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Chapter 1: INTRODUCTION 

1.1 Air Traffic Overview  

 Air traffic in the continental United States has seen impressive growth in the past 

few decades. It has evolved from being a small industry into a key economic driver 

employing over 1.7 million people in the United States [1]. In spite of setbacks caused by 

recent events such as 9/11, the SARS epidemic and the continuing war in Iraq, there are 

no signs of abatement. Indeed, current projections indicate that air traffic will grow at an 

annual rate of 3 - 5% over the next 12 years [2].  

 Unfortunately, the growth in air traffic in the United States has not been marked 

by a corresponding increase in airport resources. As a result, the level of congestion has 

risen, leading to staggering delays during peak periods of activity. These delays result in 

substantial costs: In 2000 the delays attributable to the Air Traffic Control (ATC) system 

have cost the industry and its passengers and shippers a record $6.5 billion, not including 

downstream costs on other sectors of the economy [3]. The disproportion between 

stagnating capacity and ever-increasing demand has (and will have) enormous 

consequences on the performance of the air transportation system.  

 Not surprisingly, the current levels of delay and the projected growth in demand 

have led to a large number of initiatives that intend to alleviate congestion. These 

initiatives are both varied and abundant. Some airports are considering increases in 

capacity by building new runways. Other initiatives consider the potential of demand 

management measures, such as the use of auctions at LaGuardia Airport [4]. In addition, 

the FAA has implemented (and is considering) procedural changes during the 
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management of daily operations which aim at increasing flexibility. A short-term strategy 

for reducing or eliminating air traffic jamming is by adopting the Ground Delay 

Programs. The Ground Delay Program (GDP), first established in 1981, is a mechanism 

used to decrease the rate of incoming flights into an airport when it is projected (due to 

weather forecast for instance) that arrival demand will exceed capacity.  

 

1.2 Air Traffic Management  

 In the U.S., the Federal Aviation Administration (FAA) is responsible for the 

coordination of air traffic across the National Airspace System (NAS). Its primary task is 

the enforcement of proper separation requirements in the controlled airspace. This tactical 

separation service in real-time collision detection and avoidance is provided by the 

network of Air Traffic Control (ATC) centers across the United States. It coordinates the 

movement of aircrafts through the system of vast network of air traffic controllers. The 

secondary task of the FAA is to ensure the efficiency of the NAS, which is referred to as 

Air Traffic Flow Management (ATFM). Figure 1.1 shows the interactions between the 

different divisions of ATM. 
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Figure 1.1: ATM Components 

1.2.1 Air Traffic Flow Management (ATFM)  

 The strategic ATFM functions performed by the FAA are primarily coordinated 

by the Air Traffic Control System Command Center (ATCSCC). The ATCSCC 

continuously monitors current and projected demand within the NAS and identifies 

system constraints or other conditions (e.g. weather) that may affect the smooth running 

of the system. The ATCSCC tries to mitigate the effects of predicted congestion in the 

airspace.  

1.2.2 Collaborative Decision Making (CDM) 

 The Collaborative Decision Making (CDM) Program was formed in 1995 as a 

joint government/industry initiative to develop new technology and procedures to ensure 

a safe and efficient National Airspace System beneficial for all the stakeholders (the 

aviation community and the flying public) [6 and 7] . The CDM Program focuses on 

several air traffic management initiatives and is not a single goal, but a philosophy of 

business. It is based on the belief that air traffic flow management can be improved if 

there is a closer collaboration between the FAA and the airlines and other airspace users, 

with large benefits for all involved parties. This collaboration takes the shape of mutual 

exchange of data and more flexible and efficient collaborative procedures.  

 The collaboration between government and industry was born out of the FAA’s 

need for real-time operational information from the airlines and the airlines’ desire to 

gain more control over their operations during a GDP, especially in matters with 

economic consequences [8]. The initial operational implementation of CDM had been 

 3



aimed at the development of operational procedures and decision support tools for 

implementing and managing Ground Delay Programs (GDPs). CDM strives to achieve 

transparency in information exchange by generating better information from various 

sources, distributing the same information to the FAA and the NAS users, and allowing 

NAS users to collaborate with the FAA traffic flow managers in the formulation of flow 

management actions. Some of the CDM programs that have gained acceptance among the 

air traffic community are as follows:  

• Improved Estimated Departure Clearance Time (EDCT) Compliance: For arriving 

at the destination airport on-time, a flight has to be EDCT compliant, i.e., the 

flight should take-off within a 10-minute departure window. CDM has been 

providing airlines with real-time airport arrival information and has encouraged 

airlines to focus on EDCT compliance in a collaborative manner.  

• Improved Predictability: CDM has made a concerted effort to improve the 

accuracy of flight departure predictions.  

• Enhanced GDP Performance: The Rate Control Index (RCI) measures the flow of 

air traffic into an airport and compares it to the targeted flow that was set by the 

traffic flow managers at the ATCSCC during a GDP.  

• Reduced Near-Term GDP Cancellations: The combination of improved demand 

information and the power run feature of Flight Scheduling Monitor (software 

used to coordinate GDP planning) that allow ATCSCC personnel to delay the 

implementation of a GDP to the last possible minute decrease the number of near-

term cancellations.  
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• Compression Benefits: A compression algorithm maximizes the use of slots 

vacated by cancelled or delayed flights.  

• Increased User Equity: The use of the Official Airline Guide (OAG) as a priority 

list for the Ration-By-Schedule (RBS) sets the standards for more equity between 

the airlines, as opposed to real-time estimated time of arrival (ETA).  

• Tailored GDPs through Revisions: Prior to CDM, the ATCSCC did not have the 

ability to modify GDP parameters such as scope, duration or the associated 

Airport Acceptance Rate (AAR).  

 The success of these initial CDM efforts has highlighted the potential benefits of 

increased collaboration in ATFM, and led to a number of projects that aim to enhance the 

basic application of CDM to GDPs. These procedures present a significant move towards 

decentralized Air Traffic Flow Management.  

  The resource allocation schemes implemented under CDM have addressed these 

issues through a fundamental change in the allocation of airport capacity. Rather than an 

assignment of individual flights to arrival slots, the central paradigm under CDM is that 

the slots are allocated to airlines. This led to the introduction of two new allocation 

mechanisms, Ration-By-Schedule (RBS) and Compression.  

1.2.3 Ground Delay Programs (GDP) 

 The Federal Aviation Administration (FAA) implemented collaborative 

procedures along with the primary stakeholders, the airlines, for managing demand-

capacity imbalances in the NAS. The Ground Delay Programs (GDPs) is one of the key 

initiatives used by the ATCSCC in reducing congestion. The program is initiated when an 

airport is unable to handle air traffic because of high demand for airport resources and 
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airport capacity constraints. This is typically due to a reduction in the airport’s arrival 

capacity under bad weather. In a GDP, flights bound for congested airports are delayed 

on the ground at their origination airport, so as to balance the total number of arrivals 

with the reduced capacity at the airport under consideration. The underlying motivation is 

that, as long as a delay is unavoidable, it is both safer and cheaper for the flight to absorb 

the delay on the ground before take-off.  

 The demand-capacity imbalances that usually occur at airports due to bad weather 

are difficult to forecast. It is difficult to forecast capacity issues even 1-2 hours prior to 

the implementation of a GDP. In spite of the uncertainty in the airport capacity profile, 

the ATCSCC assumes a deterministic capacity profile and plans GDP accordingly.  

 For modeling GDP, the capacity constraints at the airport are considered in the 

allocation of arrival slots for the flights. After assigning the arrival slots to the flights, the 

departures of the flights from the origination airport are constructed. Ground delay is 

computed from the difference between the original time of departure and the controlled 

time of departure. Two significant classes of flights destined for the arrival airport are 

exempted during GDP. Flights that are already in the air are exempted. Also, flights 

originating at airports greater than a certain distance away from the GDP airport are 

exempted because of the uncertainties in the length of the GDP.  

 

1.2.4 Ration-By-Schedule (RBS) 

 The concept of RBS is very simple. RBS assigns flights to slot on a first-

scheduled first-served basis ordered according to their original scheduled time of arrival 

as published in the Official Airline Guide (OAG) [10]. The end result of RBS should not 
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be viewed as an assignment of slots to flights but rather as an assignment of slots to 

airlines.  

 Suppose that at La Guardia Airport (LGA), the nominal Arrival Acceptance Rate 

(AAR) is 30 flights per hour under fair weather conditions. Under a GDP, the AAR of the 

airport drops to 15 flights per hour. The flights are moved accordingly to accommodate 

the lower AAR. The visual representation of the RBS process is provided in Table 1.1. 

    

   Initial Arrival Schedules     RBS Assignment 

   (AAR = 60 flights / hr)     (AAR = 30 flights / hr) 

AAL1:S1200    S1200   AAL1:S1200     S1200 

AAL2:S1201     S1201   AAL2:S1201     S1201 

UAL1:S1202    S1202   UAL1:S1202     S1202 

USA1:S1203    S1203   USA1:S1203     S1203 

UAL2:S1204    S1204         S1204 

             S1205 

             S1206 

Figure 1.2: Slot assignment based on Ration-By-Schedule

1.2.5 Intra-Airline Substitution 

 In the intra-airline substitution process, an airline can cancel or swap one of its 

earlier flights which had been assigned an arrival slot under GDP through the ration-by-

schedule procedure, and can then move other flights as their slots permit. The substitution 

procedure is adopted by the airline presumably to manage its internal economic 

objectives of reducing delays of its critical flights in exchange for increasing the delays of 
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some of its non-critical flights. The airline does not have to interact with the FAA in the 

construction of this substitution process, except to inform the FAA of its decisions.  

 An example of an intra-airline substitution process has been illustrated in Figure 

1.3. The prefix ‘S’ in front of the hour refers to arrival slot of the flight. American 

Airlines is willing to cancel an earlier flight, AAL2, to reduce delays of some of its other 

economically important flights during a GDP.  

 

   Initial RBS Assignment          Substitution Assignment 

AAL1:S1200  S1200      AAL1:S1200  S1200 

AAL2:S1201  S1202 CXL     AAL2:S1201  S1202 

AAL3:S1202  S1204      AAL3:S1202  S1204 

USA1:S1203  S1206      USA1:S1203  S1206 

AAL4:S1204  S1208      AAL4:S1204  S1208 

COA1:S1205  S1210      COA1:S1205 S1210 

AAL5:S1206  S1212      AAL5:S1206  S1212 

Figure 1.3: Intra-airline substitution 

 Due to the cancellation of its flight AAL2, American Airlines is able to move up 

the arrival slots of its flights AAL3, AAL4 and AAL5. In this example, AAL3 and AAL4 

are moved to slots that correspond to their actual arrival times under fair-weather 

conditions. Other airlines’ slots are unaffected by these transactions. 

1.2.6 Compression 

 After the airlines have conducted the internal cancellation and reassignment of 

their flights, there will be “holes” in the arrival schedules that an airline is unable to fill 
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through internal substitutions. In this case, the airline requires assistance from the FAA 

for filling these vacant slots. These “holes” or vacant slots are filled by the ATCSCC by 

running the compression algorithm, which shifts all the flights up in the schedule to fill 

the “holes” in the arrival schedules during GDP. The presumption behind compression is 

that it will be acceptable to an airline to have any of its flights accelerated in the GDP 

schedule, except that the flights cannot be moved into slots earlier than their original, 

non-GDP scheduled time of arrival. Compression has been in operation across the NAS 

since 1998 as a means to improve airport resource utilization. A detailed description of 

compression is provided in Chapter 2. 

 

1.2.7 Slot Credit Substitution (SCS) 

 In recent times, the air traffic management has shifted from using static models 

for demand management to more dynamic, adaptive models. Due to certain limitations of 

compression caused because of the ATCSCC’s reluctance to run compression, which will 

be discussed in detail in Chapter 2, Slot Credit Substitution (SCS) has been adopted as a 

means to improve resource utilization under GDP. In the case of SCS, an airline is 

willing to give up one of its arrival slots but in return will like to move up one of its other 

critical flights into a lot vacated by another airline and reduce delays for this flight.  SCS 

essentially is similar to compression in moving up flights but is more “transaction 

oriented” rather than a “batch process”. 
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1.3 Problem Description 

 As mentioned in the above section, SCS and compression are different means of 

achieving increased airport resource utilization under GDP. Flight delays can be reduced 

through either of these two programs. SCS is an adaptive, dynamic means of improved 

utilization of airport resources. Compression, on the other hand, is considered a static 

means of achieving increased slot utilization.  

 This thesis will be an attempt to develop theoretical models to understand the 

performance of compression to slot exchange requests from airlines. Some of the 

questions that are addressed in this thesis are: 

• What are the underlying factors that affect the benefits obtained from these two 

procedures? 

• What are the trends witnessed in these slot exchange methods and the benefits in 

terms of delay savings realized by the airlines? 

• Under what conditions will compression be able to provide a performance similar 

to that obtained through Slot Credit Substitution? 

• What can be an appropriate metric to evaluate the benefits obtained from these 

procedures?  

• Are there other avenues where the concepts learned from these procedures be 

adopted for improving efficiency of the NAS?  
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1.4 Literature Review 

 Extensive literature review was conducted for all the different models that had 

been adopted by the ATCSCC for air traffic management at resource-constrained airports 

during a GDP. For a better understanding of the slot exchange methods, it is imperative 

that the concepts behind CDM philosophy are studied and researched. 

 One of the earliest discussions on CDM could be found in the article by 

Wambsganss (1996) [11]. The article talks about the value created across the NAS 

through information exchange between the stakeholders of NAS. The article, published in 

the Air Traffic Control Quarterly, lists the advantages of Collaborative Decision Making 

(CDM) for the FAA, the airlines and the flying public. In 1998, Ball et al. [9], prepared a 

document on the preliminary assessment of CDM implementation. In this document, a 

comprehensive outlook on the impact of information distribution and common situational 

awareness on decision making and the ability of airlines to make economic resource 

allocation decisions to solve capacity-demand imbalance is provided. The impact 

assessment of the different CDM technologies and paradigms was also conducted.  

 Ball et al. in their presentation in June 2000 discuss the positive impact of CDM 

on the quality of information and its distribution through increased accuracy of flight 

departures and the submission of more timely flight cancellation notices. This article also 

discusses the application of CDM philosophies to other areas of air traffic management 

such as Collaborative Routing (CR).  Conference papers [4] from Air Traffic 

Management Conference, ATM 2001 at Santa Fe, were referred for the impact of CDM 

initiatives on operational improvement of air traffic. 
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 As CDM had grown through the years, the need for future direction of CDM 

concepts was realized. Ball et al. (2001) discuss the future directions in collaborative 

decision making. This paper reviews on-going and proposed CDM research streams. The 

topic areas included in this paper are on ground delay program enhancements, 

collaborative routing, performance monitoring and analysis, collaborative resource 

allocation mechanisms, game theory models for analyzing CDM procedures and 

information exchange, collaborative information collection and distribution. Slot Credit 

Substitution is one of the newer concepts that have been implemented under the CDM 

umbrella. This document was used to understand the future course of actions for CDM. 

 Vossen (2002) discusses fair allocation of airport resources during GDP using 

models such as Ration-By-Schedule and introduces methods that may be used to manage 

the allocation of resources dynamically. This paper includes concepts regarding one-for-

one and two-for-two slot trades which have been the basis behind newer concepts such as 

Slot Credit Substitution. This paper also discusses compression in detail and its potential 

to improve slot utilization across the NAS. Compression was implemented at the 

ATCSCC in 1998 and can be considered a mature algorithm for enhancing slot 

utilization.  

 Literature review for compression was obtained from Metron Aviation Inc.. This 

website is a rich source of literature on compression and also contains data related to 

compression benefits.  

 Slot Credit Substitution was implemented in NAS in May 2003. Due to the 

relative newness of the slot exchange method, there has been a dearth of information on 

this procedure. A basic understanding of SCS method was gained through various 
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PowerPoint slides obtained from a number of disparate sources. In [12], Roger Beatty of 

American Airlines had presented to the CDM A&D sub group meeting the basic concepts 

of SCS and the desirability of this model as a public policy goal. Another important 

document that was studied for calculation of SCS benefits is by Justin Voshell of Metron 

Aviation, Inc. ([13] and [14]) 

 

1.5 Organization of Thesis 

 Chapter 2 provides the reader with details on the compression and SCS 

procedures and examples of how the benefits obtained from each of these procedures can 

be calculated. This chapter also talks about the philosophy behind the implementation of 

compression and the limitations of this process that led to reduced information exchange 

between the ATCSCC and the airlines. SCS was adopted by the ATCSCC to circumvent 

the drawbacks of compression and provide airlines more control over the decision 

making process. 

 In Chapter 3, we develop theoretical models based on the ability of compression 

to influence the inter-airline slot exchange request submissions. We try to understand the 

factors that affect the successful processing of SCS requests and compression. We 

assume a particular distribution of exchange requests to the ATCSCC and try to 

understand the implications of running compression at various intervals of time. 

Sensitivity analysis is conducted to determine the effects of changes in various 

parameters on the benefits obtained from SCS and compression. The models created are 

applied to real-world inter-airline exchange requests to understand the ability of the 

models to provide benefits to airlines. 
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 Chapter 4 contains information on the sources of data and preparation of data that 

was undertaken before further impact assessment could be done for SCS and 

compression. 

 Chapter 5 discusses means of creating metrics for comparison of SCS and 

compression benefits. It also provides information on the trends in the industry, adoption 

rates in the industry, airline behavior through the years towards these slot exchange 

schemes and the future of these procedures.  

 In Chapter 6, the main contributions of this thesis are summarized. We also 

evaluate other areas in air traffic management where the concepts behind these models 

can be ported for increased efficiency in the system. 
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Chapter 2: BACKGROUND 

 Compression and Slot Credit Substitution (hereafter referred to as SCS) are key 

elements under FAA’s Collaborative Decision Making (CDM) and Ground Delay 

Program Enhancement (GDPE) programs. These procedures have been adopted by the 

FAA for improved utilization of critical airport resources during Ground Delay Programs. 

This chapter discusses these slot exchange mechanisms in detail. 

 

2.1 Compression  

 Compression is a slot optimization and utilization procedure used by the FAA Air 

Traffic Control System Command Center (ATCSCC) to ensure that valuable airport 

resources such as arrival slots do not go unused during a Ground Delay Program (GDP).  

During a GDP, airlines cancel and delay their flights and, thus, create vacant arrival slots 

at the destination airport. The slot is vacated by the airline when it determines that the 

slot can not be utilized through simple intra-airline substitution process. The compression 

algorithm that is run by the ATCSCC at regular intervals identifies these open arrival 

slots and moves other flights up thus reducing their delays.  Compression always attempts 

to fill an open slot by moving a flight which belongs to a CDM-participating airline that 

can benefit from the slot.  If there are no flights of the CDM-participating airline, then the 

slot is made available to all the other flights. Compression also tries to give preference to 

the flights of the airline that vacated the slot to be moved up. The basic philosophy 

behind compression is that the airline that vacates the slot is paid back for the released 

slots encouraging the airlines to provide the ATCSCC information on their flight 
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cancellations. The cycle of decision making in the case of compression as given in Figure 

2.1 [10]: 

ATCSCC 

 

Figure 2.1: Cycle of Decision-making for Compression 

 Air Traffic Control System Command Center (ATCSCC) plays an important role 

in the decision-making process. ATCSCC implements the Ration-by-schedule procedure. 

The airlines try to construct intra-airline substitutions. If these substitutions are not 

feasible, the airlines provide their cancellation information to the ATCSCC. Once this 

information reaches the command center, the airlines wait for ATCSCC to run 

compression which will benefit their flights.  

 A conceptual overview of the compression algorithm for a known set of flights is 

provided below:  

Step 1: Flights are ordered according to their schedule. Open slots are determined.  

Step 2: The owner of the open slot is determined and the following rules are used 

to fill the slot.  

 Cancellation/ 
Substitution 

 
RBS Compression 

Airlines 
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 2.1 The flights from any other CDM participating airline are used to 

 assign to the slot. If there is no such flight, go to Step 2.2 else to Step 3.  

 2.2 Other non-CDM participating flights are considered for the open slots. 

 If there is no such flight, go to Step 2.2 else to Step 3. 

 2.3 If there are no flights that can be assigned then return to Step 1 and 

 select the next open slot.  

Step 3: The slot assignments of the flights are swapped and Step 2 is repeated. 

The extent to which a flight can be moved up will be limited by its scheduled time of 

departure. Moreover it is assumed that a flight cannot be moved down from its position in 

the current schedule.  

 An example of the compression process is illustrated below in Figure 2.2.  

 

Initial Assignment     Compression Assignment 

AAL1:S1200  S1200    AAL1:S1200  S1200 

AAL2:S1201  S1202 CXL   AAL2:S1201  S1202 

UAL1:S1202  S1204    UAL1:S1202  S1204 

USA1:S1203  S1206    USA1:S1203  S1206 

UAL2:S1204  S1208    UAL2:S1204  S1208 

COA1:S1205  S1210    COA1:S1205  S1210 

AAL3:S1206  S1214    AAL3:S1206  S1212 

Figure 2.2: Compression Example 

American Airlines cancels its flight AAL2. American Airlines is not able to substitute the 

slot with one of its other flights. When the ATCSCC runs compression, the flights of 
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other CDM participating airlines are moved up till it becomes possible for American 

Airlines to schedule one of its flights to a vacant slot. In this case, United Airlines flight 

UAL1 and US Airways flight USA1 are moved up till it becomes possible for American 

Airlines to utilize a slot for its next flight AAL3. 

2.2 Slot Credit Substitution 

 Slot Credit Substitution (SCS) is a dynamic slot swapping tool that provides the 

airlines with the flexibility of substituting flights and gain credit for releasing an earlier 

slot. The substituting airline benefits by getting rewarded with an earlier slot by virtue of 

its relinquishing the arrival slot of one of its other flight. SCS resembles a combination of 

the substitution and compression processes within a GDP.  

 SCS is a conditional request, i.e., an airline is willing to cancel one of its earlier 

flights only if it is able to get a replacement slot that it desires. SCS is initiated by the 

airlines under three different circumstances: 

• When an airline cancels a flight but is not able to move any of its other flights to 

the vacated slot to reduce delays for later flights because of a gap in their 

schedule.  

• When an airline has a flight that cannot make its Expected Departure Clearance 

Times (EDCT) and there are no other flights in its schedule that can fit into that 

slot.   

• When an airline wants to protect a critical flight that will otherwise be canceled, 

because it has no other slots in its schedule that the flight will fit into. 

SCS was instituted in the ATCSCC with the release of the Enhanced Traffic Management 

System (ETMS) 7.6. This release of ETMS was implemented in the ATCSCC in May 
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2003 and since then has been able to handle SCS requests. SCS is made possible among 

the airlines by a bridging process that links the Airline Operation Centers (AOCs) with 

the FAA ATCSCC.  

 The general flow of an SCS process is that the airline submits its request for slot 

exchange to ETMS.  The airline is willing to cancel one of its flights provided that it is 

able to secure an arrival slot later in the GDP. The substitution chain is constructed using 

flights of airlines that are not under the control of the airline requesting SCS. ETMS 

attempts to create a bridge using other users’ flights which is a process similar to 

compression. If successful, ETMS responds positively to the requester and notifies other 

users whose flights have been moved up and generates an updated ADL file. It is 

necessary that all the involved airlines are actively participating in the substitution 

process. The “bridge” flights are flights of the airlines that are moved up in the SCS 

process. It is possible for the airlines to prevent their flights from being considered in any 

pending SCS requests by not participating in the SCS processes.  This will prevent the 

SCS process from interfering with the internal GDP management by the airlines.  The 

following flow chart shows the process of decision-making by the ATCSCC and the 

industry. 
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ATCSCC 

 

Figure 2.3: Cycle of Decision-making for Slot Credit Substitution 

 As can be seen, the ATCSCC initiates RBS. The airlines are willing to cancel 

their flights only if the ATCSCC provides another slot in return that they will be able to 

utilize. The ATCSCC, in collaboration with the airlines, try to create a substitution chain. 

As is apparent from the chart, the process of SCS is a more collaborative approach to 

decision making compared to compression. 

 The “bridging benefit” of the transaction is the total delay savings given to the 

bridging flights in the transaction. The “bridging benefit” can also be termed as the 

primary delay savings achieved through SCS. Once the bridging process is completed, it 

is possible that the requesting carrier will be able to make further substitutions with its 

other flights. Because these substitutions were enabled by the SCS transaction, this 

benefit is termed ‘substitution benefit’ of the transaction. These further slot exchanges 

done by the carrier are also termed ‘cascading effect’ of the substitution benefit. For our 

analysis, we consider the primary delay savings obtained from bridging as the benefits 

obtained from SCS. 

 Cancellation/ 
Substitution 

Slot Credit 
Substitution RBS 

Airlines 

 20



 For a flight to be eligible for bridging, it must meet the following criteria.  

• The flight must not be cancelled, active, or completed. 

• The flight must not be ground stopped. 

• The flight must not be a Pop-up. 

• The flight must have an Earliest Runway Time of Departure (ERTD) later than 

the minimum notification time (30 minutes). This will provide users with the 

ability to remain in compliance with the +/- 5 minute EDCT rule. 

• A flight cannot be moved beyond its Earliest Runway Time of Arrival (ERTA). 

 An example of an SCS transaction is illustrated in Figure 2.4 below. 

FDX 592

 

Figure 2.4: Slot Credit Substitution Example 

 Federal Express (FDX) submits an SCS message to the ATCSCC stating its 

interest in relinquishing slot 2059A and instead requests a window of slots that it will be 

2059A 

2125A 

2200A 

2214B 

2241B 

SCS TRS 69 
CXL BRG  

DAL 2167 
BRG 

DAL 957 
BRG 

Slot obtained 
FDX 502 

Slots requested SUB 
2252A 
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able to utilize. Once ETMS receives this request, it tries to create a substitution chain 

using the flights of other airlines in the schedule. Airtran Airlines (TRS69) and Delta 

Airlines (DAL2167 and DAL957) flights are willing to move their flights up and hence 

facilitate the creation of the bridge. The ‘bridging benefit’ achieved through SCS will be 

the overall delay savings obtained by the bridge flights which in this case are TRS69, 

DAL2167 and DAL957. Substitution of FDX502 to slot 2241B enables Federal Express 

to create ‘cascade effects’ in terms of substitution among its own flights. In this case, 

Federal Express substitutes its flight FDX502 into slot 2241B and thus gains substitution 

benefits. The full benefit obtained from the slot exchange process will be the aggregation 

of “bridging” and “cascading” benefits. 

2.3 Compression over simple substitution models 

 In this section, we discuss the benefits realized through compression over simple 

substitution processes adopted by airlines. This will provide an insight into the 

philosophy behind the implementation of compression by the FAA.  

 Simple substitution process is used by the airlines to move flights into an open 

slot made available by the same airline which owns the slot first. Airlines were using this 

capability prior to Collaborative Decision Making (CDM). Any airline can cancel its 

flight which had been assigned an arrival slot in a GDP and move another one of its 

flights up to fill the open slot. Even though an airline achieves benefits using the simple 

substitution process, some airlines did not implement this capability and so did not do the 

substitutions.  Also, even though an airline may have the capability to use the substitution 

process, it was sometimes difficult for the airline to capitalize on every opportunity for 

substitution.  There have been frequent instances when slots went unused because the 
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airline that owned the slot did not substitute one of their flights to fill it.  This was 

especially pronounced during severe weather events when it was difficult for the airlines 

to stay on top of its substitution process.  

 Compression was adopted by the FAA as a means to reduce delays across all the 

flights. Compression provided a tool for the ATCSCC to do these substitutions for the 

airlines resulting in overall delay reductions across all of their flights. Also, compression 

provided a means for the airlines to benefit in terms of delay reductions on flights that 

could not be moved up to the slot vacated by the canceled flight of the airline. 

 A detailed analysis had been conducted at Metron Aviation to determine the 

benefits obtained from substitution and compression for all compression cycles between 

September 8, 1998 and March 17, 1999 [15]. The results from this analysis showed that 

over all of these compression cycles, 66% of the compression benefits could have been 

achieved theoretically by intra-airline substitution process if the airlines had initiated the 

process and 34% of the compression benefits could never have been achieved without 

compression. 

 

2.4 Limitations of Compression 

 After compression was implemented by the ATCSCC as a slot utilization 

procedure, there were certain situations when compression did not provide benefits to the 

airlines canceling their flights in the hopes that arrival slots will be compressed by the 

FAA [16]. The airlines that had cancelled their flights in the hopes that their other flights 

will be moved up did not achieve the delay savings. ATCSCC did not run compression 

regularly as they perceive that there will be an increased demand for airport resources due 
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to pop-up and general aviation flights.  This became a major stumbling block to CDM 

because if the ATCSCC does not compress regularly, then airlines do not get the full 

benefit of compression, and airlines partially lose the incentive to cancel flights.   

 Suppose that the ATCSCC issues a Ground Delay Program, and fifteen flights are 

scheduled to arrive during a particular hour in the GDP also called GDP-hour.  The 

airlines that have a slot during that GDP-hour cancel their flight intentionally in the hopes 

that when compression is run their other economically important flights will be moved 

up, reducing their overall delays. The airlines want the ATCSCC to run compression 

since there are open slots available. The ATCSCC, on the other hand, does not compress 

the flights as it expects pop-ups and does not want to create an overbooking scenario. 

This is a situation where the airlines see open slots and want compression, but the 

ATCSCC sees excess demand and does not want to compress. The airline will see that its 

sacrifice of canceling a flight was in vain, and believes that it does not pay to cancel a 

flight in hopes that compression will be run.  All airlines suffer because potential 

cancellations are not made, and excess demand is not reduced which could have been 

reduced if compression could be counted on. 

 

2.5 Advantages of SCS 

 One of the primary benefits from Slot Credit Substitution (SCS) is the even slot-

for-slot exchange. There is an increased system stability/ predictability compared to 

compression. SCS creates a smoother GDP traffic flow, improves Airport Arrival Rate 

(AAR) and EDCT compliance and improves capacity utilization during GDP. Due to a 
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bulk of the onus of substitution falling on the airlines, the workload for the ATCSCC is 

significantly lower than in compression. Other benefits to the command center are in 

terms of decreased need for compression and reduced EDCT Change Request (ECR), 

requests submitted due to missed EDCTs. The airlines benefit from the flexibility 

provided in canceling and substituting their flights. Critical flights of the airlines can be 

accommodated in the schedules. Some of the system benefits obtained from SCS are 

increased predictability, improved airline business decisions in terms of more 

economically suitable cancellation choices, improved passenger throughput, improved 

slot control management, improved user EDCT compliance and reduced delays for all 

airlines. If compression can be counted on, airlines with multiple flights are encouraged 

to cancel their flights and combine passengers.  This is not only a good solution for the 

airline, but it benefits all airlines since the overall demand is reduced at the congested 

airport.  But, the technology requirements for processing SCS messages are higher. The 

increased collaboration among the airlines and the ATCSCC will increase the overheads 

of constructing an efficient slot exchange scheme. 

 In summary, there are advantages and drawbacks of each of the two slot exchange 

mechanisms. Compression has its own inherent advantages in terms of the airlines ability 

to focus on other activities to reduce delays than spend their efforts on creating a 

substitution chain. On the other hand, airlines have to depend on the ATCSCC to run 

compression to realize delay benefits. Under Slot Credit Substitution the airlines take 

control of creating the substitution requirements in order to maximize their internal 

economic objectives.   
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Chapter 3: THEORETICAL MODELING 

 This chapter describes theoretical models that are constructed to evaluate Slot 

Credit Substitution (SCS) and compression. The models will assist in determining the 

benefits in terms of delay savings that can be achieved through SCS and compression. 

Our notion is that as the frequency of compression increases, the benefits obtained from 

compression will be comparable to that from SCS.  

 On initial analysis, it appears that compression is a batch optimization process 

while SCS is a one-for-one exchange process. In a Slot Credit Substitution, an airline is 

willing to cancel or delay one of its flights in exchange for delay savings for one of its 

other flights. Compression, on the other hand, can be viewed as a batch slot optimization 

process where the ATCSCC gathers cancellation and delay information of the airlines 

and then runs compression to improve slot utilization. There are situations in the real 

world where batching the exchange of resources increases optimization due to the choices 

it provides in comparison to one-for-one exchange of resources. Compression does not 

provide any additional advantage inherent to batch optimization processes. This is 

because when compressed, the flights are moved up the slots in accordance with their 

schedules.  

 Let us say that there are two flights X and Y that have their scheduled arrivals at 

1400 and 1420 hours respectively. When compressed, both the flights will be moved up 

proportionately, that is, if X moves up to an arrival slot at 1340, Y will move up 20 

minutes to the arrival slot at 1400 hours. Compression does not provide any additional 

savings beyond what can be achieved through one-for-one exchange. It does not have any 

underlying optimization criteria to enhance delay savings and will imitate SCS benefits 
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when run frequently. This is in line with our notion that frequent compression runs will 

provide similar results to those from SCS. 

 

3.1 Factors Influencing Success of Slot Credit Substitution 

 For SCS to succeed there are some important considerations that need to be taken 

into account. The following example illustrates these factors. Figure 3.1 shows the arrival 

slots allotted to the flights under fair weather conditions as well as slots allotted after a 

GDP has been initiated at the destination airport. Under GDP, the capacity at the 

destination airport has dropped by 50%. United Airlines (UAL) has requested slot 

exchange under SCS for its flight UAL02 and the ATCSCC has found willing airlines 

whose flights can be moved up to construct the slot exchange. American Airlines flight 

AAL11 and Delta Airlines flight DAL01 are the “bridge” flights for this exchange.  The  

Under Fair Weather 
Conditions 

Under GDP 

  

 
BRG

AAL11
BRG

0 

0 

0 

0

0 SCS
AAL11

5 
1 

0 

 
5 

 

 

111
111
110
110
0 

Fig
UAL02
 
 

ure 3.1: Factors influencing success of S

27
120
115
114
113

UAL02
0 

CS 
DAL01
91 
DAL01
SWA9

SWA
SUB  
112
 121
UAL16

UAL16



Controlled Time of Departures (CTDs) of the involved flights are changed. AAL11 

arrives at 1130, DAL01 arrives at 1140, SWA91 retains its original CTD and UAL16 gets 

a CTD of 1200. 

 Table 3.1 contains information on the departure times of the flights from their 

origination airport after GDP has been implemented at the destination airport. Scheduled 

Gate Time of Departure (SGTD) refers to the departure time of the flight from its 

origination airport under fair weather conditions. Controlled Time of Departure (CTD) is 

defined as the time at which the flight will depart from the origination airport after RBS 

algorithm has been initiated at the destination airport. CTD of the flights after the SCS 

exchanges refers to the time at which the flights have to depart to make it to the arrival 

slots that have been allocated to the flights after the exchanges. The airborne time is the 

time required by the flight to reach its destination which is assumed to be a constant. 

Note that the CTD of the flights after the SCS exchanges cannot be earlier than SGTD. 

Table 3.1: Sample of flights for analyzing factors influencing SCS 

   

SGTD 

 

CTD 

 

Airborne time

CTD after SCS 

exchanges 

UAL02 10:00 10:30 1 hr 11:00 

AAL11 09:55 10:30 2 hr 50 min 10:25 

SWA91 08:10 08:50 3 hr 08:50 

DAL01 09:15 10:00 2 hr 09:40 

 

• Timeliness of request for slot exchange: The time at which the airline submits 

its request to place a flight for substitution will have an impact on the success of 

 28



substitution. If the request is submitted too close to the actual time of departure 

of the flight then there may not be enough flights of other carriers willing to 

exchange slots in such a short duration of time. The longer the time between the 

submission of request and the departure time of flight, the choices for slot 

exchanges increase. There is a high likelihood that some of the flights that could 

have been used in the substitution process may have already taken off and are 

not available for substitution. In the above example, if UAL, the airline 

requesting the slot exchange, had submitted its request at 0900, then the 

ATCSCC will be able to perform the exchanges, as the CTDs of the involved 

flights will still be after 0900. On the other hand, if UAL had submitted its 

request at 1000, by then DAL01 would have been airborne. The latest time by 

which DAL01 has to depart to make it to the 1140 arrival slot would be 0940. 

So the exchange of slots will not be feasible. 

• Controlled Time of Departure of ‘bridge’ flights: The controlled departure 

times of the ‘bridge’ flights should be later than the time when the slot exchange 

is requested. As can be seen in the example, for the SCS substitution to succeed, 

it is necessary that the CTDs of the flights prior to the slot exchange, after 

taking into account the upward movement in CTDs, should be later than the 

time at which the SCS request is submitted.   

• Scheduled Gate Time of Arrival of flights: Another factor that needs to be 

considered in the success of SCS is that the “bridge” flights cannot be moved to 

an arrival slot earlier than their scheduled gate time of arrival under fair weather 

conditions (non-GDP conditions). In the example above, it is not possible to 
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move flights AAL11 and DAL01 to an arrival slot that will require the flight to 

take-off from its origination airport earlier than its SGTD. 

• Expiration of SCS request: The SCS message that is sent by the airlines has an 

expiration period. If the request is not fulfilled within a specific timeframe, then 

the substitution process cannot be executed. As in the example provided earlier, 

if the SCS request submitted at 0900 is not processed by 0940, then it will not 

be possible to do the slot exchanges because flight DAL01 has to take-off by 

0940 to be able to reach the destination at 1140.  

3.2 Factors Influencing Success of Compression 

 There are certain factors that need to be considered in order for compression to 

succeed.  

• Controlled Time of Departure of the flights: The CTDs of the flights that are 

moved up should be later than when compression is initiated otherwise flights 

will be airborne before compression is run and the slot trades cannot be 

accomplished.  

• Scheduled Gate Time of Arrival of flights: The extent to which the flights 

used in the compression process can be moved up is determined by the 

scheduled times of arrival of these flights. It is not possible to place the flight in 

a slot that is earlier than its scheduled arrival slot. 

3.3 Model Development 

 Conceptual models are created to understand the ability of compression to capture 

the inter-airline slot exchange messages. Our initial analysis is to evaluate the percentage 
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of inter-airline slot exchange requests that can be captured through compression based on 

the frequency at which compression is run. The inter-airline slot exchange requests are 

predominantly submitted as SCS messages. SCS mechanisms were implemented in the 

NAS starting from May 2003. Due to the relative newness of this mechanism, there were 

not many incidences of these requests in the NAS. So, we constructed the models 

assuming a hypothetical distribution of arrival of slot-exchange requests.  

 

3.3.1 Model 1: Fixed “Window of influence” model 

 The fixed “window of influence” model is a theoretical model constructed to 

simulate the ability of compression to have an impact on slot exchange transactions that 

occur at the ATCSCC. The “window of influence” is a time period prior to compression 

where the slot exchange requests submitted by the airlines are impacted by compression. 

In this window, airlines cancel their flights and can expect to obtain benefits through the 

upward movement of their flights from compression. The “window of influence” is a 

reflection of the airlines’ trust of compression. The diagram below provides the visual 

representation of the concept of “window of influence” and its ability to provide benefits 

to the airlines. 

 

Figure 3.2: Compression “Window of influence” 

1200 1230 1300 1330 1400 1430 1500 1530

Window of influence Window of influence 

Request 1 Request 2
Compression 1 Compression 2 
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 Compression is run at 1300 and 1500 hours and as seen in Figure 3.2 its “window 

of influence” is for a period of 30-minutes from 1230 – 1300 and 1430 – 1500 hours 

respectively.  Request 1 arrives at the ATCSCC during the “window of influence” of 

compression. In this case, compression will be able to create a substitution chain that 

benefits all the involved flights. On the other hand, Request 2 arrives at the ATCSCC 

much earlier than the time when compression is run and so will not achieve the desired 

benefits from compression. 

 Based on our analysis, the Poisson process will be the best way to model the 

requests. For every 5 –minute time interval, we assume that the number of requests 

submitted by the airlines follow a Poisson process. The following criteria have to be 

considered in creating the Poisson process [17]: 

• The occurrences can be counted in whole numbers;   

• The occurrences are independent, so that one occurrence neither diminishes nor 

increases the chance of another;  

• The average frequency of occurrence for the time period in question is known and 

that frequency is small for the period of observation;  

 We assume that compression has a 30- minute “window of influence”. Depending 

on the frequency at which compression is run, the ability of compression to provide 

benefits will change. Scenarios were created for compression run at ½, 1, 2 and 3 hour 

intervals.  
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3.3.1.1 Sensitivity Analysis 

 Sensitivity analysis of the model is conducted by changing the parameters used in 

the development of the model. Some of the parameters that are changed are: 

• The mean of the Poisson process. 

• The duration of “window of influence”. 

 Analysis is conducted to understand the effect of changes in the mean of the 

Poisson process. When compression is run every 30 minutes, the ability of compression 

to capture exchange messages is 100% because the duration of the “window of influence” 

is the same as the frequency of compression. As seen in the Figure 3.3, for the three 

different scenarios created with varying means, the ability of compression to capture slot 

exchange messages for different frequencies of compression remains nearly the same. As 

the frequency of compression decreases, the ability of compression to capture these 

exchange requests drop. This is due to the fact that the window of influence of 

compression remains the same while the interval between two consecutive compressions 

keeps increasing. We can conclude that the mean of the distribution does not have a 

significant impact on the ability of compression to capture the slot exchange messages. 
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Effect of mean of Poisson distribution
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Figure 3.3: Effect of mean of Poisson distribution 

 Models are created to understand the effect of changes in the duration of the 

compression “window of influence”. Two scenarios for 30-minute and 15-minute 

compression window are created and the results plotted as in Figure 3.4. When 

compression is run every 3 hours, the number of slot exchange messages captured by 

compression approach similar values. We can conclude that as the time interval between 

compressions decreases, the ability of compression to capture the messages declines 

much faster in the case of “window of influence” of 15 minutes. This is in line with our 

supposition that increase in the “window of influence” of compression enhances its 

ability to construct increased savings. 
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Effect of compression "window of influence"
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Figure 3.4: Effect of compression “window of influence” 

3.3.1.2 Curve fitting 

 The model developed using the Poisson process shows a decline in the ability of 

compression to provide benefits similar to SCS when compression is run less frequently. 

In the previous section, the ability of compression to capture the slot exchange messages 

for various frequencies of compression was constructed assuming a 30-minute window of 

influence. Equation is generated for compression effectiveness under 30 minute “window 

of influence”. A third degree polynomial equation provides the best fit for this plot. This 

equation will be used in the next section to simulate the ability of compression to capture 

the slot exchange messages in real world situations. For the example using 30- minute 

window of influence, the equation was determined to be  

 

y = -6 * 10-7 (x-30)3 + 0.0002* (x-30)2 - 0.0206* (x-30) + 1 
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 where y = % of inter-airline slot exchange messages captured by compression;  

  x = time interval between compressions.  

   

3.3.2 Model 2: Acceptance Lead Time Model 

 The slot exchange messages are submitted to the Air Traffic Control System 

Command Center (ATCSCC) by the airlines and the ATCSCC tries to construct the 

substitution chain. There is a certain time duration by when the exchange process has to 

be completed otherwise one of the involved flights will be airborne. Let us define the 

time by when the slot exchange chain has to be constructed by the ATCSCC to be the 

Earliest Revised Departure Time (ERDT). This corresponds to the revised departure time 

of the earliest of the involved flights in the exchange process. A visual representation of 

the model is provided in Figure 3.6. The “window of influence” parameter is not a 

determining factor in the creation of this model. 

 

Figure 3.6: Compression with Uniform distribution of revised time of departures 

 Let us consider a flight that submits a slot-exchange message and has the earliest 

revised time of departure of the bridge flights later than the time when compression is to 

be run at 1300 hours. In the diagram above, Request 1 will be captured by compression as 

all the involved flights have their departure times later to the time when compression is 

1200 1230 1300 1330 1400 1430 1500 1530

Compression 1 
Request 1 Request 2 

Compression 2 
ERDT 2ERDT 1
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run.  All the flights will be benefited from compression. On the other hand, in the case of 

Request 2, one of the bridge flights has its revised departure time earlier than 1500 hours. 

When compression is run at 1500 hours, one of the bridge flights will already be airborne 

and so compression will not be able to construct the slot exchange process. 

 For the construction of the model, we assume a Poisson process for the 

submission of requests. The earliest revised departure times are assumed to have a 

uniform distribution. Sometimes when a flight misses its EDCT time, it requests the 

command center for an EDCT Change Request (ECR) and gets a departure slot later than 

10 minutes. This was the criteria used for the lower bound of the uniform distribution and 

is assumed to be 10 minutes. The upper bound of the uniform distribution is varied at 60, 

90, 120, and 180 minutes. For different compression intervals, the ability of compression 

to capture these slot exchange messages is studied. The plot in Figure 3.7 shows the 

ability of compression to capture these messages. 
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Figure 3.7: Effect of revised time of departure of flights on compression  
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 As observed, the ability of compression to capture the messages declines as the 

compression interval increases but the reduction is more gradual than observed in the 

previous model. Theoretically, if the upper bound of the distribution had been “infinite” 

then all the messages would have been captured by compression, independent of the 

frequency of compression. On the other hand, as the upper bound approaches the lower 

bound of 10 minutes, fewer slot exchange messages will be captured by compression. 

3.3.3 Slot exchange messages from real-world situations 

 We use real world slot exchange messages to replace the Poisson process for 

messages used in the previous sections. The real-world messages are used to evaluate the 

robustness of the model. For our analysis, airports that had a significant number of inter-

airline slot exchange messages submitted to the ATCSCC during GDP were considered. 

As the SCS procedure is still in its infancy, not many GDP instances can be found that 

had a number of these messages. During the period May 2003 and March 2004 there 

were three instances when there were relatively high numbers of these messages. Table 

3.2 shows the airports, the dates and the number of SCS messages on those days.  

Table 3.2: Real-world situations of SCS messages 

 

Airport 

 

Date 

# of slot exchange messages 

during GDP 

ORD 01/04/2004 6 

LGA 09/03/2003 16 

ATL 02/26/2004 25 
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 On Jan 4, 2004, GDP was initiated at ORD. There were 6 slot exchange messages 

submitted by the airlines to the ATCSCC. We use the fixed “window of influence” model 

to determine the ability of compression to capture these messages. It was found that the 

revised time of departures of all the affected flights were more than two hours later for all 

the instances. So, the acceptance lead time model could not be applied. The following 

plot shows the hourly distribution of messages at ORD.  
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Figure 3.8: Hourly distribution of slot-exchange messages at ORD 

 The distribution shows that SCS messages are received from the airlines at 

random intervals. A model is created to evaluate the ability of compression to capture 

these messages from the airlines. Scenarios are created by varying the compression 

frequency and assuming a “window of influence” of 30 minutes.  Using the equation 

created in Model 1, we construct the model to validate the results. 
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Fixed “window of influence” model for ORD (01/04/2003)
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Figure 3.9: Fixed “window of influence” model for ORD (01/04/2003) 

 As seen in the plot in Figure 3.9, the equation represented by the line fits the data 

obtained for ORD with a Sum of Square Error (SSE) of 0.8%.  

 Similarly, two other GDP instances were considered for our analysis that had 

significant slot exchange messages submitted by the airlines. As seen in Table 3.2, LGA 

and ATL had 25 and 16 slot exchange messages submitted to the ATCSCC respectively. 

The distribution of the slot exchange messages are staggered for the instances at LGA 

and ATL.  
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Hourly distribution of slot exchange m essages - LGA 
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Figure 3.10: Hourly distribution of slot-exchange messages at LGA 

The ability of the equation developed in the previous section to capture these messages is 

evaluated. As seen in the Figure 3.11, the SSE in the case of LGA is 2.13 %. 
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Figure 3.11: Fixed “window of influence” model for LGA (09/03/2003) 
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 Similarly, the hourly distribution of slot exchange messages at ATL on Feb 26, 

2004 was analyzed.  

Hourly distribution of slot exchange messages - ATL (2/26/04)
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Figure 3.12: Hourly distribution of slot-exchange messages at ATL 

 The ability of the compression equation to capture the actual exchange messages 

in this GDP at ATL decreases as the number of compressions run by the ATCSCC is 

higher. The Sum of Squared Errors in this case was found to be 5.05%. 
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Fixed “window of influence” model for ATL (02/26/2004)
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Figure 3.13: Fixed “window of influence” model for ATL (02/26/2004) 

 The models that were developed in this chapter provide us an insight into the 

operations of the real-time, conditional transaction oriented process (SCS) and the 

periodic, batch process (Compression). The periodic, batch processing procedure in case 

of compression may not be able to capture all the slot exchange messages. SCS is a 

reactive process where the ATCSCC has to make dynamic, real-time exchanges for the 

airline requesting the exchange. If compression is run by the ATCSCC, it will be able to 

provide results similar to that achieved from SCS process. 
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Chapter 4: DATA ANALYSIS 

4.1 Data Sources  

 The Aggregate Demand List (ADL) [18] and databases obtained from Metron 

Aviation [2] have been the primary sources of data used for the analysis of Slot Credit 

Substitution (SCS) and Compression benefits. The ADL is primarily composed of data 

extracted from the Collaborative Decision Making (CDM) hub site databases, which are 

maintained with a combination of OAG data, airline-provided flight data messages from 

Airline Operational Control centers (AOCs), NAS messages generated from the ATC 

system, and issued ground delays. The hub site is maintained at Volpe National 

Transportation Systems Center, a federal organization within the U.S. Department of 

Transportation. Volpe processes the information from the various sources and generates 

CDM strings consisting of ADLs to each of the CDM participants [19]. The flow of 

information within the ATC framework is shown in the diagram below. The ADL also 

includes GDP-specific data entered by the traffic management specialist.  
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Figure 4.1: Generation of ADL files and their distribution  

 The ADL file is created for all operations at a single airport for a particular day. 

As of November 2002, the ADL file has approximately 78 fields for every flight record. 

Each record contains a comprehensive set of flight status information. Each flight record 

usually corresponds to a unique flight; however, two or more records for a single flight 

imply that the flight has undergone changes in its operation and the most recent record 

will provide the accurate information about the flight. The ADL is updated with latest 

airline information every five minutes. This implies that there might be transactions that 

occur in between two ADL updates which might not be reflected in the files. A 

preliminary study conducted in October 2003 over a two-week period estimated that only 

3% of the SCS, ECR or EDCT messages were sent in-between ADL updates. [20] To put 

it in perspective, 97 % of the ADL records show accurate airline transactional changes 

without excluding information.  
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 Metron databases were used as a source for analyzing compression benefits. It has 

a compilation of number of databases and this was used as a source for data. Extensive 

data has been archived at their website and provides useful information on compression 

benefits. Data is available at this website starting from 1998 when compression processes 

were implemented in NAS to recent past.  

 

4.2 Data Preparation 

4.2.1 Slot Credit Substitution (SCS)  

 The successful processing of an SCS request is dependant on the existence of 

other flights being able to fill the unused capacity by accepting delay reductions. These 

flights that are moved up are termed ‘bridge’ flights and are used for the calculation of 

primary delay savings from SCS. ADL files contain these bridging flights used for delay 

savings. A brief description of the fields of interest in the ADL file is as below: 

1. ACID: Aircraft ID (flight identifier)  

 This field identifies the flight as it is filed on its NAS flight plan. 

2. ETD: Estimated Time of Departure 

 The ETD is the best, estimated runway departure time considering all data sources. The 

 time is preceded by a prefix indicating the status of the flight.  

3. ETA: Estimated Time of Arrival  

 The ETA is the best, estimated runway arrival time. This time is prefixed to indicate the 

 status of the flight. The values of some of the prefix are E when time has been estimated, 
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 C when time is estimated but the flight is controlled in a GDP and A when time is from a 

 NAS termination message or actual arrival time of the flight. 

4. CTD: Controlled Time of Departure  

 CTD is the current controlled departure time (EDCT) for a flight. This is the 

 departure time for the flight under GDP. 

5. CTA: Controlled Time of Arrival 

CTA is the current controlled arrival time (EDCT) for a flight. This will be the 

arrival time allotted to the flight at the destination airport under GDP conditions. 

6. CTL_TYPE: Control Type  

 If a flight is controlled (i.e., has a CTD and CTA), CTL_TYPE indicates the specific 

 source of the current CTD/ CTA. The possible sources are: 

• GDP – an initial GDP, an extension, or a revision 

• COMP – compression 

• SUB – a regular airline substitution message 

• SCS – an airline slot credit substitution message 

• BRG – a bridge created to handle a slot credit substitution request 

7. CTL_EXMPT: Control Exempt Flag  

 If a flight is controlled (i.e., has a CTD and CTA), CTL_EXMPT indicates whether the 

 flight is “exempt” from modifications under GDP. 

8. MAJOR: Major carrier   

 For CDM members, indicates the carrier that has substitution for the flight.  
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 The ADL files are huge datasets. Relevant data from these files are gleaned for 

SCS analysis. The data is further modified and some of the fields are changed to enable 

ease of calculation of benefits.  

 A cross-section of a modified ADL file containing bridging transaction is 

provided below. The data shows the sequence of ADL updates for flight CAA421 which 

is used as a bridge flight. Some of the fields have been modified for better understanding 

of the ADL updates.  

Table 4.1: Cross-section of ADL file  

ACID MAJOR ASLOT CTL_EXMPT ETA ETD CTA CTD CTL_TYPE 

CAA421 CAA - - E17:51 S17:05 - - - 

CAA421 CAA 1850B - C18:50 S18:04 18:50 18:04 GDP 

CAA421 CAA 1847A - C18:47 S18:01 18:47 18:01 GDP 

CAA421 CAA 1806A - C18:06 S17:20 18:06 17:20 BRG 

CAA421 CAA 1820B - C18:20 S17:34 18:20 17:34 BRG 

CAA421 CAA 1826A Y E18:23 A17:39 18:26 17:34 GDP 

CAA421 CAA 1826A Y E18:25 A17:39 18:26 17:34 GDP 

CAA421 CAA 1826A Y E18:25 A17:39 18:26 17:34 GDP 

CAA421 CAA 1826A Y E18:29 A17:39 18:26 17:34 GDP 

 

 In the above table, the flight CAA421 has an initial ETD at 17:05 and reaches its 

destination airport at 17:51. GDP is clamped at the destination airport which changes the 

arrival pattern of flights at the airport. All the flights arriving during GDP are delayed and 

their departure and arrival times get shifted. The controlled time of departure (CTD) and 

controlled time of arrival (CTA) of flight CAA421 are 18:04 and 18:50 respectively.  The 

flight does not have its CTL_EXMPT field enabled which means that the flight is 
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available to undergo the substitution process. An SCS request is sent by one of the other 

CDM participating airline to ATCSCC. Upon receiving the SCS request, the ATCSCC 

attempts to create a substitution chain and since CAA421 is available for substitution 

uses the flight in the process of substitution. The CTL_TYPE of the flight changes from 

‘GDP’ to ‘BRG’ in the next ADL update. The flight gets moved up to the arrival slot at 

18:06 and in the process benefits with a delay savings of 41 minutes. Once the flight 

takes off, the CTL_EXMPT field gets updated with ‘Y’ which implies that the flight is no 

longer available for any further substitution. Similarly, other flights that undergo bridging 

will benefit from the substitution process. An aggregation of all these benefits across 

flights for a month provides the benefits achieved from SCS requests in that month.  

4.1.2 Compression 

 Data for compression is obtained from Metron databases [2]. Metron Aviation has 

been gathering the information on compression and the benefits in terms of delay savings 

that are obtained from the airlines at the various airports. These resources were tapped for 

analyzing the savings achieved from compression. Compression benefits have been 

calculated from the upward movement of flights to fill the slot vacated by cancellation.   
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Chapter 5: ANALYSIS OF SLOT EXCHANGE PARADIGMS 

 This chapter will be an analysis on the trends in the airline industry in terms of 

adoption of the slot exchange methods and the ability of these mechanisms to provide 

delay savings to the airlines. We will also formulate appropriate metrics to evaluate the 

benefits received from the slot exchange models. 

 The NAS consists of 32 major airports and a number of smaller airports spread 

across the country. These constitute a large network of interlinked airports. Delays in an 

airport can cause a ripple effect affecting all the other airports throughout the NAS. This 

effect is especially pronounced in the case of some of the larger airports. The throughput 

in these airports has a major impact all across the NAS. For conducting our analysis, it is 

necessary that we consider some of the major airports for our analysis along with our 

analysis of the NAS.  

 To determine the airports for our analysis, we use GDP-hour as a measure to 

compare the distribution of GDPs across the major airports. A GDP-hour is a unit of 

measure used to define the duration of GDP in hours. For example, a GDP that is initiated 

at 0400 pm and lasts till 0900 pm will have a GDP-hour of 5. An aggregation of hours of 

GDPs at an airport is used as a measure of comparison. Airports are accordingly selected 

that have an impact on the health of the NAS. GDP-hours at the airports are calculated 

for a period from Jan 2002 to Feb 2004. As observed in Figure 5.1, among the 32 major 

airports, six of the airports experienced 84% of the GDPs in terms of GDP-hours. These 

were Atlanta, Newark International, La Guardia Airport, Chicago O’Hare and San 

Francisco. The GDP-hours at these airports range from 8% at PHL (Philadelphia) to 

about 22% at ORD (Chicago O’Hare). The rest of the airports had very low number of 
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GDPs in terms of GDP-hours with Boston leading the rest of the airports with 2.1% of 

the total NAS GDP-hours. So, in addition to conducting NAS-wide evaluation of impact 

of compression and SCS, we also consider these six airports for a comprehensive 

analysis. 

GDP-hour distribution for the 32 major airports from 2002-04
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Figure 5.1: GDP-hour distribution for the 32 major airports from 2002-04 

5.1 Trend analysis 

 An analysis is conducted to understand the trends in compression and SCS 

messages. Before getting into the trends in these slot exchange mechanisms, we 

determine the trends in GDPs. 
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Monthly distribution of number of GDPs in NAS
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Figure 5.2: Monthly distribution of number of GDPs in NAS  

 As observed in Figure 5.2, the numbers of GDPs across the NAS from Jan 2002 

to Feb 2004 vary from month to month. There appears to be no seasonality in the number 

of GDPs per month. Of late, the number of GDPs has increased starting October 2003. 

An evaluation of the number of GDP-hours reveals that the number of hours of GDP 

across the NAS in a month has increased. This is substantiated by the plot in Figure 5.3. 
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Monthly GDP-hour distribution across NAS
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Figure 5.3: Monthly GDP-hour distribution across NAS 

5.1.1 Trends in Compression 

 Preliminary investigation was conducted to understand the trends in compression. 

For the analysis, compression information from Jan 2002 to Feb 2004 was gathered. The 

plot in Figure 5.4 shows the time series plot of number of compressions per month across 

the National Airspace System (NAS) as well as that of the number of GDP- hours.  
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Monthly distribution of number of GDP and compression in NAS
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Figure 5.4: Monthly distribution of number of GDPs and compression in NAS 

 The number of compressions over time has not changed dramatically but has 

shown an increasing trend lately in the past few months peaking in December 2003. On 

closer inspection, we can see a direct correlation between increases in GDP-hours with 

the increase in compressions. The number of GDP-hours has increased through time. 

Regression analysis was conducted to understand the dependence of the number of 

compressions on the number of GDPs in a month. As observed (Figure 5.5), the 

dependence of the number of compressions on GDPs is high. The regression equation 

was found to be  

 Number of compressions = 5.05 + 0.47 * Number of GDP-hours 
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Regression model for number of compression
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Figure 5.5: Regression model for number of compressions 

 The other analysis that was conducted was to understand the effect of length of 

GDP on number of compressions. Our evaluation of the trend showed the following 

result as shown in Figure 5.6. The number of compressions increases with the length of 

GDP but the increase is not proportional. On an average, the number of compression runs 

for a 4-hour GDP is close to 2 whereas the number of compressions run for a 10-hour 

GDP is close to 4. This implies that the ATCSCC does not run compression at regular 

intervals. As the length of GDP increases, the rate of increase in number of compressions 

declines. If compression had been initiated at regular intervals during a GDP then the 

increase in number of compressions per GDP-hour would have been higher. Analysis of 

compression information for the six airports did not show any significant difference from 

that of the NAS. 
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Distribution of average # of compressions with length of GDP
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Figure 5.6: Distribution of average number of compressions with length of GDP 

5.1.2 Trends in Slot Credit Substitution 

 Slot Credit Substitution was adopted throughout the NAS starting May 2003 as a 

dynamic slot exchange model. Time series analysis (Figure 5.7) of the number of SCS 

messages that were submitted with the ATCSCC shows an increase in messages received 

through time.  
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Time series analysis for SCS messages
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Figure 5.7: Monthly number of SCS messages across NAS 

 The increase in the number of SCS messages received by the ATCSCC can be 

attributable to the airlines getting comfortable with the internal mechanisms of SCS. 

Also, being a conditional slot-exchange mechanism, the airlines have been able to 

achieve positive delay savings from this procedure and so have gradually increased the 

adoption of SCS. From the graph it can also be concluded that SCS is still in its growth 

phase and has a lot of potential to grow through the years.  

 Similar increasing trends were observed at the six airports under consideration. 

The adoption rates of the airlines showed a gradual increasing trend. As seen in Figure 

5.8, AirTran Airways (TRS) and Delta Airlines (DAL) are leading the rest of the major 

airlines in their adoption of SCS as a viable mechanism for delay reduction. 
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Airline adoption of SCS
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Figure 5.8: Airline adoption of SCS 

 An analysis of SCS messages from the airports (Figure 5.9) shows that ATL and 

ORD have had higher SCS submissions than other airports. ATL has shown increased 

SCS activity because of its being the hub for Delta Airlines which was shown in the 

earlier graph to be an early-adopter of SCS. The increased SCS activity at ORD can be 

attributed to the higher incidences of GDP at the airport, the higher volume of air traffic 

activity and its being the hub for some of the major airlines. 
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SCS messages submitted from the different airports
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Figure 5.9: SCS message pattern submitted from the different airports 

 In the case of compression, the ATCSCC had been responsible for initiating this 

process with minimal changes required in the airline systems. Also, compression had 

been in place since the beginning of CDM. On the other hand, SCS is a highly 

collaborative approach to slot utilization and requires a higher involvement on the part of 

the airlines. The airlines need to have the necessary technology and the expertise to 

migrate to the SCS procedures. Due to the increased learning curve for the airlines, the 

adoption of SCS had been slow. 

5.2 Metrics Development 

 To understand the benefits obtained from each of the two slot exchange schemes, 

appropriate metrics were developed. Different metrics were developed and evaluated to 
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provide an objective baseline for comparison of benefits. Some of the terms that will be 

used throughout the development of the metrics have been defined as under. 

 Bridge flights – Bridge flights are the flights of airlines other than the airline that 

initiated the slot exchange process that are moved up their schedules. This movement of 

flights is necessary for the initiator airline to obtain a slot that it will be able to use for 

substitution. 

 Delay savings – This unit of measure is defined as the number of minutes of delay 

that have been reduced due to the upward movement of the flights through compression 

and SCS procedures.  

5.2.1. Total delay savings  

 This metric is defined as the aggregation of minutes of delay reductions 

experienced due to either of the two slot exchange mechanisms. For an objective analysis 

of the savings, delay savings across a month was considered. Benefits obtained from 

compression will be the sum of all the delay reductions due to upward movement of 

flights into vacant slots when compression is initiated. SCS benefits were calculated 

considering the upward movement of the bridge flights. Compression has been in 

existence since 1998 when CDM was implemented, while SCS was implemented in 

2003. Being a more mature, proven slot exchange scheme, the benefits achieved from 

compression are much higher than those from SCS substitution.  
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Time Series Analsis of NAS wide total delay savings from compression
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Figure 5.10: Time series analysis of total delay savings from compression 

 It is observed from Figure 5.10 that there had been a heady growth in delay 

savings achieved through compression in the early stages of its implementation from 

April 99 to July 2000. From July 2000 to May 2003, the total delay savings obtained 

from compression have shown a decline. This can be attributed to a lot of different 

factors including reduction in air traffic demand due to the terror strikes on September 

11, 2001.  
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Time series analysis of NAS wide SCS benefits
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Figure 5.11: Time series analysis of total delay savings from SCS 

 The times series analysis of NAS wide SCS benefits (Figure 5.11) shows an 

increase in delay savings for the airlines. In the initial months of SCS, the benefits 

received by the airlines were low as the slot exchange requests submitted by the airlines 

were also low. The increased familiarity of the airlines with the technology and the 

process has led to increased SCS messages and delay savings.  

 Other means of normalizing the delay savings obtained from these procedures is 

considered. Delay savings are dependent on the number of GDPs and the number of 

GDP-hours. So, the savings obtained from these slot exchange schemes were normalized 

using number of GDPs and number of GDP-hours. 
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5.2.2 Delay savings per GDP 

 Another metric that is used to compare the benefits achieved from compression 

and SCS is delay savings per GDP. This metric for benefit evaluation is calculated by 

aggregating the monthly delay savings for the major NAS airports and dividing by the 

number of GDPs across NAS in that month. 

 

 Delay savings per GDP = (Total delay savings (min) / Number of GDPs) 
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Figure 5.12: Time series analysis of compression delay savings per GDP 

 The time series analysis for compression delay savings shows the same pattern as 

in the case of the earlier metric using total delay savings. As seen in Figure 5.12, the 

increased savings between August 1999 and December 2000 using this metric is less 

pronounced than obtained from the total delay savings metric.  
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 Similarly, the metric is used for calculation of benefits for Slot Credit Substitution 

(SCS). Again, this metric shows an increase in the benefits achieved from SCS. The 

following plot (Figure 5.13) shows the trend in benefits obtained from SCS using this 

metric. 
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Figure 5.13: Time series analysis of delay savings per GDP from SCS 

5.2.3 Delay savings per GDP-hour 

 This metric on delay savings per GDP-hour tries to create a standard for 

comparing the benefits achieved from SCS and compression. The metric of delay savings 

per GDP-hour over a month for the whole NAS is calculated using the following formula. 

 Delay savings per GDP-hour = Total delay savings / (Total number of GDPs *  

      Number of hours in a GDP) 
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 In the case of compression, we see a gradual increase, a steady decline and again 

an increase in delay savings achieved per GDP-hour. One can also observe that the delay 

savings per GDP-hour from compression does not show a sharp increase and decline as 

was seen in the other two metrics discussed earlier. The trend is much smoother in this 

metric. 

Time series analysis of NAS wide compression delay savings per GDP-hour
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Figure 5.14: Time series analysis of delay savings per GDP-hour from Compression 

 When compression delay savings are aggregated over quarters (Figure 5.15), the 

trend line shows a smooth decrease in overall NAS savings and starting May 2003, when 

SCS was implemented in the NAS, compression benefits are on the rise.  
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Compression benefits per GDP-hour on a quarterly basis
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Figure 5.15: Quarterly distribution of delay savings per GDP-hour from Compression  

 Similarly, SCS provides an increase in delay savings per GDP-hour. As seen in 

the plot in Figure 5.16, SCS benefits have increased through the months. The increased 

delay savings is partly due to the increase in number of slot exchange requests submitted 

by the airlines and their willingness to submit accurate information about their 

cancellations. The additional benefit from this metric of delay savings per GDP-hour is 

that it creates a baseline for our benefits analysis from each of the slot exchange process.  
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Times Series Analysis of NAS wide SCS delay savings per GDP-hr
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Figure 5.16: Time series analysis of delay savings per GDP-hour from SCS  

 The following graph (Figure 5.17) shows the delay savings obtained from 

compression and SCS from May 2003 when SCS was implemented across the NAS. A 

cross section of the benefits obtained starting from May 2003 shows the heady growth in 

delay savings experienced through both the slot exchange mechanisms. SCS is still in its 

early stages and so the benefits are much lower. From the graph we conclude that the 

benefits from compression have increased after the implementation of SCS.  
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Delay savings per GDP-hour from the models starting May 2003
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Figure 5.17: Delay savings per GDP-hour from Compression and SCS starting May 2003  

 To compare the delay reductions achieved through the two models, the benefits 

obtained from the models were superimposed on a single graph (Figure 5.18). 
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Figure 5.18: Delay savings per GDP-hour from Compression and SCS 

 As had been observed earlier, starting with the implementation of SCS across 

NAS, there had been a growth in the benefits achieved from compression.  

 To summarize, the benefits obtained from compression have improved after the 

implementation of SCS. SCS implementation is still in its infancy but is definitely bound 

to grow as airline adoption of the procedure increases. 
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Chapter 6: CONCLUSIONS AND RECOMMENDATIONS 

FOR FUTURE RESEARCH 

6.1 Conclusions 

 Each of the two slot exchange mechanisms has their inherent advantages and 

drawbacks. SCS is a dynamic, adaptive slot utilization technique where the onus of the 

slot exchange falls on the airlines. The airlines have increased maneuverability on 

choosing slots to forgo and slots that it will like to receive in return. This model allows 

the airlines to construct slot exchange schemes that boost the internal economics of the 

airlines. In case of compression, the ATCSCC bears the responsibility of running the 

process. 

 The implementation of SCS has increased airline adoption of SCS as a viable 

solution for delay savings. They are more willing to submit their cancellation information 

to the ATCSCC as they experience the benefits they obtain from this procedure. This has 

led to an increase in compression benefits. Compression and SCS complement each other 

in improving delay benefits. There is immense potential for the airlines to receive 

benefits from SCS and there will be heady growth in adoption of SCS in future.  

6.2 Future research 

 One of the potential future research topics will be the evaluation of the benefits 

obtained by airlines through cascading benefits from SCS. Cascading benefit is defined 

as the benefits obtained by an airline through intra-airline substitution which has been 

made feasible through SCS. Once the airline that initiated the SCS process receives a slot 
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that it will be able to use, it can conduct substitutions within its fleet of airlines. The 

benefits obtained through the SCS process as well as the cascading benefits can be 

considered the overall benefit achieved from SCS.  

 Two year down the line, these slot exchange procedures will be used by the 

airlines actively and regularly for reducing delays of their critical flights as well as 

enhancing their internal economics of operation. Further analysis on comparison and SCS 

benefits and trends will be an interesting topic for future research. 

6.3 Future applications 

 The underlying philosophy behind these slot exchange paradigms can be applied 

to other aspects of air traffic management. Delays and resource utilization at the airports 

can be increased through adoption of these models in other areas of ATM. After closer 

inspection, we were able to determine the following areas for future applications  

These procedures can be used for increased gate utilization at the heavily resource 

constrained airports. The gates can be considered similar to the arrival slots. There are 

instances when an airline might not be using the gate for its operations due to unforeseen 

circumstances such as repair and maintenance of the aircraft. In these cases, the airline 

will provide the FAA with information on its inability to use a gate and so that gate can 

be used for accommodating a flight that has just landed and is waiting on the tarmac for a 

gate. This reduces passenger delays as the passengers will be able to disembark at their 

scheduled times instead of accruing delays during taxi- in. 

 The SCS and compression procedures can be implemented at the gate personnel 

level. Sometimes, due to delays in loading passengers at the gates, the airline misses its 

departure slot and hence the arrival slot at the destination airport. In this case, it will be 
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possible for the gate personnel to send a request for exchange of slots and thus the 

problem can be resolved effectively much earlier. 

 The underlying algorithms can be used by the ATCSSC in case a flight misses its 

EDCT time. Estimated Departure Clearance Time or EDCT time is issued to a flight to 

indicate when it can expect to receive departure clearance. EDCTs are issued as part of 

Traffic Management Programs, such as a Ground Delay Program (GDP). If an airline 

misses its EDCT time, it sends a message to the ATCSCC requesting another departure 

slot. The ATCSCC then attempts to create a substitution of flights for utilization of the 

unutilized slot. 

 There are a number of avenues where the concepts derived from these slot 

exchange models can be used for improved air traffic management and decision support. 

The air traffic management paradigms are shifting from static models to more dynamic, 

collaborative mechanisms. For optimized utilization of resources, there is increased 

collaboration between the Federal Aviation Administration and the airlines. A 

combination of batch optimization procedures with the collaborative models can provide 

improved benefits for all the NAS stakeholders. 
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