Parallel Computing for Space Surveillance

L. M. Healy, S. L. Coffey (Naval Research Laboratory)

Abstract

This paper reports on an application of massively parallel processors to multiple
satellite propagation and the calculation of miss distances between objects (COMBO).
Unlike serial computations, we do not pre-filter the data but rather sort the data set in
a way that dramatically cuts the number of comparisons required in order to be assured
of a complete catalog-to-catalog comparison. The same general algorithm allows two
logical sets to be compared to each other.

Run time for this demonstration code on an 8K Connection Machine is about one
second per time step, including propagation, complete catalog-to-catalog calculation of
miss distances, plotting satellite positions, and recording of the miss distances to a file.
Propagation of the objects is performed with an analytic propagator, using J2 only at
present, though the code may easily be extended to other propagators.

We demonstrate a second application of parallel computing to the problem of debris
propagation resulting from a satellite breakup. The spread of such debris into n pieces
is simulated by replicating the element set for the original satellite n times, then altering
each to represent a distribution of velocities relative to the center of mass.

1 Introduction

One of the most important tasks performed by the central space surveillance processing
sites, US Space Command (USSPACECOM) in Colorado Springs, Colorado and Naval Space
Surveillance (NAVSPASUR) in Dahlgren, Virginia, is the maintenance of a catalog of ele-
ments on space objects. The magnitude of the tasks associated with the satellite catalog
are of daunting proportions. The catalog consists of thousands of objects requiring the pro-
cessing of tens of thousands of observations daily. Many of the tasks embody operations
that are parallel in nature, e.g. orbit propagation, orbit determination, retagging obser-
vations and determining the miss distance between objects. The maturation of massively
parallel computers like the Connection Machine (CM) presents a lot of potential for space
surveillance. The availability of this computer at the Naval Research Laboratory prompted
us to develop a program for performing the function COMBO (Calculation of Miss distance

Between Objects). The goals for this project were twofold; first develop the specific appli-
cation thereby providing evidence of how well these computers can perform this function;
second, to gain an appreciation of what role parallel computers can play for other space
surveillance problems. We believe that COMBO is merely a small portion of the potential
of parallel computing for space surveillance. We will discuss some prospective applications
in the Section 4.

The catalog maintained at the central sites consists of functioning satellites as well as
spent rocket bodies and fragments from exploded satellites. The size of the objects ranges
from space stations like Soyuz and SKYLAB, before it decayed, to small pieces of satellites
only a few centimeters across. The catalog currently consists of more than 7000 objects.
The elements for this catalog must be updated and disseminated to users every day. Every
element set in the catalog is updated by processing the multiple observations provided by
the ground stations which are distributed around the world. In 1987, it was reported that,
as a result of several major breakups, the number of observations being processed by the
USSPACECOM Space Surveillance Center (SSC) had reached a record 71,891 observations
in one 24 hour period [5]. The large number of observations and the large number of satellites
in the catalog provides an indication of the difficulty of maintaining an up-to-date satellite
catalog. A further complication is the number of uncorrelated observations, observations that
are not immediately identified as belonging to a known object, that arrive at the central sites
each day. It is estimated that 15%-20% of all observations are uncorrelated and that more
than 10 times the normal amount of processing is required to tag these observations to
the correct satellite. The computational burden associated with processing the observations
has prompted some to propose a distributed processing approach to the problem. The
idea would be to perform at the tracking sites some of the functions currently done at the
central sites. This approach will probably incur difficulties in producing results that are
compatible across the different tracking stations, and thus may be expensive to implement.
We believe that centralized processing is still an economical means to process the data with
parallel computers. This paper is the first step in demonstrating how parallel processing can
alleviate some of the difficulties at the central sites.

2 Parallel Computers and the Connection Machine

In this section we discuss some specifics of massively parallel computers that make them
so amenable to the tasks performed by the surveillance sites. We will frequently refer to
the Connection Machine, CM2 and its recent upgrade, the CM200, when discussing SIMD
computers since this is the best known computer of this type and because this is the machine
available to us at the Naval Research Laboratory. This should not be interpreted as an
endorsement of this brand of parallel computer, it is meant merely to provide a specific
example of the unique architecture and capability of these types of computers.

Parallel computers can be divided into two categories: Single Instruction Multiple Data
(SIMD) or Multiple Instruction Multiple Data (MIMD). A MIMD machine typically has a
small number (< 128) of powerful processors and shared memory, each processor executing
a different task or process. On the other hand, SIMD computers such as the CM2/CM200

have only one instruction stream, each instruction is broadcast simultaneously to each of the
processors. The individual processors are comparatively weak and there are more of them
(typically at least 1024) than on MIMD computers. What varies for the processors is the
data, hence the term “data-parallel.” Each processor has its own local memory for data;
currently 128K bytes on the CM200. These two distinct kinds of architectures are now giving
way to mixed architecture machines such as the Intel iPSC with 128 processors or the CM5
with 1K SPARC processors.

The number of physical processors available to the user is not an issue in the design of
a program; the Connection Machine may be reconfigured to provide any number of virtual
processors. For example, on our Connection Machine with 16K processors, splitting the
memory in half effectively allows for variables with 32K elements. Thus a calculation with a
32K parallel variable means the processor calculates the first half of 16K entries and then in
the next machine cycle it attends to the second half of the variable. Of course this doubles
the execution time of an operation, but it does not bound the size of the application.

A data-parallel computer is ideally suited to many of the functions performed by the
surveillance centers. The idea would be to assign individual processors to each satellite, the
functions then performed for each satellite would be executed by the processor assigned to
that satellite. Each processor would be operating on the data for that satellite.

There are currently available three major high-level languages for the Connection Ma-
chine: CM Fortran, C*, and *LISP, based respectively on the standard languages FOR-
TRAN 77/Fortran 90, ANSI C, and Common LISP. We will restrict our attention here to
CM Fortran.

The current standard for Fortran, FORTRAN 77 [6], while widely used, has no abstract
way of manipulating arrays. Thus for instance, one can imagine a code fragment in FOR-
TRAN 77 to add two arrays leaving the result in a third, and to shift the first array and
leave the result in a fourth:

integer i
real a(100),b(100),c(100),d(100)
do 10 i=1,100
c(i)=a(i)+b(i)
if (i.1t.100) d(i)=a(i+1)
10 continue
d(100)=0.0

We see here that, unavoidably, we have described the mechanism for doing the operation;
looping with an index and performing the addition and shift elementwise — a mechanism that
applies only to serial machines. On the other hand, a new standard for Fortran currently
undergoing approval, called Fortran 90 [7], allows for abstract operations such as addition
and shifting on whole arrays without specifying the mechanism:

real a(100),b(100),c(100),d(100)
c=a+b
d=eoshift(a,1,1,0.0)

Code written this way can be run on serial or parallel computers; the compiler for each kind
of architecture decides how the computation is to take place. For a parallel machine each
addition, shift, etc. takes place in parallel.

CM Fortran for the Connection Machines is FORTRAN 77 with the array capability of
Fortran 90, plus CM-specific features. The second code fragment above is essentially what
one would program on the CM. Note that one is not concerned with manipulating virtual
processors at the Fortran level; this is handled by the compiler. One can use arrays of any
size and the only effect in going from one CM to another of a different size is the execution
speed.

3 COMBO

The goal of COMBO is to determine close approaches of orbiting objects. Starting from
some initial distribution, the catalog is propagated, then the positions of all objects are
compared with all others in the catalog to find those that are within some critical distance
¢ of another. This is an entire catalog-to-catalog comparison with no pre-screening of the
data. The test data set we are working with is the full unclassified catalog of NAVSPASUR,
with 6841 objects for the particular date of the set (October 8, 1991).

This demonstration of COMBO involves four basic elements: input, propagation, compar-
ison, and output, both in tabular and graphical form. The initial element sets were supplied
by NAVSPASUR on tape. These elements were converted to Keplerian elements and then
stored on the Data Vault, an array of disks that allows direct parallel input and output for
the processors.

3.1 Orbit Propagation

At the present, the propagation model incorporates only the J; secular terms from the
averaged Hamiltonian. This model, which is more sophisticated than a Keplerian system,
is sufficient for our purposes at this time. It provides for realistic orbital motion with a
minimum of programming effort to implement.

We begin with the Hamiltonian where the potential has been restricted to the dominant
zonal harmonic, J;.

2 2
H=%(R2+?—2)—£—(1—i22—(%) (3s2sin2a_1)), (1)

This Hamiltonian is averaged with respect to the short period terms by putting it in normal
form using Lie transformations [3]. We only use the secular terms derived from the averaged
Hamiltonian. These equations are identical to Brouwer’s [1] results. By restricting the
expansion to first order, we do not encounter long-period terms. The propagator also does
not include the short-period terms, thus there are no problems with singularities in e or sin I.
Similarly without the long-term coordinate transformations, we do not encounter problems
at the critical inclination.

Efforts are underway to code the standard routines SGP4 of the US space command
[8] and PPT2 of NAVSPASUR [9] for the CM. This effort will result not only in parallel

4

versions of these propagators, but will provide indications of the difficulty in transcribing
these codes from serial to parallel machines. This will be useful for orbit determination or
other applications. The propagator of the current code is a single subroutine so that with
the development of new parallel propagators, the code may be updated in a straightforward
fashion.

Furthermore, we have left open the possibility of other propagators from more complete
theories, for instance, inclusion of higher orders and higher zonal harmonics [3] [4].

3.2 Close miss-distance computation

The computation of close miss-distances involves finding all pairs of satellites within a set
that are within some specified critical distance c at a given time. The general approach is as
follows. One may take the Cartesian coordinates 7= {z,y, z} in arrays stored on the CM,
and duplicate the set.

- — —
1 2 . e Ty

— — —

T T2 Tn

Then, with one copy fixed, we shift all three arrays by one and compute in parallel the
distance of side-by-side elements,

— — -
™1 2 Tn
— — —
™ e Tpn-1 Tn
1 Compute distances l
- — — -
|7'2 - 7‘1| |7”n —Th

saving in a separate array pairs that are closer than some critical distance c. Then we repeat
the shift — distance — save operation until all possible pairs have been compared.

This method, however, is unnecessarily time consuming. We may greatly reduce the
computations by sorting the elements in advance. The position vectors are rearranged so
that one Cartesian coordinate, say X, is sorted in ascending order. First observe that

|z; — z;| > c=> |Fi = 75| > ¢ (2)
Then as a consequence of the sorted coordinates
|z; — z;| > c= |Fi =T >c (3)

k>j>i and |z;—xi >c= |t — x| > c (4)

These together imply that if, at a certain stage of the computation, the minimum of the
differences of the z values is greater than ¢, no further shifts will produce an aligned pair
whose Cartesian distance is less than ¢. Thus we modify the algorithm above; if we let p be
the permutation that puts sets in z-order, i.e.

Tp1) S Tp(2) < -+ < Tp(n)s

shifting and finding distances produces:

Tp(1) Tp(2) e Tp(n)
Fp(l) PR Fp(n—l) Fp(n)
! Compute distances l
[Fo(2) = To()l - [Fon) = Tp(n-1)]

Now, however, after each shift an extra step checks the minimum « differences in parallel of
all aligned pairs. If this minimum is greater than ¢, we terminate the computation, confident
that all pairs that are within a distance ¢ of each other have been found.

In this way, the actual number of computations is greatly reduced. With 6841 objects
from NAVSPASUR for October 8, 1991, and a critical distance ¢ = 50km, the number of
shifts required to do a complete catalog-to-catalog comparison is reduced from 6840 to about
40-50. This speeds up the computation to the point where a complete step, consisting of a
propagation, catalog-to-catalog comparison, and plotting takes less than one second.

3.3 Output

There are three different graphical displays available in this demonstration code:

1. A Mercator projection showing the whole earth and subsatellite points. Optionally,
ground tracks may be recorded for particular satellites.

2. An orthographic (3D) projection showing the hemisphere of the earth facing a particular
point in space and the satellites visible from that point.

3. A “window” around a particular satellite, showing the adjacent subsatellite points and
a portion of the earth’s surface moving as the satellite moves.

There are several mechanisms for graphical output: the framebuffer attached to the Con-
nection Machine itself is most direct and thus fastest; additionally, a color or black and white
X Windows server can display the graphics. Finally, any single image may be generated in
color or black and white postscript for hardcopy output. Figure 3.3 shows a black-and-white
picture of the Mercator projection. The dots indicate the position of the satellites while the
cross marks (+) indicate those satellites that are within 50km of another satellite.

We also provide a mechanism for saving to a file a record of all close satellite encounters.
The output includes the identification number element set, time, and the distance to the
close satellite.

3.4 Multiple Sets and Debris

The scheme described above provides for exhaustive comparison of a set of satellite positions
to itself. The program also allows for having two separate sets of data. One can then perform
inter-set comparisons between objects in the two sets, while inhibiting intra-set comparisons.
Possible applications range from single satellite comparison with the large catalog to looking
at interactions between the catalog and a debris cloud emanating from an exploded satellite.

Mercator

08-Oct-1991 00:05:00.

P = ot

Figure 1: Mercator projection of subsatellite points

Propagating satellites for a range of values of the orbital parameters allows one to deter-
mine, in parallel, which potential orbits for a satellite are safe and which ones may result
in collisions. This would allow for analysts to investigate how orbit errors would affect the
safety of a mission, which is of particular interest for shuttle missions. This gives some in-
dication of how the program ORBWIN [2], which is an expansion of the COMBO concept,
could be implemented on the parallel processor.

For debris calculations, we construct a distribution of objects emanating from a single
source. The simulation of a satellite’s disintegration is computed by adding a small random
component, for each fragment, to the source’s momentum. The resulting particles are then
propagated and compared to the catalog just like any other set of objects.

4 Other Potential Applications for Parallel Processing

We present here several potential applications for parallel processing. These applications
represent investigations we intend to pursue over the next few years.

The simple idea behind the applications we have in mind is that each processor (or
virtual processor) on the parallel computer would be assigned to a particular satellite. Each
processor would then operate on the data for its satellite. The idea is most easily seen in the
case of orbit propagation discussed previously. Here it is assumed the propagator is identical
for each satellite, only the element set (i.e. the data) is different. Thus propagation for each
satellite can be performed in parallel.

For the estimation of the orbital parameters both batch and sequential estimation appears
feasible. In either case individual processors would perform all of the algebraic operations
in updating the element set for the satellite to which that processor is assigned.

For batch estimation, the number of observations need not be more of a concern than on a

sequential computer, as long as the program is careful to not exceed the memory limitations
of the processors. Of course the number of iterations required for the estimation to converge
and the number of observations being processed will produce different completion times for
each element. Once convergence is achieved for one processor, it could either remain in the
loop doing meaningless iterations or it could be deselected and relegated to waiting for the
remainder of the processors to complete their computations. Thus the program would run
as long as required to get the slowest converging element. But, again the filter is being run
in parallel for every satellite, resulting in a tremendous savings in time.

Sequential estimation is perhaps more straightforward conceptually, since the observations
would be processed one at a time. One could consider maintaining the current elements in
the memory of the computer. Then the observations could be processed in real time as they
arrive from the tracking stations. Updates could be computed every few minutes. Of course
the time between the update runs could be used for other functions.

A separate problem associated with satellite observations concerns retagging of the un-
correlated observations. Certain criteria have been prescribed for determining the satellite
to which an observation belongs. If an observation does not meet this criteria, then it is
classified as uncorrelated and separate processing is performed to try to assign it to the
appropriate satellite. Of course this retagging effort is quite important because these obser-
vations may represent new satellite launches with potential military significance. It is now
yet known exactly what the retagging process is, but it certainly is a candidate for parallel
processing, merely because the process must be performed for so many observations and
involves accessing the whole satellite catalog.

5 Conclusions

We have looked at several applications of parallel processing to space surveillance activi-
ties. We have produced a working demonstration for COMBO, which provides impressive
improvements over serial methods. Although it has been difficult to make direct comparison
to the operational programs running on the serial computers at the surveillance centers, es-
timates made by the COMBO experts at NAVSPASUR indicate that their computers would
take many hours for the all-to-all satellite propagation and comparison. The demonstration
code shown also has the ability to follow debris from an exploded or disintegrated object.

We have speculated on other applications. We hope in time to extend our number of
demonstrations to include orbit determination and observation processing and thus answer
the questions of how feasible parallel computing is to those problems. Eventually we may
come to a point where parallel computers will be installed in the surveillance centers to
execute those functions that they are clearly superior at performing.

References

[1] Brouwer, D.: “Solution of the problem of artificial satellite theory without drag,” Astron.
J., 64 (1959), 378-397.

[2] Bredvik, G. D. and Straub, J. E., “Determination of Acceptable Launch Windows for
Satellite Collision Avoidance,” AAS/ATAA Astrodynamics Specialists Conference, 19-22
Aug. 1991.

[3] Coffey, S. L. and Deprit, A.: «Third-order solution to the main problem in satellite
theory,” J. Guidance, Control and Dynamsics, 5 (1982), 366-371.

[4] Coffey, S., Deprit, A., Deprit, E., “Painting Phase Spaces to Put Frozen Orbits in
Context,” AAS/AIAA Astrodynamics Specialists Conference, 19-22 Aug. 1991.

[5] Cook, D. G.: “The Smart Catalog,” AAS/ATAA Astrodynamics Specialists Conference,
Kalispell, Montana, 10-13 Aug. 1987.

[6] American National Standard Programming Language FORTRAN, ANSI X3.9-1978 and
ISO 1539-1980, American National Standards Institute, 1430 Broadway, New York, New
York 10018.

[7] Fortran 90, ISO/IEC 1539:1991, Global Engineering Documents, 2805 McGraw Ave.,
Irvine, CA 92714.

[8] Hoots, F. R., Roehrich, R. L.: “Spacetrack Report 3: Models for Propagation of NO-
RAD Element Sets,” Office of Astrodynamics, Aerospace Defence Center, Peterson AFB,
CO, (1980).

[9] Solomon, D.: “The NAVSPASUR Satellite Motion Model,” Prepared for the Naval
Research Laboratory, Naval Center for Space Technology, contract no. N00014-87-C-

92547, 8 Aug. 1991.

