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We study a simple model of information propagation in social networks, where two quantities are intro-
duced: the spread factor, which measures the average maximal reachability of the neighbors of a given node
that interchange information among each other, and the spreading time needed for the information to reach
such a fraction of nodes. When the information refers to a particular node at which both quantities are
measured, the model can be taken as a model for gossip propagation. In this context, we apply the model to real
empirical networks of social acquaintances and compare the underlying spreading dynamics with different
types of scale-free and small-world networks. We find that the number of friendship connections strongly
influences the probability of being gossiped. Finally, we discuss how the spread factor is able to be applied to
other situations.
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I. INTRODUCTION AND MODEL

In everyday life probably everyone has already experi-
enced the annoying situation of telling some personal secret
to some friend and ending with a naive “please, do not tell
that to anyone, OK?” and after a short time all our friends
suddenly know the secret. What happened? Is this common
phenomenon a consequence of a natural instinct that friends
have to conspire and slander against each other? Or is this a
phenomenon which can hardly be avoid by human trust and
respect being closely related to the net of acquaintances that
people naturally tend to form?

Such kinds of questions can be easily addressed by repre-
senting the social system, composed by individuals and the
interactions among them, as a network—i.e., as a collection
of nodes and links. While networks have been widely used
by physicists to study, e.g., porous media �1� or a system of
interacting spins �2–4�, they can also be used to study social
systems. Social networks have helped to further understand
the structure and evolution of social systems, where people
and their acquaintances are represented by the nodes and
links of the network, respectively. In particular, propagation
of information in social systems is easily reproduced in such
networks and has been addressed in recent physical literature
�5–7� due to its importance in epidemiology �8�, where in-
formation is related to the contagious of diseases, to under-
stand social influence, beliefs, and extremism �9–12�, to un-
derstand the evolution of financial markets �13�, and to study
econophysical networks underlying, e.g., electrical supply
systems or road webs among airports or cities. Here we put
emphasis on how far the information can spread when par-
ticular constraints, of interest for social systems, are taken
into account.

The way information spreads over the network depends
on its content. A rumor or an opinion concerning some topic
which is not directly connected to the social network struc-

ture �political opinion, etc.� can be of interest to any of the
neighbors of a certain node, regardless of their topological
features. However, as opposed to rumors, gossip always tar-
gets the details about the behavior or private life of a specific
person—i.e., of a specific node. This node will be called
henceforth the target node or the victim. Therefore, due to
this particular content, it is reasonable to assume as a first
approach that the information spreads only over people di-
rectly connected to the victim.

A simple model recently introduced �14� for such kind of
information spreading is described as follows. Selecting ran-
domly a victim, the gossip about him or her is created at time
t=0 by an originator which shares a bond with the victim. At
t=1 the originator only spreads the gossip to other nodes,
which are connected to herself and the victim. The spread
continues until all reachable acquaintances of the victim
know it, as illustrated by the squares connected by dashed
lines in Fig. 1 for a real friendship network �15�. Our dynam-
ics is therefore like a burning algorithm �16�, starting at the
originator but limited to sites that are neighbors of the
victim.

To measure how effectively the gossip—or, in general, the
information—attains the acquaintances of the victim, we de-
fine the spreading factor as f =nf /k, where nf is the total
number of people who eventually hear the gossip and k is the
degree of the victim. It is interesting to notice that the quan-
tity f as defined here is analogous to the idea of “reachabil-
ity” previously introduced by Rapoport �17�. In our work,
not only global reachability will be addressed but also local
reachability—i.e., when the information spreads only among
the neighbors of a particular target, which corresponds to the
particular requirements to study gossip propagation. In addi-
tion, we also define the spreading time � which defines the
minimum time it takes to reach this fraction f of acquaintan-
ces, giving a measure of how far these connected acquain-
tances are from each other. Similarly to what is done for the
clustering coefficient spectrum, for nodes of degree k our f is
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an average of averages. However, it is important to note that
f and the standard definition of the clustering coefficient C
�18,19� are different quantities, since the latter only measures
the number of bonds between neighbors and contains no in-
formation about how such bonds distribute among the vic-
tim’s acquaintances.

We start in Sec. II by studying how such kind of informa-
tion spreads in different networks—namely, in scale-free and
small-world networks. Some analytical considerations will
be presented for the particular case of the Apollonian net-
work �1�. The results of such artificial networks are also
compared to the ones obtained with an empirical network of
social contacts recently obtained from a U.S. School survey
�15�, where friendship acquaintances were rigorously defined
�15,20�. There are also situations where the information
about the target node can be of interest beyond the first
neighbors, like the case where the victim is a movie star,
yielding a scenario similar to the one of usual rumor propa-
gation or even epidemic spreading �21�. These cases will be
considered in Sec. III. Since the tendency for spreading in-
formation does not always imply that its transmission will be
certain, we introduce in Sec. IV a probability for each node
to spread the information and study the main effects on the
spreading dynamics. A discussion and conclusions are given
in Sec. V.

II. SPREADING INFORMATION OVER FIRST
NEIGHBORS

We consider first a Barabási-Albert �BA� scale-free net-
work �22�: starting with a small number m of nodes fully

connected to each other one adds iteratively one new node
with m initial links attached to the nodes of the network with
a probability proportional to the node degree.

In Fig. 2�a� we show the average spreading time � as a
function of the degree k in a scale-free network with N
=104 nodes and m=3, 5, and 7. In all cases, for large values
of k, � scales logarithmically with the degree

� = A + B ln k , �1�

where for this case A=−10.77 and B=2.433 defines the
dashed line in Fig. 2�a�.

For the same values of m we plot in Fig. 2�b� the depen-
dence of the spread factor with the degree. Curiously, one
sees an optimal degree k0 for which the spreading factor
attains a minimum �see inset�. This optimal value lies typi-
cally in the middle range of the degree spectrum, showing
that the two extreme situations of having either few or many
neighbors enhance the relative broadness of the information
spreading. Further, a closer look shows that for small degrees
the values of f coincide with f =1/k �dashed line� while for
larger degrees f deviates from 1/k with a deviation which
increases with m. Thus, while initially �t=0� the spread fac-
tor is always f =1/k �dashed line�, for the subsequent time
steps one observes that nodes with small degrees remain on
average at f =1/k while for large degrees the spread factor
increases up to a maximal value.

The dependence of the optimal value k0 on the two pa-
rameters N and m is studied in Fig. 3. Here, we observe that
the optimal degree k0 yields approximately

k0 �
�ln N�a

�ln m�b . �2�

The scale-free networks considered above are probabilis-
tic. In other contexts, deterministic scale-free networks have
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FIG. 1. �Color online� Spreading of information about a target
node shown as the gray �red� open circle on part of a real school
friendship network �15�. If the spreading starts from one of the
white squared neighbors, no propagation occurs �f =0�. If, instead,
one of the gray �yellow� squared neighbors starts the spreading, in
�=3 time steps, five neighbors will know it, giving f =5/7. So the
average yields f =25/49 which is the value of the spreading factor
that characterizes the target node �see text�. The information spreads
over the dashed �blue� lines. The information can be seen as gossip
about the target node or the victim �see text�. Note that the cluster-
ing coefficient of the victim has a different value: namely, C
=10/42.
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FIG. 2. �a� Spreading time � �in iteration steps� in a Barabási-
Albert scale-free network and �b� the spreading factor f , both as a
function of k �in number of nodes�: m=3 �circles�, m=5 �squares�,
and m=7 �triangles�. The dashed line in �b� indicates f =1/k. The
inset in �b� is a close-up of the plot for m=5, emphasizing the
optimal degree k0 which minimizes the gossip spreading �see text�.
In all cases, N=104 nodes, averages over 500 realizations are con-
sidered, and logarithmic binning in k is used.
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been proposed �1,23� as a way to construct perfect hierarchi-
cal networks. One of such networks is the Apollonian net-
work. The Apollonian network is constructed in a purely
deterministic way �1,24� as illustrated in Fig. 4�a�: one starts
with three interconnected nodes, defining a triangle; at n=0
�generation 0�, one inserts a new node at the center of the
triangle and joins it to the three other nodes �white circles in

Fig. 4�a��, thus defining three new smaller triangles; at itera-
tion n=1, one adds at the center of each of these three tri-
angles a new node �squares�, connected to the three vertices
of the triangle, defining nine new triangles, and then for gen-
eration n=2 one node �black circles� at the center of each of
these nine triangles and henceforth. The number of nodes
and the number of connections are given, respectively, by
Nn= 1

2 �3n+1+5� and Ln= 3
2 �3n+1+1�. The distribution of con-

nections obeys a power law, since the number of nodes with
degree k=3,3�2,3�22 , . . . ,3�2n−1 ,3�2n ,2n+1 is equal
to 3n ,3n−1 ,3n−2 , . . . ,32 ,3 ,1 ,3, respectively. Thus one has
P�k��k−� with �=ln 3/ ln 2.

One main difference from the BA network is that, for
Apollonian networks, f =1 independently of k, due to the
hierarchical structure shown in Fig. 4�a�. In Fig. 4�b� one
observes the logarithmic behavior of � similar to the BA
case. In the Apollonian case the logarithmic behavior can
even be derived analytically as follows. From Fig. 4�a� one
sees that vertices belonging to the nth generation communi-
cate with each other through n steps, thus ��n. Since the
degree of the nth generation is given by �1� k=3�2n−1, one
obtains the logarithmic dependence of � shown in Fig. 4�b�,
where the dashed line yields the expression in Eq. �1� with
A=−0.28 and B=1.1.

Next, we show that the main results obtained for the
scale-free networks above are also characteristic of real em-
pirical social networks. For that, we study the model for
information propagation on a real social network—namely,
the one extracted from empirical data obtained in an exten-
sive study done within the National Longitudinal Study of
Adolescent Health �AddHealth� �15� at the Carolina Popula-
tion Center. The data comprehend a survey done between
1994 and 1995 in 84 American schools evaluating an in-
school questionnaire to 90 118 students. The students are
separated by the school they belong to, and therefore there
are 84 networks with sizes ranging from �100 to �2000
students. The aim is to allow social network researchers in-
terested in the general structural properties of friendship net-
works to study the structural and topological properties of
social networks �25�. In previous studies �20,26�, it has been
shown that the main properties characterizing the underlying
networks from these data can be easily reproduced with a
mobile agent model.

As shown in Fig. 5�a�, while for small k the spreading
time grows linearly, for large k it follows a logarithmic law
given by Eq. �1� with A=−2.84 and B=1.98. Here, the loga-
rithmic growth of � with k follows the same dependence of
the average degree knn of the nearest neighbors �27�, as illus-
trated in the inset of Fig. 5�a�. Further, the nontrivial effect of
having an optimal degree k0 is also observed in Fig. 5�b�. For
these schools one obtains k0�7 neighbors as an optimal
value for which f �0.42, meaning that less than half of the
first neighbors are reached. In other words, with fewer
friends �k�k0�, the information is more able to reach a larger
fraction of them. But contrary to intuition, the same occurs
for the nodes having a larger number of friends.

Interestingly, information spreads in the same way either
through these empirical networks as on scale-free networks,
although the corresponding topological and statistical fea-
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FIG. 3. The optimal degree k0 in a BA network as a function �a�
of N fixing m=5 initial outgoing connections and �b� of m for N
=104 nodes. The average degree is �k�=2m. The dotted lines have
slopes of a=4.64 and −b=−1.34 �see Eq. �2��.
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FIG. 4. �a� Illustration of the first three generations of an Apol-
lonian network �see text�. �b� Spreading time � �in iteration steps�
for the spreading factor to attain the maximal value f =1 where the
dashed line can be obtained analytically �see text�, yielding an ex-
pression as in Eq. �1� with A=−0.28 and B=1.1.

SPREADING GOSSIP IN SOCIAL NETWORKS PHYSICAL REVIEW E 76, 036117 �2007�

036117-3



tures are known to be quite distinct �20,26�. For instance, as
shown in the inset of Fig. 5�b�, the degree distribution P�k�
of the school networks is typically exponential and not a
power law. Since the same optimal degree appears in BA
networks, one argues that the existence of this optimal num-
ber is not necessarily related to the degree distribution of the
network, but rather to the degree correlations. However, the
relation between degree correlations, measured by knn, and
the logarithmic behavior of the spreading time is not straight-
forward. While in the empirical network we find the same
distribution for both knn and �, in BA and Appolonian net-
works knn follows a power law with k. In the case of uncor-
related networks, two- and three-point correlations reduce to
simple expressions of the moments of the degree distribu-
tion. Therefore, f is independent of the degree, similarly to
what is observed for the density of particles as derived by
Catanzaro et al. �28� in diffusion-annihilation processes on
complex networks.

To go further with the characterization of information
spreading on networks, we next study the distributions P���
and P�f�. In Fig. 6�a� we see that for the Apollonian network
the distribution P��� of the spreading time decays exponen-
tially. This behavior can be understood if we consider that
P���d�= P�k�dk and use Eq. �1� together with the degree
distribution P�k��k−� to obtain

P��� � exp���1 − ��/B� , �3�

for large k. The slope in Fig. 6�a� is precisely
�1−�� /B=−0.17 using B=1.1 from Fig. 4�b� and �=2.58
from Ref. �1�.

For the school network P��� follows an exponential decay
for large �, as shown in Fig. 6�b� and has a maximum for
small �. For comparison, we also plot in Fig. 6�b� the distri-
bution P��� for the BA network with m=9, which has a very
similar shape, but is shifted to the right, due to the larger

minimal number of connections. In both cases, the distribu-
tion is well fitted by an exponential. The reason for the si-
miliarities between empirical networks and BA networks at
the particular value m=9 may be related to the way the ques-
tionnaire was made at the schools: each student should name
their friends out of a maximal number of ten acquaintances.
From the similarities we could now argue that in fact on
average the students elected nine acquaintances each.

Figure 6�c� shows the distribution P�f� for a scale-free
BA network, while Fig. 6�d� shows the same distribution for
the empirical networks. Before studying such distributions
the following remarks should be taken into account. The
spreading factor depends on the number k of neighbors and
consequently depends also on the network size, since the
larger the network, the larger the maximal number kmax of
neighbors a node may have. Further, the spread factor varies
always between the minimal value 0 and the maximal value
1, and for a given node with k neighbors the possible values
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FIG. 6. Distribution P��� of spreading times � �in iteration steps�
for �a� the Apollonian network of eight generations and �b� the real
school network �circles� and the BA network with m=9 and N
=1000 �solid line�. The dashed lines indicate the best fit to the data
for large � values of Eq. �3�, with parameters �1−�� /B=−0.45 and
−1.26 for the Apollonian network in �a� and the real school network
in �b�, respectively. Below, the distributions of f are shown for �c�
the BA network with the same parameter values �inset magnifies the
range f � �0.4,0.6��, for �d� the schools, and for �e� an artificial
distribution of all possible fractions f among the same number of
nodes and neighbors. The highly positive skewness in P�f� of both
BA and schools networks are in strong deviation with the artificial
distribution, indicating a structure among the way neighbors con-
nect with each other �see text�.
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are f =0,1 /k ,2 /k , . . . , �k−1� /k ,1. Consequently, if for a spe-
cific network all the possible f values appear with the same
probability, one should expect the distribution P�f� to be
symmetric around f =1/2 with discrete peaks at n /k for n
=0,1 , . . . ,k and k=1, . . . ,kmax. This artificial distribution is
shown in Fig. 6�e�, obtained from all possible fractions con-
structed with all integers from N=1 to 1000.

For BA networks, there is also a symmetry in the vicinity
of f =1/2 �Fig. 6�a��. However, different from a uniform dis-
tribution, one finds a strong asymmetry between small and
large values of f: the most pronounced peaks are observed
for f �0.1. This same behavior is observed for the empirical
school networks, as shown in Fig. 6�d�, which is also
strongly asymmetric when compared with the corresponding
uniform distribution of all possible values of f sketched in
Fig. 6�e�. The positive skewnesses indicate a higher fre-
quency of low f values than of larger ones, which indicates
in fact that the neighbors of nodes tend to form small sepa-
rated sets of linked neighbors. Consequently, one is able to
address how the connections between neighbors are grouped
only by measuring the spreading factor for the central node.
For the distribution P�f� of the Apollonian network one trivi-
ally finds P�f�=��1− f� since the hierarchical structure of the
network always yields f =1, as mentioned before.

Social networks are usually small-world �29�; i.e., they
are characterized by a high clustering coefficient and a low
average shortest path length. Since we are interested in social
systems, we will next study the propagation of information
on artificial small-world networks, constructed as follows
�29�. One starts with a regular lattice where each node is
attached to k0 neighbors symmetrically displaced. Such a
regular network is characterized by a clustering coefficient
C0 and a shortest path length L0. In this regular network, all
links are short range. Then, sweeping over all nodes one
rewires with probability p each link to a randomly chosen
node. By doing this there will be on average pk0N /2 long-
range links.

For p=0 the network is a regular structure where no long-
range links exist, yielding a large average path length and
clustering coefficient. For p=1 all links are long range, pro-
ducing a random graph structure where both average path
length and clustering coefficient are small. Increasing p from
0 to 1, one first observes the decrease of the shortest path
length L, when compared to L0, and only for larger values of
p the decrease of the clustering coefficient C, as shown in
Fig. 7�a�. Therefore, in the middle range between the de-
crease of L and the decrease of C one obtains the small-
world effect where L /L0 is small and C /C0 is large �30�. As
shown in Fig. 7�a� this range is approximately −2� log10 p
�−1. In Fig. 7�a� one also sees that both the spread factor f
and the spreading time start to decrease at approximately the
same value of p as the normalized clustering coefficient
C /C0.

Figure 7�b� illustrates the variation of the spread factor as
a function of the degree in the particular case of a random
network. Instead of the above procedure with p=1 fixed,
random networks can also be constructed by starting with N
nodes and introducing with probability p� one link between
each pair of nodes. Typically, in random networks there is a
threshold pc� beyond which different structure and dynamical

features appear. This is also the case for gossip propagation
�31�. Figure 7�b� shows the behavior of f in random net-
works for three illustrative values of p�=0.02, 0.04, and
0.08, while the inset shows the corresponding spreading
time. Since in random networks the average degree increases
with p�, we choose to compute f and � as functions of k*

= �k−kmin� / �kmax−kmin� in order to facilitate comparison. For
p�=0.02 and lower values both the spread factor and spread-
ing time remain approximately constant, with f �1/k and �
�1. Increasing the probability to p�=0.04 increases the av-
erage degree per node and also the spread factor beyond its
initial value f =1/k, and consequently the corresponding
spreading time ��1 increases with k. Increasing even fur-
ther the probability to p�=0.08 and beyond, more and more
connections are introduced throughout the network, in par-
ticular among the neighbors of each node, which enables
more nearest neighbors to know about the gossip. Conse-
quently, on average one obtains fmax=1 independently of k.
This maximal value for such values of p� means that the
spreading attains all the neighbors of the victim. Therefore
one should expect that the time to reach complete spreading
should decrease with k*, which is what one observes in the
inset of Fig. 7�b�.

As a preliminary conclusion of this section one can state
that, although different in their structure, empirical social
networks behave similarly to scale-free networks when sub-
ject to propagation of information over the first neighbor-
hood of a particular target node.

III. BEYOND THE FIRST NEIGHBORS

In this section we will study how f and � change when the
information is able to propagate beyond first neighbors. For
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FIG. 7. �a� Propagation of information in small-world networks:
spreading time � �in iteration steps�, clustering coefficient C /C0,
and spread factor f as a function of the logarithm of the rewiring
probability p for the small-world lattice with N=104 sites. C0

=1/2 is the clustering coefficient of a regular lattice. In all cases we
average over 100 configurations and k0=4 �see text�. �b� Depen-
dence of the spread factor f on k*= �k−kmin� / �kmax−kmin�, for the
random graph with N=103 sites and p�=0.02 �circles�, 0.04
�squares�, and 0.08 �triangles�. Inset: the spreading time � of the
random networks for the same parameter values.
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that, we consider two different regimes of information
spreading. In the first regime, it spreads among the first and
second neighbors of the victim, and in the second it spreads
throughout the entire network. For the latter, there are two
other quantities of interest that we introduce here. One is the
total fraction FN of nodes who know and transmit the infor-
mation, defined as

FN =
Ng

N
, �4�

where Ng is the maximal number of nodes in the entire net-
work which already know the information and N is the total
number of nodes. Second, the maximal spreading time �max is
defined as the number of time steps necessary to attain the
fraction FN.

Figure 8 shows the spreading dynamics in the American
schools when it spreads among the two first neighborhoods
of the victim. The behavior is significantly different from the
one observed previously �compare with Fig. 5�. From Fig.
8�a� one sees that the spreading time becomes independent of
k for large values deviating from the logarithmic dependence
observed previously.

As for the spread factor f shown in Fig. 8�b�, one still
observes an optimal value minimizing the spreading of the
gossip, but this value is now much lower than the one found
for propagation only among common neighbors of the origi-
nator and the victim. Probably here, contrary to what hap-
pens in the previous case, the optimal value vanishes when
the network size or the number of connections increases.
This conjecture will be reinforced next by studying artificial
scale-free networks.

As illustrated in Fig. 9 the same behavior observed for the
schools is also observed for BA networks. Here, the results
for three different BA networks are shown for m=3 �circles�,
m=5 �squares�, and m=7 �triangles�. The spreading time �
attains also a constant value independent of k for large k

values �Fig. 9�a��. Obviously this plateau decreases with the
minimal number m of connections and our simulations show
that the dependence on m is approximately logarithmic for
small values of k. This decrease happens because increasing
m increases the number of links per node, enabling a faster
propagation. Moreover, the maximal value to which � con-
verges for large k can be explained as follows: since now the
information spreads over first and second neighbors, if the
network has poor k correlations, for sufficiently large k, all
values of k start to be present within the two first neighbor-
hoods, yielding an independence of � of k. The distribution
of the spreading time presents also an approximately expo-
nential tail with a slope that increases with m.

As for the spread factor f , the optimal value k0 is ob-
served only for small m �m=3� and rapidly vanishes when m
is increased. In fact, for large values of m one finds large
values of f decreasing with k as f �1/k. This occurs inde-
pendently of m. Due to the large values of f , the distribution
P�f� has again a very pronounced peak at f =1.

While for these BA networks the results are quite different
when the two first neighbors are considered instead of only
nearest neighbors, the Apollonian network displays an al-
most invariant behavior. For an Apollonian network almost
the same behavior remains. The lack of sensibility to the
increase of the neighborhood in Apollonian networks is a
consequence of its hierarchical structure. Also for small-
world and random networks similar results are obtained. So
as preliminary conclusions one sees that in hierarchical net-
works and in networks with small-world properties it does
not matter if the information can be transmitted beyond the
victim’s acquaintances or not: in one way or another every-
one rapidly knows our secrets. It is worth mentioning that
both features of small-world and hierarchical structures are
commonly present in social networks, as addressed recently
in other contexts �32�.

After seeing what happens in small neighborhoods, the
next question refers to the opposite limit—i.e., when all
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FIG. 8. Information or gossip propagation through the first two
neighborhoods in American schools: �a� spreading time � �in itera-
tion steps� as a function of k and �b� the spread factor f as a function
of k �in number of nodes�. As one sees the optimal number k0 for
which f attains a minimum decreases significantly compared with
the previous situation �see text�.
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FIG. 9. Propagation of information among first and second
neighbors of a BA scale-free network. Here one sees �a� the spread-
ing time � �in iteration steps� as a function of the degree k �in
number of nodes� for m=3 �circles�, m=5 �squares�, and m=7 �tri-
angles�. �b� Spread factor f for the same m=3 �circles�, m=5
�squares�, and m=7 �triangles�. Here N=104, averages over 100
realizations were considered, and logarithmic binning in k was
used.
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nodes are able to get the information from the originator. Of
course in this case the fraction f almost always achieves
eventually its maximal value f =1, since the information
eventually reaches everybody. This is a similar situation of
what happens with the spread of rumors or epidemics, a
though there is still the case when some neighbor of the
victim has no other friends and therefore the information
cannot spread from or to it. The main question now is not
only to know the minimal time � needed for the information
to reach the maximal number of nearest neighbors of the
victim, but also to compare it with the maximal time �max
needed for the information to achieve the maximal fraction
FN �see Eq. �4�� of nodes which are reached.

For the school networks, the behavior is illustrated in Fig.
10. From Fig. 10�a� one sees that the behavior of � is almost
the same as in Fig. 8�a�. The maximal time decreases with k
before attaining an approximately constant value. The large
fluctuation for k�25 is due to poor statistics. The decrease
of �max for small k occurs, since for victims with fewer
friends the successive neighborhoods through which the in-
formation spreads comprehend a smaller amount of neigh-
bors than when starting with a larger number of friends.

As explained above the spread factor is approximately
one independently of n, yielding a delta distribution P�f�
���1− f�, while the maximal fraction FN increases fast for
small k and rapidly attains a more or less constant value
around FN�0.6. Therefore, no optimal number of friends is
observed.

Figure 11 shows what happens in the BA case. As one
sees from Fig. 11�a�, both � and �max decrease with m. Fur-
ther, for both quantities � �black symbols� and �max �white
symbols�, a fast convergence to a logarithmic dependence on
k is observed when k increases. Interestingly, while the slope
as a function of ln k differs between � and �max, in each case
it is approximately independent of m, being apparently a fea-
ture of the scale-free topology.

In this situation one has always f =1. As for FN, very large
values are now observed �FN�0.7� independently of k and
FN increases very fast attaining FN�1 for k�10 neighbors

�see Fig. 11�b��. In other words, on BA networks, in order
that all neighbors of a certain victim get the information, it
must spread throughout the entire network.

Figure 12 illustrates the case of the Apollonian network.
The value of �max	� increases more slowly with k, both
quantities being equal for very large k values. This similarity
between both spreading times ���max is in fact another piece
of evidence for the fact that in order to enable the informa-
tion to reach all neighbors it must spread throughout the
entire network. In fact, from Fig. 12�c� one also sees that in
the range where �max��, FN�1, being equal to 1 only in the
range �=�max.

Finally, we examine the case of small-world networks il-
lustrated in Fig. 13. From Fig. 13�a� one sees that the spread-
ing time � increases almost linearly with the rewiring prob-

10 20 30

k

4

6

8

10

10 20 30

k
0

0.2

0.4

0.6

0.8

1

τ
max

τ

f

F
N

(a)

(b)
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FIG. 11. The propagation of information throughout an entire
BA network. �a� The spreading time � and maximal spreading time
�max, both in iteration steps, as a function of the degree k �in number
of nodes� for m=3 �circles�, m=5 �squares�, and m=9 �triangles�.
The total fraction FN of nodes that get the information is plotted in
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used.
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FIG. 12. Propagation of information on an Apollonian network
with n=8 generations: �a� minimal time � and maximal time �max,
both in iteration steps, and �b� the fraction FN between the total
number of nodes which are reached by the information and the total
number N of nodes, both as functions of k �in number of nodes�.
Here, P���� P��max�� P�k��k−� �see text�.
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ability p except at the end for large values of p �random
network�. The maximal spreading time �max is very large for
low rewiring probabilities, due to a large average path
length, and decreases one order of magnitude in the range
−2� log10 p�−1 corresponding to small-world networks. In
fact, �max follows the dependence of the average path length
on p.

As for the total fraction FN illustrated in Fig. 13�b� one
finds the opposite dependence on p than the one found for
�max: for low �large� values of p one finds low �large� values
of FN, and a pronounced increase is observed throughout the
entire small-world regime. To explain this behavior one must
use both the average path length and the clustering coeffi-
cient, L /L0 and C /C0, shown in Fig. 7�a�. For random net-
works �p=1� the total fraction attains FN=1 very fast due to
the very short average path length. For small values of p,
although regular networks have an average path length that is
larger than in random networks, the spreading time needed to
attain FN=1 is now proportional to L. In the small-world
regime, however, the average path length is small, but the
way the neighbors are connected isolates in some few cases
nodes from the information spreading process. So although
small-world networks have large cluster coefficients as in
regular networks, the long-range connections change signifi-
cantly the local topology of a given node neighborhood.

IV. INTRODUCING A TRANSMISSION PROBABILITY

In all the previous results each friend will surely spread
the gossip further. Fortunately people are on average not as
nasty as that. One should expect that only a certain fraction
q�1 of our friends are not worth to be trusted. In this sec-
tion we address this more realistic situation.

Since we do not have any sociological information about
the topological features of the “good” friends, we introduce q
as a probability that a node has to spread the gossip. For the
particular case q=1 one reduces to the situations studied pre-
viously.

Two possible ways of propagation may then occur. One
concerns a scenario where friendship connections are related
to contacts between the nodes at a given instant. In this situ-
ation a certain individual tries only once, with probability q,
to spread the information to its friends. Therefore, if the gos-
sip is not “accepted” once, it will never be. Another scenario
is of course when the spread is tried repeatedly at each time
step. We will start with this latter scenario and end with the
more pleasant one where gossip is only able to spread from
the nodes which heard it most recently.

Introducing the new parameter q in the model we go back
to the first information spreading model studied in Sec. II
where the gossip only spreads to friends of the victim. At
each time step the neighbors which already know the gossip
repeatedly try to spread it to other friends of the victim.
Therefore, one expects to attain the same value of f that one
measured for q=1, but this time only after a larger spreading
time—namely, ��=� /q. Figure 14 shows the result of such
an information propagation regime for the school networks
and for several values of q. The corresponding curves of f
are plotted in Fig. 14�b�.

Of course for q=0 the spreading time is always �=0 and
the spread factor equals f =1/k since only the node starting
the gossip will know it. As expected, for all other values the
spread factor coincides with the one for q=1, while the
spreading time preserves its logarithmic dependence on k for
large degrees and the exponent increases with 1/q, as ex-
plained below.

In the insets of both plots in Fig. 14 we show for com-
parison the spreading time � and spread factor f for a BA
network with N=1000 and m=9. A strong deviation from the
logarithmic dependence of the spreading time is observed,
due to the high number of initial outgoing connections �m
=9�.
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FIG. 14. Information or gossip propagation among first neigh-
bors with probability q on a real friendship network of American
students �15� averaged over 84 schools. In �a� we show the spread-
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The logarithmic dependence of the spreading time can be
more easily seen when studying the Apollonian network as
shown in Fig. 15. Here we plot the spreading time for ten
different values of q and fit all of them with a logarithmic
function as the one in Eq. �1�. The corresponding slope B as
a function of q is plotted in the inset of Fig. 15 and follows
closely a hyperbolic behavior B�1/q. Thus, Eq. �1� can be
written more generally as

� �
1

q
ln k . �5�

Finally, we can also assume that the person to which gos-
sip did not spread at the first attempt will never get it. In this
way, the gossip is a quantity which percolates through the
system.

In Fig. 16 we see the behavior of � and f for different
values of q for the school networks and in the inset for the
BA network. When the spreading probability q decreases, the
minimum in f first shifts to larger k and finally disappears.
The asymptotic logarithmic law of � for large k remains for
all probabilities q. As in previous cases, the BA network has
a similar behavior as the school friendships. The Apollonian
network, however, behaves quite differently: � first increases
with q and then eventually falls off to zero so that there
exists a special value qmax�0.75 for which the spreading
time � is maximized.

V. DISCUSSION AND CONCLUSIONS

In this paper, we studied a general model of information
spreading suited for different kinds of social information. In
the usual case of rumor or opinion propagation the informa-
tion spreads throughout the network, and all nodes are
equally capable of transmiting the information to their neigh-
bors. Two measures were proposed to characterize the

spreading of such a model—namely, the spreading factor
measuring the accessible neighborhood around each node
which can be reached by the information spreading and the
spreading time which computes the minimum time to reach
such a neighborhood.

Further, we have shown that by computing these quanti-
ties for each node the resulting distributions give additional
insight into the underlying network structure on which the
spreading takes place. More precisely, the magnitude of the
skewness of the distribution of the spreading factor gives a
measure of how difficult it is to access one neighbor, starting
from another one. For positive values of the skewness, most
of the pairs of neighbors are connected by some path of
connections, while for negative values of the skewness,
neighbors are more likely grouped into separated connected
pairs.

In the particular case that the information is about a cer-
tain target node and thus is of interest to a restricted neigh-
borhood around it, one yields a minimal model to study gos-
sip spreading. Applying such a scheme to artifical and
empirical networks, we found that, although different in their
statistical properties, information on empirical social net-
works seems to spread similarly to what is observed in scale-
free networks. In both cases, the spreading time shows a
logarithmic dependence on the degree, indicating small-
world effect within the nearest neighborhood of the nodes.
Further, from the computation of the spreading factor we
observed that there is a nontrivial optimal number of friends
which minimizes the danger of being gossiped that depends
on the size of the network and on the total number of ac-
quaintances in it. We also showed that this optimal value is
characteristic of either scale-free networks or real social net-
works, but is not observed in small-world networks, raising
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the question of what network properties may give rise to the
emergence of such an optimal value.

However, when the information spreads beyond the near-
est neighbors, in a similar way as for propagation of rumors
and epidemics, this optimal value disappears with the spread-
ing factor rapidly converging to f =1. Also the logarithmic
dependence of the spreading time no longer holds in this
case.

Since one person does not in general spread information
to all her neighbors, neither at the same time nor with com-
plete certainty, we also studied regimes of information
propagation where the spreading from one node to another
occurs with some probability q.

Due to their particular features and assumptions, our con-
cepts and measures to address the propagation of information

in networks could be suited to other situations. For instance,
in the case of the Internet, some Trojan horses need to con-
nect to a specific host to download some data in order to
become effective. For them, the spread factor should be a
good measure to assess the vulnerability to the spreading of
this virus attack. In this situation probably an experimental
test of the emergence of the optimal degree found in the
cases stated here could be easier to be implemented.
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