or the transition probability from 

Strategy A to Strategy B ( |B AM Mp ). Further, all the marginal mean biases of ˆ


 

estimated from the Longitudinal LLM and Longitudinal MCDM are negative, 

implying that, on average, 
 tends to be underestimated by the models that ignore 

the multiple-strategy scenarios in the simulated conditions. However, the pattern of 

the marginal biases of ˆ


 estimated from the LTA-longitudinal-MCDM is less 

consistent when averaged by different levels of correlation between the initial ability 

and ability change: On average, when the initial ability and ability change are 

positively correlated ( ( )1
0.3T

 



= ), 

 tends to be underestimated by the LTA-

longitudinal-MCDM; when the correlation between the initial ability and ability 

change is negative ( ( )1
0.3T

 



= − ) or zero ( ( )1

0T
 



= ), 

 tends to be 

overestimated by the LTA-longitudinal-MCDM. In contrast, the mean SEs of ˆ


, 

averaged by any one of the four manipulated factors, are similar across the three data-

fitting models according to Figure 17. The mean RMSEs of ˆ


 displayed in Figure 

18 reflect the magnitudes of systematic and random errors, as a whole, of ˆ


. The 

marginal mean RMSEs of ˆ


 estimated from the LTA-longitudinal-MCDM are the 

smallest among the three data-fitting models, which are followed by those from the 
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Longitudinal MCDM, at all the levels of the manipulated factors except at the small 

sample size level (J=100). 

Figure 16. Marginal mean bias of the mean ability change parameter estimates, ˆ


, 

at each level of the manipulated factors. 
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Figure 17. Marginal mean SE of the mean ability change parameter estimates, ˆ


, at 

each level of the manipulated factors. 
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Figure 18. Marginal mean RMSE of the mean ability change parameter estimates, 

ˆ


, at each level of the manipulated factors. 

 

To examine how the manipulated factors affect the recovery of 
 from the 

proposed model, the LTA-longitudinal-MCDM, the trends of the solid lines in 

Figures 16, 17 and 18 are further inspected. While the absolute value of the mean bias 

of ˆ


from the proposed model does not appear to differ significantly between 

different levels of sample size (See Figure 16), the mean SE and RMSE of ˆ


 of the 

proposed model are notably higher in the smaller sample size conditions (See Figures 

17 and 18). 
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4.2.2.4 The variance estimate of the ability change 

As for the variance estimate of the ability change, 2ˆ


, both its systematic 

errors quantified by bias and the random errors quantified by SE are sensitive to the 

data-fitting model type. In particular, Figures 19 and 20 show that the absolute values 

of all the marginal mean biases and SEs of 2ˆ


 estimated from the Longitudinal 

LLM that ignores between-person multiple strategies are greater than those estimated 

from the models that consider between-person multiple strategies (i.e., the LTA-

longitudinal-MCDM and Longitudinal MCDM). This observation implies that both 

the average systematic errors and random errors of 2ˆ


 increase when between-

person multiple strategies are ignored in the model. Further, on average, 2


 tends to 

be overestimated when between-person multiple strategies are ignored, as indicated 

by the positive marginal mean bias yielded by the Longitudinal LLM shown in Figure 

19. Nevertheless, the mean biases and SEs of 2ˆ


 from the LTA-longitudinal-

MCDM are similar to those from the Longitudinal MCDM, suggesting that the 

average systematic errors and random errors of 2ˆ


 are fairly robust to the neglect of 

the within-person strategy shift in the simulated conditions. A possible reason for 

such robustness of 2ˆ


 could be that, in the simulated conditions, the extent of Q-

matrix misspecification resulted from ignoring the within-person strategy shift is not 

large enough to significantly affect the bias or SE of 2ˆ


. However, future study is 

needed to verify this hypothesis, as little study has been done currently to investigate 

the effects of Q-matrix misspecification on the recovery of the variance parameter of 

the higher-order latent trait in a higher-order CDM. In terms of the mean RMSEs of 
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2ˆ


, those of the LTA-longitudinal-MCDM are the smallest among the three data-

fitting models at all the levels of all the manipulated factors, according to Figure 21.  

 

Figure 19. Marginal mean bias of the variance estimates of the ability change, 2ˆ


, at 

each level of the manipulated factors. 
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Figure 20. Marginal mean SE of the variance estimates of the ability change, 2ˆ


, at 

each level of the manipulated factors. 
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Figure 21. Marginal mean RMSE of the variance estimates of the ability change, 2ˆ


, 

at each level of the manipulated factors. 

 

The trends of the solid lines in Figures 19, 20 and 21 indicate that, compared 

to the other manipulated factors, the sample size and the correlation between the 

initial ability and ability change have more significant effects on the bias, SE and 

RMSE of 2ˆ


 from the LTA-longitudinal-MCDM. In particular, the absolute value of 

the mean bias, SE and RMSE of 2ˆ


 from the LTA-longitudinal-MCDM is lower in 

the conditions with a larger sample size and a positive true correlation between the 

initial ability and ability change. 
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4.2.2.5 The covariance estimate between the initial ability and ability change 

On average, the covariance between and ability and ability change, ( )1T
 




, 

tends to be overestimated by all the three data-fitting models, according to the 

positive mean biases of ( )1
ˆ T
 




 shown in Figure 22. The marginal SEs of ( )1
ˆ T
 




 are 

similar across the three data-fitting models at all the levels of the manipulated factors 

(see Figure 23), while the marginal RMSEs of ( )1
ˆ T
 




 are relatively less consistent 

across the data-fitting models (See Figure 24). Obtaining an unbiased estimate of the 

covariance between the initial ability and ability change has been found to be 

challenging by previous longitudinal studies (e.g., Embretson, 1991), and results from 

this study indicate that the estimation of ( )1T
 




 in the proposed model is not an 

exception. Therefore, cautions should be taken when drawing any diagnostic 

inferences from ( )1
ˆ T
 




. However, no evidence has been found in this study showing 

that the inaccurate ( )1
ˆ T
 




 hinders the accuracy the other person parameter estimates. 
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Figure 22. Marginal mean bias of the covariance estimates between the initial ability 

and ability change, ( )1
ˆ T
 




, at each level of the manipulated factors. 
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Figure 23. Marginal mean SE of the covariance estimate between the initial ability 

and ability change, ( )1
ˆ T
 




, at each level of the manipulated factors. 
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Figure 24. Marginal mean RMSE of the covariance estimate between the initial 

ability and ability change, ( )1
ˆ T
 




, at each level of the manipulated factors. 

 

4.2.3 Strategy choice 

Like the skill implementation ability parameters, the strategy choice 

parameters are also categorized into the first-level and second-level parameters. The 

first-level parameters include the strategy choice membership classifications (m) at 

each timepoint, while the second-level parameters include the initial mixing 

proportions of the strategies ( 1( )T

m ) and the strategy latent transition probability 
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parameter (
1

( 1)

|t t

t

m m −

− ). Given that the strategy parameters are not present in the 

Longitudinal LLM, the recovery of the strategy choice parameters (except the latent 

transition probability parameter that is unique to the LTA-longitudinal-MCDM) are 

only compared across the LTA-longitudinal-MCDM and the Longitudinal MCDM. 

Hence, the results would shed light on the effects of ignoring within-person strategy 

shift on the strategy choice parameter estimates. Since the strategy latent transition 

probability parameter (
1

( 1)

|t t

t

m m −

− ) is unique to the LTA-longitudinal-MCDM, the 

recovery of this parameter is only reported for the LTA-longitudinal-MCDM. 

4.2.3.1 Strategy choice membership classifications 

The recovery of the first-level strategy choice parameters is quantified by the 

correct classification rate of the strategy choice at each time point as well as the 

correct classification rate of the strategy choice trajectory. According to Figures 25 

and 26, the marginal mean correct classification rates of the strategy choice at each 

time point as well as the the strategy choice trajectory are higher for the LTA-

longitudinal-MCDM than those for the Longitudinal MCDM except at the low level 

of strategy transition probability ( | 0.3
B AM Mp = ). The average-across-replication 

strategy choice (trajectory) classification accuracies under all the simulated 

conditions are listed in Tables 25 and 26 where the higher accuracy among the two 

models is bolded under each condition. The LTA-longitudinal-MCDM is higher in 

strategy choice trajectory classification accuracy than the Longitudinal-MCDM by a 

maximum of 0.407, except in certain conditions with balanced initial mixing 

proportions of the strategies and a low strategy transition probability (i.e., 

(1) (1):
A BM M  = 0.6:0.4 and | 0.3

B AM Mp = ), In the conditions with balanced initial mixing 
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proportions of the strategies and a low transition probability from strategy A to 

strategy B (i.e., 
(1) (1):

A BM M  = 0.6:0.4 and | 0.3
B AM Mp = ), the Longitudinal-MCDM is 

slightly higher than the LTA-longitudinal-MCDM in the strategy choice trajectory 

classification accuracy, by a maximum of 0.061.  

Moreover, Tables 25 and 26 present the proportion of replications, among the 

30 total replications, where the strategy choice (trajectory) classification accuracies 

are higher for the LTA-longitudinal-MCDM than the Longitudinal MCDM, which is 

an additional piece of information of the comparative performance of the LTA-

longitudinal-MCDM and the Longitudinal MCDM in terms of the strategy choice 

classification. When the true latent transition probability from Strategy A to Strategy 

B is high ( | 0.7
B AM Mp = ), the LTA-longitudinal-MCDM has higher classification 

accuracies of the strategy choice (trajectory) than the Longitudinal MCDM in 97% to 

100% of the replications. When the true latent transition probability from Strategy A 

to Strategy B is low ( | 0.3
B AM Mp = ), the relative performance of the LTA-

longitudinal-MCDM to the Longitudinal MCDM on the strategy choice (trajectory) 

classification accuracy is diminished. The diminishment is particularly severe at the 

second time point under the conditions with balanced initial mixing proportions of 

strategies (
(1) (1):

A BM M  = 0.6:0.4) and a small sample size (J=100). 

To examine the effects of the manipulated factors on the strategy choice 

(trajectory) classification accuracy of the proposed model, trends of the solid lines in 

Figures 25 and 26 are inspected. The differential slopes of the solid lines across 

timepoints in Figure 25 imply that the effects of the manipulated factors on the 

strategy choice classification accuracy tend to be inconsistent across timepoints. For 
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instance, as shown in the lower-left panel of Figure 25, the marginal mean strategy 

choice classification accuracy is similar across the two levels of true latent transition 

probability from Strategy A to Strategy B at Timepoint 1, but the marginal mean 

strategy choice classification accuracy is higher in the conditions with higher strategy 

transition probability at Timepoint 2. 

Figure 25. Marginal mean strategy classification accuracy at each level of the 

manipulated factors. 
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Table 25 

Classification Accuracy of Strategy Choice at Each Timepoint 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 

Strategy Choice Classification 

Accuracy at Timepoint 1 

 Strategy Choice Classification 

Accuracy at Timepoint 2 

L-

MCDM 

LTA-L-

MCDM 

Prop. of Rep 

LTA>L 

 L-

MCDM 

LTA-L-

MCDM 

Prop. of Rep 

LTA>L 

100 0.6:0.4 0.3 -0.3 0.859 0.873 0.53  0.843 0.818 0.17 

   0 0.836 0.847 0.63  0.800 0.786 0.40 

   0.3 0.813 0.827 0.60  0.798 0.810 0.60 

  0.7 -0.3 0.711 0.875 1.00  0.793 0.874 0.97 

   0 0.721 0.848 1.00  0.728 0.843 1.00 

   0.3 0.670 0.827 1.00  0.757 0.874 0.97 

 0.8:0.2 0.3 -0.3 0.885 0.930 0.87  0.807 0.818 0.63 

   0 0.856 0.912 0.97  0.772 0.766 0.47 

   0.3 0.845 0.907 0.90  0.789 0.801 0.57 

  0.7 -0.3 0.717 0.928 1.00  0.671 0.862 1.00 

   0 0.738 0.911 1.00  0.606 0.830 1.00 

   0.3 0.702 0.905 1.00  0.642 0.857 1.00 

800 0.6:0.4 0.3 -0.3 0.828 0.857 1.00  0.841 0.832 0.33 

   0 0.830 0.852 0.97  0.821 0.825 0.67 

   0.3 0.830 0.854 0.93  0.816 0.814 0.37 

  0.7 -0.3 0.674 0.858 1.00  0.799 0.897 1.00 

   0 0.686 0.854 1.00  0.780 0.886 1.00 

   0.3 0.680 0.853 1.00  0.774 0.882 1.00 

 0.8:0.2 0.3 -0.3 0.844 0.908 1.00  0.808 0.837 1.00 

   0 0.846 0.903 1.00  0.791 0.828 1.00 

   0.3 0.858 0.904 1.00  0.784 0.820 0.97 

  0.7 -0.3 0.672 0.908 1.00  0.679 0.887 1.00 

   0 0.691 0.903 1.00  0.652 0.873 1.00 

   0.3 0.694 0.904 1.00  0.649 0.863 1.00 
Note. L-MCDM=Longitudinal MCDM; LTA-L-MCDM=LTA-longitudinal-MCDM. Prop. of Rep LTA>L=The proportion of 

replications (out of 30 replications) with strategy choice classification accuracy higher for the LTA-longitudinal-MCDM than the 

Longitudinal MCDM. The higher classification accuracy among the two models are bolded under each condition at each time point. 
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Figure 26. Marginal mean strategy trajectory classification accuracy at each level of 

the manipulated factors.  
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Table 26 

Classification Accuracy of Strategy Choice Trajectory 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 

Strategy Choice Trajectory Classification 

Accuracy 

L-

MCDM 

LTA-L-

MCDM 

Prop. of Rep 

LTA>L 

100 0.6:0.4 0.3 -0.3 0.761 0.716 0.10 

   0 0.728 0.667 0.07 

   0.3 0.715 0.674 0.17 

  0.7 -0.3 0.542 0.764 1.00 

   0 0.514 0.719 1.00 

   0.3 0.504 0.730 1.00 

 0.8:0.2 0.3 -0.3 0.726 0.761 0.83 

   0 0.694 0.703 0.53 

   0.3 0.697 0.73 0.80 

  0.7 -0.3 0.414 0.797 1.00 

   0 0.392 0.754 1.00 

   0.3 0.392 0.771 1.00 

800 0.6:0.4 0.3 -0.3 0.744 0.715 0.03 

   0 0.735 0.703 0.00 

   0.3 0.733 0.693 0.00 

  0.7 -0.3 0.527 0.768 1.00 

   0 0.523 0.753 1.00 

   0.3 0.517 0.747 1.00 

 0.8:0.2 0.3 -0.3 0.706 0.775 1.00 

   0 0.698 0.764 1.00 

   0.3 0.701 0.754 1.00 

  0.7 -0.3 0.396 0.803 1.00 

   0 0.392 0.784 1.00 

   0.3 0.391 0.774 1.00 

Note. L-MCDM=Longitudinal MCDM; LTA-L-MCDM=LTA-longitudinal-MCDM. 

Prop. of Rep LTA>L=The proportion of replications (out of 30 replications) with 

strategy choice classification accuracy higher for the LTA-longitudinal-MCDM than 

the Longitudinal MCDM. The higher classification accuracy among the two models 

are bolded under each condition.  

 

4.2.3.2 Initial strategy mixing proportion estimates 

To investigate the impact of ignoring the multiple-strategy scenarios on the 

estimates of the initial mixing proportion parameter, 1( )T

m , under various simulated 

conditions, the marginal mean bias, SE and RMSE of the initial mixing proportion 
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estimates of Strategy A, 1( )ˆ
A

T

M , are plotted against each level of each manipulated 

factor for the LTA-longitudinal-MCDM and Longitudinal MCDM, as shown in 

Figures 27, 28 and 29. Given that the mixing proportion estimate of Strategy B, 1( )ˆ
B

T

M , 

can be directly calculated from that of Strategy A as the two mixing proportions sum 

up to 1 and, thus, the recoveries are similar between the two initial mixing proportion 

parameters, the outcome measures of 1( )ˆ
B

T

M  are not plotted to avoid redundancy. The 

impact of ignoring the multiple-strategy scenarios on the recovery of 1( )T

m  can be 

examined by comparing the recovery outcome measures across different data-fitting 

model types manifested as different line patterns in Figures 27, 28 and 29. In general, 

the absolute values of the marginal mean biases of 1( )ˆ
A

T

M  from the LTA-longitudinal-

MCDM are lower than those from the Longitudinal MCDM (See Figure 27), while 

the marginal mean SEs of 1( )ˆ
A

T

M  are similar across the two models (See Figure 28). 

Such patterns imply that, on average, the systematic errors of 1( )ˆ
A

T

M  are sensitive to the 

neglect of the within-person strategy shift in the model, but the random errors of 1( )ˆ
A

T

M  

are relatively insensitive. As for the RMSE that quantifies the magnitudes of 

systematic and random errors of 1( )ˆ
A

T

M  as a whole, the marginal mean RMSEs from 

the LTA-longitudinal-MCDM are smaller than those from the Longitudinal-MCDM 

at all the levels of all the manipulated factors (See Figure 29). 

To examine how the recovery of 1( )T

m  from the LTA-longitudinal-MCDM is 

affected by the manipulated factors, the trends of the solid lines in Figures 27, 28 and 

29 are inspected. The absolute values of the mean bias, SE and RMSE 1( )ˆ
A

T

M  are lower 
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in the large sample size conditions (J=800) than in the small sample size conditions 

(J=100). Nevertheless, the recovery outcome measures of 1( )T

m  do not appear to differ 

significantly across the levels of the other manipulated factors. 

Figure 27. Marginal mean bias of the initial mixing proportion estimates of Strategy 

A, 1( )ˆ
A

T

M , at each level of the manipulated factors. 
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Figure 28. Marginal mean SE of the initial mixing proportion estimates of Strategy A, 
1( )ˆ
A

T

M , at each level of the manipulated factors. 
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Figure 29. Marginal mean RMSE of the initial mixing proportion estimates of 

Strategy A, 1( )ˆ
A

T

M , at each level of the manipulated factors. 

 

4.2.3.3 Strategy choice latent transition probability estimates 

Given that the simulees are assumed to choose either Strategy A or Strategy B 

at each time point and that the transition probability from Strategy B to Strategy A 

has been constrained at zero, only one strategy choice latent transition probability 

parameter (i.e., the transition probability from Strategy A to Strategy B, |B AM M ) is 

freely estimated. Figures 30, 31 and 32 display the biases, SEs and RMSEs of 1( )

|
ˆ

B A

T

M M  

from the LTA-longitudinal-MCDM in all the 24 simulated conditions. Each bar in 
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Figures 30, 31 and 32 represents the outcome measure of 1( )

|
ˆ

B A

T

M M  in one condition, and 

comparing the bars from different perspectives can reveal the effects of each 

manipulated factor, controlling for the other three factors, on the recovery of 1( )

|B A

T

M M : 

First, one can observe the effects of sample size by comparing the adjacent bars of 

different colors. For instance, according to Figures 31 and 32, the SEs and RMSEs of 

1( )

|
ˆ

B A

T

M M  are lower in the large sample size conditions (J=800) than in the small sample 

size conditions (J=100), controlling for the other manipulated factors. Nevertheless, 

according to Figure 30, the effects of sample size on the bias of 1( )

|
ˆ

B A

T

M M  are 

inconsistent across different levels of the other three manipulated factors. Second, 

comparing bars in the left panels to the bars at the corresponding position in the right 

panels allows one to see the effects of the initial mixing proportions of the strategies (

(1) (1):
A BM M  ). For example, according to Figure 31, when the true transition probability 

from Strategy A to Strategy B is high ( | 0.7
B AM Mp = ), the SEs of 1( )

|
ˆ

B A

T

M M  are lower in 

the conditions with more imbalanced initial mixing proportions of the strategies (

(1) (1): 0.8 : 0.2
A BM M  = ), controlling for the other factors. Third, comparing bars in the 

upper panels to the bars at the corresponding position in the lower panels allows one 

to observe the effects of the true transition probability from Strategy A to Strategy B (

|B AM Mp ). Last, comparing the bars of the same color across the x-axis within a panel 

enables one view the effects the true correlation between the initial ability and ability 

change ( ( )1T
 



). No consistent effect of the initial mixing proportions of the 

strategies (
(1) (1):

A BM M  ), true transition probability from Strategy A to Strategy B (
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|B AM Mp ) or the correlation between the initial ability and ability change ( ( )1T
 



) on 

the bias, SE or RMSE of 1( )

|
ˆ

B A

T

M M  is observed across different levels of the other 

manipulated factors. 

 

Figure 30. Bias of the latent transition probability estimate from Strategy A to 

Strategy B, 1( )

|
ˆ

B A

T

M M , based on the LTA-longitudinal-MCDM at each simulated 

condition. 
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Figure 31. SE of the latent transition probability estimate from Strategy A to Strategy 

B, 1( )

|
ˆ

B A

T

M M , based on the LTA-longitudinal-MCDM at each simulated condition. 
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Figure 32. RMSE of the latent transition probability estimate from Strategy A to 

Strategy B, 1( )

|
ˆ

B A

T

M M , based on the LTA-longitudinal-MCDM at each simulated 

condition. 

 

4.3 Recovery of the Item Parameters 

Item parameters refer to the parameters that delineate the characteristics of 

items and, thus, are item-specific. The item parameters considered in this study 

include the item intercept parameters ( ,0i ) and the attribute main effect parameters (

,1,( )i k ), as shown in Table 12. These item parameters are estimated in all the three 

data-fitting models. Thus, in order to examine the effects of ignoring the multiple-
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strategy scenarios on the item parameter recovery, the recovery outcome measures of 

the item parameters were compared across the three models with the mixed-effect 

ANOVAs. As elaborated in Section 3.3.5, in the mixed-effect ANOVAs, each item 

parameter was treated as a subject, the bias/SE/RMSE of the parameter was treated as 

the measurement (i.e., dependent variable) taken on each subject, the data-fitting 

model type was treated as the repeated-measure factor (i.e., within-subject factor) and 

the four manipulated factors were treated as the between-subject factors.  

Table 27 summarizes the highest-order significant effects of the data-fitting 

model type and the manipulated factors on the item parameter estimates found in the 

mixed-effect ANOVAs. Elaborations and visualizations of these effects are provided 

in the following sections. Note that the number of attribute main effect parameters 

varies across the data-fitting models, i.e., the longitudinal LLM only has 22 attribute 

main effect parameters whereas the Longitudinal MCDM and LTA-longitudinal-

MCDM have 35 that subsume the 22 in the Longitudinal LLM. The mixed-effect 

ANOVAs were only performed on the recovery outcome measures of the 22 attribute 

main effect parameters that are shared by the three data-fitting models; for the 

remaining 13 attribute main effect parameters that are only contained by the 

Longitudinal MCDM and LTA-longitudinal-MCDM, only marginal mean plots are 

inspected to examine the effects of the data-fitting model and manipulated factors on 

the parameter recovery, due to the insufficient group size for ANOVAs. 

While the results from the mixed-effect ANOVAs inform the impact of 

ignoring the multiple-strategy scenarios on the item parameter recovery of the 

longitudinal CDMs, the four-way ANOVAs were also performed on the recovery 
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outcome measures of the item parameters to investigate the effects of the manipulated 

factors on the item parameter recovery of the proposed model (i.e., the LTA-

longitudinal-MCDM). The four-way ANOVA results regarding the item intercept and 

attribute main effect parameters are presented at the end of Sections 4.3.1 and 4.3.2, 

respectively. 

Table 27 

Summary of Effect Sizes of the Highest-Order Significant Effects from the Mixed-

Effect ANOVA on the Item Parameter Recovery 

 Item Intercept 

Parameter ( ,0i ) 

  Attribute Main Effect 

Parameter1 ( ,1,( )i k ) 

Effect Bias SE RMSE   Bias SE RMSE 

MODEL 0.262 0.021 0.257   0.272   

SIZE 0.083 0.863 0.288   0.038   

MIXING  0.015       

TR_Prob 0.100     0.019   

SIZE*MODEL       0.032  

MIXING*MODEL        0.011 

 

Effect Size 
Small 

(0.01≤partial 
2 <0.06) 

Medium 

(0.06≤partial 
2 <0.14) 

Large 

(partial 2 ≥0.14) 

Note. 1Only the recovery of the attribute main effect parameters that are shared by all the three 

models were compared with ANOVA. 

SIZE=Sample size (J); MIXING=Initial mixing proportions of Strategy A and Strategy B (
(1) (1):

A BM M  ); TR_Prob=Transition probability from Strategy A to Strategy B ( |B AM Mp ); 

MODEL=Data-fitting model type. The values in the cells are partial 
2 . The table does not 

include simple effects. 
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4.3.1 Item intercept 

As shown in the columns under “Item Intercept Parameter” in Table 27, the 

data-fitting model type (MODEL) as well as three manipulated factors, including 

sample size (SIZE), initial mixing proportions of the strategies (MIXING) and latent 

transition probability of strategy (TR_Prob), have significant main effects on one or 

more recovery outcome measures of ,0i . To be more specific, the data-fitting model 

type (MODEL) and sample size (SIZE) have significant main effects on the 

systematic errors of ,0
ˆ
i  that are quantified by bias, random errors of ,0

ˆ
i  that are 

quantified by SE, and the systematic and random errors of ,0
ˆ
i  as a whole that are 

quantified by RMSE. In particular, the effects of MODEL on the bias (F=162.06, 

p<0.001, partial 2 =0.262) and RMSE (F=157.33, p<0.001, partial 2 =0.257) of 

,0
ˆ
i  are of large effect sizes, according to Table 28. Figures 33 and 34 show that the 

LTA-longitudinal-MCDM has the lowest marginal mean bias and RMSE of ,0
ˆ
i  

among the three competing models, while the Longitudinal LLM that ignores both 

between-person multiple strategies and within-person strategy shift has the highest 

mean bias and RMSE of ,0
ˆ
i . In addition, SIZE is found to have large main effects 

on the SE (F=2862.75, p<0.001, partial 2 =0.863) and RMSE (F=184.26, p<0.001, 

partial 2 =0.288) of ,0
ˆ
i , according to Tables 28 and 29. As shown in Figures 34 

and 35, the marginal mean SE and RMSE of ,0
ˆ
i  are lower in the large sample size 

conditions (J=800) than those in the small sample size conditions (J=100).  
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Moreover, as seen in Tables 28 and 29, TR_Prob and MIXING have small or 

medium significant main effects on the bias and SE of ,0
ˆ
i , respectively. To visualize 

these significant main effects, the marginal means of the bias, SE and RMSE of ,0
ˆ
i  

by the levels of each factor are plotted in Figures 33, 34 and 35. 

Table 28 

Significant Effects in the Mixed-Effect ANOVA Results of the Bias and RMSE of the 

Item Intercept Estimates  

Source 

Bias of ,0
ˆ
i   RMSE of ,0

ˆ
i  

F 
p-

value 

Partial 
2  

 F 
p-

value 

Partial 
2  

Within-Subject 

Effects  

(with Greenhouse-

Geisser Adjustment) 

       

MODEL 162.06 <0.001 0.262  157.33 <0.001 0.257 

Between-Subject 

Effects 
       

SIZE 41.15 <0.001 0.083  184.26 <0.001 0.288 

TR_Prob 4.58 0.033 0.010     

Note. TR_Prob=Transition probability from Strategy A to Strategy B ( |B AM Mp ); SIZE=Sample 

size (J); MODEL=Data-fitting model type 

 

 

Table 29 

Significant Effects in the Mixed-Effect ANOVA Results of the SE of the Item Intercept 

Estimates 

Source 
SE of ,0

ˆ
i  

 F Statistics  p-value Partial 2  

Within-Subject Effects  

(with Greenhouse-Geisser Adjustment) 
     

MODEL  9.81  0.001 0.021 

Between-Subject Effects      

SIZE  2862.75  <0.001 0.863 

MIXING  7.10  0.008 0.015 

Note. MIXING=Initial mixing proportions of Strategy A and Strategy B (
(1) (1):

A BM M  ); 

SIZE=Sample size (J); MODEL=Data-fitting model type. 
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Figure 33. Significant main effects of MODEL, SIZE and TR_Prob on the bias of the 

item intercept parameter estimates, ,0
ˆ
i . [Note. MODEL=Data-fitting model type; 

SIZE=Sample size (J); TR_Prob=Transition probability from Strategy A to Strategy 

B ( |B AM Mp ).] 

 

 

Figure 34. Significant main effects of MODEL and SIZE on the RMSE of the item 

intercept parameter estimates, ,0
ˆ
i . [Note. MODEL=Data-fitting model type; 

SIZE=Sample size (J).] 
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Figure 35. Significant main effects of MODEL, SIZE and MIXING on the SE of the 

item intercept parameter estimates, ,0
ˆ
i . [Note. MODEL=Data-fitting model type; 

SIZE=Sample size (J); MIXING=Initial mixing proportions of Strategy A and 

Strategy B (
(1) (1):

A BM M  ).]  

 

While the mixed-effect ANOVA results above indicated some of the 

manipulated factors have significant main effects on one or more recovery outcome 

measures of the item intercept parameters, four-way ANOVAs were conducted to 

further examine the effects of the manipulated factors on the item intercept parameter 

recovery of the proposed model. According to the results shown in Table 30, sample 

size (SIZE) has large effects on the bias (F=406.06, p<0.001, partial 2 =0.471), SE 

(F=1680.52, p<0.001, partial 2 =0.787) and RMSE (F=2196.89, p<0.001, partial 2

=0.828) of ,0
ˆ
i  from the proposed model. An inspection in the marginal means 

indicated that the absolute values of the mean bias, SE and RMSE of ,0
ˆ
i  from the 

proposed model are lower in the large sample size (J=800) conditions than those in 

the small sample size (J=100) conditions. 
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Table 30 

Significant Effects in the Four-Way ANOVA Results of the Recovery of the Item 

Intercept Parameter from the LTA-longitudinal-MCDM 

Source 

Bias of ,0
ˆ
i   SE of ,0

ˆ
i   RMSE of ,0

ˆ
i  

 
p-

value 

Partial 
2  

  
p-

value 

Partial 
2  

  
p-

value 

Partial 
2  

SIZE  <0.001 0.471   <0.001 0.787   <0.001 0.828 

CORR  0.019 0.017         

 

Effect Size 
Small 

(0.01≤partial 
2 <0.06) 

Medium 

(0.06≤partial 
2 <0.14) 

Large 

(partial 
2 ≥0.14) 

Note. CORR=Correlation between the initial ability and ability change ( ( )1T
 



); SIZE=Sample 

size (J); MODEL=Data-fitting model type 

 

4.3.2 Attribute main effect 

4.3.2.1 Attribute main effect parameters shared by the three models 

As mentioned at the beginning of Section 4.3, the effects of the data-fitting 

model type and the manipulated factors on the recovery of the 22 attribute main effect 

parameters ( ,1,( )i k ) that are present in all the three data-fitting models were 

investigated with the mixed-effect ANOVAs. As indicated by the columns under 

“Attribute Main Effect Parameter” in Table 27, the data-fitting model type (MODEL) 

as well as sample size (SIZE) and initial mixing proportions of the strategies 

(MIXING) have significant main effects on the bias of ,1,( )
ˆ
i k . SIZE and MODEL 

interact to affect the SE of ,1,( )
ˆ
i k ; MIXING and MODEL interact to affect the RMSE 

of ,1,( )
ˆ
i k . These significant effects are elaborated in the following paragraphs. 

According to Table 31, MODEL has a significant main effect with a large 

effect size on the systematic errors of the attribute main effect estimates, ,1,( )
ˆ
i k , that 
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are quantified by bias (F=188.25, p<0.001, partial 2 =0.272). A visualization of the 

MODEL main effect in Figure 36 indicates that the LTA-longitudinal-MCDM has the 

lowest marginal mean bias of ,1,( )
ˆ
i k  among the three models, while the Longitudinal 

LLM has the highest mean bias of ,1,( )
ˆ
i k . Additionally, SIZE (F=19.74, p<0.001, 

partial 2 =0.038) and TR_Prob (F=9.89, p=0.002, partial 2 =0.019) are found to 

have significant main effects with small effect sizes on the bias of ,1,( )
ˆ
i k . 

As for the random errors, a significant two-way interaction of SIZE*MODEL 

(F=16.71, p<0.05, partial 2 =0.032) with a small effect size is found on the SE of 

,1,( )
ˆ
i k , as shown in Table 32. As visualized in Figure 37, the Longitudinal LLM has 

the lowest marginal mean SEs of ,1,( )
ˆ
i k  among the three models in the either the large 

or small sample size (i.e., either J=800 or J=100) conditions. Moreover, a significant 

two-way interaction of MIXING*MODEL (F=5.66, p=0.016, partial 2 =0.011) with 

a small effect size is found on the RMSE of ,1,( )
ˆ
i k . According to Figure 38, the LTA-

longitudinal-MCDM has the lowest marginal mean RMSEs of ,1,( )
ˆ
i k  among the three 

models in the conditions with either balanced or imbalanced initial mixing 

proportions of the strategies (i.e., either 
(1) (1): 0.6 : 0.4

A BM M  =  or 
(1) (1): 0.8 : 0.2

A BM M  = ).  
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Table 31 

Significant Effects in the Mixed-Effect ANOVA Results of the Bias of the Attribute 

Main Effect Estimates 

Source 
Bias of ,1,( )

ˆ
i k  

 F Statistics  p-value Partial 2  

Within-Subject Effects  

(with Greenhouse-Geisser Adjustment) 
     

MODEL  188.25  <0.001 0.272 

Between-Subject Effects      

SIZE  19.74  <0.001 0.038 

TR_Prob  9.89  0.002 0.019 

Note. TR_Prob=Transition probability from Strategy A to Strategy B ( |B AM Mp ); SIZE=Sample 

size (J); MODEL=Data-fitting model type. Only the recovery of the 22 attribute main effect 

parameters that are shared by all the three data-fitting models were compared with mixed-effect 

ANOVA. 

 

 

Table 32 

Significant Effects in the Mixed-Effect ANOVA Results of the SE and RMSE of the 

Attribute Main Effect Estimates  

Source 

SE of ,1,( )
ˆ
i k   RMSE of ,1,( )

ˆ
i k  

F 
p-

value 

Partial 
2  

 F 
p-

value 

Partial 
2  

Within-Subject 

Effects  

(with Greenhouse-

Geisser Adjustment) 

       

MODEL 111.04 <0.001 0.181  202.27 <0.001 0.286 

SIZE*MODEL 16.71 <0.001 0.032     

MIXING*MODEL     5.66 0.016 0.011 

Between-Subject 

Effects 
       

SIZE 5270.63 <0.001 0.913  155.40 <0.001 0.236 

TR_Prob     11.67 0.001 0.023 

Note. MIXING=Initial mixing proportions of Strategy A and Strategy B (
(1) (1):

A BM M  ); 

TR_Prob=Transition probability from Strategy A to Strategy B ( |B AM Mp ); SIZE=Sample size (J); 

MODEL=Data-fitting model type. Only the recovery of the 22 attribute main effect parameters 

that are shared by all the three data-fitting models were compared with mixed-effect ANOVA. 
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Figure 36. Significant main effects of MODEL, SIZE and TR_Prob on the bias of the 

attribute main effect parameter estimates, ,1,( )
ˆ
i k , based on the 22 attribute main effect 

parameters that are shared by the Longitudinal LLM, Longitudinal MCDM and LTA-

longitudinal-MCDM. [Note. MODEL=Data-fitting model type; SIZE=Sample size 

(J); TR_Prob=Transition probability from Strategy A to Strategy B ( |B AM Mp ).] 

 

Figure 37. Significant two-way interaction of SIZE*MODEL on the SE of the 

attribute main effect parameter estimates, ,1,( )
ˆ
i k , based on the 22 attribute main effect 

parameters that are shared by the Longitudinal LLM, Longitudinal MCDM and LTA-

longitudinal-MCDM. [Note. MODEL=Data-fitting model type; SIZE=Sample size 

(J).] 
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Figure 38. Significant two-way interaction of MIXING*MODEL on the RMSE of the 

attribute main effect parameter estimates, ,1,( )
ˆ
i k , based on the 22 attribute main effect 

parameters that are shared by the Longitudinal LLM, Longitudinal MCDM and LTA-

longitudinal-MCDM. [Note. MODEL=Data-fitting model type; MIXING=Initial 

mixing proportions of Strategy A and Strategy B (
(1) (1):

A BM M  ).] 

 

4.3.2.2 Attribute main effect parameters only contained by the Longitudinal MCDM 

and LTA-longitudinal-MCDM 

For the 13 attribute main effect parameters ( ,1,( )i k ) that are only contained by 

the Longitudinal MCDM and LTA-longitudinal-MCDM, the marginal mean bias, SE 

and RMSE of ,1,( )
ˆ
i k  by the levels of each manipulated factor are plotted separately 

for the LTA-longitudinal-MCDM and Longitudinal MCDM (See Figures 39, 40 and 

41), in order to investigate the effects of the neglect of the within-person strategy shift 

as well as the manipulated factors on the recovery of ,1,( )i k . In general, the LTA-

longitudinal-MCDM yields lower marginal mean biases and RMSEs of ,1,( )
ˆ
i k  than 

the Longitudinal MCDM does, but the two models produce similar marginal mean 
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SEs of ,1,( )
ˆ
i k . Such results imply that, compared to the random errors of ,1,( )

ˆ
i k , the 

systematic errors of ,1,( )
ˆ
i k  may be more sensitive to the neglect of the within-person 

strategy shift in the model specification. 

 

Figure 39. Marginal mean bias of the attribute main effect estimates, ,1,( )
ˆ
i k , at each 

level of the manipulated factors, based on the 13 attribute main effect parameters that 

are only contained by the Longitudinal MCDM and LTA-longitudinal-MCDM.  
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Figure 40. Marginal mean SE of the attribute main effect estimates, ,1,( )
ˆ
i k , at each 

level of the manipulated factors, based on the 13 attribute main effect parameters that 

are only contained by the Longitudinal MCDM and LTA-longitudinal-MCDM. 
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Figure 41. Marginal mean RMSE of the attribute main effect estimates, ,1,( )
ˆ
i k , at each 

level of the manipulated factors, based on the 13 attribute main effect parameters that 

are only contained by the Longitudinal MCDM and LTA-longitudinal-MCDM. 

 

4.3.2.3 The effects of the manipulated factors on the attribute main effect parameter 

recovery of the proposed model 

To examine the effects of the manipulated factors on the attribute main effect 

parameter recovery of the proposed model, four-way ANOVAs were performed on 

the recovery outcome measures of the 35 attribute main effect parameters of the 

LTA-longitudinal-MCDM. As shown in Table 33, sample size (SIZE) has large 

effects on the bias (F=602.99, p<0.001, partial 2 =0.425), SE (F=3055.88, p<0.001, 
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partial 2 =0.789) and RMSE (F=3246.65, p<0.001, partial 2 =0.799) of ,1,( )
ˆ
i k  from 

the proposed model. An inspection of the marginal means indicated that the smaller 

sample size conditions are associated with higher mean SE and RMSE of ,1,( )
ˆ
i k . 

While a significant interaction between SIZE and CORR is found on the bias of 

,1,( )
ˆ
i k , the small sample size conditions (J=100) tend to have higher mean bias of 

,1,( )
ˆ
i k  than the large sample size conditions (J=800) at all the levels of correlation 

between the initial ability and ability change, despite the different magnitudes of 

differences.   

Table 33 

Significant Effects in the Four-Way ANOVA Results of the Recovery of the Attribute 

Main Effect Parameter from the LTA-longitudinal-MCDM 

Source 

Bias of ,1,( )
ˆ
i k   SE of ,1,( )

ˆ
i k   RMSE of ,1,( )

ˆ
i k  

 
p-

value 

Partial 
2  

  
p-

value 

Partial 
2  

  
p-

value 

Partial 
2  

SIZE  <0.001 0.425   <0.001 0.789   <0.001 0.799 

CORR  <0.001 0.023         

MIXING      <0.001 0.016   <0.001 0.016 

TR_Prob      0.003 0.011   0.001 0.014 

SIZE*CORR  0.001 0.017         

 

Effect Size 
Small 

(0.01≤partial 
2 <0.06) 

Medium 

(0.06≤partial 
2 <0.14) 

Large 

(partial 
2 ≥0.14) 

Note. CORR=Correlation between the initial ability and ability change ( ( )1T
 



); MIXING=Initial 

mixing proportions of Strategy A and Strategy B (
(1) (1):

A BM M  ); TR_Prob=Transition probability 

from Strategy A to Strategy B ( |B AM Mp ); SIZE=Sample size (J); MODEL=Data-fitting model 

type. 
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4.4 Recovery of the Higher-Order Structural Parameters 

The higher-order structural parameters, including the attribute easiness 

parameters ( k ) and the attribute discrimination parameters ( k ), characterize the 

relationship between the continuous skill implementation abilities ( j ) and the 

discrete attribute mastery statuses ( j ) in the higher-order structure. In each model, 

each higher-order structural parameter corresponds to a specific attribute. Recall that 

the four attributes were simulated to have different levels of attribute easiness (i.e., 

true values of k  were set at 1, 0.5, -0.5 and -1, for k = 1, 2, 3, 4), the implication of 

which is that the four attributes could be different in nature, thus the recoveries of k  

and k  are summarized separately for each attribute. 

4.4.1 Attribute easiness 

In general, the effects of model specification on the marginal mean biases and 

RMSEs of ˆ
k  are inconsistent across different attributes and different levels of the 

manipulated factors, according to Figures 42 and 44. Specifically, for Attributes 1 and 

3, the absolute values of the marginal mean biases and RMSEs of ˆ
k  (k=1, 3) 

estimated from the Longitudinal LLM are greater than those estimated from the LTA-

longitudinal-MCDM or Longitudinal MCDM. For Attribute 4, the marginal mean 

biases and RMSEs of ˆ
k  (k=4) yielded by the three models are close to each other. 

However, when it comes to attribute 2, the Longitudinal LLM the has the lowest 

marginal biases and RMSEs of ˆ
k  (k=2) among the three models. For each attribute, 



171 

 

the magnitudes of discrepancies in the mean biases or RMSEs of ˆ
k  among the 

models vary across different levels of the manipulated factors. 

In contrast to the inconsistent patterns observed for the biases and RMSEs of 

ˆ
k , the discrepancies in the marginal mean SEs of k  among the models are 

relatively consistent and small, as seen in Figure 43. At all the levels of all the four 

manipulated factors, the Longitudinal LLM yields higher marginal mean SEs of ˆ
k  

(k=3) than the other two models do for Attribute 3, while, for the other three 

attributes, the discrepancies in the marginal mean SEs of ˆ
k  (k=1,2,4) among the 

models are unobvious. 
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Figure 42. Marginal mean bias of the attribute easiness parameter estimates, ˆ
k , at 

each level of the manipulated factors. A1-A4 represent Attribute 1-Attribute 4. The 

values in the parentheses are the true values of the attribute easiness parameters 

corresponding to different attributes. The easiness of an attribute being mastered 

increases as the attribute easiness parameter increases.  
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Figure 43. Marginal mean SE of the attribute easiness parameter estimates, ˆ
k , at 

each level of the manipulated factors. A1-A4 represent Attribute 1-Attribute 4. The 

values in the parentheses are the true values of the attribute easiness parameters 

corresponding to different attributes. The easiness of an attribute being mastered 

increases as the attribute easiness parameter increases. 
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Figure 44. Marginal mean RMSE of the attribute easiness parameter estimates, ˆ
k , at 

each level of the manipulated factors. A1-A4 represent Attribute 1-Attribute 4. The 

values in the parentheses are the true values of the attribute easiness parameters 

corresponding to different attributes. The easiness of an attribute being mastered 

increases as the attribute easiness parameter increases. 

 

4.4.2 Attribute discrimination 

The patterns of the recovery of the attribute discrimination parameter ( k ) 

displayed in Figures 45, 46 and 47, are similar to those of the recovery of the attribute 

easiness parameters ( k ) presented above. As shown in Figures 45 and 47, for 

Attributes 1 and 3, the Longitudinal LLM has greater absolute values of marginal 
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mean biases and RMSEs for ˆ
k  (k=1, 3) than the LTA-longitudinal-MCDM or 

Longitudinal MCDM does; for Attribute 4, the marginal mean biases and RMSEs of 

ˆ
k  (k=4) yielded by the three models are close to each other; for Attribute 2, the 

Longitudinal LLM the has the lowest marginal biases and RMSEs of ˆ
k  (k=2) among 

the three models. The three models are close in terms of the marginal mean SEs of ˆ
k

, according to Figure 46. 

Figure 45. Marginal mean bias of the attribute discrimination parameter estimates, ˆ
k

, at each level of the manipulated factors. A1-A4 represent Attribute 1-Attribute 4.  
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Figure 46. Marginal mean SE of the attribute discrimination parameter estimates, ˆ
k , 

at each level of the manipulated factors. A1-A4 represent Attribute 1-Attribute 4. 
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Figure 47. Marginal mean RMSE of the attribute discrimination parameter estimates, 

ˆ
k , at each level of the manipulated factors. A1-A4 represent Attribute 1-Attribute 4. 

 

4.5 Summary of the Simulation Study Results 

This section briefly recaps the key results presented in this chapter. The 

findings from the simulation study in response to each research question are 

summarized and discussed more extensively in Section 6.1.  

The performance of the relative model fit indices in the presence of between-

person multiple strategies and within-person strategy shift was examined by 

investigating the number of replications where each model fit index correctly 
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identified the LTA-longitudinal-MCDM as the best-fitting model (Table 13) and the 

number of replications where the evidence ratio of the LTA-longitudinal-MCDM as 

the best-fitting model to the alternative models being larger than 55 (Table 14). It was 

found that both AIC and BIC were able to correctly identify the LTA-longitudinal-

MCDM as the best-fitting model in all the simulated conditions and nearly all the 

replications. The performance of DIC was more sensitive to the true initial mixing 

proportions of strategies and the strategy latent transition probability, i.e., the 

Longitudinal MCDM which ignores the within-person strategy shift tended to have 

lower DIC than the LTA-longitudinal-MCDM when the initial mixing proportions of 

strategies was balanced and the latent transition probability from Strategy A to 

Strategy B was low. However, the evidence ratio results indicated that the 

discrepancies in DIC between the Longitudinal MCDM as the best-fitting model and 

the proposed model as the second-best-fitting model were not significantly large. 

The impact of ignoring the between-person multiple strategies and within-

person strategy shift in the model on the parameter recovery of the longitudinal 

CDMs was examined by inspecting the marginal mean plots of the parameter 

recovery outcome measures of each model parameter against the data-fitting model 

types and the levels of the manipulated factors (See Figure 10 as an example). The 

effects of data-fitting model type on the parameter recovery shed light on the impact 

of ignoring the multiple-strategy scenarios on the parameter recovery of the 

longitudinal CDMs. Results from Figures 9 and 10 indicated that the attribute 

(profile) classification accuracy is reduced when between-person multiple strategies 

and/or within-person strategy shift is ignored in the model. For parameters with 
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sufficient sample size (i.e., the number of parameters of the same type being greater 

than 20), the mixed-effect ANOVAs were conducted to examine the statistical and 

practical significance of the effects of data-fitting model type on the parameter 

recovery. The results of the mixed-effect ANOVAs indicated that the data-fitting 

model type interacted with the correlation between the initial ability and ability 

change (CORR) and the true transition probability from Strategy A to Strategy B 

(TR_Prob) to affect the recovery of the first-level skill implementation ability 

parameters (See Table 16); and the data-fitting model type interacted with the sample 

size (SIZE) and initial mixing proportions of the strategies (MIXING) to affect the 

recovery of the item parameters (See Table 27).  

The effects of the manipulated factors on the parameter recovery of the 

proposed model was examined by inspecting the marginal mean plots of the 

parameter recovery outcome measures of each model parameter of the proposed 

model against the levels of the manipulated factors (See the solid lines in Figure 10 as 

an example).The three-way or four-way ANOVAs were performed to investigate the 

significance of the manipulated factor effects on the recovery of the first-level skill 

implementation ability parameters and the item parameters of the proposed model. 

The ANOVA results indicated that both the correlation between the initial ability and 

ability change (CORR) and the transition probability from Strategy A to Strategy B 

(TR_Prob) have significant effects on at least one recovery outcome measure of the 

skill implementation ability parameters of the proposed model (See Tables 19 and 

24); all the four manipulated factors have significant effects on at least one recovery 
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outcome measure of the item parameters of the proposed model (See Tables 30 and 

33).  
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Chapter 5: Empirical Data Analysis Results 

As an empirical data demonstration, the proposed model was applied to a 

dataset from a study (Bottge et al., 2015) that was designed to assess the effectiveness 

of the Enhanced Anchored Instruction (EAI; Bottge, 2001) and compare the effects of 

EAI to those of the business as usual (BAU) on students’ problem-solving 

performance. The effectiveness study had a repeated-measure pretest-posttest design. 

Both the pretest and posttest consisted of 21 items measuring four attributes, 

including 1) ratios and proportional relationships (RPR), 2) measurement and data 

(MD), 3) number system – fractions (NSF) and 4) geometry – graphing (GG). Two 

empirical Q-matrices (see Table 7) that were learned from a data-driven 

nonparametric Q-matrix refinement method (Chiu, 2013) were used as inputs to the 

proposed model. Strategies corresponding to the two empirical Q-matrices were 

labeled as the empirical complex strategy (“the complex strategy”) and the empirical 

simple strategy (“the simple strategy”), as items tended to load on more attributes in 

the former than the latter. The detailed dataset information and data analysis 

procedure can be found in Section 3.4.  

This chapter presents the results of the empirical data analysis and consists of 

two sections. Section 5.1 documents the model fit indices of the data-fitting models 

and serves to justify the use of the empirical Q-matrices and the LTA-longitudinal 

MCDM to draw diagnostic inferences. Section 5.2 demonstrates the diagnostic 

information on the strategy choice, skill implementation ability and attribute mastery 

status drawn from the LTA-longitudinal-MCDM parameter estimates, which aims at 

addressing the two research questions, i.e.,  
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1) How do students’ strategy choice, overall skill implementation ability and 

attribute mastery status change from the pretest to the posttest?  

2) Do EAI and BAU differ in terms of their effects on students’ learning 

outcomes regarding the strategy choice, overall skill implementation 

ability and attribute mastery status? 

Results in this chapter are based on the testing dataset containing 749 

students, 367 and 382 of whom have been assigned to the EAI and BAU instructional 

conditions, respectively.  

5.1 Empirical Q-matrix Validation and Model Fit 

According to the single-time-point analysis results (shown in Table 34), the S-

MCDM-EE that utilizes the two empirical Q-matrices is identified by AIC, BIC and 

DIC as the best-fitting model (i.e., has the lowest relative model fit index) among the 

four competing single-time-point models in the posttest (See Table 8 for the detailed 

model specifications). Further, all the evidence ratios of the S-MCDM-EE to the other 

three single-time-point models derived from AIC, BIC and DIC are greater than 55 in 

the posttest, indicating that the discrepancies between the S-MCDM-EE and the other 

three single-time-point models, in terms of the relative model fit, are significant in the 

posttest. As for the pretest, the S-MCDM-EE has the lowest AIC and BIC among the 

four competing single-time-point models. All the evidence ratios of the S-MCDM-EE 

to the other three single-time-point models derived from AIC and BIC are greater 

than 55, except BIC evidence ratio of the S-MCDM-EE to the S-MCDM-TE. DIC 

favors the S-LLM-T that only utilizes the theoretical Q-matrix in the pretest.  
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Table 34 

Model Fit Indices of the Single-Time-Point Models 

Data Model 
Model fit index 

 AIC BIC DIC PPP 

Pretest 

S-LLM-T  14143.18 14374.11 16225.33 0.560 

S-LLM-E  14154.19 14440.55 16314.70 0.564 

S-MCDM-TE  13618.31 13918.53 16757.78 0.638 

S-MCDM-EE  13603.62 13917.69 16598.59 0.592 

Posttest 

S-LLM-T  13950.2 14181.14 15370.32 0.685 

S-LLM-E  13869.22 14118.63 15283.10 0.616 

S-MCDM-TE  13670.86 13924.90 16137.86 0.686 

S-MCDM-EE  13141.17 13455.24 15258.21 0.637 

Note. AIC=Akaike’s information criterion; BIC=Bayesian information criterion; 

DIC=deviance information criterion; PPP=posterior predictive p-value. The lowest 

AIC, BIC and DIC values among the competing models are bolded. 

 

As for the longitudinal analyses, the model fit indices are compared across the 

first four models listed in Table 35 (i.e., L-LLM-T, L-LLM-E-pre, L-LLM-E-post and 

L-MCDM-EE; see Table 9 for the detailed model specifications) to validate the 

empirical Q-matrices. The L-MCDM-EE that utilizes the two empirical Q-matrices is 

identified as the best-fitting model among the four competing longitudinal models by 

AIC and BIC. In addition, all the evidence ratios of the L-MCDM-EE to the other 

three models derived from AIC and BIC are greater than 55, supporting that the 

discrepancies in AIC and BIC between the L-MCDM-EE and the other three 

longitudinal models are significant. DIC favors the L-LLM-E-pre that only utilizes 

the empirical Q-matrix developed from the pretest. In sum, the model comparison 

results based on AIC and BIC support the use of the mixture of the two empirical Q-

matrices in both the single-time-point and longitudinal analyses. DIC suggests the 

theoretical Q-matrix in the pretest in the single-time-point analyses and the empirical 

Q-matrix developed from the pretest in the longitudinal analyses. The mixture of the 
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two empirical Q-matrices is used for the subsequent LTA-longitudinal-MCDM as it is 

supported by the majority of the model fit indices assessed in this study. 

Table 35 

Model Fit Indices of the Longitudinal Models 

Model 
 Model fit index 

 AIC BIC DIC  PPP 

L-LLM-T  28301.48 28546.27 32082.86  0.559 

L-LLM-E-pre  27869.05 28169.27 31438.33  0.582 

L-LLM-E-post  28141.25 28404.52 31638.08  0.498 

L-MCDM-EE  27259.21 27587.14 31728.62  0.549 

LTA-L-MCDM-EE  26841.77 27178.94 32080.38  0.543 

Note. AIC=Akaike’s information criterion; BIC=Bayesian information criterion; 

DIC=deviance information criterion; PPP=posterior predictive p-value. The lowest 

AIC, BIC and DIC values among the competing models are bolded. 

 

The LTA-longitudinal-MCDM is identified as the best-fitting model among 

the five longitudinal models by AIC and BIC, according to Table 35. The L-LLM-E-

pre is identified as the best-fitting model by DIC. However, it should be noted that the 

simulation study results in Section 4.1 indicated that DIC may not be able to identify 

the LTA-longitudinal-MCDM as the best-fitting model even when multiple strategies 

exist in certain simulated conditions. As for the absolute model fit, the PPP value of 

the LTA-longitudinal-MCDM is 0.543, meaning that proportion of the replicated data 

generated from the proposed model having a sum of squares of standardized residuals 

that are greater than that of the observed data is 0.543. Such PPP value is not 

extremely close to 0, supporting that the observed data are likely to be seen in the 

replicated data if the LTA-longitudinal-MCDM is the true model. Thus, the PPP 

result provides a piece of evidence that the LTA-longitudinal-MCDM fits the 

empirical dataset adequately.  
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5.2 Diagnostic Inferences 

This section demonstrates the diagnostic inferences drawn from the person 

parameter estimates of the LTA-longitudinal-MCDM. This study classifies the 

diagnostic information into three categories, i.e., strategy choice, skill implementation 

ability and attribute mastery. Therefore, the person parameters relevant to different 

categories are reported and interpreted separately. As an overview, the second-level 

person parameter estimates are listed Table 36. Since the item parameters and higher-

order structural parameters are not the focus of this empirical data demonstration, the 

estimates of these parameters are supplied in Appendix B. Furthermore, findings from 

the statistical tests that compare the effects of EAI and BAU on students’ learning 

outcomes in terms of strategy choice, skill implementation ability and attribute 

mastery are reported. 

Table 36 

Second-Level Person Parameter Estimates of the LTA-longitudinal MCDM 

Parameter Description 
Estimate 

(SE) 

Estimated 

parameters 

  Mean of the skill implementation 

ability change 

0.51 (0.08) 

2

  Variance of the skill implementation 

ability change 

1.25 (0.28) 

( )1T
 




 Covariance between the initial skill 

implementation ability and ability 

change 

0.01 (0.12) 

1

,

( )

E Complex

T

M  Initial mixing proportion of the 

empirical complex strategy 

0.43 (0.05) 

 

1

, ,

( )

|E simple E complex

T

M M  Latent transition probability from the 

complex strategy to the simple strategy 

0.37 (0.24) 

1

, ,

( )

|E complex E simple

T

M M  Latent transition probability from the 

simple strategy to the complex strategy 

0.63 (0.17) 

Derived 

parameters 

( )1T
 



 Correlation between the initial skill 

implementation ability and ability 

change 

0.01 
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( ) ( )1 2T T
 
  Correlation between the initial skill 

implementation ability and the ability 

at the second timepoint 

0.67 

 

5.2.1 Strategy choice 

The estimated strategy mixing proportions and latent transition probabilities 

are displayed in Table 37. The estimated initial strategy mixing proportions of the 

empirical complex and simple strategies ( 1( )ˆ T

m ) are 0.429 and 0.571, respectively, 

meaning that, at the pretest, the expected percentages of students being classified into 

the complex and simple strategy latent classes are 42.9% and 57.1%, respectively. 

The estimated latent transition probability from the simple strategy to the complex 

strategy ( 1

, ,

( )

|
ˆ

E simple E complex

T

M M ) is 0.631, meaning that, the probability of transitioning to the 

complex strategy at the posttest conditional on the membership in the simple strategy 

latent class at the pretest is 0.631. In other words, among the students who are in the 

simple strategy latent class at the pretest, 63.1% are expected to be classified into the 

complex strategy latent class at the posttest. The estimated latent transition 

probability from the complex strategy to the simple strategy ( 1

, ,

( )

|
ˆ

E simple E complex

T

M M ) is 0.371, 

denoting that, among the students who are in the complex strategy latent class at the 

pretest, 37.1% are expected to be classified into the simple strategy latent class at the 

posttest. The strategy mixing proportions at the second timepoint ( 2( )ˆ T

m ) are derived 

from the initial strategy mixing proportion and the latent transition probability 

estimates. The expected percentages of students being classified into the complex and 

simple strategy latent classes at the posttest are 63.2% and 36.8%, respectively. 
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Table 37 

Strategy Mixing Proportion and Latent Transition Probability Estimates 

Initial Strategy ( 1( )T
m  ) 

Initial strategy mixing 

proportions ( 1( )T

m ) 

Strategy latent transition 

probability ( 1
( ) ( )2 2

( )

|
T T

T

m m
 ) 

Complex 

( 2( )

,

T

E complexM ) 

Simple 

( 2( )

,

T

E simpleM ) 

Complex ( 1( )

,

T

E complexM ) 0.429 0.629 0.371 

Simple ( 1( )

,

T

E simpleM ) 0.571 0.631 0.369 

 

Strategy mixing 

proportions at the second 

timepoint ( 2( )T

m ) 

0.632 0.368 

 

Four possible strategy choice trajectories, resulting from the four 

combinations of strategies at the pretest and posttest, are considered in this study. The 

four strategy choice trajectories are labeled as “complex to complex”, “complex to 

simple”, “simple to complex” and “simple to simple”. Each individual in the testing 

sample was classified into one of the four strategy trajectories. The distributions of 

the strategy choice trajectory classifications are summarized in Figure 48. Students 

who were classified into the “simple to complex” trajectory have taken up 51% of the 

testing sample. Nevertheless, less than 1% of the students were classified into the 

“complex to simple” trajectory. To examine whether the distributions of strategy 

choice trajectories differ across the BAU and EAI groups, a chi-square test for 

association was conducted. No significant association was found between the 

instructional condition and the distribution of the strategy choice trajectories. 
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Figure 48. Distribution of the strategy choice trajectory classifications in the overall 

testing dataset and by instructional condition groups (EAI and BAU). EAI=Enhanced 

Anchored Instruction; BAU=Business as usual. 

 

 

5.2.2 Skill implementation ability change 

The estimated mean of the skill implementation ability change ( ˆ
 ) is 0.51, 

the 95% Bayesian credible interval of which is [0.36, 0.69]. As the 95% credible 

interval of ˆ
  does not contain 0, the mean skill implementation ability change over 

time is statistically significant. Further, the means of the individual ability change 

estimates ( ̂ ) were compared across the EAI and BAU groups with an 

independent-samples t-test. Having confirmed that there is no severe assumption 

violation of the independent-samples t-test, i.e., no outliers, approximately normally-

distributed residuals and the homogeneity of residual variances, a statistically 

significant difference was found between the EAI (M=0.63, SD=0.73) and the BAU 

(M=0.40, SD=0.73) groups in the mean ability change estimates (t=4.36, df=747, 
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p<0.001, Cohen’s d=0.32). The distributions of the ability change estimates in the 

two instruction groups are plotted in Figure 49. It can be inferred that the average 

skill implementation ability growth for students in the EAI group is larger than that in 

the BAU group. 

Figure 49. Distribution of the ability change parameter estimates in the EAI and BAU 

groups in the testing dataset. EAI=Enhanced Anchored Instruction; BAU=Business as 

usual. 

 

The estimated variance of the ability change ( 2ˆ


) is 1.25, which is larger 

than the variance of the initial ability ( ( )1

2
T


 ) that has been constrained at 1 for scale 

identification. The estimated covariance between the initial ability and ability change 

( ( )1
ˆ T
 




) is 0.01. Thus, the derived correlation between the initial ability and ability 

change approximates zero. The derived correlation between the abilities at the first 

and second timepoints is 0.67, which is a moderate correlation. However, cautions 

should be taken to draw inferences from the covariance estimate between the initial 



190 

 

ability and ability change, as the simulation study results in Section 4.2 suggested that 

( )1
ˆ T
 




 tends to be biased. 

5.2.3 Attribute mastery status 

Regarding each attribute, each individual has four possible mastery 

trajectories in the pretest-posttest scenario, i.e., non-mastery to non-mastery (0→0), 

non-mastery to mastery (0→1), mastery to non-mastery (1→0) and mastery to 

mastery (1→1). The distributions of the classified attribute mastery trajectories are 

summarized in Figure 50. The numbers labelled on the bars represent the proportions 

of students in the testing sample that are classified in particular attribute mastery 

trajectories. For instance, 30% of the students in the testing sample were classified as 

not mastering the ratios & proportional relationships (RPR) at the pretest but 

mastering the RPR at the posttest. Among the four attributes, RPR has the highest 

proportion of the “non-mastery to mastery” trajectory, followed by the geometry – 

graphing (GG); the measurement & data (MD) attribute has the lowest proportion of 

“non-mastery to mastery” trajectory. For each attribute, a small proportion (up to 

0.12) of students have a “mastery to non-mastery” trajectory. 
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Figure 50. Distribution of the attribute mastery trajectory classifications in the testing 

dataset. RPR=ratios and proportional relationships; MD=measurement and data; 

NSF=number system – fractions; GG=geometry – graphing. 

 

Figure 51 contrasts the proportions of the students with attribute non-mastery 

at the pretest being classified as attribute mastery at the posttest between the EAI and 

BAU groups. Note that the proportions in Figure 51 were calculated differently from 

those in Figure 50: the proportions in Figure 50 used the whole sample as the 

denominator, while the proportions in Figure 51 used those who were classified as 

attribute non-mastery at the pretest as the denominator. Specifically, the numbers 

labelled above each bar in Figure 51 clarify how the proportions were calculated, i.e., 

the number of students with attribute non-mastery at the pretest who were classified 

as attribute mastery at the posttest divided by the number of students who were 

classified as attribute non-mastery at the pretest. The associations between the 

proportions of students with attribute non-mastery-to-mastery transition and 

instructional condition (i.e., EAI or BAU) were examined with chi-square tests for 

association. As multiple chi-square tests were performed, one for each attribute, the 
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Dunn-Šidák correction (Šidák, 1967) was used to control the familywise error rate. 

With the Dunn-Šidák correction, the alpha level used for each chi-square test is 0.012, 

which corresponds to a familywise Type I error rate of 0.05. Statistically significant 

associations have been found between the instructional condition and the proportion 

of students with non-mastery-to-mastery transition on the ratios & proportional 

relationships (RPR; 2  =23.75, p<0.001, 0.21 = ) and geometry – graphing (GG; 

2  =6.69, p=0.010, 0.14 = ) attributes. It can be seen from Figure 51 that, 

compared to the BAU group, the EAI group has higher proportions of students with 

non-mastery-to-mastery transition on RPR and GG. 

Figure 51. Proportion of students transitioning from attribute non-mastery to mastery 

(conditional on the non-mastery at the pretest) in the EAI and BAU groups. The 

numbers above each bar represent the number of students with attribute non-mastery 

at the pretest who were classified as attribute mastery at the posttest/the number of 

students who were classified as attribute non-mastery at the pretest. RPR=ratios and 

proportional relationships; MD=measurement and data; NSF=number system – 

fractions; GG=geometry – graphing; EAI=Enhanced Anchored Instruction; 

BAU=Business as usual. *p smaller than the Dunn-Šidák-corrected alpha level, 

0.012.  
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Chapter 6: Discussion 

As an increasing number of instructional programs are designed to improve 

students’ problem solving (e.g., Bottge et al., 2003; Jitendra et al., 2002), there is an 

increasing need to evaluate the effectiveness of these programs from the perspective 

of students’ problem-solving strategy shift. To this end, this study proposed the LTA-

longitudinal-MCDM, which is a longitudinal CDM that can model both between-

person multiple strategies and within-person strategy shift overtime. Compared to 

diagnostic inferences provided by the traditional longitudinal CDMs, what the 

proposed model provides is more informative and more relevant to problem solving: 

traditional longitudinal CDMs could only inform the change in students’ attribute 

mastery status, while the proposed model can inform the change in students’ strategy 

choice, skill implementation ability in addition to their attribute mastery status. 

A simulation study was conducted to investigate the consequence of ignoring 

the multiple-strategy scenarios in the longitudinal CDMs and to examine the 

parameter recovery of the proposed model under various simulated conditions. Four 

factors were manipulated in the simulation study, including the sample size, the initial 

mixing proportions of strategies, the strategy latent transition probability and the 

correlation between the initial ability and ability change. The application of the 

proposed model to provide diagnostic inferences on students’ strategy choice as well 

as skill implementation ability and attribute mastery status was demonstrated with an 

empirical data analysis. Sections 6.1 and 6.2 are arranged by the five research 

questions posed at the end of Section 1.2, summarizing the key findings from the 
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simulation study and the empirical data analysis in response to each research 

question. Limitations, implications and future directions are discussed in Section 6.3. 

6.1 Findings from the Simulation Study 

The simulation study was intended to examine the following three aspects, 

each of which serves to address a research question: 1) the performance of AIC, BIC 

and DIC in correctly selecting the LTA-longitudinal-MCDM as the best-fitting model 

in the presence of between-person multiple strategies and within-person strategy shift; 

2) the impact of ignoring the multiple-strategy scenarios in the model on the 

parameter recovery of the longitudinal CDMs; and 3) the effect of the manipulated 

factors on the parameter recovery of the proposed model, i.e., the LTA-longitudinal-

MCDM. 

How do the relative model fit indices perform in the presence of between-

person multiple strategies and within-person strategy shift? The performance of 

three commonly used model fit indices, i.e., AIC, BIC and DIC, in correctly selecting 

the LTA-longitudinal-MCDM as the best-fitting model in the presence of between-

person multiple strategies and within-person strategy shift were evaluated. Both AIC 

and BIC were able to correctly identify the LTA-longitudinal-MCDM as the best-

fitting model in all the simulated conditions and nearly all (at least 29 out of 30) the 

replications, while the performance of DIC was more sensitive to the manipulated 

factors that affect the strategy trajectory distribution in the population (i.e., the true 

initial mixing proportions of strategies and the strategy latent transition probability). 

Specifically, the Longitudinal MCDM that ignores the within-person strategy shift 

had the lowest DIC among the three data-fitting models in most replications when the 
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initial mixing proportions of strategies were balanced and the latent transition 

probability from Strategy A to Strategy B was low. Nevertheless, the discrepancies in 

DIC between the Longitudinal MCDM as the best-fitting model and the LTA-

longitudinal-MCDM model as the second-best-fitting model were not significant 

according to the evidence ratio. 

While the reasons why the performance of DIC in identifying the true model 

is undermined in certain conditions still need further explorations, there are some 

controversies in applying DIC to the mixture models. For example, according to the 

seminal paper by Spiegelhalter et al. (2002), DIC was not originally designed for the 

mixture models even though the possibility of extending DIC to the mixture models 

was mentioned in the paper. DeIorio and Robert (2002) indicated the lack of 

consistent definitions of DIC in the settings of the mixture models. Celeux et al. 

(2006) have explored several variations of DIC for mixture models and found that 

their performances in identifying the correct number of latent classes varied. 

McGrory and Titterington (2007) derived DIC based on a variational Bayes approach 

and found that this variation of DIC performed satisfactorily in choosing the correct 

number of latent classes. Thus, future studies could investigate the performance of the 

variations of DIC that are designed for latent class models in correctly identifying the 

proposed model under the simulated conditions. 

What is the impact of ignoring between-person multiple strategies and/or 

within-person strategy shift on the parameter recovery of the longitudinal 

CDMs? Effects of ignoring between-person multiple strategies and within-person 

strategy shift on the model parameter recovery were examined by comparing the 
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parameter recovery outcome measures across different data-fitting models, including 

the LTA-longitudinal-MCDM that models both between-person multiple strategies 

and within-person strategy shift, the Longitudinal MCDM that ignores within-person 

strategy shift and the Longitudinal LLM that ignores both between-person multiple 

strategies and within-person strategy shift. On average, the LTA-longitudinal-MCDM 

had the highest classification accuracy of the attribute mastery profile, the lowest bias 

and RMSE of the item intercept parameter estimates and the lowest bias of the 

attribute main effect estimates among the three models. Such results implied that 

ignoring between-person multiple strategies and/or within-person strategy shift could 

lower the classification accuracy of the attribute mastery status profile and introduce 

errors to the item parameter estimates of the longitudinal CDMs. 

The data-fitting model type also interacted with some manipulated factors to 

affect the recovery of certain parameters of the longitudinal CDMs. Notably, under 

the large sample size (J=800) conditions, there is an interaction between the data-

fitting model type and the strategy latent transition probability ( |B AM Mp ) on the SE of 

the ability change parameter estimates ( ˆ
j ). Specifically, at both levels of the 

strategy transition probability (i.e., either | 0.3
B AM Mp =  or | 0.7

B AM Mp = ), the mean SEs 

of ˆ
j  from the Longitudinal LLM were higher than those from the Longitudinal 

MCDM or LTA-longitudinal-MCDM, implying that ignoring the within-person 

strategy shift may result in an increase in the random errors of ˆ
j . Further, the 

magnitude of the difference in the mean SE of ˆ
j  between the Longitudinal LLM 
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and the other two models were larger in the higher strategy transition probability 

conditions ( | 0.7
B AM Mp = ).  

Moreover, the data-fitting model type interacted with both initial mixing 

proportions of strategies (
(1) (1):

A BM M  ) and strategy latent transition probability (

|B AM Mp ) to affect the strategy (trajectory) classification accuracy. The LTA-

longitudinal-MCDM had a higher strategy choice trajectory classification accuracy 

than the Longitudinal MCDM, except under some conditions with balanced initial 

mixing proportions of the strategies and a low strategy transition probability (i.e., 

(1) (1):
A BM M  = 0.6:0.4 and | 0.3

B AM Mp = ) where the Longitudinal-MCDM was slightly 

higher in strategy choice trajectory classification accuracy than the LTA-longitudinal-

MCDM. One thing worth noticing is that the conditions under which the 

Longitudinal-MCDM slightly outperformed the LTA-longitudinal-MCDM in the 

strategy choice trajectory classification accuracy were almost the same as those under 

which DIC incorrectly identified the Longitudinal MCDM as the best-fitting model. 

Further explorations are needed to determine whether this is only a coincidence or 

there is some connection between the performance of DIC and the accuracy of 

strategy latent class classification. 

How is the recovery of the parameters in the proposed model affected by 

the manipulated factors? Overall, each of the four manipulated factors were found 

to have significant effects on the recovery of at least one parameter of the proposed 

model, and the different factors affected different aspects of the parameter recovery. 

The effects of sample size on the item parameter recovery were of large effect sizes, 
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while the other significant effects were of small effect sizes. Significant effects found 

of each manipulated factor are elaborated below. 

Sizes of 100 and 800 were considered as small and large sample sizes, 

respectively, in this study. One interested question is whether the parameter recovery 

of the proposed model would be problematic when the sample size is as small as 100. 

While a previous study by Cho et al. (2010) has supported that stable estimates can be 

obtained for the LTA-mixture Rasch model when the sample size was 100, it 

remained to be explored whether such a small sample size could yield stable 

estimates in the CDM counterpart. In general, results from this simulation study have 

shown that a small sample size (i.e., 100) is associated with a diminished recovery of 

the item parameters and some second-level person parameters in the proposed model. 

However, whether the parameter recoveries are deemed problematic may vary on a 

case-by-case basis, depending on the parameters of interest and the acceptable level 

of errors of the particular study. Specifically, the smaller sample size conditions were 

higher in the mean bias, SE and RMSE of the item intercept (
,0

ˆ
i ) and attribute main 

effect (
,1,( )

ˆ
i k ) estimates. Such findings are consistent with those from previous 

literature on longitudinal CDMs: Madison and Bradshaw (2018b), comparing sample 

sizes of 500 versus 2,000, found that the smaller sample size conditions had less 

accurate item parameter recovery as quantified by the median absolute deviation; 

Zhan, Jiao, Liao, et al. (2019), comparing sample sizes of 200 versus 500, found that 

the smaller sample size conditions were associated with higher mean bias and RMSE 

of the item parameters. As for the effects of sample size on the person parameters, the 

smaller sample size conditions tended to have higher mean SE and RMSE of the 
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mean estimates of ability change ( ˆ
 ) of the proposed model. While the proposed 

model has a different parameterization of ability from those longitudinal models 

proposed by Cho et al. (2010) and Zhan, Jiao, Liao, et al. (2019), i.e., the proposed 

model followed the Embretson-type parameterization (Embretson, 1991) while the 

other studies followed the Anderson-type parameterization (Andersen, 1985), 

findings about the effects of sample size on the recovery of mean ability parameter(s) 

are consistent across these studies. Furthermore, the small sample size conditions had 

higher SEs and RMSEs of the strategy latent transition probability estimates ( 1( )

|
ˆ

B A

T

M M ) 

than the large sample size conditions. While no study in the CDM framework has 

been done to investigate the recovery of strategy transition probability, a similar 

effect of sample size on the latent class transition probability was found in the IRT 

framework. In particular, Cho et al. (2010), comparing sample sizes of 100, 1,000 and 

3,000, found that the smaller sample size conditions tended to have higher RMSEs of 

the transition probability in the LTA-mixture Rasch model. 

The initial mixing proportions of strategies and strategy latent transition 

probability were manipulated to simulate populations that vary on the distribution of 

strategy choice trajectories. Two levels of initial mixing proportions of strategies, i.e., 

0.6:0.4 and 0.8:0.2, were chosen to mimic a balanced and an imbalanced initial 

population decomposition of strategy choice, respectively. Latent transition 

probabilities of 0.7 and 0.3 were selected to simulate a high and a low strategy 

transition probability, respectively. Both the initial mixing proportions of strategies 

and strategy latent transition probability were found to have small main effects on the 

SE and RMSE of the attribute main effect parameter estimates ( ,1,( )
ˆ
i k ) of the 
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proposed model. In particular, the SE and RMSE of ,1,( )
ˆ
i k  of the proposed model 

tended to be higher in the conditions with imbalanced initial mixing proportions of 

strategies than in those with balanced initial mixing proportions of strategies, and be 

higher in the low strategy transition probability conditions than in the high strategy 

transition probability conditions. Moreover, the strategy latent transition probability 

affected the recovery of the first-level person parameters of the proposed model under 

certain conditions: when the sample size was small, the mean SEs of 1( )ˆ T

j  and ˆ
j  are 

higher in the lower strategy transition probability conditions. 

In addition, this study has considered three levels of true correlation between 

the ability and ability change, i.e., negative ( ( )1T
 



=-0.3), none ( ( )1T

 



=0) and 

positive ( ( )1T
 



=0.3), which corresponded to medium-to-high true correlations 

between the abilities at the two timepoints, ranging from 0.59 to 0.81. The true 

correlation between the ability and ability change were found to have small effects on 

the biases of the item parameters, including the item intercept ( ,0
ˆ
i ) and attribute 

main effects (
,1,( )

ˆ
i k ). Furthermore, the correlation between the initial ability and 

ability change had small effects of the SE of 1( )ˆ T

j  and ˆ
j ; in the small sample size 

conditions, the correlation between the initial ability and ability change also had small 

effects of the bias and RMSE of ˆ
j . 

6.2 Findings from the Empirical Data Analysis 

To demonstrate that the LTA-longitudinal-MCDM is able to provide richer 

diagnostic information than the traditional longitudinal CDMs do, the LTA-
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longitudinal-CDM was applied to an empirical dataset from an effectiveness study 

(Bottge et al., 2015), which has a repeated-measure pretest-posttest design, of the 

Enhanced Anchored Instruction (EAI; Bottge, 2001). Taking two empirical Q-

matrices learned from a data-driven Q-matrix refinement method as input – one was 

labeled as the empirical complex strategy (“the complex strategy”) and the other was 

labeled as the empirical simple strategy (“the simple strategy”) – the LTA-

longitudinal-MCDM was used to address two research questions: 1) How do 

students’ strategy choice, overall skill implementation ability and attribute mastery 

status change from the pretest to the posttest? And 2) Do EAI and business as usual 

(BAU) instructional method differ in terms of their effects on students’ learning 

outcomes regarding the strategy choice, overall skill implementation ability and 

attribute mastery status? 

How do students’ strategy choice, overall skill implementation ability and 

attribute mastery status change from the pretest to the posttest? Inferences about 

students’ change in strategy choice were drawn from the estimated strategy mixing 

proportions at each timepoint and strategy latent transition probabilities. At the 

pretest, the expected percentages of students being classified into the complex and 

simple strategy latent classes were 42.9% and 57.1%, respectively; the corresponding 

percentages became 63.2% and 36.8% at the posttest. Further, according to the 

strategy latent transition probability estimates, 1

, ,

( )

|
ˆ 0.631

E simple E complex

T

M M =  and 

1

, ,

( )

|
ˆ 0.371

E simple E complex

T

M M = , among the students who were in the simple strategy latent 

class at the pretest, 63.1% were expected to be classified into the complex strategy 

latent class at the posttest; among the students who were in the complex strategy 
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latent class at the pretest, 37.1% were expected to be classified into the simple latent 

class at the posttest. In sum, the majority of students chose the simple strategy at the 

pretest while the majority of students chose the complex strategy at the posttest. The 

probability of transitioning from the simple strategy to the complex strategy was 

higher than the other way around. 

Inferences about the change in the overall skill implementation ability was 

drawn from the mean estimate of ability change ( ˆ
 ). A ˆ

  of 0.51 with a 95% 

Bayesian credible interval not containing 0 implied that the increase in the mean skill 

implementation ability from the pretest to the posttest was statistically significant. 

Inferences about the change in attribute mastery status was obtained by summarizing 

the distributions of the classified attribute mastery trajectories for each attribute. The 

proportions of students having a “non-mastery to mastery” trajectory vary across 

attributes. The proportions of students having a “non-mastery to mastery” trajectory 

on the four attributes (from high to low) are: 0.30 for ratios & proportional 

relationships (RPR), 0.25 for geometry – graphing (GG), 0.23 for number system – 

fractions (NSF), and 0.15 for measurement and data (MD). In addition, a small 

proportion (up to 0.12) of students were found to have a “mastery to non-mastery” 

trajectory for each attribute, which may imply the existence of the forgetting effect. 

Do EAI and BAU differ in terms of their effects of on students’ learning 

outcomes regarding the strategy choice, overall skill implementation ability and 

attribute mastery status? In this study, the learning outcome of strategy choice is 

operationally defined as the distribution of strategy choice trajectory; the learning 

outcome of overall skill implementation ability is operationally defined as the ability 
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change estimates of the individuals; the learning outcome of the attribute mastery 

status is operationally defined as the proportion of attribute non-mastery students at 

the pretest who are classified as attribute mastery at the posttest. Results has shown 

that the EAI outperformed the BAU in terms of its effect on students’ overall skill 

implementation ability and the mastery statuses of ratios & proportional relationships 

(RPR) and geometry – graphing (GG). Nevertheless, no significant difference 

between the EAI and BAU groups was observed on the learning outcomes regarding 

the mastery statuses of the measurement & data (MD) or number system – fractions 

(NSF) attribute, or in terms of the strategy choice. The results about attribute mastery 

status found in this study are consistent with those from studies that addressed a 

similar research question but with different methods (Bottge et al., 2014; Madison & 

Bradshaw, 2018a). Specifically, Bottge et al. (2014) and Madison and Bradshaw 

(2018a) found that, for RPR and GG attributes, the differences in the scores as well as 

the nonmastery-to-mastery transition probabilities between the EAI and BAU groups 

are statistically significant; no significant group difference was found for the MD or 

NSF attribute.  

6.3 Limitations and Future Directions 

As with any research study, this study has limitations, and there is room for 

future explorations. Nine aspects that worth further exploring are identified and 

elaborated below. 

Single-time-point alternatives for strategy shift classification. While this 

study proposed a longitudinal model to model strategy shift, there could be some 

more time-efficient single-time-point alternatives if the skill implementation ability 
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change is not of interest. For example, in the empirical data analysis, an alternative 

way to figure out the strategy shift over time is to fit the single-time-point MCDM to 

the pretest and posttest data, separately, and then compare the strategy mixing 

proportions and strategy choice classifications over time. As an initial exploration, 

this single-time-point method was applied to the empirical dataset and the analysis 

results were compared with those from the LTA-longitudinal-MCDM. In the single-

time-point analyses, the estimated mixing proportions of the complex and simple 

strategies are 0.40 and 0.60, respectively, at the pretest, and 0.64 and 0.36, 

respectively, at the posttest, the patterns of which were similar to those in the LTA-

longitudinal-MCDM. Further, the strategy trajectory and attribute mastery profile 

trajectory classifications yielded from the single-time-point method and the LTA-

longitudinal-MCDM were highly consistent (i.e., 88.8% of the students have the same 

strategy trajectory classifications using the two methods; 73.3% of the students have 

the same attribute mastery profile trajectory classifications using the two methods). 

Simulation studies could be conducted in the future to further explore the strategy 

classification accuracy as well as other aspects of the parameter recovery of the 

single-time-point methods for strategy shift classification. 

The accuracy of the empirical Q-matrices. The empirical Q-matrices may 

have limited accuracy due to the limitations of the empirical Q-matrix development 

method. This study only employed one of many existing empirical Q-matrix 

development methods, and this method as well as the other existing empirical Q-

matrix development methods assumed a correctly specified number of attributes and a 

single strategy. These assumptions remain unassessed and, if violated, the accuracy of 
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the resulting empirical Q-matrices could be diminished. Further, if the empirical Q-

matrices could not accurately reflect the mapping relations between items and 

attributes, the accuracy of the diagnostic information drawn from the LTA-

longitudinal-MCDM would be threatened, given that the Q-matrix misspecification 

could lead to a decrease in the attribute mastery classification accuracy (e.g., Rupp & 

Templin, 2008a).  

 Several measures could be considered in the future to enhance the accuracy 

of the empirical Q-matrices, which include: a) Complement the single empirical Q-

matrix development method by trying out other Q-matrix development methods (e.g., 

de la Torre & Chiu, 2016; DeCarlo, 2012; Desmarais & Naceur, 2013), comparing 

the resulting empirical Q-matrices and using tree-based classification models to 

combine the results from different Q-matrix development methods (e.g., Desmarais et 

al., 2015; Xu & Desmarais, 2016). b) Validate the number of attributes in each Q-

matrix and allow Q-matrices associated with different strategies to contain different 

sets of attributes. However, the successful implementation of such measures is 

contingent on the advances in the empirical Q-matrix development methods. Most 

existing empirical Q-matrix development methods, including the one employed by 

this study, requires the number of attributes to be pre-specified. Some matrix 

factorization methods have been used by Beheshti et al. (2012) to learn the number of 

attributes from the response data, which could potentially be combined with the 

empirical Q-matrix development methods in the future. c) Validate or explore the 

number of strategies. The empirical Q-matrix development method utilized in this 

study assumes that there is only one “correct” Q-matrix for an assessment, the 
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underlying assumption of which is that there is only a single strategy. Nevertheless, in 

the presence multiple strategies, the single empirical Q-matrix yielded from the 

existing methods may not be the “correct” Q-matrix; instead, it could be a result of a 

mixture of multiple “correct” Q-matrices. This study, having found different 

empirical Q-matrices from the repeated-measure pretest and posttest with the same 

empirical Q-matrix development method, adds to the possibility of the existence of 

multiple strategies. To the author’s knowledge, no exploratory method is available 

currently to determine the number of “correct” Q-matrices that corresponds to the 

number of strategies. Therefore, there is a pressing need to develop such an empirical 

Q-matrix development method that can provide refinement suggestions on the 

number of “correct” Q-matrices. 

The interpretability of the empirical Q-matrices. Interpreting an empirical 

Q-matrix has always been challenging, let alone making meaningful interpretation 

about multiple strategies from multiple empirical Q-matrices. Although it could be 

observed that one empirical Q-matrix was more complex (i.e., with items loading on 

more attributes) than the other, the meaning of the strategies corresponding to the two 

empirical Q-matrices remain unknown. The difficulty in identifying the meaningful 

strategies underlying the empirical Q-matrices makes it hard to operationally define 

the desired strategy choice learning outcome or evaluate the effectiveness of EAI in 

terms of students’ strategy choice. For instance, while the empirical data analysis 

results showed that the transition probability from the empirical simple strategy to the 

empirical complex strategy is 0.63, one cannot tell whether such strategy transition is 

desirable or not with the current available information. 
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Expert opinions could be useful in improving the interpretability of the 

empirical Q-matrices. Experts on mathematical problem solving could be involved to 

inspect the empirical Q-matrices and determine whether these Q-matrices reflect any 

meaningful problem-solving strategies. In the long term, in order to gain more valid 

diagnostic inferences on strategy choice, it is recommended that test developers take 

multiple strategies into account in the early test development phase. For example, 

content experts could be asked to judge whether the items are expected to be solved 

with different strategies and whether students’ strategy choices are expected to 

change after certain instructional interventions. If the answers to the questions above 

are “yes”, multiple theoretical Q-matrices could be constructed, one for each strategy. 

Moreover, content experts could identify the impossible and/or desirable strategy 

trajectories, which can inform the setup of model constraints and provide criteria to 

evaluate the effectiveness of the intervention in terms of strategy choice. 

Another issue relevant to the Q-matrix interpretation is the implication of 

modifying the Q-matrix for the item difficulty or complexity. In other words, what 

are the implications of an item loading on more (or fewer) attributes in the Q-matrix? 

Since the Q-matrix elements play different roles in the model equations of different 

CDMs, the implications of modifying the Q-matrix on the item properties vary across 

models. For instance, in the DINA model where, ideally, one could only correctly 

respond to an item when he or she masters all the required attributes of the item as 

specified in the Q-matrix, an item loading on more attributes in the Q-matrix implies 

that the item gets more complex since one needs to master more attributes in order to 

succeed. In contrast, in the DINO model where one could succeed as long as he or she 
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masters at least one of the required attributes of the item, an item loading on more 

attributes in the Q-matrix implies that the item gets easier. While the DINA and the 

DINO models represent the extreme cases where the required attributes are either 

conjunctive or disjunctive, the LLM utilized in this study falls somewhere in the 

middle of the conjunctive-disjunctive spectrum. Given that the LLM which is the 

measurement model utilized in this study assumes additive relations among the 

attribute main effects, the attributes are assumed to be the compensatory in the LLM 

(Templin & Hoffman, 2013). Since the attributes in the DINO model are also 

compensatory (“disjunctive” is a special case of  “compensatory”), the implication of 

modifying the Q-matrix in the LLM is more aligned with the case of the DINO 

model: an item loading on more attributes in the Q-matrix implies that the item gets 

easier. 

Measurement invariance assumption. The LTA-longitudinal-MCDM 

assume measurement invariance, meaning that the item response distributions 

conditional on the same strategy choice and attribute mastery pattern are identical, 

which further implies that the item parameters (i.e., item intercepts and attribute main 

effects) are assumed to be invariant over time. By fitting the LTA-longitudinal-

MCDM, which constrained the item parameters to be equal across the two timepoints, 

to the empirical data, this study assumes the assessment used in the empirical data 

analysis to be measurement invariant over time. The measurement invariance 

assumption made in this empirical data analysis is largely attributed to a previous 

study by Madison and Bradshaw (2018a) who used the same empirical dataset to 

assess the measurement invariance of the same assessment and found that the item 
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parameter drift over time was not substantial. However, it is suggested that the 

measurement invariance assumption should be checked if the LTA-longitudinal-

MCDM is to be applied to a different empirical dataset. The measurement invariance 

assumption could be assessed by comparing the model-data fit of an LTA-

longitudinal-MCDM with all the item parameters constrained to be equal over time to 

an LTA-longitudinal-MCDM with time-specific item parameters. The latter having a 

significantly better model-data fit than the former could be a sign of violation to the 

measurement invariance assumption. Other methods for detecting differential item 

functioning, such as methods that are based on exploratory structural equation 

modeling (Marsh et al., 2009) and methods that utilize the regularization techniques 

with a penalty term (e.g., Bauer et al., 2020), could be adapt for the proposed model 

in the future to examine the measurement invariance assumption. In addition, 

simulation studies could be conducted to investigate the effects of violation to the 

measurement invariance assumption on the parameter recovery of the LTA-

longitudinal-MCDM. 

Over-specification of the number of strategies and the selection of the 

number of strategies. The simulation study focused on examining the effects of 

ignoring the multiple-strategy scenarios in the model (i.e., the under-specification of 

the number of strategies) on the performance of the model fit indices and the recovery 

of the CDM parameters (e.g., attribute mastery status classifications), given that most 

existing CDMs tended to under-specify the number of strategies. However, it would 

also be interesting to investigate the effects of over-specification of the number of 

strategies on the model selection and parameter recovery. One way of exploring the 
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effect of over-specification of the number of strategies is to fit the same data-fitting 

models as the simulation study, described in Section 3.3.4, to the simulated datasets 

in the absence of between-person multiple strategies and/or within-person strategy 

shift, and then compare the parameter recoveries across the data-fitting models.  

Another perspective that worth further exploring is the performance of the 

information-based model fit indices in terms of correctly selecting the number of 

strategies. While this study has found that AIC and BIC outperformed DIC in 

selecting the true model when there are two strategies under most simulated 

conditions, it remains to be examined how these model fit indices perform when the 

true number of strategies is different. Given that selecting the number of strategies is 

analogous to selecting the number of latent classes in a finite mixture model, previous 

findings in the literature about using the information-based criteria in choosing the 

number of latent classes in the mixture models may shed light on future studies on 

choosing the number of strategies. For example, Steele and Raftery (2010) has 

compared the performance of AIC, BIC and DIC in selecting the number of latent 

classes in Gaussian mixture models with Bayesian estimation and found that BIC 

yielded the most accurate number of latent classes. In addition, several studies have 

found that AIC tended to overestimate the number of latent classes in the mixture 

models (e.g., Celeux & Soromenho, 1996; Koehler & Murphree, 1988; Steele & 

Raftery, 2010). The numbers of latent classes suggested by DIC were inaccurate 

under all the simulated conditions designed by Steele and Raftery (2010). 

Model identification issue due to the relaxed correlation between the 

initial ability and ability change. The proposed model allows the covariance 
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between the initial ability and ability change to be freely estimated due to the interest 

in learning the relationship between the initial ability and ability change. 

Nevertheless, the ability structure shown in Figure 6 resembles an oblique version of 

the bifactor structure (Holzinger & Swineford, 1937) where the initial ability latent 

variable underlying all the attributes in both time points resembles the general factor 

and the ability change variable underlying only the attributes at the second time point 

resembles the specific factor. Mulaik and Quartetti (1997) have indicated that some 

model identification issues may arise when the general factor and the specific factor 

of a bifactor model are allowed to covary. While a common practice of facilitating the 

identification of the bifactor models is to constrain the general factor and the specific 

factors to be uncorrelated (e.g., Cai et al., 2011; Y. Li et al., 2006), the proposed 

model did not impose such a constraint considering the finding by Jeon et al. (2013) 

that ignoring the correlation between the general factor and the specific factors in a 

multigroup bifactor model could result in biased item parameter estimates and the 

lack of evidence supporting the ability change to be uncorrelated with the initial 

ability. In fact, different theories have suggested different directions of correlation 

between the initial ability and ability change, depending on factors such as the 

subject, content domain, analysis method and population. For instance, the existence 

of the ceiling effect yielded a negative correlation between the initial ability and 

ability change when analyzing the longitudinal data from cognitive aging study with 

regular growth curve analyses (L. Wang et al., 2008), while the Matthew effect 

observed in reading achievement where better readers gain greater improvement in 

their reading proficiency (Stanovich, 1986) suggested a positive correlation between 
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the initial ability and ability change. In the current study, the model identification 

issue due to the unconstrained correlation between the initial ability and ability 

change may manifest as the inaccurate estimates of the covariance between the initial 

ability and ability change. Thus, to mitigate the model identification issue due to the 

relaxed correlation between initial ability and ability change, future studies could 

consider constraining the correlation between the initial ability and ability change to a 

theoretical value or range after determining which theory best applies to the scenario 

under investigation.  

Bayesian prior sensitivity analysis and posterior predictive model check. 

Due to the complexity of the proposed model and the alternative models, this study 

utilized relatively informative priors in the Bayesian MCMC estimation to facilitate 

the convergence of the model. Given that different choices of priors could affect the 

inferences drawn from the mixture models (e.g., Griffin, 2010; Miller & Harrison, 

2018), future studies could experiment with other priors and investigate the sensitivity 

of the inferences drawn from the proposed model to the prior settings. 

The posterior predictive model check was conducted as a measure of absolute 

model-data fit and the PPP values were calculated using the sum of squares residuals 

as the discrepancy measure. Given that different discrepancy measures delineate 

different aspects of the model and data, future studies could include other discrepancy 

measures to assess the adequacy of the model-data fit from other perspectives. 

Further, it should be noted that the power of the posterior predictive model check is 

highly dependent on the choice of the discrepancy measure, and the discrepancy 

measures of different power could be chosen for different study purposes, according 
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to Rubin (1996). Carlin and Louis (1996) indicated that the posterior predictive model 

check lacks power as the data were used twice in the model check process. The 

sample size and the PPP cut-off values could also affect the power of the posterior 

predictive model check. When the sample size is small, PPP could be sensitive to the 

priors and it remains unclear how it would affect the power of the posterior predictive 

model check (Berkhof et al., 2000). Given that no specific suggestion on the PPP cut-

off value was found, this study rejects a model when the PPP value is lower than 0.05 

which is a reasonable range from the frequentist perspective. However, it should be 

noted that a slight improvement in the model could bring a PPP into the acceptable 

range and that the PPP only measures the “statistical significance” of the difference 

between the data and the model (Gelman et al., 2003). To better decide whether a 

model should be rejected, future studies could further take into account the practical 

significance of the difference between the observed data and the model, which is, to a 

large extent, determined by the purpose and substantive interest of the study (Gelman 

et al., 2003). 

Local item dependencies. In the LTA-longitudinal-MCDM, local item 

independence is assumed conditional on the strategy choice and attribute mastery 

status. However, several factors in the empirical dataset could potentially result in 

item dependencies and, thus, the violation of the local item independence assumption. 

On one hand, dependencies may exist among the repeated items across timepoints. As 

an initial exploration, an extension of the LTA-longitudinal-MCDM with latent 

variables accounting for residual dependence of the repeated items was fit to the 

empirical dataset used in Section 3.4. However, the model with cross-timepoint 
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dependencies suffered from slow convergence, rendering its comparison with the 

original LTA-longitudinal-MCDM infeasible. Causes of this convergence issue need 

to be further explored. On the other hand, local item dependencies could be present if 

multiple problem-solving items in the assessment formed a testlet and shared the 

same prompt. Future studies could extend the LTA-longitudinal-MCDM to account 

for item dependencies by incorporating testlet-specific latent variables. 

Other extensions to the model. The LTA-longitudinal-MCDM explored in 

this study was limited to two timepoints, considered only the main effects of the 

attributes on the item response probabilities (i.e., used the LLM as the measurement 

model) and assumed the independence of skill implementation ability from strategy 

choice. Fortunately, the LTA-longitudinal-MCDM is flexible to be extended into 

more generalized forms and, in fact, the model equations have been written in more 

generalized forms – equation 4 has specified the measurement model as the LCDM 

that includes the interactions among attributes and equation 9 is applicable to 

scenarios with more than two timepoints. Further, when there are multiple time 

points, the choice of the reference point and scale could affect the parameter estimates 

of a growth model as demonstrated by Hancock and Choi (2006). To describe the 

growth trajectory in a more meaningful way, some scale-free statistics such as the 

relative aperture location proposed by Hancock and Choi (2006) could be calculated 

in the future. Specifically, in the case of this study, the aperture represents the time 

point where individuals are most similar in their true skill implementation ability, and 

locating the aperture and applying an intervention at the aperture could help 

maximize the effectiveness of the intervention (Hancock & Choi, 2006). The 
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assumption of independence between strategy choice and skill implementation ability 

could be relaxed by adding a higher-order latent variable that models the 

dependencies between the strategy choice parameter, m, and the skill implementation 

ability parameter,   . 

Despite the limitations, the contributions of this study to the CDM research 

literature, effectiveness evaluation, teaching and learning practices are significant. 

From the diagnostic modeling research perspective, the simulation study provided 

evidence that ignoring the multiple-strategy scenarios in the longitudinal CDMs, 

which is essentially a form of Q-matrix misspecification, could reduce the 

classification accuracy of the attribute mastery status. The proposed model, by 

considering multiple Q-matrices representing multiple strategies, can reduce the risk 

of Q-matrix misspecification due to the under-specification of multiple strategies. 

From the effectiveness evaluation perspective, for an instructional program to 

improve students’ problem solving, it is not only important to train students’ ability to 

implement the skills and help them achieve skill mastery, but it is also crucial to 

guide students to form effective strategies by choosing appropriate sets of skills to 

solve the problems (e.g., Afflerbach et al., 2008; Coughlin & Montague, 2011; 

Swanson, 2001). This study provides practitioners with a tool to evaluate the 

effectiveness of the instructional programs from both the strategy choice and skill 

implementation aspects. From the teachers and students’ perspectives, the additional 

diagnostic information on strategy choice provided by the proposed model is useful to 

inform the teaching and learning practices. 
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Appendix A: Classification Accuracy, Bias, SE and RMSE Results by the Simulated Conditions 
Table A. 1 

Attribute Correct Classification Rate at Timepoint 1 (J=100) 

(1) (1):
A BM M   |B AM Mp

 
( )1T

 


  

ACCR (Timepoint 1) 

Attribute 1  Attribute 2  Attribute 3  Attribute 4 

L-

LL

M 

L- 

MCD

M 

LTA-

L-

MCD

M 

 

L-

LL

M 

L- 

MCD

M 

LTA-

L-

MCD

M 

 

L-

LL

M 

L- 

MCD

M 

LTA-

L-

MCD

M 

 

L-

LL

M 

L- 

MCD

M 

LTA-

L-

MCD

M 

0.6:0.4 0.3 -0.3 0.74 0.96 0.97  0.96 0.98 0.98  0.88 0.89 0.90  0.89 0.90 0.91 

  0 0.77 0.96 0.96  0.96 0.98 0.98  0.90 0.92 0.92  0.90 0.91 0.91 

  0.3 0.84 0.97 0.96  0.95 0.97 0.97  0.91 0.92 0.92  0.89 0.90 0.92 

 0.7 -0.3 0.72 0.95 0.96  0.96 0.97 0.98  0.89 0.86 0.90  0.89 0.88 0.92 

  0 0.76 0.96 0.96  0.96 0.97 0.98  0.91 0.90 0.92  0.90 0.89 0.92 

  0.3 0.82 0.96 0.96  0.96 0.97 0.97  0.92 0.89 0.93  0.89 0.88 0.92 

0.8:0.2 0.3 -0.3 0.86 0.98 0.98  0.97 0.99 0.98  0.86 0.89 0.88  0.89 0.88 0.90 

  0 0.89 0.98 0.98  0.98 0.98 0.98  0.89 0.89 0.90  0.89 0.90 0.90 

  0.3 0.90 0.98 0.98  0.97 0.98 0.98  0.90 0.89 0.91  0.89 0.89 0.90 

 0.7 -0.3 0.84 0.96 0.98  0.97 0.98 0.99  0.87 0.84 0.88  0.89 0.86 0.90 

  0 0.87 0.97 0.98  0.98 0.98 0.98  0.90 0.86 0.91  0.89 0.88 0.90 

  0.3 0.89 0.97 0.98  0.97 0.98 0.98  0.91 0.88 0.92  0.90 0.87 0.91 
Note. ACCR=Attribute Correct Classification Rate; L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-MCDM=LTA-

longitudinal MCDM. 
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Table A. 2 

Attribute Correct Classification Rate at Timepoint 1 (J=800) 

(1) (1):
A BM M   |B AM Mp

 
( )1T

 


  

ACCR (Timepoint 1) 

Attribute 1  Attribute 2  Attribute 3  Attribute 4 

L-

LL

M 

L- 

MCD

M 

LTA-

L-

MCD

M 

 

L-

LL

M 

L- 

MCD

M 

LTA-

L-

MCD

M 

 

L-

LL

M 

L- 

MCD

M 

LTA-

L-

MCD

M 

 

L-

LL

M 

L- 

MCD

M 

LTA-

L-

MCD

M 

0.6:0.4 0.3 -0.3 0.83 0.96 0.96  0.97 0.98 0.98  0.91 0.91 0.92  0.90 0.91 0.93 

  0 0.85 0.96 0.96  0.97 0.98 0.98  0.91 0.91 0.92  0.90 0.91 0.92 

  0.3 0.84 0.96 0.96  0.97 0.98 0.98  0.92 0.91 0.92  0.91 0.92 0.93 

 0.7 -0.3 0.81 0.95 0.96  0.97 0.98 0.98  0.92 0.87 0.92  0.90 0.88 0.93 

  0 0.84 0.95 0.96  0.97 0.98 0.98  0.92 0.87 0.92  0.89 0.88 0.93 

  0.3 0.83 0.96 0.96  0.97 0.98 0.98  0.93 0.87 0.92  0.90 0.89 0.93 

0.8:0.2 0.3 -0.3 0.92 0.97 0.97  0.98 0.99 0.99  0.90 0.88 0.90  0.90 0.89 0.91 

  0 0.93 0.97 0.97  0.98 0.99 0.99  0.90 0.89 0.90  0.90 0.89 0.91 

  0.3 0.92 0.97 0.97  0.98 0.99 0.99  0.91 0.89 0.91  0.91 0.89 0.91 

 0.7 -0.3 0.91 0.96 0.97  0.98 0.98 0.99  0.91 0.85 0.90  0.90 0.85 0.91 

  0 0.92 0.97 0.97  0.98 0.98 0.99  0.91 0.85 0.90  0.90 0.85 0.91 

  0.3 0.91 0.97 0.97  0.98 0.98 0.99  0.92 0.85 0.91  0.90 0.86 0.92 

Note. ACCR=Attribute Correct Classification Rate; L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-

MCDM=LTA-longitudinal MCDM. 
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Table A. 3 

Attribute Correct Classification Rate at Timepoint 2 (J=100) 

(1) (1):
A BM M   |B AM Mp

 
( )1T

 


  

ACCR (Timepoint 2) 

Attribute 1  Attribute 2  Attribute 3  Attribute 4 

L-

LL

M 

L- 

MCD

M 

LTA-

L-

MCD

M 

 

L-

LL

M 

L- 

MCD

M 

LTA-

L-

MCD

M 

 

L-

LL

M 

L- 

MCD

M 

LTA-

L-

MCD

M 

 

L-

LL

M 

L- 

MCD

M 

LTA-

L-

MCD

M 

0.6:0.4 0.3 -0.3 0.77 0.94 0.95  0.95 0.97 0.97  0.88 0.92 0.91  0.88 0.92 0.92 

  0 0.85 0.96 0.96  0.94 0.96 0.97  0.92 0.93 0.93  0.89 0.92 0.93 

  0.3 0.81 0.95 0.96  0.94 0.96 0.97  0.90 0.92 0.92  0.90 0.94 0.94 

 0.7 -0.3 0.66 0.91 0.93  0.94 0.97 0.97  0.90 0.94 0.94  0.88 0.95 0.95 

  0 0.76 0.92 0.95  0.93 0.96 0.97  0.93 0.94 0.94  0.90 0.95 0.97 

  0.3 0.69 0.90 0.94  0.94 0.96 0.97  0.93 0.95 0.95  0.91 0.96 0.97 

0.8:0.2 0.3 -0.3 0.87 0.96 0.97  0.95 0.97 0.98  0.86 0.89 0.91  0.88 0.90 0.91 

  0 0.90 0.96 0.96  0.94 0.96 0.97  0.91 0.92 0.93  0.88 0.90 0.92 

  0.3 0.81 0.94 0.96  0.94 0.97 0.97  0.91 0.91 0.91  0.90 0.92 0.92 

 0.7 -0.3 0.72 0.92 0.94  0.93 0.96 0.97  0.89 0.92 0.94  0.89 0.94 0.95 

  0 0.78 0.92 0.94  0.92 0.95 0.96  0.93 0.94 0.95  0.89 0.94 0.94 

  0.3 0.72 0.90 0.94  0.92 0.95 0.96  0.92 0.93 0.94  0.91 0.94 0.94 

Note. ACCR=Attribute Correct Classification Rate; L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-

MCDM=LTA-longitudinal MCDM. 
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Table A. 4 

Attribute Correct Classification Rate at Timepoint 2 (J=800) 

(1) (1):
A BM M   |B AM Mp

 
( )1T

 


  

ACCR (Timepoint 2) 

Attribute 1  Attribute 2  Attribute 3  Attribute 4 

L-

LL

M 

L- 

MCD

M 

LTA-

L-

MCD

M 

 

L-

LL

M 

L- 

MCD

M 

LTA-

L-

MCD

M 

 

L-

LL

M 

L- 

MCD

M 

LTA-

L-

MCD

M 

 

L-

LL

M 

L- 

MCD

M 

LTA-

L-

MCD

M 

0.6:0.4 0.3 -0.3 0.82 0.96 0.96  0.96 0.98 0.98  0.92 0.93 0.93  0.88 0.93 0.93 

  0 0.82 0.95 0.96  0.96 0.98 0.98  0.92 0.93 0.93  0.90 0.93 0.93 

  0.3 0.83 0.95 0.96  0.96 0.98 0.98  0.92 0.94 0.94  0.91 0.94 0.94 

 0.7 -0.3 0.70 0.93 0.95  0.95 0.98 0.98  0.94 0.95 0.96  0.88 0.95 0.95 

  0 0.71 0.93 0.95  0.95 0.98 0.98  0.94 0.95 0.96  0.90 0.95 0.95 

  0.3 0.73 0.93 0.95  0.96 0.98 0.98  0.94 0.96 0.96  0.90 0.96 0.96 

0.8:0.2 0.3 -0.3 0.87 0.95 0.96  0.96 0.98 0.99  0.91 0.92 0.92  0.89 0.91 0.92 

  0 0.87 0.95 0.97  0.96 0.98 0.99  0.91 0.92 0.92  0.90 0.92 0.93 

  0.3 0.87 0.95 0.97  0.97 0.98 0.99  0.91 0.93 0.93  0.91 0.93 0.93 

 0.7 -0.3 0.77 0.93 0.95  0.94 0.97 0.98  0.93 0.94 0.95  0.88 0.94 0.95 

  0 0.77 0.93 0.95  0.95 0.97 0.98  0.93 0.94 0.95  0.90 0.94 0.95 

  0.3 0.76 0.92 0.95  0.95 0.97 0.98  0.93 0.94 0.96  0.91 0.94 0.96 

Note. ACCR=Attribute Correct Classification Rate; L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-

MCDM=LTA-longitudinal MCDM. 
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Table A. 5 

Bias of the Initial Ability and Ability Change Estimates 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 Bias of 1( )ˆ T

j   Bias of ˆ
j  

L- LLM L-MCDM LTA-L-MCDM  L- LLM L-MCDM LTA-L-MCDM 

100 0.6:0.4 0.3 -0.3 -0.003  0.005  0.004   0.031  0.089  0.108  

   0 -0.006  -0.002  -0.002   0.031  0.056  0.108  

   0.3 -0.004  -0.002  -0.002   -0.188  -0.167  -0.126  

  0.7 -0.3 -0.009  0.004  0.001   -0.115  0.061  0.115  

   0 -0.011  -  -0.005   0.011  0.040  0.107  

   0.3 -0.009  0.002  -0.007   -0.228  -0.179  -0.126  

 0.8:0.2 0.3 -0.3 -0.002  0.003  0.003   0.072  0.114  0.122  

   0 -0.004  0.002  -0.002   0.027  0.087  0.116  

   0.3 -0.003  -  -0.002   -0.239  -0.165  -0.135  

  0.7 -0.3 -0.005  0.003  0.001   -0.121  0.043  0.142  

   0 -0.007  0.003  -0.005   -0.077  -0.008  0.092  

   0.3 -0.005  -  -0.007   -0.307  -0.226  -0.147  

800 0.6:0.4 0.3 -0.3 0.001  0.002  0.001   -0.109  -0.086  -0.025  

   0 -  0.002  0.001   -0.099  -0.040  0.008  

   0.3 -  0.001  -   -0.138  -0.067  -0.018  

  0.7 -0.3 -  0.001  0.001   -0.190  -0.163  -0.025  

   0 -0.001  0.001  0.002   -0.221  -0.144  0.002  

   0.3 -0.001  -  -   -0.244  -0.165  -0.027  

 0.8:0.2 0.3 -0.3 - 0.001  0.002   -0.075  -0.079  -0.020  

   0 - 0.002  0.002   -0.073  -0.063  0.010  

   0.3 - 0.001  -   -0.115  -0.081  -0.014  

  0.7 -0.3 0.001  0.002  0.002   -0.168  -0.180  -0.016  

   0 - 0.003  0.001   -0.174  -0.162  0.017  

   0.3 - 0.001  -   -0.225  -0.197  -0.015  

Note. L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-MCDM=LTA-longitudinal MCDM. Bias values that 

approaches 0 (i.e., -0.001<Bias<0.001) are represented with “-”.  



221 

 

Table A. 6 

SE of the Initial Ability and Ability Change Estimates 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 SE of 1( )ˆ T

j   SE of ˆ
j  

L- LLM L-MCDM LTA-L-MCDM  L- LLM L-MCDM LTA-L-MCDM 

100 0.6:0.4 0.3 -0.3 0.294  0.200  0.236   0.402  0.243  0.264  

   0 0.235  0.250  0.248   0.313  0.288  0.281  

   0.3 0.242  0.261  0.288   0.252  0.239  0.268  

  0.7 -0.3 0.297  0.218  0.240   0.584  0.248  0.262  

   0 0.237  0.226  0.230   0.393  0.280  0.249  

   0.3 0.236  0.253  0.245   0.289  0.228  0.220  

 0.8:0.2 0.3 -0.3 0.331  0.181  0.254   0.390  0.233  0.274  

   0 0.272  0.270  0.272   0.353  0.311  0.306  

   0.3 0.241  0.265  0.282   0.272  0.249  0.257  

  0.7 -0.3 0.336  0.229  0.238   0.607  0.271  0.258  

   0 0.259  0.246  0.253   0.458  0.313  0.274  

   0.3 0.240  0.245  0.254   0.303  0.240  0.231  

800 0.6:0.4 0.3 -0.3 0.202  0.147  0.145   0.165  0.114  0.118  

   0 0.206  0.148  0.147   0.185  0.132  0.138  

   0.3 0.197  0.162  0.163   0.176  0.133  0.141  

  0.7 -0.3 0.218  0.166  0.148   0.281  0.104  0.122  

   0 0.217  0.160  0.145   0.304  0.116  0.135  

   0.3 0.204  0.166  0.157   0.258  0.119  0.129  

 0.8:0.2 0.3 -0.3 0.207  0.142  0.136   0.153  0.115  0.115  

   0 0.214  0.144  0.136   0.175  0.122  0.129  

   0.3 0.191  0.162  0.153   0.169  0.132  0.135  

  0.7 -0.3 0.220  0.164  0.139   0.255  0.111  0.124  

   0 0.213  0.164  0.141   0.271  0.126  0.136  

   0.3 0.203  0.172  0.155   0.260  0.128  0.133  

Note. L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-MCDM=LTA-longitudinal MCDM.  
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Table A. 7 

RMSE of the Initial Ability and Ability Change Estimates 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 RMSE of 1( )ˆ T

j   RMSE of ˆ
j  

L- LLM L-MCDM LTA-L-MCDM  L- LLM L-MCDM LTA-L-MCDM 

100 0.6:0.4 0.3 -0.3 0.684  0.684  0.692   0.842  0.843  0.850  

   0 0.687  0.659  0.656   0.722  0.702  0.707  

   0.3 0.656  0.631  0.648   0.740  0.716  0.724  

  0.7 -0.3 0.714  0.685  0.682   1.076  0.830  0.836  

   0 0.696  0.644  0.644   0.870  0.714  0.706  

   0.3 0.662  0.611  0.630   0.836  0.724  0.716  

 0.8:0.2 0.3 -0.3 0.694  0.681  0.711   0.853  0.832  0.858  

   0 0.697  0.676  0.688   0.749  0.718  0.719  

   0.3 0.652  0.627  0.644   0.779  0.717  0.721  

  0.7 -0.3 0.703  0.683  0.698   1.055  0.831  0.851  

   0 0.704  0.663  0.668   0.926  0.727  0.713  

   0.3 0.657  0.608  0.646   0.854  0.729  0.726  

800 0.6:0.4 0.3 -0.3 0.751  0.756  0.758   0.755  0.750  0.769  

   0 0.696  0.712  0.712   0.732  0.727  0.741  

   0.3 0.659  0.647  0.645   0.737  0.697  0.703  

  0.7 -0.3 0.764  0.747  0.754   0.913  0.733  0.766  

   0 0.715  0.705  0.706   0.931  0.705  0.733  

   0.3 0.673  0.640  0.638   0.881  0.689  0.690  

 0.8:0.2 0.3 -0.3 0.738  0.756  0.759   0.764  0.752  0.769  

   0 0.684  0.711  0.714   0.736  0.716  0.738  

   0.3 0.641  0.650  0.655   0.724  0.697  0.702  

  0.7 -0.3 0.759  0.750  0.757   0.881  0.731  0.769  

   0 0.695  0.703  0.708   0.875  0.707  0.738  

   0.3 0.655  0.641  0.643   0.869  0.695  0.696  

Note. L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-MCDM=LTA-longitudinal MCDM.  
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Table A. 8 

Bias of the Mean and Variance Estimates of Ability Change and Covariance Estimates between the Initial Ability and Ability Change 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 

Bias of ˆ


  Bias of 
2ˆ


  Bias of ( )1
ˆ T
 




 

L- 

LLM 

L-

MCDM 

LTA-L-

MCDM 

 L- 

LLM 

L-

MCDM 

LTA-L-

MCDM 

 L- 

LLM 

L-

MCDM 

LTA-L-

MCDM 

100 0.6:0.4 0.3 -0.3 0.027 0.083 0.102   0.970 0.561 0.526   0.435 0.613 0.621 

   0 0.029 0.051 0.103  0.844 0.599 0.577  0.295 0.401 0.406 

   0.3 -0.189 -0.168 -0.127  0.226 0.069 0.086  0.076 0.036 0.062 

  0.7 -0.3 -0.120 0.055 0.110  2.436 0.530 0.515  0.392 0.571 0.602 

   0 0.009 0.035 0.104  1.602 0.687 0.543  0.357 0.365 0.384 

   0.3 -0.225 -0.180 -0.125  0.651 0.030 0.058  0.202 -0.051 0.029 

 0.8:0.2 0.3 -0.3 0.068 0.109 0.116  0.639 0.544 0.546  0.510 0.578 0.597 

   0 0.023 0.081 0.112  0.913 0.697 0.626  0.386 0.399 0.406 

   0.3 -0.239 -0.166 -0.137  0.310 0.086 0.095  0.178 0.035 0.067 

  0.7 -0.3 -0.126 0.038 0.136  1.869 0.537 0.585  0.508 0.520 0.600 

   0 -0.080 -0.012 0.089  1.910 0.812 0.541  0.463 0.368 0.383 

   0.3 -0.305 -0.227 -0.146   0.665 0.102 0.104   0.268 -0.029 0.066 

800 0.6:0.4 0.3 -0.3 -0.110 -0.086 -0.026  -0.355 -0.461 -0.370  0.515 0.585 0.677 

   0 -0.099 -0.041 0.007  -0.165 -0.293 -0.225  0.463 0.469 0.526 

   0.3 -0.138 -0.068 -0.018  -0.187 -0.351 -0.299  0.294 0.208 0.253 

  0.7 -0.3 -0.190 -0.163 -0.025  0.544 -0.582 -0.395  0.808 0.426 0.658 

   0 -0.220 -0.145 0.001  0.967 -0.479 -0.250  0.772 0.284 0.507 

   0.3 -0.243 -0.165 -0.027  0.578 -0.481 -0.343  0.619 0.077 0.221 

 0.8:0.2 0.3 -0.3 -0.075 -0.080 -0.021  -0.386 -0.416 -0.341  0.608 0.608 0.689 

   0 -0.073 -0.064 0.009  -0.270 -0.341 -0.218  0.484 0.421 0.523 

   0.3 -0.115 -0.081 -0.015  -0.219 -0.336 -0.282  0.291 0.203 0.254 

  0.7 -0.3 -0.168 -0.180 -0.017  0.259 -0.566 -0.349  0.855 0.408 0.678 

   0 -0.174 -0.163 0.016  0.512 -0.487 -0.225  0.807 0.252 0.522 

   0.3 -0.225 -0.197 -0.016   0.572 -0.460 -0.309   0.655 0.071 0.244 

Note. L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-MCDM=LTA-longitudinal MCDM.  
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Table A. 9 

SE of the Mean and Variance Estimates of Ability Change and Covariance Estimates between the Initial Ability and Ability Change 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 

SE of ˆ


  SE of 
2ˆ


  SE of ( )1
ˆ T
 




 

L- 

LLM 

L-

MCDM 

LTA-L-

MCDM 

 L- 

LLM 

L-

MCDM 

LTA-L-

MCDM 

 L- 

LLM 

L-

MCDM 

LTA-L-

MCDM 

100 0.6:0.4 0.3 -0.3 0.112 0.101 0.097   0.487 0.142 0.142   0.112 0.055 0.060 

   0 0.085 0.097 0.099  0.229 0.153 0.147  0.081 0.080 0.089 

   0.3 0.073 0.105 0.112  0.097 0.074 0.071  0.052 0.061 0.058 

  0.7 -0.3 0.126 0.098 0.095  1.301 0.098 0.135  0.124 0.057 0.054 

   0 0.108 0.109 0.092  0.493 0.222 0.151  0.092 0.072 0.079 

   0.3 0.087 0.090 0.101  0.136 0.096 0.061  0.073 0.081 0.063 

 0.8:0.2 0.3 -0.3 0.143 0.088 0.100  0.292 0.119 0.138  0.085 0.065 0.064 

   0 0.101 0.100 0.109  0.304 0.200 0.199  0.092 0.098 0.101 

   0.3 0.089 0.112 0.113  0.121 0.063 0.066  0.069 0.067 0.047 

  0.7 -0.3 0.158 0.107 0.081  1.304 0.105 0.132  0.118 0.081 0.055 

   0 0.113 0.106 0.108  0.845 0.271 0.203  0.087 0.080 0.094 

   0.3 0.094 0.110 0.116   0.164 0.118 0.066   0.067 0.093 0.047 

800 0.6:0.4 0.3 -0.3 0.029 0.032 0.030  0.052 0.058 0.057  0.046 0.054 0.048 

   0 0.029 0.031 0.031  0.091 0.077 0.088  0.056 0.056 0.060 

   0.3 0.032 0.035 0.036  0.063 0.086 0.097  0.047 0.058 0.063 

  0.7 -0.3 0.035 0.029 0.030  0.183 0.031 0.071  0.083 0.047 0.055 

   0 0.032 0.031 0.034  0.250 0.051 0.090  0.090 0.050 0.062 

   0.3 0.031 0.034 0.035  0.173 0.061 0.088  0.082 0.057 0.058 

 0.8:0.2 0.3 -0.3 0.033 0.029 0.026  0.046 0.056 0.051  0.044 0.049 0.042 

   0 0.034 0.027 0.028  0.069 0.058 0.066  0.051 0.038 0.044 

   0.3 0.029 0.030 0.033  0.074 0.074 0.089  0.049 0.050 0.056 

  0.7 -0.3 0.035 0.030 0.029  0.148 0.035 0.069  0.086 0.053 0.056 

   0 0.039 0.038 0.033  0.188 0.061 0.082  0.073 0.064 0.056 

   0.3 0.033 0.036 0.034   0.161 0.065 0.089   0.068 0.063 0.056 

Note. L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-MCDM=LTA-longitudinal MCDM.  
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Table A. 10 

RMSE of the Mean and Variance Estimates of Ability Change and Covariance Estimates between the Initial Ability and Ability 

Change 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 

RMSE of ˆ


  RMSE of 
2ˆ


  RMSE of ( )1
ˆ T
 




 

L- 

LLM 

L-

MCDM 

LTA-L-

MCDM 

 L- 

LLM 

L-

MCDM 

LTA-L-

MCDM 

 L- 

LLM 

L-

MCDM 

LTA-L-

MCDM 

100 0.6:0.4 0.3 -0.3 0.115 0.130 0.141   1.085 0.579 0.545   0.449 0.615 0.624 

   0 0.090 0.109 0.143  0.874 0.619 0.595  0.306 0.409 0.416 

   0.3 0.203 0.198 0.169  0.246 0.101 0.111  0.092 0.071 0.085 

  0.7 -0.3 0.174 0.112 0.145  2.761 0.539 0.532  0.411 0.574 0.604 

   0 0.108 0.115 0.138  1.676 0.722 0.563  0.368 0.372 0.392 

   0.3 0.241 0.201 0.160  0.665 0.101 0.084  0.215 0.096 0.070 

 0.8:0.2 0.3 -0.3 0.158 0.140 0.153  0.703 0.557 0.563  0.517 0.582 0.600 

   0 0.103 0.129 0.156  0.962 0.725 0.657  0.396 0.411 0.418 

   0.3 0.255 0.200 0.177  0.333 0.107 0.116  0.191 0.075 0.082 

  0.7 -0.3 0.202 0.114 0.158  2.279 0.547 0.600  0.521 0.526 0.603 

   0 0.139 0.107 0.140  2.089 0.856 0.578  0.471 0.377 0.394 

   0.3 0.319 0.252 0.186   0.685 0.156 0.123   0.277 0.097 0.081 

800 0.6:0.4 0.3 -0.3 0.113 0.092 0.039  0.358 0.465 0.374  0.517 0.587 0.679 

   0 0.103 0.052 0.032  0.189 0.303 0.242  0.467 0.472 0.530 

   0.3 0.142 0.076 0.040  0.197 0.361 0.315  0.298 0.216 0.260 

  0.7 -0.3 0.193 0.165 0.039  0.574 0.583 0.402  0.812 0.428 0.660 

   0 0.223 0.148 0.034  0.999 0.481 0.266  0.777 0.288 0.510 

   0.3 0.245 0.169 0.044  0.604 0.485 0.354  0.625 0.096 0.229 

 0.8:0.2 0.3 -0.3 0.082 0.085 0.033  0.388 0.420 0.344  0.610 0.610 0.690 

   0 0.081 0.069 0.030  0.279 0.346 0.228  0.487 0.423 0.525 

   0.3 0.119 0.087 0.036  0.231 0.344 0.296  0.295 0.209 0.260 

  0.7 -0.3 0.172 0.182 0.034  0.298 0.567 0.355  0.859 0.412 0.680 

   0 0.179 0.167 0.036  0.546 0.490 0.240  0.810 0.260 0.525 

   0.3 0.228 0.201 0.037   0.594 0.465 0.322   0.658 0.095 0.250 

Note. L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-MCDM=LTA-longitudinal MCDM.  
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Table A. 11 

Bias, SE and RMSE of the Estimates of the Initial Mixing Proportion of Strategy A 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 Bias of 1( )ˆ

A

T

M   SE of 1( )ˆ
A

T

M   RMSE of 1( )ˆ
A

T

M  

L-MCDM LTA-L-MCDM  L-MCDM LTA-L-MCDM  L-MCDM LTA-L-MCDM 

100 0.6:0.4 0.3 -0.3 -0.093 -0.032  0.029 0.036  0.097 0.048 

   0 -0.082 -0.034  0.033 0.039  0.089 0.052 

   0.3 -0.106 -0.039  0.041 0.035  0.114 0.052 

  0.7 -0.3 -0.245 -0.041  0.041 0.038  0.249 0.056 

   0 -0.219 -0.044  0.047 0.043  0.224 0.062 

   0.3 -0.260 -0.056  0.057 0.040  0.266 0.068 

 0.8:0.2 0.3 -0.3 -0.115 -0.046  0.030 0.030  0.119 0.055 

   0 -0.110 -0.035  0.040 0.036  0.117 0.050 

   0.3 -0.131 -0.053  0.033 0.035  0.135 0.064 

  0.7 -0.3 -0.283 -0.055  0.050 0.033  0.288 0.064 

   0 -0.248 -0.043  0.059 0.039  0.255 0.058 

   0.3 -0.277 -0.065  0.055 0.035  0.282 0.074 

800 0.6:0.4 0.3 -0.3 -0.101 -0.016  0.013 0.013  0.102 0.020 

   0 -0.082 0.001  0.012 0.014  0.083 0.014 

   0.3 -0.087 -0.002  0.012 0.014  0.088 0.014 

  0.7 -0.3 -0.260 -0.019  0.017 0.012  0.261 0.022 

   0 -0.238 -0.001  0.018 0.014  0.238 0.014 

   0.3 -0.241 -0.004  0.020 0.013  0.242 0.014 

 0.8:0.2 0.3 -0.3 -0.121 -0.012  0.013 0.011  0.121 0.016 

   0 -0.107 0.001  0.014 0.011  0.108 0.011 

   0.3 -0.103 0.001  0.014 0.010  0.104 0.010 

  0.7 -0.3 -0.294 -0.012  0.018 0.011  0.295 0.017 

   0 -0.272 -  0.017 0.011  0.273 0.011 

   0.3 -0.277 -0.001  0.022 0.011  0.278 0.011 

Note. L-MCDM=Longitudinal MCDM; LTA-L-MCDM=LTA-longitudinal MCDM. Bias values that approaches 0 (i.e., -0.001<Bias<0.001) are 

represented with “-”. 
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Table A. 12 

Bias, SE and RMSE of the Estimates of the Latent Transition Probability from Strategy A to Strategy B of the LTA-longitudinal-

MCDM 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 

1( )

|
ˆ

B A

T

M M  of the LTA-longitudinal-MCDM 

Bias SE RMSE 

100 0.6:0.4 0.3 -0.3 -0.018 0.078 0.080 

   0 0.021 0.058 0.062 

   0.3 -0.049 0.049 0.069 

  0.7 -0.3 0.003 0.086 0.086 

   0 0.078 0.073 0.107 

   0.3 -0.012 0.069 0.070 

 0.8:0.2 0.3 -0.3 -0.058 0.055 0.080 

   0 0.045 0.065 0.079 

   0.3 0.017 0.060 0.062 

  0.7 -0.3 -0.046 0.065 0.079 

   0 0.031 0.058 0.066 

   0.3 -0.028 0.054 0.060 

800 0.6:0.4 0.3 -0.3 -0.027 0.025 0.037 

   0 -0.020 0.030 0.036 

   0.3 -0.009 0.030 0.031 

  0.7 -0.3 -0.006 0.018 0.019 

   0 0.009 0.022 0.024 

   0.3 0.027 0.022 0.035 

 0.8:0.2 0.3 -0.3 -0.010 0.014 0.017 

   0 - 0.016 0.016 

   0.3 0.012 0.020 0.023 

  0.7 -0.3 -0.030 0.015 0.034 

   0 -0.015 0.018 0.023 

   0.3 0.014 0.016 0.021 

Note. Bias values that approaches 0 (i.e., -0.001<Bias<0.001) are represented with “-”. 
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Table A. 13 

Bias of the Item Intercept and Attribute Main Effect Estimates 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 Bias of ,0

ˆ
i   Bias of ,1,( )

ˆ
i k  

L- LLM L-MCDM LTA-L-MCDM  L- LLM L-MCDM LTA-L-MCDM 

100 0.6:0.4 0.3 -0.3 0.505  0.208  0.175   -0.659  -0.252  -0.201  

   0 0.431  0.172  0.145   -0.562  -0.194  -0.146  

   0.3 0.427  0.171  0.152   -0.570  -0.198  -0.134  

  0.7 -0.3 0.590  0.260  0.172   -0.764  -0.340  -0.188  

   0 0.498  0.205  0.132   -0.654  -0.273  -0.155  

   0.3 0.491  0.222  0.139   -0.671  -0.300  -0.144  

 0.8:0.2 0.3 -0.3 0.437  0.205  0.169   -0.539  -0.291  -0.226  

   0 0.354  0.178  0.131   -0.457  -0.236  -0.162  

   0.3 0.387  0.205  0.143   -0.487  -0.247  -0.159  

  0.7 -0.3 0.540  0.279  0.169   -0.670  -0.383  -0.194  

   0 0.444  0.234  0.125   -0.558  -0.303  -0.141  

   0.3 0.451  0.245  0.138   -0.576  -0.308  -0.143  

800 0.6:0.4 0.3 -0.3 0.368  0.054  0.022   -0.525  -0.090  -0.011  

   0 0.345  0.044  0.012   -0.489  -0.078  -0.007  

   0.3 0.339  0.053  0.013   -0.478  -0.077  -0.011  

  0.7 -0.3 0.444  0.112  0.016   -0.622  -0.203  -0.009  

   0 0.420  0.107  0.009   -0.581  -0.196  -0.006  

   0.3 0.406  0.110  0.009   -0.565  -0.191  -0.015  

 0.8:0.2 0.3 -0.3 0.281  0.062  0.019   -0.391  -0.126  -0.022  

   0 0.248  0.049  0.011   -0.354  -0.104  -0.003  

   0.3 0.243  0.061  0.013   -0.344  -0.103  -0.005  

  0.7 -0.3 0.368  0.110  0.010   -0.513  -0.238  -0.010  

   0 0.341  0.105  0.007   -0.473  -0.223  -0.005  

   0.3 0.340  0.127  0.007   -0.466  -0.232  -0.013  

Note. L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-MCDM=LTA-longitudinal MCDM.  
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Table A. 14 

SE of the Item Intercept and Attribute Main Effect Estimates 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 SE of ,0

ˆ
i   SE of ,1,( )

ˆ
i k  

L- LLM L-MCDM LTA-L-MCDM  L- LLM L-MCDM LTA-L-MCDM 

100 0.6:0.4 0.3 -0.3 0.318  0.346  0.344   0.385  0.471  0.480  

   0 0.333  0.355  0.351   0.395  0.489  0.491  

   0.3 0.342  0.345  0.346   0.406  0.482  0.499  

  0.7 -0.3 0.320  0.352  0.344   0.395  0.474  0.472  

   0 0.328  0.360  0.346   0.412  0.494  0.487  

   0.3 0.333  0.337  0.339   0.415  0.480  0.496  

 0.8:0.2 0.3 -0.3 0.342  0.365  0.367   0.403  0.519  0.528  

   0 0.365  0.364  0.360   0.418  0.516  0.526  

   0.3 0.354  0.352  0.354   0.413  0.507  0.526  

  0.7 -0.3 0.334  0.365  0.356   0.401  0.494  0.489  

   0 0.346  0.362  0.356   0.413  0.503  0.496  

   0.3 0.349  0.352  0.346   0.415  0.495  0.505  

800 0.6:0.4 0.3 -0.3 0.133  0.143  0.145   0.150  0.187  0.196  

   0 0.139  0.147  0.149   0.156  0.194  0.204  

   0.3 0.138  0.146  0.149   0.157  0.196  0.207  

  0.7 -0.3 0.136  0.141  0.146   0.157  0.183  0.192  

   0 0.136  0.143  0.149   0.158  0.184  0.196  

   0.3 0.137  0.146  0.149   0.158  0.192  0.200  

 0.8:0.2 0.3 -0.3 0.145  0.152  0.151   0.163  0.209  0.214  

   0 0.149  0.157  0.158   0.166  0.225  0.232  

   0.3 0.142  0.153  0.153   0.161  0.222  0.228  

  0.7 -0.3 0.141  0.146  0.147   0.156  0.191  0.196  

   0 0.143  0.150  0.155   0.159  0.200  0.207  

   0.3 0.141  0.151  0.153   0.161  0.205  0.205  

Note. L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-MCDM=LTA-longitudinal MCDM. 
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Table A. 15 

RMSE of the Item Intercept and Attribute Main Effect Estimates 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 RMSE of ,0

ˆ
i   RMSE of ,1,( )

ˆ
i k  

L- LLM L-MCDM LTA-L-MCDM  L- LLM L-MCDM LTA-L-MCDM 

100 0.6:0.4 0.3 -0.3 0.678  0.420  0.400   0.888  0.549  0.534  

   0 0.627  0.405  0.388   0.810  0.541  0.524  

   0.3 0.623  0.398  0.387   0.824  0.540  0.530  

  0.7 -0.3 0.758  0.455  0.399   0.997  0.600  0.519  

   0 0.684  0.426  0.378   0.919  0.587  0.520  

   0.3 0.682  0.416  0.375   0.943  0.596  0.525  

 0.8:0.2 0.3 -0.3 0.616  0.435  0.418   0.770  0.616  0.593  

   0 0.572  0.425  0.393   0.717  0.589  0.565  

   0.3 0.602  0.421  0.391   0.750  0.585  0.564  

  0.7 -0.3 0.714  0.489  0.415   0.905  0.648  0.539  

   0 0.646  0.458  0.388   0.824  0.617  0.524  

   0.3 0.660  0.449  0.384   0.856  0.620  0.534  

800 0.6:0.4 0.3 -0.3 0.432  0.156  0.152   0.637  0.217  0.200  

   0 0.419  0.157  0.154   0.609  0.221  0.208  

   0.3 0.419  0.158  0.152   0.601  0.220  0.210  

  0.7 -0.3 0.512  0.186  0.150   0.762  0.295  0.195  

   0 0.490  0.190  0.152   0.725  0.296  0.200  

   0.3 0.482  0.191  0.152   0.707  0.294  0.204  

 0.8:0.2 0.3 -0.3 0.356  0.173  0.155   0.499  0.257  0.218  

   0 0.337  0.172  0.162   0.466  0.265  0.236  

   0.3 0.335  0.174  0.157   0.457  0.265  0.232  

  0.7 -0.3 0.438  0.205  0.149   0.625  0.343  0.199  

   0 0.417  0.209  0.157   0.591  0.345  0.211  

   0.3 0.422  0.221  0.156   0.592  0.347  0.208  

Note. L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-MCDM=LTA-longitudinal MCDM. 
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Table A. 16 

Bias of the Attribute Easiness and Attribute Discrimination Estimates 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 Bias of ˆ

k   Bias of ˆ
k  

L- LLM L-MCDM LTA-L-MCDM  L- LLM L-MCDM LTA-L-MCDM 

100 0.6:0.4 0.3 -0.3 -0.234  0.125  0.083   0.286  0.138  0.148  

   0 -0.288  -0.064  -0.088   0.553  0.225  0.220  

   0.3 -0.184  0.016  -0.035   0.631  0.393  0.389  

  0.7 -0.3 -0.266  0.167  0.088   0.448  0.133  0.116  

   0 -0.327  0.027  -0.126   0.725  0.250  0.246  

   0.3 -0.219  0.110  -0.081   0.806  0.404  0.350  

 0.8:0.2 0.3 -0.3 -0.121  0.139  0.139   0.130  0.097  0.101  

   0 -0.171  0.029  -0.048   0.354  0.184  0.208  

   0.3 -0.074  0.039  -0.009   0.592  0.425  0.395  

  0.7 -0.3 -0.154  0.197  0.152   0.237  0.109  0.097  

   0 -0.199  0.122  -0.081   0.491  0.190  0.213  

   0.3 -0.106  0.147  -0.052   0.688  0.436  0.367  

800 0.6:0.4 0.3 -0.3 -0.133  0.203  0.151   0.699  0.699  0.650  

   0 -0.162  0.153  0.110   0.496  0.646  0.610  

   0.3 -0.093  0.074  0.032   0.645  0.459  0.429  

  0.7 -0.3 -0.287  0.231  0.153   0.957  0.672  0.604  

   0 -0.280  0.200  0.102   0.864  0.661  0.560  

   0.3 -0.199  0.140  0.023   0.902  0.467  0.382  

 0.8:0.2 0.3 -0.3 -0.087  0.236  0.170   0.293  0.656  0.643  

   0 -0.093  0.178  0.117   0.289  0.627  0.639  

   0.3 -0.045  0.116  0.050   0.408  0.475  0.484  

  0.7 -0.3 -0.145  0.303  0.177   0.418  0.687  0.603  

   0 -0.134  0.247  0.112   0.377  0.650  0.564  

   0.3 -0.089  0.205  0.041   0.515  0.487  0.417  

Note. L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-MCDM=LTA-longitudinal MCDM.  
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Table A. 17 

SE of the Attribute Easiness and Attribute Discrimination Estimates 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 SE of ˆ

k   SE of ˆ
k  

L- LLM L-MCDM LTA-L-MCDM  L- LLM L-MCDM LTA-L-MCDM 

100 0.6:0.4 0.3 -0.3 0.233  0.173  0.181   0.628  0.355  0.499  

   0 0.247  0.215  0.227   0.381  0.495  0.514  

   0.3 0.261  0.231  0.259   0.419  0.566  0.717  

  0.7 -0.3 0.258  0.191  0.192   0.570  0.390  0.510  

   0 0.246  0.186  0.200   0.311  0.352  0.399  

   0.3 0.255  0.204  0.199   0.331  0.530  0.484  

 0.8:0.2 0.3 -0.3 0.237  0.171  0.175   0.704  0.313  0.519  

   0 0.246  0.235  0.248   0.482  0.556  0.564  

   0.3 0.268  0.258  0.262   0.423  0.562  0.645  

  0.7 -0.3 0.267  0.199  0.164   0.710  0.446  0.476  

   0 0.245  0.217  0.208   0.322  0.434  0.496  

   0.3 0.256  0.231  0.200   0.334  0.440  0.476  

800 0.6:0.4 0.3 -0.3 0.101  0.066  0.066   0.195  0.150  0.161  

   0 0.099  0.068  0.069   0.191  0.159  0.165  

   0.3 0.102  0.070  0.069   0.193  0.215  0.229  

  0.7 -0.3 0.124  0.085  0.073   0.221  0.267  0.204  

   0 0.111  0.080  0.064   0.199  0.221  0.169  

   0.3 0.115  0.073  0.064   0.223  0.197  0.194  

 0.8:0.2 0.3 -0.3 0.104  0.073  0.071   0.207  0.137  0.140  

   0 0.106  0.075  0.067   0.260  0.148  0.125  

   0.3 0.088  0.077  0.070   0.140  0.204  0.193  

  0.7 -0.3 0.116  0.084  0.063   0.213  0.245  0.164  

   0 0.108  0.089  0.064   0.214  0.249  0.161  

   0.3 0.101  0.083  0.065   0.192  0.189  0.196  

Note. L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-MCDM=LTA-longitudinal MCDM. 
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Table A. 18 

RMSE of the Attribute Easiness and Attribute Discrimination Estimates 

J 
(1) (1):

A BM M   |B AM Mp  ( )1T
 



 RMSE of ˆ

k   RMSE of ˆ
k  

L- LLM L-MCDM LTA-L-MCDM  L- LLM L-MCDM LTA-L-MCDM 

100 0.6:0.4 0.3 -0.3 0.392  0.229  0.242   0.707  1.062  1.077  

   0 0.481  0.315  0.328   0.845  0.643  0.653  

   0.3 0.417  0.293  0.323   0.976  0.809  0.912  

  0.7 -0.3 0.463  0.258  0.236   0.953  1.030  1.033  

   0 0.539  0.315  0.342   1.024  0.576  0.637  

   0.3 0.483  0.270  0.272   1.162  0.731  0.813  

 0.8:0.2 0.3 -0.3 0.283  0.252  0.252   0.846  1.057  1.146  

   0 0.363  0.282  0.330   0.759  0.663  0.715  

   0.3 0.324  0.325  0.335   1.023  0.806  0.892  

  0.7 -0.3 0.339  0.283  0.240   0.823  1.014  1.121  

   0 0.421  0.277  0.332   0.918  0.557  0.692  

   0.3 0.371  0.299  0.248   1.074  0.694  0.873  

800 0.6:0.4 0.3 -0.3 0.175  0.218  0.175   0.909  1.188  1.198  

   0 0.210  0.187  0.154   0.628  1.101  1.094  

   0.3 0.148  0.107  0.103   0.694  0.604  0.602  

  0.7 -0.3 0.369  0.257  0.175   1.359  1.001  1.141  

   0 0.375  0.256  0.142   1.222  0.973  1.035  

   0.3 0.295  0.160  0.092   1.108  0.529  0.512  

 0.8:0.2 0.3 -0.3 0.138  0.254  0.195   0.452  1.178  1.232  

   0 0.146  0.208  0.162   0.415  1.059  1.159  

   0.3 0.106  0.140  0.115   0.435  0.610  0.684  

  0.7 -0.3 0.222  0.331  0.193   0.740  1.030  1.186  

   0 0.205  0.288  0.145   0.605  0.903  1.049  

   0.3 0.171  0.225  0.099   0.623  0.533  0.566  

Note. L-LLM=Longitudinal LLM; L-MCDM=Longitudinal MCDM; LTA-L-MCDM=LTA-longitudinal MCDM. 
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Appendix B: Item Parameter and Higher-Order Structural Parameter Estimates in the Empirical Data 

Analysis 
 

Table B. 1 

Item Parameter Estimates of the LTA-longitudinal-MCDM in the Empirical Data Analysis and the Derived Conditional Item Correct 

Response Probability Given Successful Strategy Application and Skill Implementation Difficulty 

Item Item 

Intercept  

( ,0i ) 

Attribute main effect parameters  

( ,1,( )i k ) 

 Conditional probability of correct 

response given the successful 

strategy application 

 Probability of individuals with

0 =  mastering all the required 

attributes of a strategy 

RPR MD NSF GG  Complex 

Strategy 

Simple 

Strategy 

 Complex 

Strategy 

Simple 

Strategy 

1 -2.61 

(0.17) 

1.77 

(0.22) 

2.04 

(0.20) 

   0.77 0.30  0.18 0.25 

2 -0.49 

(0.10) 

 2.25 

(0.14) 

   0.85 0.85  0.74 0.74 

3 -3.69 

(0.26) 

0.55 

(0.29) 

1.57 

(0.28) 

0.69 

(0.18) 

1.41 

(0.29) 

 0.63 0.19  0.02 0.15 

4 -2.12 

(0.13) 

 1.97 

(0.18) 

1.21 

(0.16) 

  0.74 0.29  0.15 0.20 

5 -1.86 

(0.15) 

 2.71 

(0.26) 

3.54 

(0.27) 

  0.99 0.84  0.15 0.20 

6 -0.89 

(0.09) 

  5.20 

(0.67) 

  0.99 0.99  0.20 0.20 

7 -4.69 

(0.40) 

0.61 

(0.35) 

 4.97 

(0.39) 

0.49 

(0.32) 

 0.80 0.57  0.03 0.20 

8 -1.18 

(0.09) 

  1.09 

(0.14) 

1.16 

(0.17) 

 0.75 0.48  0.12 0.20 

9 -1.07 

(0.11) 

 2.57 

(0.14) 

   0.82 0.82  0.74 0.74 
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10 -2.19 

(0.19) 

 

 

4.57 

(0.22) 

   0.92 0.92  0.74 0.74 

11 -1.41 

(0.14) 

 4.92 

(0.26) 

   0.97 0.97  0.74 0.74 

12 -2.17 

(0.17) 

 3.83 

(0.19) 

   0.84 0.84  0.74 0.74 

13 -1.11 

(0.14) 

3.44 

(0.44) 

3.01 

(0.21) 

   0.87 0.91  0.74 0.25 

14 -3.22 

(0.25) 

3.31 

(0.31) 

3.00 

(0.31) 

1.91 

(0.26) 

  0.85 0.52  0.15 0.25 

15 -1.21 

(0.12) 

   2.18 

(0.15) 

 0.72 0.72  0.62 0.62 

16 -0.84 

(0.11) 

   2.01 

(0.15) 

 0.76 0.76  0.62 0.62 

17 -4.49 

(0.55) 

3.40 

(0.57) 

 0.06 

(0.06) 

0.05 

(0.05) 

 0.25 0.27  0.25 0.03 

18 -1.06 

(0.13) 

   5.00 

(0.58) 

 0.98 0.98  0.62 0.62 

19 -4.49 

(0.59) 

   4.98 

(0.60) 

 0.62 0.62  0.62 0.62 

20 -2.12 

(0.17) 

0.87 

(0.20) 

  2.08 

(0.20) 

 0.70 0.49  0.15 0.62 

21 -2.55 

(0.18) 

2.47 

(0.27) 

0.32 

(0.20) 

 1.36 

(0.21) 

 0.78 0.30  0.15 0.46 

Note. A blank entry in the main effect parameters indicates that an attribute does not affect the correct item response probability in 

complex strategy or simple strategy as, based on the empirical Q-matrices, the attribute is not required to solve the item by either 

strategy. RPR=ratios and proportional relationships; MD=measurement and data; NSF=number system – fractions; GG=geometry – 

graphing. 
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Table B. 2 

Higher-Order Structural Parameter Estimates of the LTA-longitudinal-MCDM in the Empirical Data Analysis 

Attribute 
Attribute easiness parameter ( k )  Attribute discrimination parameter ( k ) 

Estimate SE 95% CI  Estimate SE 95% CI 

Ratio & proportion relations (RPR) -1.12 0.35 [-1.90, -0.53]  2.39 0.43 [1.66, 3.42] 

Measurement & data (MD) 1.03 0.22 [0.63, 1.53]  3.01 0.52 [2.22, 4.31] 

Number system – fractions (NSF) -1.39 0.19 [-1.77, -1.06]  1.94 0.27 [1.46, 2.49] 

Geometry – graphing (GG) 0.48 0.15 [0.19, 0.78]  1.85 0.24 [1.41, 2.38] 

Note. 95% CI=95% Bayesian Credible Interval. 
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