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 The global drive to create safer, higher capacity energy storage devices is 

increasingly focused on the relationship between the microstructures of electrochemically-

active materials and overall battery performance. The advent of solid-state electrolytes with 

multi-layered, variable porosity microstructures opens new avenues to creating the next 

generation of rechargeable batteries, while creating new challenges for device integration 

and operation. In this dissertation, microstructures of solid-state Li-ion conducting 

electrolytes were characterized to identify the primary limiting factors on electrolyte 

performance and identify structural changes to improve porous electrolyte performance in 

dense-porous bilayer systems.  

 LLZO-based garnet electrolytes were fabricated with varied porosity and 

characterized using 3D Focused Ion Beam (FIB) Tomography, enabling digital 

reconstructions of the underlying 3D microstructures. Ion transport through the 

microstructures was analyzed using M-factors, which identified garnet volume fraction and 



 

bottlenecks as primary limiters on effective conductivity, followed by geometric tortuosity. 

Notably, a template-based porous microstructure displayed a low tortuosity plane and a 

high tortuosity direction, as opposed to the more homogenous tape-cast porous 

microstructures. To evaluate the performance of these microstructures in Li symmetric 

cells, dense-porous bilayers were digitally constructed using the FIB Tomography 

microstructures as porous layers with fully infiltrated Li-metal electrodes, and equilibrium 

electric potentials were simulated. The bilayers had area-specific resistance (ASR) values 

similar to the ASR value of the dense layer alone. The bilayer ASR also decreased as 

porous layer porosity increased, due to ion transport occurring primarily through the dense 

layer-electrode interface and higher porosity creating higher interfacial area. Artificial 

bilayers were created with porous layers composed of columns for a range of column 

diameters/particle sizes, porous layer porosities, and porous layer thicknesses. The bilayer 

ASR decreased with increasing porosity and decreasing column diameter, similar to the 

FIB Tomography bilayers. However, bilayer ASR dramatically increased when only 

partially infiltrated with electrodes, and instead increased with increasing porosity and 

decreasing column diameter. The simulation results showed that fabricating solid-state 

bilayer symmetric cells with low ASR required high porosity porous microstructures with 

small particle sizes, and electrodes completely infiltrated to the dense layer.  
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1.    Lithium-Ion Batteries: 
 
 

At a fundamental level, secondary/rechargeable batteries are simple in operation: 

oxidation and reduction reactions are split between two electrodes, with ions traveling 

between the electrodes through an intermediate electrolyte and electrons directed through 

an external circuit. Charging builds a potential difference across the battery to store energy, 

while discharging consumes that potential difference to produce external current that 

powers devices. In the 150 years since secondary batteries were first demonstrated, these 

fundamental principles remained unchanged even as the components and basic chemistry 

at work have undergone many revisions (Figure 1.1).1 Today, lithium-ion (Li-ion) batteries 

are among the most prevalent in the world due to their widespread utilization in consumer 

electronics and increasing applications in transportation and, potentially, in large-scale 

energy infrastructure. With a wide range of battery materials under study, the next 

generation of rechargeable batteries could range from simple improvements of existing 

designs to radically new operational approaches. 

 
Figure 1.1: Leading secondary battery chemistries over the years.1   
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1.1.    Liquid Organic Electrolytes: 
 
1.1.1.    Background: 

 
First commercialized by Sony in the 1990’s, secondary Li-ion batteries using a 

LiCoO2 | liquid organic electrolyte | graphite architecture have dominated energy storage 

in consumer electronics for many years and remain the standard for modern Li-ion 

batteries.2 The liquid electrolyte is typically a mixture of ethylene carbonate (EC) and the 

linear carbonate dimethyl carbonate (DMC), into which a lithium salt, such as LiPF6, is 

dissolved to provide ionic conductivity.3 This particular liquid electrolyte chemistry 

demonstrated both a high Li-ion conductivity (~10-3 S/cm) and the ability to form a stable 

solid electrolyte interface (SEI) that passivated the electrolyte-graphite interface, radically 

slowing deleterious side reactions that caused performance decay.3 Even as academia and 

industry continue to find ways to improve Li-ion technology, most commercially available 

rechargeable batteries still rely heavily on liquid organic electrolytes and designs similar 

to the original Sony battery.3  

 

1.1.2.    Material Challenges: 
 
One of the biggest issues facing Li-ion batteries utilizing liquid organic electrolytes 

is the formation of Li-metal dendrites that bridge the electrodes and short-circuit the 

battery.4 Under ideal operational conditions, a porous separator prevents physical contact 

between the electrodes while still allowing the liquid organic electrolyte to pass through 

and move Li-ions through the battery.5 However, cycling the battery at high current 

densities can cause the Li-ions to plate onto the electrode surface and create Li-metal 

dendrite protrusions (Figure 1.2a), which will grow each cycle and reduce battery 
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performance by decreasing the distance between electrodes (Figure 1.2b).6 If a dendrite 

extends across the entire battery and connects the electrodes directly, the resulting short 

circuit allows large electrical currents to flow through the thin metal dendrite and release 

significant heat. If this heat initiates a thermal runaway reaction, it can ignite the flammable 

liquid organic electrolyte or produce enough gas to rupture the battery.7–9 This safety 

concern for batteries using Li-metal anodes drove Sony’s decision to abandon high 

capacity Li-metal anodes (3861 mAhr/g) in favor of low capacity graphite anodes (372 

mAhr/g) that better resist dendrite formation.10 Even with safer graphite anodes, Li-metal 

dendrites still can form if battery charge/discharge current densities are too high, 

particularly at low temperatures where the liquid electrolyte conductivity is significantly 

reduced.10,11  

 
Figure 1.2: A) lithium dendrite growing through PEO electrolyte from lithium metal anode and B) observed 
degradation of battery voltage while polarized. Dendrite growth reduced the cathode-anode distance, 
decreasing battery voltage until final failure by short circuit.6  

 

A variation of the Li dendrite issue is the formation of “dead lithium” at the 

electrodes, especially for Li-metal anodes.12 During operation, the Li-ions are reduced at 

the Li-metal anode and plate to the surface of the electrode. However, subsequent cycles 

formed an SEI layer on the surface of the plated Li-metal, consuming part of the cycled Li-
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ions in the process.13 While dendrite growth is stalled by this SEI, repeated plating and SEI 

formation continuously consume more Li-ions and isolate parts of the plated Li-metal from 

the bulk electrode, creating the “dead lithium.” Alternatively, Li-dendrites extending from 

the surface of the Li-metal anode can break away and become electrically isolated. As a 

consequence, the charge/discharge capacity of the battery decays quickly with time as more 

of the available Li-ions became trapped in SEI layers or are rendered inert.  

Using liquid organic electrolyte also precludes the use of many high-performance 

electrodes and even limits the performance of electrodes compatible with the electrolyte. 

On the cathode side, liquid electrolytes decompose into potentially combustible products 

when cycled above 4.5 V (vs. Li/Li+), prohibiting the use of promising high voltage cathode 

materials (e.g., LiMn1.5Ni0.5O4, LiNiPO4, and LiCoPO4) that could significantly increase 

battery energy density and power density.7,14,15 Sulfur, one of the highest capacity cathodes 

currently known (1672 mAhr/g), is not yet utilized in commercial batteries due to the 

dissolution of polysulfide compounds into the liquid electrolyte that leads to the so-called 

“polysulfide shuttle effect”.16,17 Li-rich, Mn-rich layered oxide cathodes also received 

significant interest due to high Li-ion capacity (> 250 mAhr/g) and improved cycling 

behavior when compared to typical LiCoO2 (LCO) cathodes (140 mAhr/g).18 However, Li-

rich, Mn-rich layered oxide cathodes also suffer from metal-ion dissolution into the liquid 

electrolyte or internal structural transformations when cycled above 4.4 V, causing the 

cathode to irreversibly transition to low capacity phases.19,20 Limiting the voltage range 

would preserve the material microstructure, but at the cost of utilizing only a fraction of 

the capacity of the Li-rich, Mn-rich layered oxide cathodes.  
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Despite these limitations, the capabilities of Li-ion batteries are being pushed as far 

as possible to satisfy demand for increasingly long-lasting and fast-charging batteries for 

consumer electronics, as well as future applications in automobiles, air travel, and large-

scale energy infrastructure.15 Still, the limits of the liquid organic electrolytes continue to 

result in low energy density and low power density battery systems, leading to bulky 

battery packs that require extensive thermal maintenance and can still suffer catastrophic 

failures.8,21–24 Clearly, Li-ion batteries need a breakthrough, and replacing the liquid 

electrolyte is the key.  
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1.2.    Solid-State Lithium-Ion Electrolytes: 
 
1.2.1.    Background: 

 
A novel approach within the last two decades was to replace the liquid organic 

electrolyte with a solid-state electrolyte.25 Both solid-state electrolytes and liquid organic 

electrolytes conduct Li-ions through the battery, but solid electrolytes have a number of 

unique properties that make them ideal for battery use. A key advantage is that solid 

electrolytes act as a physical barrier separating the electrodes. If sufficiently hard and 

possessing minimal surface defects, even solid electrolytes composed of organic materials 

could prevent lithium dendrite growth and short circuits, eliminating a major safety concern 

for Li-ion batteries.26,27 This safety function is further augmented in metal oxide solid 

electrolytes, since the oxide is completely non-flammable due to the incorporation of 

oxygen into the chemical structure.28 In terms of battery performance, some solid 

electrolytes have shown wider electrochemical stability windows than liquid electrolytes, 

allowing for the use of high voltage cathodes that are incompatible with liquid 

electrolytes.29 Additionally, solid electrolytes cannot dissolve lithium polysulfide 

compounds, preventing the “polysulfide shuttle effect” and thereby making sulfur a viable 

cathode material.30 Given these clear benefits, solid electrolytes are the subject of intense 

study in recent years, with investigations including gel polymers, Li-ion conducting 

polymers, plastic crystals, perovskite materials, garnet-like ceramics, glasses, and 

composite materials.31–34 

Two key aspects of an electrolyte’s ability to conduct Li-ions are the ionic 

conductivity and the transference number (i.e., the ratio of Li-ions transferred to total ions 

transferred). Solid-state electrolytes generally have relatively low ionic conductivities at 
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room temperature compared to carbonate-based liquid organic electrolytes with 

conductivities up to 10-2 S-cm-1.35–37 As such, extensive research was focused on 

synthesizing a wide variety of solid electrolyte compositions with the ultimate goal of 

achieving higher room temperature ionic conductivity (Figure 1.3).35 

 
Figure 1.3: Comparison of Li+ ionic conductivities for solid-state Li-ion electrolytes [adapted from Murugan, 
et al.].35  
 

1.2.2.    LLZO and LLCZN: 
 
Murugan, et al, was the first to synthesize a particularly intriguing solid-state 

electrolyte with the chemical composition Li7La3Zr2O12, known as LLZO.35 This 

electrolyte  was the latest in a series of Li-ion conducting metal oxides that adopted garnet-

like crystal structures, with previous iterations having Li5 and then Li6 compositions.35,38,39 

LLZO displayed a room temperature tetragonal phase with relatively low ionic 

conductivity (~10-6 S-cm-1) and a high temperature cubic phase with high ionic 

conductivity (~10-4 S-cm-1).40 Crucially, LLZO demonstrated good stability in the presence 

of lithium metal and electrochemical stability up to 7 V (vs. Li/Li+), making it compatible 

with both high capacity lithium metal anodes and high voltage cathodes.35,41 While other 
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solid-state electrolytes such as perovskite-type lithium lanthanum titanate (LLTO) have 

even higher ionic conductivities (~10-3 S-cm-1), they are unstable when in contact with 

lithium metal anodes and can only be used with lower capacity graphite anodes.31,35  

 Early studies revealed that LLZO leached Al from the Al2O3 crucibles during 

calcination and the Al-doping stabilized the cubic phase at room temperature.42 Since then, 

additional dopants were investigated and also found to stabilize the cubic phase, as well as 

change the conductivity of the doped LLZO (Figure 1.4).43–46 When the Zr-site was doped 

with Nb, the resulting Li7-xLa3Zr2-xNbxO12 displayed a maximum ionic conductivity of 

8x10-4 S-cm-1 for x=0.25 (Figure 1.5a) and electrochemical stability up to 9 V (vs. Li/Li+).47 

Based on these results, the La and Zr sites were simultaneously doped with Ca and Nb, 

respectively, to form Li7La2.75Ca0.25Zr1.75Nb0.25O12 or LLCZN.48 LLCZN showed slightly 

reduced ionic conductivity compared to Nb-doped LLZO (Figure 1.5b), but adding Ca 

reduced the final sintering temperature, which is useful from a processing perspective.48 

As such, LLCZN appears to be a better candidate for use in Li-ion batteries than LLZO.  

 
Figure 1.4: Ionic conductivities of doped LLZO.46  
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Figure 1.5: A) conductivity of Li7-xLa3Zr2-xNbxO12 for varying Nb doping,47 and B) x = 0.25 Nb in LLZO, 
Ca/Nb doped LLZO (LLCZN), and Sr/Nb doped LLZO [adapted from Kihira, et al.].48  
 

1.2.3.    Challenges in Adopting Solid-State Li-ion Electrolytes: 
  

The advantages of solid-state electrolytes are accompanied by unique 

disadvantages. Perhaps the single most pressing issue for solid electrolytes is the high 

interfacial impedance associated with the electrolyte-electrode interface.28 This generally 

arises from having poor ion transport across the interface, possibly due to insulating surface 

coatings that arise from undesirable side reactions at the electrolyte or electrode, or due to 

poor electrolyte-electrode physical contact.25,49 When exposed to humid air, the 

LLZO/LLCZN reacts with H2O to produce a surface coating of LiOH*H2O (due to proton 

exchange with Li-ions in the bulk). The LiOH*H2O then reacts with CO2 to form a surface 

coating of Li2CO3 and LiOH*H2O.50 The Li2CO3 and LiOH*H2O coating has poor Li-ion 

conductivity, acting as an insulating layer between the LLZO/LLCZN and the electrode. 

The formation of these surface contaminants also extracts Li-ions from the LLZO, affecting 

Li-concentrations and ionic conductivity near the surface.45 As to physical contact between 

the electrolyte and electrodes, the rigid nature of both materials makes it difficult to achieve 

highly conformal solid-solid interfaces.51 This limits the amount of electrolyte-electrode 
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interfacial area, increasing the current density at the few contact points and thus increasing 

the overall interfacial resistance. In contrast, liquid organic electrolytes are able to fully 

wet the surfaces of the electrodes, so do not have this physical contact issue.  

 To address high impedance surface contaminants, many studies deliberately 

established a new, stable, Li+-conducting layers on the surface of the electrode or 

electrolyte to protect against undesirable secondary reactions.51–54 Depending on the 

electrode material, it is also possible to achieve a more conformal electrolyte-electrode 

interface by pressing or melting the electrode onto the surface of the electrolyte.49,55 For 

LLCZN, applying an ultrathin Al2O3 layer via atomic layer deposition (ALD) prevents the 

formation of insulating LiOH*H2O and Li2CO3 surface contaminants, and improved the 

LLCZN-lithium interface (Figure 1.6a).51 The improved interface results from the molten 

lithium reacting with the insulating Al2O3 layer to form a Li-ion conducting Li-Al-O layer. 

This Li-Al-O layer in turn causes the remaining molten lithium to readily wet the ALD-

coated LLCZN. Figure 1.6b shows secondary electron (SE) scanning electron microscope 

(SEM) images of garnet pellets with and without ALD coatings, demonstrating how the 

ALD coating made the garnet-Li metal interface significantly more conformal. 

Electrochemical Impedance Spectroscopy (EIS) showed the area-specific resistance (ASR) 

of the LLCZN-lithium interface dropped significantly for samples with the ALD coating 

compared to samples without the ALD coating (Figure 1.7). Over 50 cycles on lithium 

symmetric cells and LFMO | LLCZN | Li-metal full cells showed consistent cycling voltage 

plateaus and discharge capacities, respectively, indicating the Li-Al-O interfacial layer was 

stable long term. These results further demonstrated how controlling the surface chemistry 

of interfaces can reduce sources of high interfacial resistance.  
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Figure 1.6: A) schematic and B) SEM images of LLCZN-lithium interface without and with ALD layer.51  
 

 
Figure 1.7: ASR associated with Li-ion conduction through the bulk, grain boundary, and LLCZN-Li 
electrode interface of LLCZN pellets without and with ALD layer.51  

 

 Another major challenge facing solid-state electrolytes is the higher amount of 

electrolyte mass in the final battery due to the higher density of the solid electrolyte vs. a 

liquid organic electrolyte. From an energy and power density perspective, electrolytes are 

essentially “dead weight,” increasing the battery’s mass and weight without contributing 

to Li-ion storage. As solid electrolytes are up to 4x as dense as liquid electrolytes, a higher 

performance battery requires as little solid electrolyte as possible to maximize battery 

energy density. In addition, even the best solid electrolytes still have lower ionic 

conductivities than liquid electrolytes, resulting in higher electrolyte resistances and ohmic 

losses. The combined impedance sources in the battery increase the total battery resistance 

and over-potential during cycling, reducing the battery energy density. Decreasing the 

solid-state electrolyte thickness provides some mitigation by eliminating “unnecessary” 

mass not contributing to Li-ion storage while also reducing ohmic resistance in the battery. 

The resistance and ASR of the electrolyte layer are expected to be linear with layer 
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thickness (Equation 1.1), so thinner solid electrolytes should have reduced ASR. EIS 

measurements of LLCZN samples with varying dense layer thicknesses support this, with 

dense layers less than 100 µm demonstrating lower ASR than ideal commercial cells 

(Figure 1.8).  

𝐴𝑆𝑅	(Ω	𝑐𝑚5) = 	𝑅 ∗ 𝐴 = 𝜌 ∗ 𝐿	 = 	 𝐿 𝜎<     (1.1) 

  
Figure 1.8: ASR of LLCZN samples as a function of dense layer thickness.56  
 

 However, reducing the solid electrolyte thickness also reduces its mechanical 

strength. As solid electrolytes function as both Li-ion conductor and electrode separator, 

the electrolyte must be strong enough to survive battery assembly and stresses during 

battery operation. This implies a minimum thickness is required, that, in turn, establishes 

an upper limit on the performance of batteries using solid electrolytes. Overcoming this 

limit is possible with a new battery structure. For example, replacing the dense, single 

layer, planar structure with a porous-dense-porous multilayer structure, wherein the thin 

dense layer separates the electrodes and the thicker porous layers provides the mechanical 

support (and increased contact area with the electrodes) (Figure 1.9).56 The performance 
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advantages of a thin electrolyte and the mechanical strength of a thick electrolyte are 

achieved simultaneously with this “trilayer” structure.  

 
Figure 1.9: Schematic of solid-state electrolyte with porous-dense-porous trilayer microstructure, with 
cathode and anode material infiltrated into the networks of pores.56   
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1.3.    Research Objective: Understanding Porous Solid-State Li-ion 
Electrolyte Performance: 
 

Radically altering the garnet electrolyte structure carries the potential to both 

improve performance and magnify the effects of microstructural limitations. Thus far, the 

results for batteries employing LLCZN “trilayers” and “bilayers” were highly promising, 

showing lower ASR values while achieving higher electrode loading than planar electrolyte 

structures.57–59 This suggests the potential structural limitations of the porous LLCZN 

layers did not pose a significant issue for these configurations. However, this may change 

if the porosity, thickness, or microstructure of the porous layer is further modified, 

therefore, a better understanding of the porous layer’s role in overall electrolyte 

performance is crucial.60–62  

This dissertation reflects a study of key microstructural parameters that directly 

affect porous electrolyte effective conductivity via a microstructure factor, or M-factor 

(Equation 1.2).63,64 The M-factor was determined by calculating the conductive phase 

volume fraction (f), the geometric tortuosity (τgeo), the percolation factor (P), and the 

constriction factor (β), and combining these values in Equation 1.3. These parameters were 

evaluated for 3D reconstructions of porous LLZO-based electrolytes to help determine the 

relative importance of each parameter on effective conductivity. Simulations of 

equilibrium electric potential distributions in bilayer symmetric cells were run to study the 

electric fields, current densities, and bilayer ASR values within the porous electrolyte 

microstructures and to determine the optimal microstructure for battery applications.  

𝜎=>>=?@AB= = 𝜎AC@DACEA? ∗ 𝑀     (1.2) 

𝑀 = >∗F∗G

HIJKLM
N      (1.3)  
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2.    3D Focused Ion Beam (FIB) Tomography: 
 
 

The bulk device properties of batteries, solid oxide fuel cells (SOFC), and other 

electrochemically-active devices depend heavily on the intrinsic properties of the 

constituent materials and on the overall device microstructure. This understanding has long 

guided the development of SOFC’s, where oxidation/reduction efficiencies and 

ionic/electronic transport properties were connected to tortuosity and triple-phase 

boundary lengths.65–74 In recent years, battery research groups developed a similar focus as 

studies connected performance degradation to changes in electrode microstructure, 

including particle fracture, transition metal distribution, surface reconstruction, and 

elemental dissolution.20,75–77 The advent of solid-state electrolytes for Li-ion batteries 

dramatically increased the importance of understanding battery microstructures due to the 

rigid morphology of the solid electrolyte introducing new challenges to cell operation. 

35,46,78–80 Thus, the battery research community has steadily embraced the use of 3D 

imaging techniques (focused ion beam tomography, x-ray computed tomography) to study 

electrode microstructures.81–86 Research for this dissertation used 3D Focused Ion Beam 

tomography (3D FIB Tomography for short) to create 3D image sets of the porous 

electrolyte samples and reconstruct the full 3D microstructures.  

 

2.1.    Background: 
 
Focused ion beam (FIB) systems utilize similar technology as electron microscopes 

to accelerate and focus a beam of ionically charged particles towards a sample.87 Due to 

the large mass of the ions, the ion beam carries significant momentum and will ablate 

material from the sample surface when interacting with the sample.88 FIB systems can 
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therefore physically alter samples on the scale of hundreds of nanometers up to hundreds 

of microns. Initially, FIB systems were prohibitively expensive and thus limited to niche 

applications such as circuit modification and repair at semiconductor manufacturing 

facilities.87,89 Subsequent researchers developed approaches to utilize the fine milling 

control of FIB systems to greatly reduce transmission electron microscope (TEM) sample 

preparation time, resulting in a wider use of FIB systems.90  

Like the electron beam in a SEM, a FIB generates secondary electrons from the 

sample by transferring momentum from the accelerated ions to the outer electrons of the 

sample atoms.88 Thus, FIB systems can scan and image sample surfaces in much the same 

way as an SEM, though at the cost of sputtering material from the sample surface being 

imaged. The destructive nature of FIB imaging can also help gain elemental information 

about the sample through secondary ion mass spectroscopy (SIMS).91,92 Here, some of the 

sputtered atoms from the sample become ionized by the ion beam and these secondary ions 

are detected by quadrupole, sector, or time-of-flight (TOF) mass analyzers.93 Crucially, 

SIMS is capable of detecting light elements such as Li, making it possible to identify the 

presence/distribution of Li in Li-containing electrolytes, cathodes, or anodes.94  

Today, the most common use of the FIB is in dual beam FIB-SEM systems, where 

a FIB is mounted at an angle to an SEM such that the ion beam and electron beam intersect 

inside the vacuum chamber at the sample surface (Figure 2.1).95,96 The FIB-SEM has the 

distinct advantage of combining all the normal SEM imaging modes with the additional 

characterization techniques available through the FIB. The FIB-SEM also enables 3D FIB 

Tomography, whereby the FIB repeatedly mills into the sample to expose new cross-

sections of the sample microstructure while the SEM takes images of each cross-section.97 
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The resulting image sets are processed to reconstruct the 3D microstructure of the sample, 

providing invaluable insight not attainable through normal 2D imaging techniques.  

 
Figure 2.1: Diagram of a dual-beam FIB-SEM, with the FIB attached at an angle to the SEM so the electron 
and ion beams intersect at the sample.96  
 

 A number of artifacts can manifest during a 3D FIB Tomography imaging run that 

make later analysis difficult or potentially impossible. One of the easier artifacts to address 

is the “pore-back effect”, wherein the back of unfilled pores is visible in the SEM image 

before the polished cross-section has reached the pore back.98,99 The result is pores that 

should appear dark instead have contrast similar to the sample at the polished cross-section 

(Figure 2.2a). Preventing the “pore-back” artifact is done by infiltrating a low contrast 

material into the sample pores during sample preparation that later solidifies, such as 

epoxy. Another common artifact is curtaining artifacts (Figure 2.2b), wherein variable or 

incomplete milling across the polished cross-section creates vertical stripes that can alter 

contrast across homogenous phases.68 FIB Tomography samples are typically coated with 

a layer of platinum at the top of the polished cross-section to protect the region from excess 

milling and to help reduce the severity of the curtain artifacts.100,101 In addition, longer 

milling times with lower ion beam currents can also reduce the size of the curtains, but 

drastically increases the total FIB Tomography run time. Alternatively, mathematical 
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filters applied to the image sets can attempt to isolate the artifacts, but the results may vary 

dramatically.102–105 Sample charging can also become a significant issue when using SE 

mode due to the sample often being an insulating ceramic surrounding by an insulating 

filling material. Most commonly, this facilitates negative charge buildup due to the electron 

beam scanning across the polished cross-section surface, which then deflects the electron 

beam during later scanning and creates patches of variable contrast (Figure 2.2c). Lower 

electron beam currents or alternate imaging modes can reduce the problem. A positive 

charging artifact can also occur due to positive ions from the ion beam implanting in and 

around the polished cross-section surface, which reduces the amount of 

secondary/backscatter electrons that leave the sample resulting in global dimming of the 

SEM image.106 Periodically exposing the charged surface to low energy electrons from a 

“flood gun” can negate the positive charge buildup.107  

 
Figure 2.2: A) pore-back effect (highlighted in yellow), B) curtaining artifact, and C) charging artifact.98 
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2.2.    Sample Preparation: 
 

Porous LLCZN samples (Figure 2.3a) were infiltrated with Allied EpoxyBond 110, 

placed under vacuum for 10 minutes to remove air pockets, and cured at 70 °C for 12 hours. 

The epoxy-filled samples were cut to expose a cross-section of the sample and embedded 

into a disc of Allied EpoxySet, then cured at room temperature for 12 hours (Figure 2.3b). 

The epoxy disc surface was polished with 240, 400, 600, and 1200 grit silicon carbide 

abrasive discs (LECO), followed by further polishing with 9 µm, 6 µm, 1 µm, and 0.25 µm 

diamond particle suspensions (LECO). Copper tape was applied to the epoxy disc near the 

polished sample cross-section to prevent charging during SEM imaging and on the 

sides/bottom of the disc to provide an electrical contact to the sample holder. A thin coating 

of gold-palladium was plasma-sputtered onto the epoxy disc using an Anatek Hummer X 

Sputter System in order to prevent charging during SEM imaging. The coated epoxy disc 

was secured in a multi-purpose specimen mount (Ted Pella, Inc.) by set screws to minimize 

sample movement (Figure 2.3c). The cross-section of the epoxy-filled samples was imaged 

in secondary electron (SE) and back-scatter electron (BSE) modes in a Tescan XEIA3 FIB-

SEM (Figure 2.3d).  

 
Figure 2.3: A) initial porous LLCZN sample, followed by B) infiltration with Allied EpoxyBond and then 
Allied EpoxySet epoxies, and finally C) secured in the Ted Pella, Inc., specimen mount. D) specimen mount 
was then inserted into the Tescan XEIA3 FIB-SEM, available through the UMD AIM Lab.   
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2.3.    SEM/3D FIB Tomography Image Acquisition: 
 

The mechanically polished cross-section of the epoxy-filled samples was imaged 

in secondary electron (SE) and back-scatter electron (BSE) modes in a Tescan XEIA3 FIB-

SEM (Figure 2.4a). Based on these images, several samples with different amounts of 

porosity were selected for 3D FIB Tomography. The sample was placed into the Tescan 

XEIA3 FIB-SEM and a representative area-of-interest (AOI) was identified in the SEM 

images. The xenon-plasma focused ion beam (FIB) and the gas injection system (GIS) were 

used to deposit platinum on top of the AOI to prevent excessive ion beam milling (Figure 

2.4b). A U-shaped trench was milled around the AOI to expose an internal cross-section of 

the porous microstructure and to prevent re-deposition of sputtered material onto the 

exposed cross-section (Figure 2.4c). For this reason, the sides of the trench were made with 

50 microns of clearance from the sides of the cross-section and the front of the trench was 

made approximately twice as long as the trench was deep.  
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Figure 2.4: A) SEM image of the polished surface of trilayer LLCZN sample prior to ion milling. B) 
deposition of platinum protection layer. C) milling of U-shaped trench. D) FIB Tomography cross-section 
after final polishing in the GAIA3, with angled thickness reference marks visible on the platinum layer at the 
top of the image. 
 

The cross-section was polished by the xenon-plasma FIB with progressively lower 

ion beam currents, with each step polishing away defects created by the previous polishing 

step. The sample was then transferred to a Tescan GAIA3 FIB-SEM for final polishing 

with the gallium-ion FIB (Figure 2.4d). A circle-and-cross-shaped reference mark was 

milled near the sample to help the GAIA3 minimize pattern drift during later serial milling-

and-imaging. The sides and centerline of a triangle were milled into the top of the platinum 

protection layer (visible in Figure 2.4d) to calculate the average FIB slice thickness during 

post-analysis. The GAIA3 FIB-SEM was set to automatically mill ~100 nm thick slices 

through the AOI with a 10 nA beam current, then take SE and BSE images of each newly 
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exposed cross-section at resolutions of 50-60 nm/pixel. During each milling step, milling 

was automatically paused every few minutes to update the displayed image of the cross-

section and confirm that the process was proceeding correctly. Total milling-and-imaging 

times were 40-60 hours and produced ~200 images that were 80-100 µm x 80-100 µm. The 

built-in “Geometric Transformation” function was set to “follow cross-section,” which 

automatically corrected the SEM images to compensate for the 55° angle between the 

electron beam and the polished cross-section.  

 

2.3.1.    Global Signal Loss Due to Positive-Ion Charging: 
 

Early runs of 3D FIB-tomography on porous layer samples primarily focused on 

determining the optimum parameters for bulk sample preparation, trench and cross-section 

preparation, and 3D acquisition. During one test run, both the SE and BSE images recorded 

during the 3D acquisition became increasingly darker as the run continued, and more 

images were collected (Figure 2.5). The issue became so severe that only the platinum 

protection layer was visible in late-stage images. Attempts to correct the issue by running 

the “Automated Brightness-and-Contrast” routine in the SEM control window failed to 

improve image quality, suggesting the problem originated from the sample and not an 

imaging setting. Without a clear way to correct the issue, the run was aborted prematurely 

to avoid unnecessary costs.  
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Figure 2.5: A) image 9, B) image 19, and C) image 29 in a BSE image set generated during a 3D FIB-
Tomography run, with later images showing increasing signal loss across the entire image region.  
 

 Since the images became progressively darker with run time, it was thought positive 

charging from ion implantation was a likely cause. As noted earlier, the positive-charge 

ion utilized for the FIB (in this case, Ga+ ions) both sputters material from the sample 

surface and implants into the near-surface bulk of the sample. The buildup of Ga+ ions 

embedded in the cross-section, and especially in the trench floor around the cross-section, 

would create an increasing positive charge at the sample surface. This would weaken the 

SE and BSE signals detected by the SEM, causing the sample surface to appear 

increasingly dark. This scenario plausibly explains the global darkening of the 3D 

acquisition images.  

As further corroboration, other 3D acquisition test runs did not display this global 

darkening. The key difference was the successful runs utilized the “FIB Observer” option 

in FIB-SEM software while the run that suffered from global darkening did not utilize this 

option. When enabled, the “FIB Observer” option added pauses in the FIB milling step at 

regular intervals (interval length was user-defined) and the SEM automatically scanned 

over the sample cross-section to update the SEM image on the monitor. If the sample was 

slowly accumulating positive-charge from an increasing amount of embedded Ga+ ions, 

then regularly scanning the sample surface with the SEM electron beam exposed the 
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sample to a negative charge, negating the excess positive-charge. This is similar to using a 

“flood gun” to produce electrons to neutralize excess positive-charge on a sample surface. 

It was therefore concluded that the “FIB Observer” option was acting as an electron 

“flooding” step during ion milling that preventing the embedded Ga+ from interfering with 

sample imaging. All subsequent 3D FIB-Tomography runs that utilized the “FIB Observer” 

option did not suffer from global darkening.   
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2.4.    Image Processing: 
 
 Following the acquisition of SEM images by the milling-and-imaging run during 

3D FIB Tomography, the resulting image set was processed to replace the signal-based 

intensity of the original images with material-based intensity in the final segmented images 

(so each intensity value corresponded to a unique material). To accomplish this, the image 

set must undergo 3 steps: 1) Pre-Processing, where noise, shading, and other artifacts in 

the raw images were removed; 2) Segmentation, where a classification program groups 

together neighboring pixels of similar signal-intensities into a unified phase both within 

each image and between adjacent images in the image set; and 3) Post-Processing, where 

errors in the Segmentation step were removed.  

 

2.4.1.    Pre-Processing: 
 
2.4.1.1    Image Registration: 
 

The SE images showed charging artifacts not present in the BSE images, so the 

BSE images were used for the segmentation procedure and the SE images were used as 

references. For the BSE image set, pre-processing began by aligning the individual images 

using the “Linear stack alignment with SIFT” plug-in available in the image processing 

and analysis software, FIJI, with the “Rigid” option selected.108–110 This plug-in utilized 

the Scale Invariant Feature Transform (SIFT) algorithm to identify unique features present 

across adjacent images and then shifted/rotated the images to correct for any image drift. 

The image set was then cropped to remove black areas on the image edges artificially 

created by the alignment process, excess parts of the image that extended beyond the 
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polished cross-section, and areas at the bottom of the image that had too many artifacts to 

be correctly segmented.  

 

2.4.1.2.    Shade Correction: 
 

The aligned-and-cropped BSE image set then underwent the application of a “shade 

correction” plugin created by Dr. Taillon and run in FIJI.98,111 The shading artifact is visible 

in Figure 2.6a, where the bottom quarter of the image appears darker than the rest of the 

image (brightness/contrast were adjusted to emphasize shading). This is also seen in the 

histograms of the top 300 rows and bottom 300 rows, showing that all pixels in the bottom 

of the image were shifted to lower intensity values (Figure 2.6c). The shading artifact 

originated from less signal escaping from the bottom of the cross-section as compared to 

the top due to the walls of the U-shaped trench blocking part of the signal.  
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Figure 2.6: A) BSE image after cropping and alignment. Shading artifact clear visible in the bottom section 
of the image. B) BSE image after shade correction, showing greater homogeneity across the entire image. 
Histogram for different parts of C) the pre-correction BSE image and D) post-correction BSE image, clearly 
showing the effects of the shading artifact and the changes introduced by the shade-corrections. 

 

Dr. Taillon’s plugin implements a solution originally reported for data analysis of 

satellite images of Earth.111 It was observed that a satellite image with sufficiently 

numerous and pseudo-random features has an approximately Gaussian distribution in the 

pixel intensity histogram. When uneven lighting/signal caused shadowing of part of the 

image, the “true” Gaussian distribution in that shaded region was shifted and 

dilated/compressed but still retained an approximately Gaussian distribution (Equation 

2.1). When attempting to correct this shading, if the Gaussian distribution of the shadowed 

pixels was normalized then the distribution was fully described by its mean and standard 

deviation. Therefore, the changes in the “true” Gaussian distribution of the image due to 

shadowing are undone by simply adjusting the mean and standard deviation of the Gaussian 
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distribution of the shadowed pixels to best match the original, un-shadowed image. In 

practice, the shade correction plugin split each image into rows of pixels, combined the 

corresponding rows of all images in the image set, and calculated a pixel intensity 

histogram for each row of the combined image set as a function of distance from the top of 

the image set. The plugin used the histograms from the top rows as a reference for the 

“unshaded image”, and then adjusted the mean and standard deviation of the histograms 

for all other rows in order to best match the reference (Equation 2.2). The final shade 

corrected image had a noticeably more uniform illumination of the garnet pixels (Figure 

2.6b). While the shade-corrected rows in the image set showed increased noise at lower 

pixel intensity values (shown in Figure 2.6d), the pixel intensity of LLCZN particles across 

the entire image became more uniform and helped to improve the accuracy of later 

segmentation.  

(OPKQRSPKQ)
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    (2.1) 
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∗ (𝐼YZ[ − 𝜇YZ[) + 𝜇C=X    (2.2) 

 

2.4.1.3.    De-noising: 
 

The aligned and shadow-corrected BSE image set was then opened in the 3D 

analysis software Avizo (FEI Visualization Sciences Group) and a “Non-local means filter” 

applied to the image set to remove pixel noise.112 Pixel noise noise appeared to be 

completely random and caused pixels within ideally homogenous image regions to have 

intensities above or below the “true” intensity of that region, visible as “salt-and-pepper” 

noise. This proved especially problematic for segmentation because the noise-affected 

pixels were assigned to incorrect phases. Simple methods to remove this random noise 
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involve “local means filters” that replace the value of a given pixel with the average of the 

surrounding pixels. Since random noise should give equally high and low values, this 

greatly reduces pixel noise, but at the cost of blurring edges between discrete phases. In 

contrast, “non-local means filters” identify areas in the image similar to the area around the 

pixel being corrected and take the average of those areas, thereby reducing pixel noise 

while maintaining feature edges, but at the cost of substantially increased computation 

time.112 For these reasons, the “non-local means filter” was used for image pre-processing 

in this work.  

 

2.4.2.    Segmentation: 
 

The de-noised BSE images were segmented into discrete phases (pore, LLCZN) in 

FIJI using the 3D Trainable WEKA (Waikato Environment for Knowledge Analysis) 

plugin, with “secondary” and “gold” phases included when necessary.113 The de-noised 

image set was loaded into the 3D Trainable WEKA plugin, the user drew lines across 

examples of each phase in the images, and each line was assigned by the user to one of the 

pre-defined phases. The 3D Trainable WEKA program was then “trained” on these lines 

by using the pattern of pixels intensities across each line to generate rules for assigning 

pixels to a given phase, and then applied those rules to all images. Based on how accurately 

the segmentation captured the image feature morphology, the user then assigned additional 

lines to the pre-defined phases and the Trainable WEKA program was “trained” again with 

the expanded data set. This process was repeated until a satisfactory segmentation was 

achieved, at which point the results were exported as red-green-blue (RGB) images and 

converted to grey scale in FIJI. Given that any gold particles present in the sample were 
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physically occupying pore volume, gold voxels (3D pixels) in the segmented image set 

were relabeled as pore voxels.  

 

2.4.3.    Post-Processing: 
 

Two main types of artifacts were present in the segmented images: an “interface” 

artifact and a “curtaining” artifact. The interface artifact consisted of incorrectly labeled 

pixels at the interfaces between two phases due to the pixel intensity gradient of the 

interface resulting in pixels with the same intensity as additional segmented phase. This 

resulted in a coating of secondary phase pixels at the pore-LLCZN interfaces and a double 

coating of secondary phase and LLCZN pixels at the gold-pore boundaries. The interface 

artifact could also manifest on the image preceding the appearance of a LLCZN particle or 

on the image immediately after a particle disappears, essentially bookending the particle. 

Altogether, the interface artifact only slightly affected the volume fractions of each phase, 

but significantly affected surface areas. The curtaining artifact consisted of vertical stripes 

of incorrectly labeled phases in the bottom third of most images, resulting from the ion 

beam failing to polish perfectly flat cross-sections. This artifact was most common in the 

pore phase and would artificially increase the LLCZN phase volume while also altering the 

segmented LLCZN microstructure as compared to the true microstructure. Both artifacts 

were visible in Figure 2.7, where pore phase was black, secondary phase was dark grey, 

and LLCZN phase was light grey.  
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Figure 2.7: A) segmented images with pore phase as black, secondary phase as dark grey, and LLCZN phase 
as light grey. Both secondary phase “interface artifacts” and “curtaining artifacts” are present. B) segmented 
image after post-processing by artifact-removal MATLAB code. The interface artifacts were successfully 
removed but most of the curtaining artifacts remained. C) difference between segmented image before and 
after application of artifact-removal MATLAB code, showing the removed interface artifacts and curtaining 
artifacts. D) segmented image after manual clearing of curtaining artifacts with FIJI followed by second 
application of artifact-removal MATLAB code. All interface and curtaining artifacts now removed.  
 

To remove the two types of artifacts, the segmented image set was post-processed 

by a custom artifact-removal code written in MathWorks MATLAB (given in Appendix 

A) that consisted of two parts: coating removal, followed by curtaining removal. The 

coating removal portion identified contiguous rows/columns of secondary phase pixels, 

identified what phases bordered the ends of the row/column, then removed the secondary 

phase pixels based on this and whether the contiguous row/column was smaller than a user-

defined value. The curtaining removal portion identified all 3D contiguous secondary 

phase regions, filtered out 3D regions smaller than a user-defined size, and examined 

neighboring 2D images of the remaining 3D regions to determine if the secondary phase 
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smoothly transitioned between images. If this was the case, the secondary phase in question 

was likely a real secondary phase particle. If the secondary phase showed significant 

irregularity between neighboring images, then the secondary phase was likely a curtaining 

artifact unique to each image and was removed. Figure 2.7b shows the segmented image 

after application of the artifact-removal MATLAB code and Figure 2.7c shows the parts of 

the image removed by the code. The vast majority of changes remove interface artifacts, 

with only minor removal of curtaining artifacts in this area. The remaining curtaining 

artifacts were manually removed using the image adjustment tools in FIJI, with the original 

BSE images continuously consulted to ensure that only artifacts were removed. The 

“cleared” 3D image set was post-processed again with the artifact-removal MATLAB code 

to remove any small secondary artifacts that remained. The final “post-process-complete” 

3D image set was used for all later structural analysis Figure 2.7d.  
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2.5.    Mechanical Polishing/FIB Induced Cracking: 
 

For the sample with the highest LLCZN volume fraction, cracks were observed in 

the top 20 µm of all images acquired during serial milling-and-imaging. In many instances, 

the cracks completely isolated the uppermost LLCZN particles from the rest of the LLCZN 

network. If these cracks existed in the original sample, then EIS measurements would give 

a low effective bulk conductivity for the sample. However, EIS measurements instead gave 

a relatively high effective bulk conductivity for the sample, in agreement with the high 

LLCZN volume fraction. Therefore, the cracks visible in the 3D image set were likely 

artifacts introduced to the sample by the mechanical polishing or by FIB milling/polishing. 

This was further substantiated by similar cracks appearing in the dense layer of 

mechanically polished trilayer cross-sections and a previous 3D FIB Tomography run on 

a trilayer sample, where cracks disconnected the porous layer from the dense layer. 

Moreover, 2D images of trilayer samples that were fractured without polishing showed 

well-connected porous layers and dense layers without any visible cracks. To remove the 

crack artifacts and prevent errors in later analysis, the image adjustment tools in FIJI were 

used to manually paint over cracks between LLCZN particles that appeared formerly 

connected, while retaining any clearly identifiable closed or open pores.  
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2.6.    2D SEM Image Analysis:  
 
2.6.1.    Area, Area Fraction, and Perimeter: 
 

Using FIJI, the sample thickness/electrode-electrode distance was measured at 

several positions across each image and was re-measured for all images of a given sample. 

The mean and standard deviation was calculated from the resulting list of thicknesses to 

give a single value for each sample. The BSE images were then pre-processed, segmented, 

and post-processed with a combination of Avizo, FIJI, and MATLAB (described in Section 

2.4). From these segmented images, the 2D area fraction of each phase visible in the BSE 

images was determined. A custom MATLAB code (given in Appendix B) was created to 

determine the 2D perimeter of each phase (the 2D analogue to 3D surface area) and the 2D 

perimeter/2D area ratio (the 2D analogue to 3D surface area-to-volume ratio). The results 

of all images for a given sample were averaged to give a single value representing each 

sample, with standard deviations also calculated.  
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2.7.    3D FIB Tomography Image Analysis:  
 
2.7.1.    Volume, Volume Fraction, and Surface Area: 
 

Analyzing the 3D image region starts with first determining the dimensions of the 

image region, which requires calculating the X-, Y-, and Z-axis voxel dimensions. The 

voxel dimensions along the X-axis (horizontal axis) and the Y-axis (vertical axis) are 

always equal, being manually designated by the user when setting the resolution for SEM 

images collected during the serial milling-and-imaging process. In contrast, the user also 

designates a nominal Z-axis voxel dimension (along the milling direction) in the form of 

the ideal slice thickness, but the actual slice thickness will vary during a given run for a 

number of reasons. These reasons can include the accuracy of the mechanical and software 

controls for the sample stage, consistency in the FIB current and beam size over time, 

variation in sample microstructure within each slice and between different slices, and 

glitches that occur during process operation.  

To calculate the actual Z-axis voxel dimension (i.e., actual milled slice thickness), 

measurements were made using the thickness reference marks milled into the top surface 

of the platinum protection layer to determine the total milling distance. The reference 

marks formed the sides and centerline of a triangle, with the angled sides intersecting at a 

point away from the platinum protection layer. The other ends of the angled sides of the 

triangle terminated at the milled cross-section, forming the “bottom” side of the triangle 

(Figure 2.8). This “bottom” side was key to calculating the total milling distance because 

its “width” would continuously decrease as more of the sample was milled during the serial 

milling-and-imaging process. Since the angle between the two angled sides of the triangle 

and the centerline (θ) was known, the change in width of the “bottom” side could be 
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directly correlated with the change in triangle height, which was equal to the total milling 

distance.  

 
Figure 2.8: A) FIB image of Pt protection layer with overlaid pattern for milling the thickness reference 
marks (blue lines). B) diagram of relevant dimensions for calculating thickness milled based on images before 
and after 3D FIB Tomography run.  
 

Using FIJI and the known X-axis voxel dimension, the side-to-side width of the full 

triangle “bottom” side was measured for the first image of the image set (Dinitial, full) and for 

the final image (Dfinal, full). The half-widths of the triangle “bottom” sides were then 

calculated for the first image (Dinitial,half) and the final image (Dfinal,half) by dividing the full 

widths by 2. These half-widths were then combined with the intersection angle between 

the two angled sides of the triangle and the centerline (θ) to calculate the distance from the 

intersection point to “bottom” side of the triangle on the first image (Linitial) and the final 

image (Lfinal). The total thickness milled (Lthickness) was calculated from the difference 

between Linitial and Lfinal.  
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The actual Z-axis voxel dimension (VoxelZ-axis) was calculated from the total 

thickness milled (Lthickness) and the number of images in the image set (N) with Equation 

2.3. “N – 1” was used instead of “N” due to the fact that if the image set was composed of 

two images, then there was only one milling slice separating them; if there were three 

images, then there were only two milling slices; if there were four images, then there were 

only three milling slices; and so on.  

𝑉𝑜𝑥𝑒𝑙uR`vAE =
wgifxyPKzz
{R|

    (2.3) 

 Once the voxel dimensions were known, proper analysis of the data could begin. 

The total volume of the 3D image region was easily calculated by multiplying the number 

of pixels or images by the corresponding voxel dimension. The volume of each unique 

phase was determined by counting the number of voxels of each phase and multiplying by 

the volume of one voxel. The volume fraction was calculated from the volume of each 

phase divided by the total volume, or more simply the number of voxels of each phase 

divided by the total number of voxels. These calculations were performed with MATLAB. 

Surface areas calculations required specialized software that converted the voxel-based 

structures in the 3D image region into objects with surface meshes composed of polygons. 

The surface area of each phase was then determined from the sum of the surface mesh area 

associated with the objects of that phase. These calculations were performed with the 

Dragonfly visualization and analysis software (Object Research Systems). The surface 
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area-to-volume ratio (SA/V) was calculated by dividing the surface area of a given phase 

by the volume of the same phase.  

The Dragonfly software does not have the capability to calculate the interfacial area 

between adjacent phases, but those areas can be determined from the surface areas 

calculated for each phase. If only two phases are present (i.e. pore and ceramic), then the 

surface areas of both phases are equal to each other and are equal to the pore-ceramic 

interfacial area. If there are three phases present (i.e. pore, secondary, and ceramic), then 

the surface areas of each phase will be different from each other and different from the 

interfacial areas associated with that phase. In actuality, the surface area of one phase (i.e. 

secondary) will be equal to the sum of the other two surface areas (i.e. ceramic and pore) 

minus 2 times the interfacial area between those two phases (since any interfacial area will 

be counted 2 times in the sum, once for one phase [i.e. ceramic] and once for the other 

phase [i.e. pore]).  

𝑆𝐴E=?YC[`D} = 𝑆𝐴?=D`~A? + 𝑆𝐴�YD= − 2 ∗ 𝐼𝐴���l���R���� 

Thus, the interfacial areas for all interfaces between three phases (i.e. pore, 

secondary, and ceramic) will be as follows: 

𝐼𝐴���l���R���� =
1
2 H𝑆𝐴?=D`~A? + 𝑆𝐴�YD= − 𝑆𝐴E=?YC[`D}M 
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1
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2.7.2.    Tortuosity: 
 

Travel paths through porous materials are always longer than travel paths in single 

phase materials because single phase materials facilitate direct routes, while porous 

microstructures only offer indirect routes (Figure 2.9).114 As a consequence, the longer 

travel paths in porous microstructures result in lower conductivity/diffusivity, greater 

ohmic losses and higher ASR values. To quantify this behavior, the parameter “tortuosity” 

(τ) was defined as the lengths of travel pathways through a porous region (Δl) divided by 

the length of a Euclidean/straight path (Δx) across the same region, described in Equation 

2.4. By this definition, any deviation from a straight path will result in a tortuosity greater 

than 1 regardless of the dimensions of the region being analyzed.  

 
Figure 2.9: Tortuosity is defined as the ratio of the pathway length (Δl) to the straight/Euclidean path length 
(Δx).114 
 

𝜏�=Y~=@DA? = lim
Z→�

∆Z
∆v

    (2.4) 

Multiple approaches exist within the literature for calculating the tortuosity of a 3D 

porous microstructure.115 Experimentally, tortuosity can be measured by performing EIS 

on porous samples, calculating the effective conductivity, and comparing to the intrinsic 

conductivity of the conducting material.116,117 Computationally, tortuosity can be 

calculated by analyzing 3D image sets of actual porous microstructures generated by 3D 
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FIB tomography65 or x-ray computed tomography.67 These calculations tend to follow two 

approaches: 1) distance-based/geometric tortuosity (τgeometric) and 2) simulation-

based/diffusive tortuosity (τdiffusive). The distance-based/geometric tortuosity is defined as 

the calculated lengths of conduction pathways through the 3D image region divided by the 

external dimensions of the 3D image region, which follows directly from the original 

interpretation of tortuosity shown in Equation 2.4. Calculation approaches include the Fast 

Marching Method, which simulates a wave propagating through the 3D image region 

(Figure 2.10a).;118,119 the pore centroid method, which tracks the mean pore centroid 

between 2D images (Figure 2.10b).;66 and identification of minimum length paths via the 

Dijkstra algorithm (Figure 2.10c).120,121  

 
Figure 2.10: Visualizations of the A) Fast Marching method,118 B) the pore centroid method,114 and C) the 
identification of minimum path lengths via the Dijkstra algorithm.120 
 

Simulation-based/diffusive tortuosity is defined as the intrinsic 

conductivity/diffusivity of the conducting phase in the simulation (σsim,dense or Dsim,dense) 

multiplied by the conductive phase volume fraction (f) and divided by the 

conductivity/diffusivity of the porous microstructure as determined by simulations 

(σsim,porous or Dsim,porous), as shown in Equation 2.5.122 The simulation-based approaches 

include heat/electric current flow simulations via computational fluid dynamics software123 
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(Figure 2.11a); solving the Laplace equation122; and diffusivity calculations via random 

walk simulations (Figure 2.11b).124 

𝜏[A>>cEAB= =
Tzf�,fPg�fPzfx∗>
Tzf�,�L�L�z

= ezf�,fPg�fPzfx∗>
ezf�,�L�L�z

   (2.5) 

 

 
Figure 2.11: Visualizations of A) the computational fluid dynamics heat transfer simulation123 and B) the 
random walk simulation.124 
 

While different implementations are inherently expected to produce slightly 

different results, EIS-based tortuosity values are usually the highest, geometric tortuosity 

values are usually the lowest, and diffusive tortuosity values are usually intermediate.125–

127 This variation is generally attributed to geometric tortuosity approaches treating all 

paths through the 3D image region as equal contributors to the flow of ionic/electronic 

current.128 In reality, not all pathways contribute equally because bottlenecks exist within 

the 3D microstructure that restrict current flow.63,120 The effects of these bottlenecks were 

automatically probed by EIS measurements and diffusion simulations, so the EIS-based 

and diffusive tortuosity values were actually a convolution of tortuosity and bottleneck 

effects and thus gave higher values than the distance-based tortuosity.120,127  
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Moreover, theoretical and empirical measurements have shown the effective 

conductivity of the porous microstructure (σeffective) is proportional to (τgeometric)-2 (Equation 

2.6), while the same effective conductivity is proportional to (τdiffusive)-1 (Equations 2.7). 

64,67,122,124,129,130 This further explains why diffusive and EIS tortuosity values were always 

higher than geometric tortuosity for the same microstructure. The use of the (-1) exponent 

for the diffusive tortuosity originates directly from Equation 2.5, where diffusive tortuosity 

is defined explicitly by the diffusivity/conductivity. In contrast, the geometric tortuosity is 

defined in terms of physical lengths of pathways through the material (Equation 2.4), so 

additional work is required to relate this to the diffusivity/conductivity in order to 

understand the origin of the (-2) exponent.  

TKjjKxgf�K
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Adapted from van Brakel, et al, consider a diffusive pathway segment that is 

parallel to the straight axis across a porous microstructure (i.e. a pathway segment with a 

tortuosity of 1.0).63 The segment has a constant cross-sectional area (A), length (L), and an 

intrinsic conductivity (σpathway,intrinsic), shown in Figure 2.12. Now consider that same 

pathway segment is tilted by a constant angle (α) relative to the original straight pathway 

segment, also shown in Figure 2.12. The tilt will extend the segment length from L to 

L/cosα (note: the tube “height” along the vertical direction is still L). At the same time, the 

segment cross-sectional area will decrease from A to Acosα (note: the tube area when 

intersecting a horizontal plane is still A, so the tube volume is unchanged despite the tilt). 

If considering electrical flow, the result is the tilted pathway segment has a higher 

resistance (Rtilt) than the original straight pathway segment (Rstraight), as shown in Equations 
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2.6 and 2.7. When the resistance of the tilted segment is calculated based on the cross-

sectional area A and the length of the original straight pathway segment L, an effective 

conductivity is used (σpathway,effective) instead of the intrinsic conductivity.  

 
Figure 2.12: Diagram of relevant dimensions for calculating the exponent relating geometric tortuosity to 
conductivity.  
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Alternatively, the resistance of the tilted pathway segment can be calculated using 

the actual cross-sectional area and actual length of the tilted segment, in which case the 

intrinsic conductivity is used (Equation 2.8).  

𝑅@AZ@ =
w/?YE�
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Combining Equation 2.8 with Equation 2.6, we observe that the ratio of the 

effective conductivity to the intrinsic conductivity of the pathway segment is equal to the 

dimensionless quantity (cosα)2, as shown in Equation 2.9.  

T�hgiQh�,KjjKxgf�K
T�hgiQh�,fPg�fPzfx

= (𝑐𝑜𝑠𝛼)5   (2.9) 
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Referring to the definition of geometric tortuosity (Equation 2.4) and substituting 

L/cosα for the pathway segment length, we observe that geometric tortuosity equaled 

1/cosα (Equation 2.10).  
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   (2.10) 

Substituting Equation 2.10 into Equation 2.9, we therefore confirm that the ratio of 

the effective conductivity to the intrinsic conductivity of the pathway segment is equal to 

the geometric tortuosity with a (-2) exponent (Equation 2.11). This relationship holds after 

averaging over all pathway segments in the porous microstructure. It is important to note 

that Equation 2.11 can be extended to describe the conductivity ratio of the porous 

microstructure if the conductive phase volume fraction and a parameter describing the 

effects of bottlenecks are included.  

T�hgiQh�,KjjKxgf�K
T�hgiQh�,fPg�fPzfx

= |

HIJKL�Kg�fxM
N = H𝜏�=Y~=@DA?M

R5  (2.11) 

In this study, the geometric tortuosity of the LLCZN and pores phases was 

calculated using the Fast-Marching Method (FMM), which modeled a wave propagating 

from one boundary plane of the 3D image region (the “Starting Plane”) through all 

contiguous voxels of the chosen phase to the opposing parallel boundary plane (the 

“Ending Plane”). As the wave propagated, minimum travel path lengths were assigned to 

the chosen phase voxels as they were encountered by the wave, and those distances were 

then converted to cumulative geometric tortuosity values. When assigning distances, 

calculations considered all 26 neighbor voxels sharing a face, edge, or corner with each 

voxel of interest, which produces more accurate distance results than considering only the 

six face-sharing/nearest neighbors.131 Tortuosity values were calculated along the 



 45	

“forward” and “reverse” directions of each of the X-, Y-, and Z-axes for a total of 6 separate 

tortuosity values, with the forward and reverse directions averaged together to give a single 

direction-averaged tortuosity value. To make comparing different samples easier, the X-, 

Y-, and Z-axes direction-averaged geometric tortuosity values were then combined into a 

single characteristic geometric tortuosity using Equation 2.12.127 A detailed description of 

the MATLAB implementation of this tortuosity calculation approach is given in Appendix 

C.  
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     (2.12) 

 

2.7.3.    Percolation Factor: 
 

When examining either conductive solids with multiple long-range phases or 

insulating porous solids filled with a conductive fluid, the effective conductivity/diffusivity 

of the conductive phase is affected by how much of the conductive phase is connected to 

the electrodes. This is critically important for the electrodes in SOFC’s, where isolated 

pores or solid phase limit the triple phase boundary length and lower performance (Figure 

2.13).67,68,132,133 Similarly, the active material in electrodes of Li-ion batteries need to be 

connected to both the Li-ion conducting electrolyte and the electronically conducting 

phase.134,135 
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Figure 2.13: A) map of percolated Ni-phase (yellow) and isolated Ni-phase (red) in a Ni–8YSZ anode for an 
SOFC.132 B) map of percolation in carbon black phase in LiFePO4 composite electrode, divided into fully 
percolated to (green), potentially percolated (yellow), or fully isolated regions (red).134  
 

The overall connectivity of the conductive phase in a porous sample can be 

expressed by the “percolation factor” (P), defined as the ratio of the volume of 

connected/percolated conductive phase to the total volume of conductive phase (Equation 

2.13). This parameter is easily extracted from 3D image sets obtained by tomography 

techniques, since modern analysis software makes it simple to identify all conductive phase 

voxels that are contiguously connected to one of the six boundary planes of the 3D image 

region. As a result, it is also possible to identify anisotropy in the percolation factor for the 

given 3D image region.  

𝑃 = {�ihzK,xLPPKxgKV
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     (2.13) 

 

2.7.4.    Continuous Particle Size Distribution (c-PSD), Mercury Intrusion 
Porosimetry PSD (MIP-PSD), and Constriction Factor: 
 

The constriction factor is defined as the mean cross-sectional area of bottlenecks in 

the porous microstructure divided by the mean cross-sectional area of the particles 

(assuming a conductive solid), as shown by the middle parts of Equation 2.14.130 The 
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bottlenecks and particles are commonly assumed to have circular cross-sections, so the 

constriction factor can also be determined from the mean minimum particle diameter (or 

mean bottleneck diameter) and mean maximum particle diameters, as shown in Figure 

2.14a and the right part of Equation 2.14.  
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    (2.14) 

The concept of using a constriction factor to capture the effects of bottlenecks in 

porous media was proposed many years ago by several researchers.63,130,136,137 At the time, 

no experimental techniques existed to directly image porous microstructures, so instead the 

researchers studied the effects of pre-defined bottlenecks in theoretical microstructures. 

The advent of tomography techniques removed this limitation and constriction factors can 

be readily calculated for real microstructures. Münch, et al, created a practical way to 

determine the mean bottleneck and particle diameters by using the concept of a continuous 

particle size distribution (c-PSD).138 Here, the chosen phase in the 3D image region was 

systematically filled with test spheres of identical diameters D, the volume fraction of the 

phase covered by spheres was determined, and the calculations were repeated for a series 

of increasing test sphere diameters (Figure 2.14b).139 The default c-PSD cumulative 

coverage vs. sphere diameter curves described the distribution of particle sizes in the 3D 

image region, and the mean particle diameter was taken to be the diameter corresponding 

to 50% coverage (Figure 2.14d). To measure the mean bottleneck diameter, the c-PSD was 

used to simulate mercury intrusion porosimetry (MIP), a physical measurement approach 

wherein liquid mercury was infiltrated into a porous sample and the average pore 

bottleneck size was determined due to the inkbottle effect.140 To accomplish this, the c-

PSD approach was modified to reject any regions covered by test spheres that were not 
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contiguous with one of the six boundary plans of the 3D image region (Figure 2.14c).138 

From the resulting MIP-PSD cumulative coverage vs. sphere diameter curves, the mean 

bottleneck diameter was taken to be the diameter corresponding to 50% coverage (Figure 

2.14d). With the c-PSD and MIP-PSD 50% coverage diameters, Equation 2.14 was then 

modified to give Equation 2.15. Detailed descriptions of the MATLAB implementation of 

the c-PSD and MIP-PSD calculation approaches are given in Appendix D and E, 

respectively.141 
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Figure 2.14: A) solid-phase particle size varies across 3D microstructures, creating small diameter particles 
(rmin) that act as bottlenecks and limit transport through larger diameter particles (rmax). Visualization of the 
sphere fitting approach for calculating B) the c-PSD, C) the MIP-PSD, and D) estimating minimum and 
maximum average particle diameters from 50% MIP-PSD and c-PSD coverage values, respectively.139  
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2.7.5.    M-factor: 
 

 A long-term goal of microstructure researchers was to connect measured diffusion 

or electrochemical properties with parameters that uniquely define the underlying 

microstructure. Conceptually, this is accomplished by modifying the intrinsic 

conductivity/diffusivity of the dense sample (σintrinsic) by a microstructure factor, or M-

factor (M), to calculate the effective conductivity/diffusivity of the porous sample (σeffective), 

as shown in Equation 1.2. The most general form of the M-factor uses the 

conductive/diffusive phase volume fraction (f), the percolation factor (P), and the tortuosity 

(τ), as shown in Equation 2.16.63,64 

𝜎=>>=?@AB= = 𝑀 ∗ 𝜎AC@DACEA?   (1.2) 

𝑀 = >∗F
I

     (2.16) 

For EIS-based tortuosity and diffusive tortuosity, Equation 2.16 is sufficient. For 

geometric tortuosity, Equation 2.16 has to be modified to include the constriction factor 

(β) and a -2 exponent for the tortuosity, shown in Equation 2.17. Additional studies 

investigated many different artificial microstructures to determine the optimum exponents 

for the terms in the M-factor equation, though these studies also showed that the baseline 

form of the M-factor in Equation 2.17 provided good agreement with the calculated 

effective conductivities.139,142,143  
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3.    Solid-State Li-Ion Electrolyte with Tape-Cast Porous Microstructure: 
 
 
 The dense-porous-dense multi-layered trilayer garnet structures reported in 

literature were fabricated with several methods, the most common approach being tape-

casting of the separate layers. This allowed the composition of each tape and the resulting 

layer of the trilayer to be independently varied and optimized. Tape-casting was also 

compatible with production scale up by virtue of the ability to dramatically increase the 

sizes of individual tapes to meet size or throughput requirements. As such, this study used 

tape casting to create porous garnet microstructures with varying amounts of porosity.  

 

3.1.    Methods and Characterization: 
 
3.1.1.    Porous LLCZN Fabrication: 
 

Precursor powders of LiOH*H2O (Alfa Aesar, 98%) or Li2CO3 (GFS Chemicals), 

La2O3 (GFS Chemicals, 99.9%) (dried at 800 °C in air for several hours), ZrO2 (Inframat 

Advanced Materials, 99.9%), Ca2CO3 (Carolina), and Nb2O5 (Alfa Aesar, 99.9%) were 

weighed out to form the nominal composition of Li6.75La2.75Ca0.25Zr1.5Nb0.5O12 (LLCZN). 

10 wt. % excess of the Li-containing precursor was added to account for losses during 

calcination. The powders were ball milled in isopropanol with yttrium-stabilized zirconia 

(YSZ) milling media (Inframat Advanced Materials) for 24 hours. The powders were 

sieved, dried at 100 °C in air, ground in a mortar-and-pestle, and pressed into pellets. The 

pellets were calcined on MgO plates at 900 °C for 6 hours in air, after which the pellets 

were ground again in a mortar and pestle. Dynamic light scattering (DLS) or laser 

diffraction were used to analyze the calcined LLCZN powder, reporting a mean particle 

size >5 microns and a wide particle size distribution. The LLCZN powder was again ball 
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milled in isopropanol, this time for several days. DLS/laser diffraction showed the resulting 

powder was composed of ~1 micrometer diameter particle, referred to as “micron powder” 

for the remainder of this study.  

The calcined LLCZN “micron powder” was then mixed into tape-casting slurries 

with toluene (Fisher Chemical, HPLC Grade), isopropanol (Pharmco, 99% ACS/USP/NF 

Grade), benzyl butyl phthalate (Tape Casting Warehouse, Inc.), polyvinyl butyral (Tape 

Casting Warehouse, Inc.), menhaden fish oil (Tape Casting Warehouse, Inc.), polyalkylene 

glycol (Tape Casting Warehouse, Inc.), and poly-(methyl methacrylate) or PMMA (Soken 

Chemical and Engineering Company, Ltd.). To create sintered samples with varying 

porosities, different slurries had different LLCZN-PMMA pore former volume ratios and 

different mixtures of multiple PMMA sizes. The slurries were cast and dried, and sections 

of the resulting tapes were cut out and laminated to make green tape stacks. The stacks 

were sintered at 1050 °C on MgO plates in a tube furnace under flowing oxygen. The 

sintered porous samples were stored in a glovebox under argon.  

 

3.1.2.    Impedance Measurements: 
 

Gold conductive paste (Heraeus Electronics) was painted onto the top and bottom 

surfaces of each porous sample and a silver wire was pressed against the gold paste. One 

of the gold electrodes was made smaller than the other gold electrode to act as a limiting 

electrode. The paste was dried at 100 °C in air, and then annealed at 700 °C for 1 hour in a 

tube furnace while flowing oxygen. The annealed samples were stored under argon in a 

glovebox. Room temperature (~25 °C) impedance measurements were performed in the 

glovebox using a Solartron 1260 Gain and Impedance Analyzer over the range of 15 MHz 
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to 1 Hz, with sample temperature measured by an IR gun. After completing the impedance 

measurements, both sides of the sample were photographed next to a ruler to determine the 

area of the limiting gold electrode. Using the image analysis program FIJI, the photograph 

was filtered with a color threshold to isolate the pixels of the gold electrode, the number of 

electrode pixels was determined, and the pixel count was converted to gold electrode area 

in cm2 by using the image of the ruler as a reference.108  

 

3.1.3.    X-ray Diffraction: 
 

The crystalline phases present in several samples were characterized via x-ray 

diffraction (XRD) using a Bruker C2 Discover with 2D Detector operated at 40 kV and 40 

mA. Phase identification was performed with Diffrac.Eva (Version 4, Bruker AXS) and 

lattice parameters were calculated using Topas (Version 5, Bruker AXS).   
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3.2.    Results and Discussion: LLCZN Phase: 
 

Four samples were selected for imaging and reconstruction through 3D FIB 

Tomography, shown in Figure 3.1 (yellow for LLCZN, red for secondary phase). The first 

sample was the porous layer from a porous-dense-porous trilayer sample, referred to as 

“Trilayer 1”. The remaining three samples were from entirely porous samples fabricated 

with different amounts of pore former, resulting in different amounts of porosity in the 

sintered samples. These three porous layer samples are referred to as “Porous 1”, “Porous 

2”, and “Porous 3”. For all four samples, the horizontal axis of the 3D image region was 

defined as the X-axis, the vertical axis was defined as the Y-axis, and the axis into the page 

(aka parallel to the milling direction) was defined as the Z-axis. For reference, the X-axis 

was normal to the gold electrodes applied to the external surfaces of the sample.  
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Figure 3.1: 3D reconstruction of A) Trilayer 1; B) Porous 1; C) Porous 2; and D) Porous 3 samples. LLCZN 
phase is yellow and any secondary phase is red. Reconstruction dimensions were in µm. 

 

3.2.1.    Volume, Volume Fraction, and Surface Area: 
 

Table 3.1 shows the volume, volume fraction, surface area, and surface-area-to-

volume (SA/V) ratio for each phase in each sample analyzed with 3D FIB Tomography. 

The Trilayer 1 and Porous 1 samples had similar microstructures, resulting in near identical 

porosity of 56.03% and 56.67%, respectively. Porous 2 displayed a lower porosity of 

40.58%, and Porous 3 displayed the lowest porosity of 26.45%. The SA/V ratios of the 

LLCZN phase generally decreased as the LLCZN phase fraction increased, with a similar 

pattern observed for the pore phase. The secondary phase showed significantly higher 

SA/V ratios and no clear trend with secondary phase fraction. Prior EDS maps of the 
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secondary phase showed significantly less La and more Ca than the surrounding LLCZN, 

strongly suggesting it was not LLCZN and therefore not a Li-conducting material.  

Table 3.1: Characterization of the 3D FIB Tomography image regions of the tape-cast LLCZN 
microstructures.  

 Dimensions 
(µm) 

Material Phase 
Volume 
Fraction 

(%) 

Volume 
V (µm3) 

Surface 
Area  

SA (µm2) 

SA/V 
(1/µm) 

Trilayer 1 79.05 LLCZN 42.30 49,068.16 102,313.09 2.0851 
 79.20 Secondary 1.67 1934.90 16,545.42 8.5510 
 18.53 Pore 56.03 64,986.91 95,476.55 1.4692 
Totals   100.00 115,989.97 214,335.06  
Porous 1 106.20 LLCZN 42.58 104,919.80 263,917.03 2.5154 
 110.40 Secondary 0.75 1844.15 10,122.49 5.4890 
 21.01 Pore 56.67 139,621.09 263,254.13 1.8855 
Totals   100.00 246,385.05 537,293.66  
Porous 2 117.36 LLCZN 57.51 134,801.56 142,046.41 1.0537 
 94.92 Secondary 1.91 4474.28 25,264.77 5.6467 
 21.04 Pore 40.58 95,102.88 129,981.86 1.3667 
Totals   100.00 234,378.72 297,293.03  
Porous 3 93.90 LLCZN 73.55 124,437.15 106,694.63 0.8574 
 79.20 Secondary 0.00 0.00 0.00  
 22.75 Pore 26.45 44,748.18 106,694.63 2.3843 
Totals   100.00 169,185.33 213,389.26  

 

Table 3.2 shows the interfacial areas for the LLCZN-pore, LLCZN-secondary, and 

secondary-pore interfaces. In all cases, the interfacial area was either equal to or less than 

the surface area of each of the phases associated with that interface, as expected. Despite 

this, the interfacial areas were relatively close in value to the associated surface area values, 

so the same trends were observed in both types of areas with regards to porosity. Focusing 

on the LLCZN surface, the interface with the secondary phase accounted for 11.43%, 

2.04%, 13.14%, and 0% of the total LLCZN surface area for Trilayer 1, Porous 1, Porous 

2, and Porous 3, respectively. Presuming the secondary phase was Li-blocking, this means 

that 88.57%, 97.96%, 86.86%, and 100%, respectively, of the total LLCZN surface was 

exposed to the pores and therefore accessible by infiltrated electrodes. Examining the total 

solid volume in the image region (i.e. LLCZN and secondary phase), Trilayer 1 was 3.79% 
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secondary phase, Porous 1 was 1.73% secondary phase, Porous 2 was 3.21% secondary 

phase, and Porous 3 was 0% secondary phase (Figure 3.2). No clear trend with sample 

porosity was present, but Figure 3.2 clearly shows the increasing amount of secondary 

phase in the solid part of the image region was directly correlated with higher amounts of 

LLCZN surface obscured by the secondary phase. While the secondary phase accounted 

for less than 4% of the total solid volume, it decreased the accessible LLCZN surface area, 

sometimes substantially, highlighting the importance of synthesizing LLCZN with 100% 

phase purity.  

Table 3.2: Characterization of the interfacial areas in the 3D FIB Tomography image regions of the tape-cast 
LLCZN microstructures.  

 Interface Interfacial Area 
(µm2) 

% LLCZN Surface 
Contacting 

Secondary Phase 

% Solid Volume 
Composed of 

Secondary Phase 
Trilayer  LLCZN-pore 90,622.11 11.43 3.79 
1 LLCZN-secondary 11,690.98   
 Secondary-pore 4854.44   
Porous 1 LLCZN-pore 258,524.34 2.04 1.73 
 LLCZN-secondary 5392.69   
 Secondary-pore 4729.79   
Porous 2 LLCZN-pore 123,381.75 13.14 3.21 
 LLCZN-secondary 18,664.66   
 Secondary-pore 6600.11   
Porous 3 LLCZN-pore 106,694.63 0.00 0.00 
 LLCZN-secondary 0.00   
 Secondary-pore 0.00   
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Figure 3.2: % of LLCZN surface area contacting secondary phase vs. % of solid volume in image region 
formed by secondary phase.  
 

Examining the phase volume fractions at different points along the X-, Y, and Z-axes of 

the samples identified distinct behavior for each axis (Figure 3.3). Along the Z-axis, there 

was very little variability in the volume fractions across the sample, and the values at each 

position were very close to the sample-wide average values. Along the Y-axis, there were 

relatively moderate-sized, high-frequency oscillations around the average, but the volume 

fraction values at each position still were relatively close to the average values. 

Additionally, the shape of the Y-axis volume fraction curves appeared very similar 

throughout. In contrast, the X-axis showed both the high frequency oscillations visible for 

the Y-axis and low frequency oscillations that caused long-range changes in the phase 

volume fractions. As such, the X-axis volume fraction curves had multiple regions with 

distinct trends in phase volume fractions. This distinctive behavior possibly indicated pore 

collapse during sintering or garnet settling during the tape-casting process. The X-axis was 

parallel to the “vertical” axis of the sample during sintering, so any pore collapse would 

occur preferentially along the X-axis and cause the LLCZN phase to be aligned more along 

the YZ-plane than the X-axis. This suggested relatively large regions of alternating high 
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and low pore volume fraction should be visible along the X-axis, with more homogenous 

distributions along the Y- and Z-axes. The volume fraction variations could also result from 

the tape-casting process, where there was a time lag between casting the tape slurry and 

fully drying the tape, during which the randomly distributed garnet and pore former 

particles would settle. This would have similar microstructural effects as pore collapse and 

also be reflected in large volume fraction variations along the X-axis, with more 

homogenous distributions along the Y- and Z-axes. The results in Figure 3.3 show these 

expected trends almost perfectly.  
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Figure 3.3: Phase volume fraction distributions along the X-, Y-, and Z-axes of the Trilayer 1 (A-C), Porous 
1 (D-F), Porous 2 (G-I), and Porous 3 (J-L) samples. Pore phase volume fraction is blue, ceramic volume 
fraction is black, and secondary phase volume fraction is red.  
 

3.2.2.    Geometric Tortuosity: 
 

Figure 3.4 shows 3D visualizations of the LLCZN phase cumulative geometric 

tortuosity calculated along the forward directions of the X-, Y-, and Z-axes for the four FIB 

Tomography samples, with arrows denoting the calculation direction. In all cases, the 

initial tortuosity value was 1.0 (blue color), with early deviations from straight paths 

resulting in tortuosity values quickly increasing above 1.5 (red color). As calculations 
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progressed across the 3D image region, the cumulative geometric tortuosity decreased, 

becoming more homogenous as local variations were smoothed over by the global 

properties of the 3D image region. This homogenization was more pronounced for the X- 

and Y-axes due to the large number of voxels along those axes (1300+) as compared to the 

Z-axis (170+). The Z-axis consistently had the lowest tortuosity values, the X-axis had the 

highest values, and the Y-axis had intermediate values.  

 
Figure 3.4: 3D visualization of the LLCZN phase cumulative geometric tortuosity along the forward 
directions for the X-, Y-, and Z-axes of the Trilayer 1 (A-C), Porous 1 (D-F), Porous 2 (G-I), and Porous 3 
(J-L) samples. 
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The Trilayer 1 and Porous 1 samples had very similar microstructures and therefore 

showed very similar tortuosity distributions. Since the Trilayer 1 sample had a smaller 

volume than the Porous 1 sample, LLCZN pathways in the Trilayer 1 sample were less 

likely to encounter obstructions and should show lower tortuosity values along all axes. In 

reality, the Trilayer 1 sample had a somewhat higher X-axis tortuosity and somewhat lower 

Y-axis tortuosity than the Porous 1 sample, with the Z-axis tortuosity appearing very 

similar. Interestingly, low tortuosity pathways (i.e., close to 1.0) did extend quite far into 

the image region, especially along the Y-axis, despite the high porosity of the samples. For 

the Porous 2 sample, the lower porosity of the sample resulted in lower tortuosity for all 

axes. The low tortuosity pathways appeared more prevalent, though it was difficult to tell 

if they extend appreciably further into the image region. These trends continued for the 

Porous 3 sample, where even lower porosity resulted in significantly decreased tortuosity 

overall and many low tortuosity pathways.  

The details of the tortuosity distribution were more apparent when plotting the 

average and standard deviation of the cumulative geometric tortuosity in each “slice” vs. 

Euclidean propagation distance (Figure 3.5). The same trends of high X-axis tortuosity and 

low Z-axis tortuosity were observed, as well as decreasing tortuosity when going from high 

porosity (Trilayer 1, Porous 1) to medium porosity (Porous 2) to low porosity (Porous 3). 

The effects of homogenization of geometric tortuosity were also seen, with high cumulative 

averages and large standard deviations at low propagation distances that steadily decreased 

as the propagation distance increased. The X- and Y-axes also tended to show more 

variability in the cumulative average compared to the Z-axis, with small but frequent 

increases and decreases.  
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Figure 3.5: Average LLCZN phase cumulative geometric tortuosity and SD for the forward directions for the 
X-, Y-, and Z-axes of the Trilayer 1 (A-C), Porous 1 (D-F), Porous 2 (G-I), and Porous 3 (J-L) samples.  
 

While tortuosity can theoretically be very large, it can only have a minimum value 

of 1.0 based on the definition of tortuosity. However, the lower standard deviation bars 

often dipped below 1.0 for the different directions. This indicated the distribution of 

tortuosity values within each “slice” was asymmetric about the mean, with a wide 

distribution above the mean and a narrow distribution below the mean (i.e., between the 

mean and the minimum of 1.0). As a result, the single standard deviation calculated and 
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plotted in Figure 3.5 underestimates the distribution width for higher tortuosity values and 

overestimates the width for lower tortuosity values.  

As shown quantitatively in Figure 3.5, the X-axis had the highest tortuosity values, 

the Z-axis had the lowest tortuosity values, and the Y-axis was intermediate. The different 

tortuosity values of each axis may originate from one of two possible sources, or a mixture 

of both. In the first case, the differences in tortuosity reflected real anisotropy in the 

microstructure, which could be the result of pore collapse during sintering or from the tape-

casting process. The X-axis was parallel to the “vertical” axis of the sample during 

sintering, so any pore collapse would occur preferentially along the X-axis and cause the 

LLCZN phase to be aligned more along the YZ-plane than the X-axis. This would be 

reflected in a higher X-axis tortuosity. During the tape-casting process, there was a time 

lag between casting the tape slurry and fully drying the tape, during which the randomly 

distributed garnet and pore former particles would settle. This would have similar 

microstructural effects as pore collapse and also be reflected in a higher X-axis tortuosity. 

In the second case, the differences in tortuosity resulted from the different aspect ratios of 

the 3D image region when viewed along each axis. The Z-axis (the milling direction) had 

the smallest number of images/voxels along the Z-axis and the largest cross-sectional area, 

while the X- and Y-axes had the largest numbers of voxels and the smallest cross-sectional 

areas. As a result, a given 3D feature could occupy more of the “slice” cross-sectional area 

along the X- and Y-axes as compared to the Z-axis, resulting in more tortuous paths and 

higher tortuosity. If correct, this suggested the 3D image region was too small relative to 

the microstructural features and was likely not representative of the sample.  
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To test this, sub-volumes from 10% to 90% of the full 3D image volume were 

extracted and the geometric tortuosity calculations repeated for each sub-volume. If the 3D 

image volume was large enough relative to the features imaged, then the tortuosity values 

for the different axes should stabilize as the sub-volume size increased towards 100% 

volume, but before reaching 100% volume. If the tortuosity failed to stabilize by the 100% 

volume, then the features were too large relative to the image volume and the image region 

was likely not representative of the overall sample microstructure. Figure 3.6 shows the 

direction-averaged results for each axis for the 3D FIB Tomography samples for different 

sub-volume sizes. Small sub-volumes showed significant variability in average tortuosity 

as well as large standard deviations that transitioned to more consistent values and smaller 

standard deviations as the sub-volume size increased. Between the 100% volume tortuosity 

and the 90% sub-volume tortuosity values, the X-, Y-, and Z-axes showed differences of 

0.12%, 0.06%, and 0.14% for Trilayer 1; differences of 0.04%, 0.07%, and 0.06% for 

Porous 1; differences of 0.08%, 0.03%, and 0.28% for Porous 2; and differences of 0.10%, 

0.01%, and 0.05% for Porous 3, respectively. For comparison, Tjaden, et al, observed 

differences of 7% between their 100% volume tortuosity and their 90% sub-volume 

tortuosity values and concluded their 3D image volume was large enough to be 

representative.128 Accordingly, the Trilayer 1 image region was deemed as representative 

of the overall sample. Sub-volume checks for Porous 1, Porous 2, and Porous 3 showed 

similar behavior and were also deemed as representative of the corresponding samples. The 

X-, Y-, and Z-axes direction-averaged geometric tortuosity values were used to calculate 

the characteristic geometric tortuosity and the results plotted as a function of sub-volume 

size in Figure 3.6h. The characteristic tortuosity showed significantly less variability 
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compared to the direction-averaged tortuosity values as sub-volume size increased, further 

supporting the earlier conclusion that the 3D image regions were representative. 

 
Figure 3.6: Average LLCZN phase cumulative geometric tortuosity and SD for the direction-averaged X-, 
Y-, and Z-axes, as well as overall cumulative tortuosity and SD, of the Trilayer 1 (A-B), Porous 1 (C-D), 
Porous 2 (E-F), and Porous 3 (G-H) samples. 
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The characteristic geometric tortuosity values for each 3D FIB Tomography sample 

were plotted vs. 3D sample porosity in Figure 3.7a. By the definition of tortuosity, 0% 

porosity corresponded with a tortuosity of 1.0, so an additional point was added at (0,1). A 

2nd order curve was fitted to the results, with the fit forced to go through (0,1) to prevent 

physically impossible projections at low porosity values. The Trilayer 1 (56.03% porosity, 

1.1114 tortuosity) and Porous 1 samples (56.67% porosity, 1.1170 tortuosity) showed near 

identical results and significant standard deviation (SD) bar overlap due to similar 

microstructures. Porous 2 (40.58% porosity, 1.0700 tortuosity) and Porous 3 (26.45% 

porosity, 1.0360 tortuosity) showed lower tortuosity values consistent with the lower 

LLCZN volume fraction of each sample. Despite the complex structures visible in Figure 

3.1, the relatively low tortuosity values made it clear even the most porous sample 

examined here only suffered a 11.7% increase in overall conductive path length.  

 
Figure 3.7: A) LLCZN phase characteristic geometric tortuosity (black markers) and tortuosity squared (red 
markers), as well as SD, for each of the 3D FIB Tomography samples. The broken lines represent 2nd order 
fits. B) inverse characteristic tortuosity squared, with broken line calculated from fit for characteristic 
tortuosity squared.  
 

Since Equation 1.3 utilized the inverse tortuosity squared to calculate the M-factor, 

the characteristic geometric tortuosity squared was plotted vs. 3D sample porosity in Figure 

3.7a and the inverse characteristic geometric tortuosity squared was plotted vs. 3D sample 



 68	

porosity in Figure 3.7b. The highest tortuosity of 1.1170 corresponded to a tortuosity 

squared of 1.2477 and an inverse tortuosity squared of 0.8015, which reduced the effective 

conductivity by 19.85%. For reference, the sample in question (Porous 1) was 42.58% 

LLCZN, so the effective conductivity was reduced by 57.42% solely due to the reduced 

LLCZN volume fraction in the sample. This indicated the effect of tortuosity was relatively 

minor compared to the conductive phase volume fraction, even for the highest tortuosity 

value in this study.  

 

3.2.3.    Percolation Factor: 
 
All LLCZN voxels contiguous with one of the six boundary planes of the 3D image 

region were identified and the percolation factor for the corresponding propagation 

direction was calculated. The direction-averaged percolation factor for the X-, Y-, and Z-

axes were shown for different sub-volume utilization sizes for the 3D FIB Tomography 

samples (Figure 3.8a, c, e, g). Percolation factors for all samples and sub-volumes were 

above 0.995, with 100% volumes producing values above 0.998. Given the percolation 

factors were very close to 1.0, it was likely the remaining “unconnected LLCZN” reflected 

a combination of small spots of mislabeled LLCZN in the pore phase and real particles 

connected to the LLCZN microstructure at locations beyond the 3D image region 

boundaries. This was consistent with the LLCZN phase being the only long-range solid 

present in the samples, so any truly isolated LLCZN particles would separate from the bulk 

sample prior to epoxy infiltration. The X-, Y-, and Z-axes direction-averaged percolation 

factors were averaged into an overall percolation factor and plotted as a function of sub-

volume size in Figure 3.8b, d, f, and h. Similar to the overall geometric tortuosity, the 
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overall percolation factor showed less variability and lower SD values than the direction-

averaged percolation factors. 

 
Figure 3.8: A) LLCZN phase percolation factor and SD for the direction-averaged X-, Y-, and Z-axes, as 
well as overall sample percolation factor and SD, of the Trilayer 1 (A-B), Porous 1 (C-D), Porous 2 (E-F), 
and Porous 3 (G-H) samples. 
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The overall LLCZN percolation factors for each 3D FIB Tomography sample were 

plotted vs. 3D sample porosity in Figure 3.9. By the definition of percolation factor, 0% 

porosity corresponded to a percolation factor of 1.0, so an additional point was added at 

(0,1). A 1st order curve was fitted to the results and forced to go through (0,1) to prevent 

physically impossible projections at low porosity values. Generally, the percolation factor 

decreased with increasing sample porosity, though even the lowest percolation factor was 

still above 0.9985, corresponding to an effective conductivity reduction of 0.15%. This 

indicated the percolation factor had virtually no effect on the effective conductivity of the 

porous LLCZN within the porosity range examined here.  

 
Figure 3.9: Overall sample LLCZN percolation factor and SD for all 3D image regions plotted vs. 3D sample 
porosity. The broken line represents a 1st order fit. 
 

3.2.4.    C-PSD, MIP-PSD, and Constriction Factor: 
 

The cumulative coverage fraction c-PSD and average MIP-PSD results for the 

LLCZN phase in each 3D FIB Tomography samples were plotted together in Figure 3.10a, 

with the c-PSD results as a solid line and the corresponding MIP-PSD results as a dashed 

line. The starting test sphere diameter was 100 nm and was increased by 100 nm for each 

step. For all curves, the cumulative coverage fraction of LLCZN decreased as test sphere 

diameter increased and showed three distinct stages: an initial stage of high cumulative 
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coverage fraction and near 0 slope; a “breakthrough” stage where the cumulative coverage 

fraction rapidly decreased; and a final stage of low cumulative coverage fraction and near 

0 slope. The MIP-PSD curves decreased more drastically in the “breakthrough” stage than 

the c-PSD curves, reflecting how the bottlenecks quickly choked off access to the LLCZN 

structure. When the cumulative coverage fraction was converted to instantaneous coverage 

fraction (shown in Figure 3.10b), this behavior translated to narrow MIP-PSD peaks and 

broad c-PSD peaks. The MIP-PSD curves displayed peaks at smaller test sphere diameters 

than the corresponding c-PSD curves, consistent with the bottlenecks representing the 

narrowest parts of the contiguous LLCZN microstructure. In both sets of distributions, the 

peaks became broader as the center of the peak shifted to higher diameters.  
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Figure 3.10: A) LLCZN phase c-PSD (solid lines) and average MIP-PSD (dashed lines) for the 4 FIB 
Tomography samples. B) instantaneous coverage distributions for c-PSD (solid lines) and average MIP-PSD 
(dashed lines). C) 50% sphere diameters for c-PSD (black circles) and for average MIP-PSD (red squares). 
D) constriction factors for the 4 FIB Tomography samples, with a linear fit plotted. E) constriction factors 
calculated for the X-, Y-, and Z-axes based on the direction-averaged MIP-PSD. 
 

Figure 3.10c shows the corresponding 50% diameter values for the c-PSD and 

average MIP-PSD distributions for the 3D FIB Tomography samples. The Trilayer 1 

(56.03% porosity) and Porous 1 samples (56.67% porosity) had the lowest particle and 

bottleneck diameters, consistent with having the highest porosity values. Porous 2 (40.58% 

porosity) had higher particle and bottleneck sizes, consistent with having a lower porosity 

value. In contrast, Porous 3 (26.45% porosity) had the lowest porosity yet showed lower 
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particle and bottleneck sizes than Porous 2, behavior expected for a higher porosity sample. 

Examining the 3D image set for Porous 3, sub-micron pores were observed throughout the 

LLCZN phase, likely reducing the LLCZN particle and bottleneck diameters despite the 

higher LLCZN volume fraction. This incomplete consolidation was likely due to the 

micron-sized LLCZN particles in the pre-sintered green tapes, an effect consistent with 

reports in the literature that using sub-micron pre-sintered particles decreased sintering 

temperatures and improved ceramic densities.144,145  

The X-, Y-, and Z-axes constriction factors were calculated and plotted vs. 3D 

sample porosity in Figure 3.10d, where the X-axis displayed the lowest value and the Z-

axis displayed the highest value. This was similar to the high X-axis tortuosity and low Z-

axis tortuosity values previously discussed, since both sets of results describe greater 

difficulty moving along the X-axis of the 3D image region. As before, the differences were 

likely due to sample settling along the X-axis during sintering or tape-casting, though some 

effects from the non-cubic dimensions of the 3D image region were also possible. In the 

case of the constriction factor, the difference between the constriction factors for the 

different axes was extremely minor. The average constriction factor was calculated from 

the 50% diameter values for the c-PSD and overall MIP-PSD distributions and plotted vs. 

3D sample porosity in Figure 3.10e. By the definition of constriction factor, 0% porosity 

corresponded to a constriction factor of 1.0, so an additional point was added at (0,1). The 

constriction factor had a nearly constant value of 0.6 between 26.45% porosity (Porous 3) 

and 40.58% porosity (Porous 2) and began to decrease further as porosity continued to 

increase to 56.67% porosity (Trilayer 1, Porous 1). A 1st order curve was fit to the results, 

with the fit forced to go through (0,1) to prevent physically impossible projections at low 
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porosity values. The fitted curve provided a very good fit to samples at or above 40.58% 

porosity (Trilayer 1, Porous 1, and Porous), but failed to properly capture sample behavior 

at 26.45% porosity (Porous 3). Due to use of micron-sized LLCZN particles, it was 

unknown if lower porosity samples would also have a constriction factor of 0.6 or if the 

constriction factor would begin to increase towards 1.0.  

 

3.2.5.    M-Factor: 
 

Rearranging the M-factor equation terms (Equation 2.17) so each microstructural 

parameter took on values between 0.0 and 1.0 (Equation 3.1) made it possible to discern 

the relative importance of each parameter in reducing the conductivity/diffusivity of the 

porous LLCZN.  

𝑀 = 𝑓 ∗ 𝑃 ∗ 𝛽 ∗ |

HIJKLM
N    (3.1) 

The overall results for each microstructural term and the corresponding curves of 

fit were plotted on a linear scale in Figure 3.11a and on a logarithmic scale in Figure 3.11b 

vs. 3D sample porosity. Looking at individual data points, the LLCZN volume fraction and 

the constriction factor were the most important components of the M-factor, with the 

geometric tortuosity being the 3rd most important, and the percolation factor playing 

almost no role at all. Some variation was present, with constriction factor being more 

important than LLCZN volume fraction for Porous 3 (26.45% porosity), while the 

remaining samples showed LLCZN volume fraction being as important as or slightly more 

important than the constriction factor. This indicated a transition in the primary limitation 

on Li-ion transport occurred between 26.45% and 40.58% porosity, with bottlenecks being 

the primary limitation below this transition, and conductive phase fraction/bottlenecks 
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being equally important above this transition. The combined M-factor was also plotted in 

Figure 3.11 and decreased exponentially as porosity increased, with a porosity increase of 

56.67% corresponding to a ~1 order of magnitude reduction in M-factor. This was 

unexpected given that 1st and 2nd order curves used to fit the individual microstructural 

terms, and the constriction factor deviated from the fitted 1st order curve at low porosity. 

Based on the M-factors, increasing the LLCZN porosity to 26.45%, 40.58%, 56.03%, and 

56.67% would result in LLCZN effective conductivities that were 41.0%, 30.6%, 16.8%, 

and 16.0% of the LLCZN intrinsic conductivity, respectively.  

 
Figure 3.11: Overall sample LLCZN phase microstructure reduction terms plotted together for the 4 FIB 
Tomography samples, as well as the combined M-factor (black markers), A) on a linear vertical scale and B) 
on a logarithmic vertical scale. Curves of fit are plotted for each parameter.  
 

3.2.6.    3D EIS Analysis: 
 

The three porous layer samples (Porous 1, Porous 2, and Porous 3) were also 

measured with EIS prior to analysis with 3D FIB Tomography. The Trilayer 1 sample was 

excluded due to the issue of separating the effects of the dense layer from the porous layers 

in conductivity measurements. Based on the EIS results, the limiting gold electrode area 

calculated from camera images, the mean sample thickness calculated from SEM cross-

section images, and the 3D porosity determined by 3D FIB Tomography, the measured 
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effective bulk conductivity was calculated for the three porous samples and plotted vs. 3D 

porosity in Figure 3.12a (black circles). In addition, results for several dense samples were 

included to provide baseline values for 0% porosity. SD bars for the conductivity values 

were based on the SD of the sample thickness, and an assumed 10% SD for the resistance 

and electrode area. The results in Figure 3.12a showed the measured effective bulk 

conductivity exponentially decreased as the porosity increased, consistent with the trend in 

the M-factor in Figure 3.11b. To support this observation, an exponential trendline was 

added (dashed line) and showed reasonable fit to the trend in the measured data. While 

effective conductivity was expected to decrease somewhat as sample porosity increased, 

the measured effective conductivity decreased more drastically than anticipated, reaching 

a minimum value of 2.03x10-6 S/cm for the maximum porosity of 56.67%.  
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Figure 3.12: A) measured and theoretical effective bulk conductivity, and B) bulk conductivity (derived from 
effective conductivity/M-factor) vs. porosity. C) 3D LLCZN SA/V ratios vs. porosity. D) 3D LLCZN 
(SA/V)1/2 ratios vs. porosity. E) Measured and theoretical effective bulk conductivity, and F) bulk 
conductivity (derived from effective conductivity/M-factor), vs. 3D LLCZN (SA/V)1/2 ratios.  
 

Using the exact M-factors previously calculated and Equation 3.1, the theoretical 

effective bulk conductivity was calculated for the Porous 1, Porous 2, and Porous 3 

samples. The nominal intrinsic conductivity of the LLCZN was taken to be the 0% porosity 

intercept of the exponential curve fitted to the measured effective bulk conductivity (5.35 

x 10-4 S/cm). The theoretical effective bulk conductivity for each sample (red squares) were 

plotted vs. 3D porosity in Figure 3.12a alongside the measured effective bulk conductivity. 
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Comparing the theoretical and measured results, two things became apparent: 1) both the 

theoretical and measured results decreased exponentially as porosity increased, and 2) the 

theoretical results were consistently higher than the measured results. The consistent 

discrepancy suggested an additional factor besides the LLCZN microstructure may be 

affecting the measured effective bulk conductivity. Referring to Equation 1.2, the only non-

structural parameter that could affect the measured effective bulk conductivity was the bulk 

conductivity. Through Equation 1.2, the measured effective bulk conductivities and the 

corresponding exact M-factors were used to derive the bulk conductivity of each of the 

LLCZN samples. The results were plotted vs. 3D porosity in Figure 3.12b and showed the 

derived bulk conductivity decreased exponentially as porosity increased, although at a 

slower rate than the measured effective bulk conductivity. The lowest derived bulk 

conductivity calculated was 1.26 x 10-5 S/cm at 56.67% porosity, over an order of 

magnitude smaller than the initial bulk conductivity value of 5.35 x 10-4 S/cm for the 0% 

porosity samples.  

One potential explanation for the decrease in LLCZN bulk conductivity was the 

implicit assumption of identical sintering behavior for all porous samples was incorrect. 

Recalling that LLCZN and similar electrolytes suffer Li-loss through the surfaces of 

electrolyte particles during high temperature sintering, samples with higher surface area 

would experience more Li-loss. Simultaneously, smaller electrolyte particle sizes 

(corresponding to higher SA/V ratios) would decrease the distance from the particle surface 

to all points within the particle bulk, so Li-loss would affect more of the total electrolyte 

volume. While studies have shown that Li-ion vacancies are key to stabilizing the high 

conductivity cubic phase in LLZ and related materials, too much Li-loss inevitably 
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degrades performance and ultimately decomposes the cubic phase into non-conductive 

phases.40,42,146,147 Thus, the bulk conductivity of LLCZN and other Li-containing metal 

oxide electrolytes would be tied to the SA/V ratio of the sintered electrolyte. Since the 

SA/V ratio also increased as sample porosity increased, it appears the LLCZN bulk 

conductivity was affected by sample porosity despite SA/V ratio being the underlying 

cause.  

To determine if this was plausible, the 3D LLCZN SA/V ratio was plotted vs. 3D 

porosity in Figure 3.12c, which showed the SA/V ratio appeared to be a 2nd order function 

of 3D porosity. To simplify analysis, the 3D LLCZN (SA/V)1/2 ratio was plotted vs. 3D 

porosity in Figure 3.12d to give a linear relationship to porosity. The measured and 

theoretical effective bulk conductivity were then plotted as functions of (SA/V)1/2 in Figure 

3.12e, and the derived bulk conductivity was plotted vs. (SA/V)1/2 in Figure 3.12f. 

Observing all conductivity figures, the logarithm of the conductivities appeared to be 

proportional to (SA/V)1/2 and the conductivities consistently decreased as (SA/V)1/2 

increased. While this did not prove the SA/V ratio was the underlying cause of the bulk 

conductivity decrease, the similar trends in the plots of conductivity vs. (SA/V)1/2 and in 

the plots of conductivity vs. 3D porosity indicated this mechanism was a viable possibility.  

 

3.2.7.    2D EIS Analysis: 
 

To determine if the trends observed from the 3D FIB Tomography results could be 

replicated in larger sample batches, a large number of porous LLCZN samples were 

characterized for effective conductivity, derived bulk conductivity, and for structural 

properties. Due to the expense of the 3D FIB Tomography process, these additional 
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samples did not have 3D porosity, percolation factor, constriction factors, tortuosity values, 

or M-factor values directly calculated for each. Instead, cross-sectional SEM images of the 

samples were used to determine the sample porosity (referred to as 2D porosity) and a M-

factor was extrapolated for each sample based on the fitted curves for the exact M-factor 

results. Given the nominal electrolyte composition and fabrication approach remained 

consistent between all samples, such an extrapolation should provide a reasonable 

approximation.  

Figure 3.13a-c show BSE images for several LLCZN samples with different 

porosities, where the epoxy-filled pores appeared dark, the LLCZN particles appeared 

grey, and the gold particles appeared bright grey/white. Any secondary phase present had 

pixel intensities intermediate to the epoxy-filled pores and the LLCZN particles. The 

images showed the gold electrodes maintained good contact with the porous LLCZN 

samples and very minimally infiltrated into the pores, meaning the majority of the LLCZN 

structure was probed by the impedance spectroscopy measurements. The final segmented 

images are shown in Figure 3.13d-f, where the segmented images more clearly display the 

different microstructures of the porous LLCZN samples.  
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Figure 3.13: A-C) BSE images taken of several LLCZN samples with different porosity values, and D-F) the 
corresponding post-processed segmented images.  
 

For the overall data set, the effective bulk conductivity values were calculated for 

all measured samples and plotted vs. 2D porosity in Figure 3.14a. This data set included 

the porous samples analyzed by 3D FIB Tomography (Porous 1, Porous 2, and Porous 3) 

and the dense samples included in earlier conductivity plots (Figure 3.12). SD bars for the 

conductivity values were based on the SD of the sample thickness, and an assumed 10% 

SD for the resistance and electrode area. The porosity error for the average 2D porosity 

value was taken to be the SD of the individual 2D porosity values derived from the set of 

SEM cross-sectional images associated with each sample. Figure 3.14a showed the 

effective bulk conductivity exponentially decreased as 2D porosity increased, consistent 

with trends observed from the 3D results.  
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Figure 3.14: A) measured and theoretical effective bulk conductivity, and B) bulk conductivity (derived from 
effective conductivity/M-factor) vs. 2D porosity. C) 2D LLCZN perimeter/area ratios vs. porosity. D) 2D 
LLCZN (perimeter/area ratios)1/2 vs. porosity. E) Measured and theoretical effective bulk conductivity, and 
F) bulk conductivity (derived from effective conductivity/M-factor), vs. 2D LLCZN (perimeter/area)1/2 
ratios.  
 

The nominal intrinsic conductivity of the LLCZN was taken to be the 0% porosity 

intercept of the exponential curve fitted to the measured effective bulk conductivity (4.22 

x 10-4 S/cm), similar to the value of 5.35 x 10-2 S/cm derived from the 3D results. This was 

combined with the exponential curve fitted to the M-factor to calculate the theoretical 

effective bulk conductivity as a function of 2D porosity in Figure 3.14a (red solid line). 
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Comparing the theoretical and measured results, the theoretical curve consistently 

overestimated the measured effective bulk conductivities, as also seen with the 3D results. 

The derived bulk conductivity necessary to reconcile the experimental and theoretical data 

was calculated and plotted vs. 2D porosity in Figure 3.14b, where an exponential decrease 

was observed, similar to the 3D results.  

The 2D LLCZN perimeter/area ratio was plotted vs. 2D porosity in Figure 3.14c 

with a 2nd order curve best fitting the results, just as with the 3D results. To simplify 

analysis, the LLCZN (2D perimeter/2D area)1/2 ratio was plotted vs. porosity in Figure 

3.14d to give a linear relationship to porosity. All three conductivities were then plotted as 

functions of (2D perimeter/2D area)1/2 in Figure 3.14e-f, which showed a similar 

relationship as the 3D results. In contrast to the 3D results, all conductivity data points 

showed less scatter when viewed as functions of (2D perimeter/2D area)1/2 than as 

functions of the 2D porosity. It was unclear whether this represented a meaningful trend 

not captured by the limited number of 3D samples or was due to variability in how 

accurately the 2D perimeter/area ratio approximated the 3D SA/V ratio. Regardless, it was 

concluded that the results determined from the 3D samples could be replicated and were 

indicative of a real trend.  

 

3.2.9.    XRD Results:  
 
 Figure 3.15 shows the XRD results for several of the 2D analysis samples. All 

samples showed nearly pure cubic phase patterns, with occasional weak secondary phase 

signals (+) and gold signals (*), the latter from the gold electrodes. Amongst the samples, 

there were clear shifts in the peak positions at higher angles indicating the lattice parameter 
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of the samples was slightly different. These lattice parameters were calculated and plotted 

in Figure 3.16 vs. the 2D porosity of the corresponding sample, showing significant scatter 

that caused some higher porosity samples to have lattice parameters similar to lower 

porosity samples. Analyzing the overall distribution, there may be a weak underlying trend 

of increasing lattice parameter with increasing porosity, though substantially more data 

points are needed to rigorously confirm this relationship.  

 
Figure 3.15: XRD patterns for several porous LLCZN samples. All samples were high purity cubic phase 
LLCZN, with minor impurities (+) or gold from the electrodes (*) in some cases.  
 

 
Figure 3.16: Cubic phase LLCZN lattice parameter vs. 2D porosity.  
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3.2.10.    Comparison of 2D and 3D Structural Parameters:  
 

The 3D FIB Tomography samples (Porous 1, Porous 2, and Porous 3) were 

represented in both the 2D and 3D results, making it possible to compare microstructural 

properties calculated in both dimensions and determine how accurately the 2D results 

captured true 3D behavior. Given that tortuosity, percolation factor, and constriction factor 

were 3D-only parameters, the comparable structural parameters were limited to the phase 

fractions and the SA/V ratios (2D perimeter/2D area ratios for the 2D analysis). The 

corresponding values from the 2D and 3D analysis were shown in Table 3.3, with structural 

parameters separated into LLCZN, secondary, and pore phases.  

Table 3.3: Comparing 2D and 3D analyses of tape-cast LLCZN microstructures.  
 Material 2D Area 

Fraction (%) 
2D L/A 
(1/µm) 

3D Volume 
Fraction (%) 

3D SA/V 
(1/µm) 

Porous 1 LLCZN 38.56 +/- 3.69 1.3138 +/-0.0470 42.58 2.5154 
 Secondary 0.00  0.75 5.4890 
 Pore 61.44 +/- 3.71 0.8239 +/- 0.1027 56.67 1.8855 
Porous 2  LLCZN 54.55 +/- 3.48 0.5475 +/- 0.0690 57.51 1.0537 
 Secondary 0.61 +/- 0.23 2.4301 +/- 0.4221 1.91 5.6467 
 Pore 44.84 +/- 3.91 0.6647 +/- 0.0169 40.58 1.3667 
Porous 3 LLCZN 70.50 +/- 2.42 0.3845 +/- 0.0298 73.55 0.8574 
 Secondary 2.30 +/- 0.70 1.7963 +/- 0.2106 0.00  
 Pore 27.20 +/- 2.93 0.9012 +/- 0.0381 26.45 2.1336 

 

Examining the phase fractions, the 2D and 3D analysis produced very similar 

results for the LLCZN and pore phases. The secondary phase was much less comparable, 

but this phase was non-conductive and did not play a meaningful role in electrolyte 

performance, so the differences were acceptable. Focusing on the LLCZN phase, the 3D 

volume fractions were consistently higher than the 2D area fractions, showing a difference 

of +4.02%, +2.99%, and +3.05% for the Porous 1, Porous 2, and Porous 3 samples, 

respectively. Compared to the 2D LLCZN area fraction SD’s of 3.69%, 3.48%, and 2.42%, 
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the 3D LLCZN volume fractions were either within the SD ranges or just barely outside 

them. Focusing on the pore phase, the 3D volume fractions were consistently lower than 

the 2D area fractions, showing a difference of -4.77%, -4.26%, and -0.75% for the Porous 

1, Porous 2, and Porous 3 samples, respectively. Compared to the 2D pore area fraction 

SD’s of 3.71%, 3.91%, and 2.93%, the 3D pore volume fractions were either within the SD 

ranges or just barely outside them. This comparison indicated the 2D phase area fractions 

can successfully approximate the actual 3D volume fractions, provided an extra margin of 

+/- 1% is added to the existing SD of the 2D area fractions.  

Examining the 3D SA/V ratios and the 2D perimeter/area ratios, the 3D and 2D 

analyses produced very different results. In all cases, the 3D SA/V ratio for the LLCZN 

and pore phases was larger than the corresponding 2D perimeter/area ratio by a factor of 

1.9 to 2.4. However, the relatively narrow range in the ratio of the 3D-to-2D values 

suggested the 2D perimeter/area ratio could still capture trends in the 3D SA/V ratio. This 

was supported by Figure 3.12 and Figure 3.14 showing that 2D perimeter/area ratio vs. 2D 

porosity appeared very similar to the corresponding 3D SA/V ratio vs. 3D porosity. This 

comparison indicated the 2D perimeter/area ratios were useful proxies for the 3D SA/V 

ratios.  
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3.3.    Results and Discussion: Pore Phase: 
 

The performance of porous layers in the bilayer or trilayer architectures depended 

on both the ion-transport behavior of the LLCZN phase and on electrode infiltration 

behavior of the pore phase. If the electrodes failed to appreciably infiltrate into the pores 

and instead remained confined to the top surface of the porous layer, then the 

bilayer/trilayer would perform worse than a dense pellet of equivalent thickness. This does 

not significantly affect wetting electrodes (i.e., molten Li-metal or dissolved poly-sulfides). 

However, most electrodes will remain solid during infiltration and any limitations in the 

pore network will affect the electrode infiltration. Fortunately, using the M-factor it is 

possible to study effective diffusivity as well as conductivity, so the M-factor of the pore 

phase was analyzed to examine the diffusive behavior of the network.  

 

3.3.1.    Geometric Tortuosity: 
 

Figure 3.17 shows 3D visualizations of the pore phase cumulative geometric 

tortuosity calculated along the forward directions of the X-, Y-, and Z-axes for the four FIB 

Tomography samples, with arrows denoting the calculation direction. Like the LLCZN 

phase, pore phase tortuosity was consistently lowest along the Z-axis consistently, highest 

along the X-axis, and intermediate along the Y-axis. For the high porosity samples 

(Trilayer 1 and Porous 1), the tortuosity visualizations clearly showed the pore phase 

tortuosity was significantly more homogenous and lower in value than the LLCZN 

tortuosity for the same samples. The Porous 2 sample had similar LLCZN and pore phase 

tortuosity values, and the low porosity Porous 3 sample had significantly higher pore phase 

tortuosity than LLCZN phase tortuosity.  
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Figure 3.17: 3D visualization of the pore phase cumulative geometric tortuosity along the forward directions 
for the X-, Y-, and Z-axes of the Trilayer 1 (A-C), Porous 1 (D-F), Porous 2 (G-I), and Porous 3 (J-L) samples. 
 

Examining the average and standard deviation of the cumulative geometric 

tortuosity in each “slice” as a function of Euclidean propagation distance (Figure 3.18), the 

pore phase tortuosity increased consistently as porosity decreased, as expected. As a result, 

the LLCZN phase tortuosity was substantially higher than the pore phase tortuosity for the 

highest porosity samples (Trilayer 1 and Porous 1), the LLCZN and pore phase tortuosity 

were similar for the medium porosity sample (Porous 2), and the pore phase tortuosity was 

substantially higher than the LLCZN phase tortuosity for the lowest porosity sample 
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(Porous 3). Similar to the LLCZN phase, the X-axis tortuosity tended to be the highest and 

the Z-axis tortuosity tended to be the lowest, and the cumulative tortuosity across each 

“slice” became more homogenous as more of the 3D image region was analyzed. Notable 

differences between the LLCZN and pore phase results were observed when focusing on 

the Porous 2 and Porous 3 samples. For the Porous 2 sample, the pore phase tortuosity 

values for the three axes were nearly identical, whereas the other 3 samples showed 

different pore phase tortuosity values depending on which axis was examined. For 

comparison, all samples showed different tortuosity values for the LLCZN phase of each 

axis. For the Porous 3 sample, the pore phase Y-axis tortuosity was found to be lowest 

rather than the Z-axis tortuosity. Given that the Porous 3 sample had the lowest porosity in 

the set of samples (26.45% porosity), the high LLCZN density might have changed the 

sample’s sintering behavior and altered the formation of the pore network. It was unclear 

if a similar effect was the cause for the deviations observed for the Porous 2 sample, which 

had an intermediate porosity value in the set of samples.  
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Figure 3.18: Average pore phase cumulative geometric tortuosity and SD for the forward directions for the 
X-, Y-, and Z-axes of the Trilayer 1 (A-C), Porous 1 (D-F), Porous 2 (G-I), and Porous 3 (J-L) samples.  
 

As the porosity decreased from the Trilayer 1 (56.03% porosity) and Porous 1 

samples (56.67% porosity) to the Porous 2 sample (40.58% porosity) and decreased further 

to the Porous 3 sample (26.45% porosity), the average and standard deviation of the pore 

phase cumulative geometric tortuosity increased. This was consistent with the 

corresponding behavior in the LLCZN phase, where the average and standard deviation of 

the LLCZN cumulative geometric tortuosity increased as the volume fraction of LLCZN 

decreased. However, the highest pore phase tortuosity values (for the Porous 3 sample) 
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were significantly higher than the highest LLCZN tortuosity values (for the Porous 1 

sample). This difference may stem from the lowest sample porosity being 26.45% while 

the lowest LLCZN volume fraction was 42.30%, indicating the pore network with the least 

pore volume fraction was not directly comparable to the LLCZN network with the least 

LLCZN volume fraction and thus the networks had dissimilar tortuosity values.  

Sub-volumes from 10% to 90% of the full 3D image volume were extracted and 

the pore phase geometric tortuosity calculations repeated for each sub-volume, with the 

results shown in Figure 3.19a, c, e, and g. Small sub-volumes showed significant variability 

in average tortuosity as well as large standard deviations that transitioned to more 

consistent values and smaller standard deviations as the sub-volume size increased. This 

was consistent with similar calculations performed for the LLCZN phase. Between the 

100% volume pore phase tortuosity and the 90% sub-volume pore phase tortuosity values, 

the X-, Y-, and Z-axes showed differences of 0.06%, 0.05%, and 0.17% for Trilayer 1; 

differences of 0.01%, 0.05%, and 0.03% for Porous 1; differences of 0.05%, 0.08%, and 

0.31% for Porous 2; and differences of 0.51%, 0.56%, and 0.45% for Porous 3, 

respectively. Based on this, all the 3D FIB tomography image regions were deemed as 

representative of the sample pore network, though the highest differences observed for the 

pore phase were all higher than the highest differences observed for the LLCZN. The X-, 

Y-, and Z-axes direction-averaged pore phase geometric tortuosity values were combined 

into a single characteristic pore phase geometric tortuosity that was plotted as a function of 

sub-volume size in Figure 3.19b, d, f, and h. The characteristic pore phase tortuosity 

showed significantly less variability compared to the direction-averaged tortuosity values 
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as sub-volume size increased, further supporting the earlier conclusion that the 3D image 

regions were representative of the pore network.  

 
Figure 3.19: Average pore phase cumulative geometric tortuosity and SD for the direction-averaged X-, Y-, 
and Z-axes, as well as overall cumulative tortuosity and SD, of the Trilayer 1 (A-B), Porous 1 (C-D), Porous 
2 (E-F), and Porous 3 (G-H) samples.  
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The characteristic geometric tortuosity (black line) and tortuosity squared (red line) 

for the pore phase in each of the 3D FIB Tomography samples were plotted vs. sample 

porosity in Figure 3.20. By the definition of tortuosity in the pore phase, 100% porosity 

corresponded with a tortuosity of 1.0, so an additional point was added at (100,1). A 2nd 

order curve was fitted to the results, with the fit forced to go through (100,1) to prevent 

physically impossible projections at high porosity values. The Trilayer 1 (56.03% porosity, 

1.0590 tortuosity) and Porous 1 samples (56.67% porosity, 1.0496 tortuosity) showed near 

identical results, similar to the results for the LLCZN phase. Porous 2 (40.58% porosity, 

1.0976 tortuosity) and Porous 3 (26.45% porosity, 1.1943 tortuosity) showed higher 

tortuosity values in line with the lower porosity of each sample. Despite following the 

expected trends, the pore phase tortuosity results showed good agreement with the 2nd order 

fit while the LLCZN tortuosity results had shown excellent agreement. This difference may 

be due to the LLCZN fit extending over a smaller range (from 0% to 56.67% porosity) 

compared to the range of the pore phase fit (from 100% to 26.45% porosity), making it 

easier to fit the LLCZN results. Alternatively, the formation behavior of the pore network 

may have become fundamentally different at low porosity values as discussed earlier. The 

inverse characteristic geometric tortuosity was plotted vs. sample porosity in Figure 3.20b 

and showed that diffusivity was reduced by 29.89% for the lowest porosity sample. For 

comparison, the effective conductivity of the LLCZN phase was reduced by a maximum 

of 19.85% for the highest porosity sample, suggesting that diffusion through the pore phase 

may be more susceptible to changes in porosity than the effective conductivity of the 

LLCZN phase. Alternatively, the lowest sample porosity observed was 26.45% while the 

lowest LLCZN volume fraction was 42.58%, and since tortuosity increased as the phase 
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volume fraction decreased, the LLCZN tortuosity might become similar to the highest pore 

phase tortuosity if the LLCZN volume fraction was also reduced to 26.45%.  

 
Figure 3.20: A) pore phase characteristic geometric tortuosity (black markers) and tortuosity squared (red 
markers), as well as SD, for each of the 3D FIB Tomography samples. The broken lines represent 2nd order 
fits. B) inverse characteristic tortuosity squared, with broken line calculated from fit for characteristic 
tortuosity squared.  
 

3.3.2.    Percolation Factor: 
 

The pore phase direction-averaged percolation factor for the X-, Y-, and Z-axes 

were shown for different sub-volume utilization sizes for the 3D FIB Tomography samples 

(Figure 3.21a). All percolation factors for all samples and sub-volumes were above 0.98. 

Higher percolation factors were also observed for the 100% volumes for the Trilayer 1 and 

Porous 1 samples. Interestingly, the percolation factors for the 100% volumes for the 

Porous 2 and Porous 3 were lower than percolation factors for other sub-volume sizes for 

those samples, and the 100% volume values for the Porous 3 sample were almost the lowest 

observed for that sample. This was in contrast to the LLCZN phase, where the percolation 

factors almost always increased as the sub-volume size increased. One possible explanation 

was the low porosity samples (Porous 2 and especially Porous 3) had increasing numbers 

of closed pores proportional to the decreasing sample porosity that were not accessible by 

the pore phase tortuosity calculations. The X-, Y-, and Z-axes direction-averaged 
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percolation factors were averaged into an overall pore phase percolation factor and plotted 

as a function of sub-volume size in Figure 3.21b. Similar to the overall pore phase 

geometric tortuosity, the overall pore phase percolation factor showed less variability and 

lower SD values than direction-averaged percolation factors. 
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Figure 3.21: A) pore phase percolation factor and SD for the direction-averaged X-, Y-, and Z-axes, as well 
as overall sample percolation factor and SD, of the Trilayer 1 (A-B), Porous 1 (C-D), Porous 2 (E-F), and 
Porous 3 (G-H) samples.  
 

The overall pore phase percolation factors for each of the 3D FIB Tomography 

samples were plotted vs. sample porosity in Figure 3.22. By the definition of percolation 

factor in the pore phase, 100% porosity corresponded to a percolation factor of 1.0, so an 
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additional point was added at (100,1). A 2nd order curve fitted to the results, with the fit 

forced to go through (100,1) to prevent physically impossible projections at low porosity 

values. Generally, the pore phase percolation factor increased with increasing sample 

porosity, though data points showed significant scatter around the 2nd order fit. In 

comparison, the LLCZN percolation factor results showed significant scatter around the 1st 

order fit used for that data. Even so, the lowest pore phase percolation factor observed was 

still above 0.98. Based on this, the percolation factor was deemed to have virtually no effect 

on transport behavior through the pore phase within the porosity range examined here.  

 
Figure 3.22: Overall sample pore percolation factor and SD for all 3D image regions plotted vs. 3D sample 
porosity. The broken line represents a 2nd order fit. 
 

3.3.3.    C-PSD, MIP-PSD, and Constriction Factor: 
 

The cumulative coverage fraction c-PSD and average MIP-PSD results for the 

LLCZN phase in each of the 3D FIB Tomography samples were plotted together in Figure 

3.23a, with the c-PSD results as a solid line and the corresponding MIP-PSD results as a 

dashed line. Immediately, significant differences were noted between the pore phase results 

and the LLCZN results. The LLCZN results for the Trilayer 1 and Porous 1 samples were 

very similar due to both samples having similar microstructure. In contrast, the pore phase 

results for the Trilayer 1 and Porous 1 samples showed significant differences, with the c-
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PSD curve for the Trilayer 1 sample displaying a gradual drop while the c-PSD curve for 

the Porous 1 sample displayed an initial drop and long declining tail. Converting to 

instantaneous coverage fraction (Figure 3.23b), this behavior corresponded to both samples 

having different bimodal distributions in the pores. The Trilayer 1 sample had a near 

uniform distribution of pore sizes between 0.1 µm (minimum examined here) and 3.0 µm, 

with an increased number of pores between 4.0 µm and 6.0 µm. The Porous 1 sample had 

most pore sizes between 0.1 µm and 4.0 µm, with a clear peak at 2.0 µm, and another 

grouping of pore sizes between 8.0 µm and 9.0 µm. The MIP-PSD curves were more 

similar in appearance, although the Trilayer 1 sample had more peaks in the instantaneous 

coverage fraction at higher pore sizes than the Porous 1 sample, with one major peak at a 

lower pore size. Examining the 3D visualizations of the LLCZN and secondary phase in 

Figure 3.1, the Trilayer 1 sample does appear to have larger and more uniform pore sizes 

than the Porous 1 sample, supporting the c-PSD and MIP-PSD assessments. Still, it was 

surprising how much a difference could exist between the pore networks of samples with 

very similar LLCZN microstructures. The Porous 2 and Porous 3 samples showed curves 

with similar shapes, with the curves of the lower porosity Porous 2 sample being shifted to 

smaller pore sizes, as expected.  
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Figure 3.23: A) pore phase c-PSD (solid lines) and average MIP-PSD (dashed lines) for the 4 FIB 
Tomography samples. B) instantaneous coverage distributions for c-PSD (solid lines) and average MIP-PSD 
(dashed lines). C) 50% sphere diameters for c-PSD (black circles) and for average MIP-PSD (red squares). 
D) constriction factors for the 4 FIB Tomography samples, with a linear fit plotted. E) constriction factors 
calculated for the X-, Y-, and Z-axes based on the direction-averaged MIP-PSD. 
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Examining the 50% diameter values (Figure 3.23c) showed another major 

difference between the pore phase and the LLCZN phase. For the LLCZN, the c-PSD and 

MIP-PSD 50% diameter values were constant when increasing sample porosity from the 

Porous 3 sample (26.45% porosity) to the Porous 2 sample (40.58% porosity), then the 

50% diameters decreased as porosity increased further to the Trilayer 1 (56.03% porosity) 

and Porous 1 samples (56.67% porosity). Here, the Trilayer 1 and Porous 1 samples had 

near identical results for the LLCZN. For the pore phase, the 50% diameter values 

increased when increasing sample porosity from the Porous 3 sample (26.45% porosity) to 

the Porous 2 sample (40.58% porosity), then the 50% diameters decreased somewhat as 

porosity increased further to the Trilayer 1 (56.03% porosity). However, the Porous 1 

sample (56.67% porosity) showed significantly lower 50% diameter values than the 

Trilayer 1 sample, a result of the different pore size distributions discussed earlier.  

Moving to the direction-averaged pore phase constriction factors (Figure 3.23d), 

we observed significant variation between the X-, Y, and Z-axes constriction factors. While 

the LLCZN phase also showed some variation between axes, the amount of variation for 

the pore phase was significantly larger, which suggested the pore network was more 

anisotropic than the LLCZN microstructure. Moreover, most samples followed the same 

trend as the LLCZN phase with regards to the X-axis constriction factor being the lowest 

and the Z-axis constriction being the highest. This was in line with expectations of sample 

settling along the X-axis and potential effects of the different dimensions of the 3D image 

region along the different axes. Unlike the pore phase 50% diameter values, the Trilayer 1 

and Porous 1 samples had near identical Z- and Y-axes pore phase constriction factors, 

reminiscent of the similar constriction factors for the LLCZN phase in these two samples. 
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The major difference was in the X-axis, with a much lower pore phase constriction factor 

for the Trilayer 1 sample. The overall pore phase constriction factor was plotted vs. 3D 

sample porosity in Figure 3.23e. By the definition of constriction factor in the pore phase, 

100% porosity corresponded to a constriction factor of 1.0, so an additional point was 

added at (100,1). A 1st order curve was fit to the results, with the fit forced to go through 

(100,1) to prevent physically impossible projections at high porosity values. The fitted 

curve provided a rough fit to the overall behavior of the pore phase constriction factors, 

which generally increased as sample porosity increased. However, the pore phase 

constriction factors were more scattered around the fitted curve than the LLCZN 

constriction factors.  

 

3.3.4.    M-Factor: 
 

The overall results for each pore phase microstructural term and the corresponding 

curves of fit were plotted on a linear scale in Figure 3.24a and on a logarithmic scale in 

Figure 3.24b vs. 3D sample porosity. Looking at individual data points, the pore phase 

volume fraction and the constriction factor were the most important components of the M-

factor, with the geometric tortuosity being the third most important and the percolation 

factor playing almost no role at all. While there was variation in whether the pore phase 

volume fraction or the constriction factor were most important, there was no discernable 

pattern amongst the samples. The combined M-factor was also plotted (Figure 3.24) and 

decreased exponentially as porosity decreased, with a porosity value of 26.45% 

corresponding to a porosity decrease of 73.55% and a ~1.5 order of magnitude reduction 

in M-factor. This was similar to the LLCZN M-factor when viewed as a function of LLCZN 
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volume fraction, though the pore phase M-factor data points showed more scatter about the 

exponential fit. Based on the M-factor, increasing the LLCZN porosity to 26.45%, 40.58%, 

56.03%, and 56.67% would result in diffusion of non-wetting electrodes through the pore 

network being 5.2%, 17.7%, 22.1%, and 26.7% as effective as that of a fully open, 

unobstructed pore, respectively.  

 
Figure 3.24: Overall sample pore phase microstructure reduction terms plotted together for the 4 FIB 
Tomography samples, as well as the combined M-factor (black markers), A) on a linear vertical scale and B) 
on a logarithmic vertical scale. Curves of fit are plotted for each parameter.  
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3.4.    Implications for Batteries Utilizing Bilayer/Trilayer Garnet 
Electrolytes: 
 

3D FIB Tomography was used to examine tape-cast porous LLCZN 

microstructures ranging from ~26% porosity to ~57% porosity, with the results of the 

LLCZN and pore phases summarized in Table 3.4. Over this range, the LLCZN M-factor 

reached a minimum of 0.160 for the highest porosity sample and a maximum of 0.410 for 

the lowest porosity sample, while the corresponding pore phase M-factor reached a 

maximum of 0.267 and a minimum of 0.052. This immediately demonstrated that creating 

an optimal porous LLCZN microstructure was a balancing act between achieving a high 

LLCZN M-factor (and thus a high effective Li-ion conductivity) to minimize porous layer 

ASR, while also achieving a high pore phase M-factor to ensure effective electrode 

infiltration. The relatively low values of the pore phase M-factor compared to the LLCZN 

M-factor suggested that diffusion through the pore network was more easily affected by 

changes to the sample microstructure. While this would only slightly improve the 

infiltration of wetting electrodes such as Li-metal (when melted) or sulfur (when melted or 

infiltrated as polysulfide), widely used particle-based electrodes (LCO, NMC, graphite, 

etc.) would greatly benefit from easier diffusion through the pore network. This then 

suggested that maximizing the pore phase M-factor by increasing sample porosity would 

provide greater gains due to better infiltrated electrodes than the losses due to lower 

LLCZN effective conductivity and higher ASR. This was reinforced by the fact that higher 

sample porosity would allow for more electrode loading while reducing electrolyte mass 

and thus facilitate higher battery energy density. At the same time, the potential influence 

of higher sample surface area on the bulk conductivity of the LLCZN emphasized the 
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importance of carefully investigating and maintaining optimum sintering conditions when 

fabricating solid-state Li-ion electrolytes with significant porosity.  

Table 3.4: Summary of microstructural parameters for the LLCZN phase and pore phase of all tape-cast 
LLCZN samples.  

 
 

Trilayer 1 Porous 1 Porous 2 Porous 3 

 
 

LLCZN Pore LLCZN Pore LLCZN Pore LLCZN Pore 

M-factor 
 

0.168 0.221 0.160 0.267 0.306 0.177 0.410 0.052 

         
Phase Volume 
Fraction 

0.4230 0.5603 0.4258 0.5667 0.5751 0.4058 0.7355 0.264
5 

         
Characteristic 
Geometric 
Tortuosity 
 

1.1114 1.0590 1.1170 1.0496 1.0700 1.0976 1.0360 1.194
3 

(Characteristic 
Geometric 
Tortuosity)-2 

0.8097 0.8917 0.8015 0.9076 0.8734 0.8301 0.9317 0.701
1 

         
Percolation 
Factor 

0.9985 0.9997 0.9991 0.9999 0.9992 0.9985 0.9998 0.983
2 

         
Average 
feature size 
(µm) 
 

2.173 4.042 2.071 2.537 4.244 4.552 4.130 3.050 

Average 
bottleneck size 
(µm) 
 

1.522 2.687 1.418 1.829 3.316 3.304 3.194 1.622 

Constriction 
Factor 

0.491 0.442 0.469 0.520 0.611 0.527 0.598 0.283 
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4.    Solid-State Li-Ion Electrolyte with Template-based Porous 
Microstructure: 

 

As an alternative to the tape-cast microstructures, porous garnet samples were 

fabricated by infiltrating an existing cellulose template with garnet sol gel solution and 

sintering the sample to burn away the template, leaving behind the sintered garnet with the 

original template microstructure.61 The goal was to identify how the template-based garnet 

fabrication approach affected the resulting garnet microstructure and determine any 

advantages/disadvantages of the structure when compared to the tape-cast garnet 

structures.  

 

4.1.    Methods and Characterization: 
 
4.1.1.    Porous LLZO Fabrication: 
 

Following Gong, et al., Al-doped LLZO with the chemical composition of 

Li6.28Al0.24La3Zr2O11.98 was prepared by dissolving stoichiometric amounts of 2.31 g 

LiNO3 (99%; Alfa Aesar), 0.48 g Al(NO3)3*9H2O (98%; Alfa Aesar), 6.94 g 

La(NO3)3*6H2O (99.9%; Alfa Aesar), and 5.0 g Zirconium propoxide solution (70 wt.%; 

Sigma Aldrich) in 30-ml ethanol with 15 vol.% acetic acid. 30% excess LiNO3 was added 

to compensate for lithium loss during the subsequent calcination procedure.61 Cellulose 

templates were soaked in a 2.5 mol/L LLZO precursor solution for 24 h. The multi-scale 

porosity existing in the porous templates enabled homogenous impregnation by the LLZO 

precursor. Several soaked cellulose templates were stacked and dried, and calcination of 

the precursor impregnated templates was conducted under flowing oxygen at different 

temperatures to obtain garnet textiles.  
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4.1.2.    X-ray Diffraction: 
 

The crystalline phases present in several samples were characterized via x-ray 

diffraction (XRD) using a Bruker C2 Discover with 2D Detector operated at 40 kV and 40 

mA. Phase identification was performed with Diffrac.Eva (Version 4, Bruker AXS) and 

lattice parameters were calculated using Topas (Version 5, Bruker AXS).  
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4.2.    Results and Discussion: LLZO Phase: 
 
4.2.1.    XRD Results: 
 

Figure 4.1 shows XRD patterns for the template-based LLZO sintered at maximum 

holding temperatures ranging from 700 °C to 900 °C with 30% excess Li-precursor. The 

XRD pattern for pure phase LLZO was also included for reference. The highest purity 

LLZO XRD pattern was obtained at 750 °C. 700 °C produced LLZO with some minor 

secondary phases, and temperatures from 800 °C and above showed increasing amounts of 

secondary phase as well as the formation of La2Zr2O7. By 900 °C, no LLZO remained. 

This indicated the highly porous template-based LLZO microstructure was significantly 

affected by Li-loss as increased sintering temperature enhanced Li-volatilization from the 

sample. Based on this, 750 °C was selected for the maximum holding temperature for 

sintering the template-based LLZO sample.  

 
Figure 4.1: XRD patterns for sintered LLZO for different holding temperatures during sintering. The 
reference pattern for LLZO is included.  
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4.2.2.    3D FIB-SEM Analysis: 
 

Figure 4.2 shows a BSE image of the cross-section of the epoxy-filled template-

based LLZO sample after mechanical polishing, with the sintered LLZO appearing bright 

relative to the dark epoxy. The image showed the LLZO was highly porous and highlighted 

the layer-like microstructure of the template-based LLZO, which originated from the 

unique microstructure of the individual cellulose templates and from multiple templates 

stacked together in the un-sintered sample. The sample was approximately 50-60 µm thick 

and could be made thicker/thinner by using more/fewer soaked templates in the un-sintered 

stack. The LLZO microstructure appeared to be preferentially aligned with the horizontal 

axis of the image, due to the mesh-like nature of the original templates used. Still, the 

sintered sample remained intact when handled, indicating the successful development of 

sintered connections between the stacked template layers.  

 
Figure 4.2: BSE image of cross-section of epoxy-filled template-based LLZO sample after mechanical 
polishing.  
 

The 3D Tomography milling-and-imaging run produced 137 SE and BSE images 

of the FIB polished cross-sections. Figure 4.3 shows several of the angle-corrected BSE 
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images, cropped to remove artifacts and unusable portions of the image. The Pt protection 

layer was visible at the top with the milled triangular thickness reference mark, and the 

sintered LLZO appeared bright relative to the dark epoxy. The 3D FIB Tomography cross-

sections revealed the sample microstructure was more complex than it initially appeared in 

the mechanically polished cross-section. Rather than parallel sheets, the microstructure 

appeared composed of thin membranes that formed a large array of “chambers” that varied 

in size and shape both across each image and between images. Moreover, these chambers 

were well filled by the epoxy indicating a highly connected network of pores within the 

template-based LLZO.  

 
Figure 4.3: BSE images of FIB polished cross-section of epoxy-filled template-based LLZO sample, 
specifically A) Image 1, B) Image 25, C) Image 50, D) Image 75, E) Image 100, and F) Image 125. All 
scalebars are 25 µm.  
 

The segmented and post-processed images were combined in the visualization 

program, Dragonfly (Object Research Systems), to reconstruct the 3D template-based 

LLZO microstructure (Figure 4.4). The horizontal axis of the 3D image region was the X-
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axis, the vertical axis was the Y-axis, and the axis parallel to the milling direction was the 

Z-axis. For reference, the XY-plane was parallel to the plane of the templates and the 

templates were stacked along the Z-axis. Examining the 3D microstructure, it was clear the 

seemingly isolated “chambers” observed in the individual cross-sections were parts of 

larger pores that were actually all interconnected. At the same time, the LLZO membranes 

observed in the individual cross-sections were also part of larger 3D membranes that 

extended through the entire thickness of the image region and created a well-connected 

LLZO network.  

 
Figure 4.4: 3D reconstruction of the template-based LLZO sample from FIB Tomography image set. 
Reconstruction dimensions were in µm. 

 

4.2.3.    Volume, Volume Fraction, and Surface Area: 
 

The volume, volume fraction, surface area, and surface-area-to-volume (SA/V) 

ratio for each phase in the template-based LLZO sample were calculated with Dragonfly 

and the results shown in Table 4.1. The template-based LLZO sample had a pore volume 

fraction of 78.98%. The LLZO phase had a significantly higher SA/V ratio than the pore 
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phase, likely due to the small thickness of the LLZO membranes in the 3D image region 

as compared to the much larger pores.  

Table 4.1: Characterization of the 3D FIB Tomography image region of the template-based LLZO 
microstructure.  

Dimensions 
(µm) 

Material Phase 
Volume 
Fraction 

(%) 

Volume 
V (µm3) 

Surface 
Area  

SA (µm2) 

SA/V 
(1/µm) 

118.26 LLZO 21.02 27,109.29 205,896.92 7.5951 
79.20 Pore 78.98 101,829.13 205,896.92 2.0220 
13.77      

 Totals 100.00 128,938.42 411,793.85  
 

Examining the phase volume fractions at different points along the X-, Y, and Z-

axes (Figure 4.4), all axes showed some amount of variation but remained close to the 

mean value for the 3D image region. The Y-axis appeared the most homogenous, with the 

X-axis showing a small decrease in porosity from left to right across the 3D image region 

and the Z-axis showing a small increase in porosity from front to back. This was interesting 

given the Z-axis was parallel to the “vertical” axis of the sample during sintering, so any 

pore collapse should occur preferentially along the Z-axis and cause the LLZO phase to be 

more aligned along the XY-plane than the Z-axis. This should cause the pore collapse to 

manifest as high frequency oscillations in the phase volume fractions along the Z-axis, due 

to alternating layers of high and low porosity. Yet these oscillations were not present in 

Figure 4.4, strongly suggesting very little pore collapse occurred during sintering. This was 

likely due to the relatively low sintering temperature used for the template-based LLZO 

sample as compared to the much higher temperatures typical of sintering garnet pellets or 

even the LLCZN bilayers/trilayers.  
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Figure 4.4: Volume fraction distributions along the X-, Y-, and Z-axes of the template-based LLZO sample 
(A-C). 
 

4.2.4.    Geometric Tortuosity: 
 

Figure 4.5a-c shows 3D visualizations of the cumulative geometric tortuosity 

across the template-based LLZO sample when calculating along the forward directions of 

the X-, Y-, and Z-axes of the LLZO phase, with arrows denoting the calculation direction. 

The tortuosity began with an initial value of 1.0 (blue color), with early deviations from 

straight paths resulting in tortuosity quickly increasing above 2.0 (red color). As the 

calculations progressed across the 3D image region, the cumulative geometric tortuosity 

decreased and became more homogenous as local variations were smoothed over by global 

properties. This behavior was visible in the average and standard deviation of the 

cumulative geometric tortuosity when measured vs. propagation distance (Figure 4.5d-f). 

Based on the final cumulative geometric tortuosity values for the forward directions, the 

Z-axis had the highest tortuosity of 1.5618 +/- 0.2507, the Y-axis had a medium tortuosity 

of 1.1518 +/-0.0320, and the X-axis had the lowest tortuosity of 1.1196 +/- 0.0209. This 

pattern persisted when the forward and reverse directions were averaged together, resulting 

in a direction-averaged Z-axis tortuosity of 1.5454 +/- 0.2398, a Y-axis tortuosity of 1.1614 

+/-0.0496, and an X-axis tortuosity of 1.1225 +/- 0.0208. The different tortuosity values of 

each axis indicated the microstructure was strongly anisotropic, with a low tortuosity XY-
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plane and a high tortuosity Z-axis. This made sense based on the mesh-like nature of the 

cellulose textiles used to make the template-based LLZO sample.  

 
Figure 4.5: 3D visualization of the LLZO phase cumulative geometric tortuosity along the forward directions 
for the X-, Y-, and Z-axes of the template-based LLZO sample (A-C). Average LLZO phase cumulative 
geometric tortuosity and SD for the forward directions for the X-, Y-, and Z-axes of the template-based LLZO 
sample (D-F). Average LLZO phase cumulative geometric tortuosity and SD for the direction-averaged X-, 
Y-, and Z-axes, as well as overall cumulative tortuosity and SD (G-H). 
 

To test the representativeness of the 3D image region, sub-volumes ranging from 

10% to 90% of the full 3D image volume were extracted and the geometric tortuosity 

calculations repeated for each sub-volume. Figure 4.5g shows the direction-averaged 

results for each axis for the template-based LLZO sample. Significant variability was 
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expected between the small sub-volumes that would transition to more consistent values 

for larger sub-volumes. This behavior was most obvious in the X- and Y-axes, which 

reached stable values around the 70% sub-volume size. In contrast, the Z-axis showed 

consistent fluctuations throughout and actually started steadily declining above the 80% 

sub-volume size. Comparing the 100% volume and the 90% sub-volume tortuosity values, 

the X-, Y-, and Z-axes showed differences of 0.14%, 0.09%, and 2.28%, respectively. For 

reference, Tjaden, et al, observed differences of 7% between their 100% volume and their 

90% sub-volume tortuosity values and concluded their 3D image volume was large enough 

to be representative.128 Similarly, the template-based LLZO image region was deemed as 

representative of the overall sample. The X-, Y-, and Z-axes direction-averaged geometric 

tortuosity values were then combined into a single characteristic geometric tortuosity using 

Equation 2.12.127 The results were plotted as a function of sub-volume size in Figure 4.5h. 

The characteristic tortuosity showed significantly less variability compared to the 

direction-averaged tortuosity values as sub-volume size increased, further supporting the 

earlier conclusion that the 3D image region was representative.  
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    (2.12) 

Since Equation 1.3 utilized the inverse of tortuosity squared to calculate the M-

factor, the characteristic geometric tortuosity squared was calculated. This meant the 

template-based LLZO characteristic tortuosity of 1.2505 corresponded to a tortuosity 

squared of 1.5638, an inverse tortuosity squared of 0.6395, and an effective conductivity 

reduction of 36.05% based on Equation 1.3. For reference, the template-based sample was 

21.02% LLZO, reflecting an effective conductivity already reduced by 78.98% solely due 
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to reduced LLZO volume fraction in the sample. This meant the effect of tortuosity was 

relatively minor compared to the conductive phase volume fraction.  

 

4.2.5.    Percolation Factor: 
 

The direction-averaged percolation factor for the X-, Y-, and Z-axes were shown 

for different sub-volume utilization sizes for the template-based LLZO sample (Figure 

4.6a). All percolation factors were above 0.99, with 100% volumes producing values above 

0.993. Given the percolation factors were very close to 1.0, it was highly likely the 

remaining “unconnected LLZO” were a combination of small spots of mislabeled LLZO 

in the pore phase and real LLZO particles connected to the LLZO microstructure at 

locations beyond the 3D image region boundaries. This was consistent with the LLZO 

phase being the only long-range solid present in the samples, so any truly isolated LLZO 

particles would separate from the bulk sample prior to epoxy infiltration. The X-, Y-, and 

Z-axes direction-averaged percolation factors were averaged into an overall percolation 

factor then plotted as a function of sub-volume size in Figure 4.6b. Similar to the 

characteristic geometric tortuosity, the overall percolation factor showed less variability 

and lower SD values than the direction-averaged percolation factors. 
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Figure 4.6: A) LLZO phase percolation factor and SD for the direction-averaged X-, Y-, and Z-axes for the 
template-based LLZO sample for different sub-volume sizes. B) overall sample percolation factor and SD 
for sample.  
 

4.2.6.    C-PSD, MIP-PSD, and Constriction Factor: 
 

The cumulative coverage fraction c-PSD and average MIP-PSD results for the 

LLZO phase in the template-based LLZO sample were plotted together in Figure 4.7a, with 

the c-PSD results as a solid line and the corresponding MIP-PSD result as a dashed line. 

For both distribution curves, the cumulative coverage fraction of LLZO decreased as test 

sphere diameter increased and showed three distinct stages: an initial stage of high 

cumulative coverage fraction and near 0 slope; a “breakthrough” stage where the 

cumulative coverage fraction rapidly decreased; and a final stage of low cumulative 

coverage fraction and near 0 slope. The MIP-PSD curves decreased more drastically in the 

“breakthrough” stage than the c-PSD curves, showing how the bottlenecks quickly choked 

off access to much of LLZO structure. When the cumulative coverage fraction was 

converted to instantaneous coverage fraction (shown in Figure 4.7b), this behavior 

translated to narrow MIP-PSD peaks and broad c-PSD peaks. The c-PSD and MIP-PSD 

instantaneous coverage fraction curves both showed multiple peaks at different sphere 

sizes, corresponding to a concentration of features of that size. However, both curves 
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displayed a principle/maximum peak roughly positioned at the middle of the distribution. 

The MIP-PSD principle peak was at a smaller diameter than the c-PSD principle peak, in 

agreement with the idea that bottlenecks represent the narrowest parts of the contiguous 

LLZO microstructure.  

 
Figure 4.7: A) LLZO phase c-PSD (solid lines) and average MIP-PSD (dashed lines) for the template-based 
LLZO sample. B) instantaneous coverage distributions for c-PSD (solid lines) and average MIP-PSD (dashed 
lines).  
 

Overall, the c-PSD gave a 50% coverage value of 0.634 µm and the MIP-PSD gave 

a 50% coverage value of 0.424 µm, corresponding to a constriction factor of 0.447 (Table 

4.2). This meant that bottlenecks in the LLZO microstructure were responsible for reducing 

the effective conductivity of the sample by 55.3% overall. Examining the 50% coverage 

values of the MIP-PSD along the X-, Y-, and Z-axes, there was a slight increase in the 

LLZO bottleneck diameter from the lowest value of 0.417 µm along the X-axis to the 

highest value of 0.439 µm along the Z-axis. As a result, the constriction factors ranged 

from 0.433 to 0.479, a very narrow distribution, and showed that LLZO bottlenecks were 

essentially identical throughout the template-based LLZO sample despite the overall LLZO 

microstructure being very anisotropic.  
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Table 4.2: Summary of the LLZO phase 50% PSD Diameter, the 50% MIP-PSD diameters for the X-, Y-, 
and Z-axes, the overall 50% MIP-PSD diameter, and the resulting constriction factors.  

50% PSD 
Diameter (μm) 

50% MIP-PSD Diameter (μm) Constriction Factor 

 X Y Z Overall X Y Z Overall 
0.634 0.417 0.424 0.439 0.424 0.433 0.446 0.479 0.447 

 

 

4.2.7.    M-Factor: 
 

Thus far, this study examined the effects of LLZO phase fraction, constriction 

factor, geometric tortuosity, and percolation factor on the effective conductivity expected 

for the template-based LLZO sample. The reduction factors associated with each are 

summarized in Table 4.3, where it was clear the LLZO phase fraction had the greatest 

reduction effect on the effective conductivity, followed by the constriction factor and then 

the geometric tortuosity. The percolation factor had almost no effect due to the LLZO 

microstructure being virtually fully interconnected. The resulting M-factor for the 

microstructure was calculated using Equation 1.3 and was found to be 0.060, indicating the 

template-based LLZO sample had an effective conductivity 94.0% less than the intrinsic 

conductivity of the LLZO material. Due to the clear anisotropy of the template-based 

LLZO microstructure, it was necessary to examine these same reduction factors for each 

axis, with the results summarized in Table 4.4. Comparing the different axes, the 

constriction factor and percolation factor were virtually identical for all axes. In contrast, 

the X- and Y-axes had smaller geometric tortuosity values than the Z-axis, meaning the 

geometric tortuosity reduction factor for the X-and Y-axes axes was closer to 1.0 and the 

resulting M-factors were higher than the Z-axis M-factor. In fact, the Z-axis geometric 

tortuosity was so high the resulting tortuosity reduction factor was smaller than the 
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constriction factor, meaning that LLZO tortuosity had a more limiting effect than LLZO 

bottlenecks when examining the Z-axis. This was particularly concerning given the planar 

nature of similar cellulose templates means the primary conduction direction of the sintered 

stacks was along the Z-axis of the microstructure, the least conductive and most resistive 

direction of the sample based on these results.  

Table 4.3: Summary of overall LLZO phase reduction factors of template-based microstructure. 
 LLZO Phase 

Volume 
Fraction 

Constriction 
Factor 

(Characteristic 
Geometric 

Tortuosity)-2 

Percolation 
Factor 

M-factor 

Overall  
 

0.2102 0.447 0.6395 0.9949 0.060 

 

Table 4.4: Summary of LLZO phase reduction factors for the X-, Y-, and Z-axes of template-based 
microstructure. 

 LLZO Phase 
Volume 
Fraction 

Constriction 
Factor 

(Geometric 
Tortuosity)-2 

Percolation 
Factor 

M-factor 

X-Axis 
(average) 

0.2102 0.433 0.7937 0.9937 0.072 

Y-Axis 
(average) 

0.2102 0.424 0.7414 0.9951 0.069 

Z-Axis 
(average) 

0.2102 0.439 0.4187 0.9959 0.042 
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4.3.    Results and Discussion: Pore Phase: 
 
The M-factor of the pore phase was also analyzed to determine if the pores formed a highly 

connected network easily infiltrated by electrode material.  

 

4.3.1.    Geometric Tortuosity: 
 

Figure 4.8a-c shows 3D visualizations of the pore phase cumulative geometric 

tortuosity calculated along the forward directions of the X-, Y-, and Z-axes for the 

template-based sample, with arrows denoting the calculation direction. While the solid 

LLZO phase tortuosity required a tortuosity visualization range of 1.0-2.0 (Figure 4.5), the 

pore phase tortuosity was significantly lower and thus only required a tortuosity 

visualization range of 1.0-1.5. The pore phase tortuosity appeared to homogenize more 

quickly along the X- and Y-axes than the Z-axis, and all axes homogenized faster than the 

corresponding tortuosity visualizations for the LLZO phase. Similar to the LLZO phase 

tortuosity, the forward direction for the Z-axis had the highest tortuosity of 1.0588 +/- 

0.0474, the forward direction for the Y-axis had a medium tortuosity of 1.0248 +/- 0.0068, 

and the forward direction for the X-axis had the lowest tortuosity of 1.0226 +/- 0.0063 

(Figure 4.8d-f). This pattern persisted when the forward and reverse directions were 

averaged together, resulting in a direction-averaged Z-axis tortuosity of 1.0570 +/- 0.0454, 

a Y-axis tortuosity of 1.0250 +/- 0.0070, and an X-axis tortuosity of 1.0225 +/- 0.0064. As 

observed from the 3D visualizations, the pore phase tortuosity was substantially lower than 

the LLZO tortuosity for all three axes. The pore phase was also somewhat anisotropic like 

the LLZO phase, with a low tortuosity XY-plane and a high tortuosity Z-axis. Given the 
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possibility that any pore collapse would occur preferentially along the Z-axis, this was 

expected.  

 
Figure 4.8: 3D visualization of the pore phase cumulative geometric tortuosity along the forward directions 
for the X-, Y-, and Z-axes of the template-based LLZO sample (A-C). Average pore phase cumulative 
geometric tortuosity and SD for the forward directions for the X-, Y-, and Z-axes of the template-based LLZO 
sample (D-F). Average pore phase cumulative geometric tortuosity and SD for the direction-averaged X-, Y-
, and Z-axes, as well as overall cumulative tortuosity and SD (G-H). 
 

Sub-volumes ranging from 10% to 90% of the full 3D image volume were extracted 

and the geometric tortuosity calculations repeated for the pore phase in each sub-volume. 

Figure 4.8g shows the direction-averaged results for each axis for the template-based 

LLZO sample. It was expected that significant variability would exist between the small 
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sub-volumes that transitioned to more consistent values for larger sub-volumes. This 

behavior was only obvious along the Z-axis, which reached stable values around the 50% 

sub-volume size. In contrast, the X- and Y-axes showed consistent tortuosity values for all 

sub-volume sizes. Comparing the 100% volume and the 90% sub-volume tortuosity values, 

the X-, Y-, and Z-axes showed differences of 0.03%, 0.01%, and 0.04%, respectively. As 

such, the template-based LLZO image region was deemed as representative of the pore 

phase in the overall sample. The X-, Y-, and Z-axes direction-averaged geometric 

tortuosity values were then combined into a single characteristic geometric tortuosity using 

Equation 2.12.127 The results were plotted as a function of sub-volume size in Figure 4.8h. 

The characteristic tortuosity showed significantly less variability compared to the 

direction-averaged tortuosity values as sub-volume size increased, further supporting the 

earlier conclusion that the 3D image region was representative.  

 

4.3.2.    Percolation Factor: 
 

The pore phase direction-averaged percolation factor for the X-, Y-, and Z-axes 

were shown for different sub-volume utilization sizes for the template-based LLZO sample 

(Figure 4.9a). All percolation factors for sub-volumes were above 0.9998, indicating the 

pore phase was either more connected than the LLZO phase or that the pore phase had 

fewer isolated/truncated voxels that the LLZO phase. The X-, Y-, and Z-axes direction-

averaged percolation factors were averaged into an overall pore phase percolation factor 

and plotted as a function of sub-volume size in Figure 4.9b. Similar to overall pore phase 

geometric tortuosity, the overall pore phase percolation factor showed less variability and 

lower SD values than the direction-averaged percolation factors. 
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Figure 4.9: A) pore phase percolation factor and SD for the direction-averaged X-, Y-, and Z-axes for the 
template-based LLZO sample for different sub-volume sizes. B) overall sample percolation factor and SD 
for sample.  
 

4.3.3.    C-PSD, MIP-PSD, and Constriction Factor: 
 

The cumulative coverage fraction c-PSD and average MIP-PSD results for the pore 

phase in the template-based LLZO sample were plotted together in Figure 4.10a, with the 

c-PSD results as a solid line and the corresponding MIP-PSD result as dashed lines. 

Immediately, it was clear the distribution curves extended to much larger sphere diameters 

than the corresponding curves for the LLZO phase. Moreover, the instantaneous coverage 

fraction curve for the c-PSD showed a broad peak that smoothly increased and gradually 

decreased as the test sphere size was increased, in contrast to the very narrow peak in the 

c-PSD curve for the LLZO phase (Figure 4.10b). The MIP-PSD curve had a similar 

appearance as the LLZO phase MIP-PSD curve, the only major difference being the 

corresponding sphere diameter of the peaks.  
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Figure 4.10: A) pore phase c-PSD (solid lines) and average MIP-PSD (dashed lines) for the template-based 
LLZO sample. B) instantaneous coverage distributions for c-PSD (solid lines) and average MIP-PSD (dashed 
lines).  
 

Overall, the c-PSD gave a 50% coverage value of 2.417 µm and the MIP-PSD gave 

a 50% coverage value of 1.262 µm, corresponding to a constriction factor of 0.272. This 

meant the pore diameters were much larger than the LLZO diameters, but the pores were 

actually more relatively constricted by bottlenecks than the LLZO. The constriction factor 

of 0.272 meant that bottlenecks in the pore network would inhibit diffusion by 55.3% 

overall. Examining the 50% coverage values of the MIP-PSD along the X-, Y-, and Z-axes 

showed a slight increase in the pore bottleneck diameter from the lowest value of 1.255 

µm along the X-axis to the highest value of 1.459 µm along the Z-axis (Table 4.5). As a 

result, the constriction factors ranged from 0.270 to 0.364, a wider range than displayed by 

the LLZO constriction factors for those axes. The higher constriction factor along the Z-

axis was somewhat surprising given the Z-axis had the highest tortuosity, which should 

increase the lengths of conduction paths along the Z-axis and increase the effects of 

bottlenecks.  
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Table 4.5: Summary of the pore phase 50% PSD Diameter, the 50% MIP-PSD diameters for the X-, Y-, and 
Z-axes, the overall 50% MIP-PSD diameter, and the resulting constriction factors.  

Name 50% PSD 
Diameter 

(μm) 

50% MIP Diameter (μm) Constriction Factor 

  X Y Z Overall X Y Z Overall 
Template-
based LLZO 

2.417 1.255 1.229 1.459 1.262 0.270 0.258 0.364 0.272 

 

4.3.4.    M-Factor: 
 

Thus far, this study examined the effects of pore phase fraction, constriction factor, 

geometric tortuosity, and percolation factor on effective diffusion through the pore network 

of the template-based LLZO sample. The reduction factors associated with each are 

summarized in Table 4.6, showing the constriction factor had the greatest reduction effect 

on effective diffusion, followed by the pore phase fraction and then geometric tortuosity. 

The percolation factor had almost no effect at all due to the pore network being virtually 

fully interconnected. The resulting M-factor for the microstructure was calculated using 

Equation 1.3 and was found to be 0.201, indicating effective diffusion through the pore 

network of the template-based LLZO sample was 79.9% reduced. Due to the clear 

anisotropy of the template-based porous network, it was necessary to examine these same 

reduction factors for each axis, the results of which were summarized in Table 4.7. 

Comparing the different axes, the percolation factor was virtually identical for all axes. In 

contrast, the X- and Y-axes had smaller geometric tortuosity values than the Z-axis, 

meaning the geometric tortuosity reduction factor for the X-and Y-axes axes was closer to 

1.0 and the resulting M-factors were higher than the Z-axis M-factor. This made sense 

given the cellulose template was preferentially oriented along the X-Y plane. At the same 

time, the X- and Y-axes had smaller constriction factors than the Z-axis, indicating 

bottlenecks were not uniformly distributed throughout the microstructure and more 
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obstructing within the X-Y plane. This was surprising given the straighter paths in the X-

Y plane would be expected to increase bottleneck size relative to the feature size, and thus 

increase the constriction factor within the low tortuosity X-Y plane relative to the higher 

tortuosity Z-axis.  

Table 4.6: Summary of overall pore phase reduction factors of template-based microstructure. 
 Pore Phase 

Volume 
Fraction 

Constriction 
Factor 

(Characteristic 
Geometric 

Tortuosity)-2 

Percolation 
Factor 

M-factor 

Overall  
 

0.7898 0.272 0.9342 1.0000 0.201 

 

Table 4.7: Summary of pore phase reduction factors for the X-, Y-, and Z-axes of template-based 
microstructure. 

 LLZO Phase 
Volume 
Fraction 

Constriction 
Factor 

(Geometric 
Tortuosity)-2 

Percolation 
Factor 

M-factor 

X-Axis 
(average) 

0.7898 0.270 0.9565 1.0000 0.204 

Y-Axis 
(average) 

0.7898 0.258 0.9518 1.0000 0.194 

Z-Axis 
(average) 

0.7898 0.364 0.8950 1.0000 0.258 
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4.4.    Implications for Batteries Utilizing Bilayer/Trilayer Garnet 
Electrolytes: 
 

3D FIB Tomography was used to examine a template-based porous LLZO 

microstructure that was ~79% porosity, with the results of the LLZO and pore phases 

summarized in Table 4.8. The LLZO M-factor was 0.060 and the corresponding pore phase 

M-factor was 0.201, suggesting effective ionic conductivity of the LLZO structure was 

significantly reduced and diffusion through the pore network moderately obstructed. The 

LLZO microstructure was primarily limited by the low LLZO volume fraction, while the 

pore phase was primarily limited by bottlenecks resulting in a low constriction factor. 

Given the average pore feature and bottleneck sizes were significantly larger than the 

average LLZO features and bottleneck sizes, it was surprising the pore phase constriction 

factor was still much lower than the LLZO constriction factor. In contrast, the much lower 

tortuosity of the pore phase resulted in a tortuosity reduction factor much closer to 1.0 when 

compared to the LLZO phase.  

Comparing the template-based LLZO sample results to the results for the tape-cast 

LLCZN samples, the template-based LLZO sample was by far the most porous 

microstructure examined. The tape-cast sample with the closest porosity to the template-

based LLZO sample was the Porous 2 sample (56.67% porosity). The LLZO M-factor of 

the template-based LLZO sample was lower than the LLCZN M-factor of the Porous 2 

sample due to the lower LLZO volume fraction of the template-based LLZO sample. 

However, the pore phase M-factor of the template-based LLZO sample was also lower than 

the pore phase M-factor of the Porous 2 sample, despite the template-based LLZO sample 

having a higher pore phase volume fraction. Examining Tables 3.4 and 4.8, the second 

biggest difference between the pore phases of the template-based LLZO sample and the 
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tape-cast Porous 2 sample was the Porous 2 sample pore phase had a much higher 

constriction factor. The tortuosity reduction factors being comparable resulted in the higher 

pore phase M-factor for the tape-cast Porous 2 sample. Still, constriction was the most 

significant obstacle to high M-factors in both electrolyte and pore phases of all samples 

examined. Based on these results, significant improvements are possible in electrolyte and 

pore phase performance if bottleneck sizes were increased relative to the feature sizes. 

Barring that, a microstructure with porosity between the Porous 1 sample (56.67% 

porosity) and the Porous 2 sample (40.58% porosity) would likely give similar M-factors 

for the solid-state electrolyte and the pore phase, a possibly ideal compromise between 

electrolyte effective conductivity and electrode infiltration/loading capacity.  

Table 4.8: Summary of microstructural parameters for the LLZO phase and pore phase of the template-based 
LLZO.  

 
 

LLZO Pore 

M-factor 
 

0.060 0.201 

   
Phase Volume Fraction 0.2102 0.7898 
   
Characteristic Geometric 
Tortuosity 
 

1.2505 1.0346 

(Characteristic Geometric 
Tortuosity)-2 

0.6395 0.9342 

   
Percolation Factor 
 

0.9949 1.0000 

   
Average feature size (µm) 
 

0.634 2.417 

Average bottleneck size (µm) 
 

0.424 1.262 

Constriction Factor 0.447 0.272 
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5.    Modeling Electrochemical Performance of 3D Microstructures: 
 
 
 Analyzing the M-factors and other structural parameters of the FIB Tomography 

microstructures identified that increasing microstructure porosity moderately improved 

electrode infiltration and loading while drastically decreasing electrolyte effective 

conductivity, thus increasing the overall porous layer ASR. As such, the best 

microstructure likely required an intermediate porosity (~45-50%) to balance the design 

goals of achieving a low ASR electrolyte and a high loading capacity pore network. 

Fortunately, the M-factor analysis of the solid-state electrolyte phase represented the 

highest ASR scenario for an operational battery, where electrodes remained at the external 

surfaces of the porous layer and Li-ions were transported across the entire porous 

microstructure. In a real battery, the electrode material is infiltrated into the pores and 

allows Li-ions to transport into/out of the garnet at all points on the electrode-electrolyte 

interface, so Li-ions only traverse fractions of the porous layer to reach the opposing 

electrode. This suggested the M-factor analysis would underestimate the actual effective 

ionic conductivity of the electrode-infiltrated electrolyte and thus overestimate the negative 

effects of the 3D porous microstructure on battery operation.  

To determine the optimal porous microstructure for battery operation, we simulated 

the electric fields and charge transport through bilayer symmetric cells made of a dense 

layer digitally attached to the 3D FIB Tomography porous microstructures, with 

attached/infiltrated Li-metal electrodes. Similar approaches using 3D reconstructions and 

simulating the operational conditions of batteries successfully provided insight into the 

limitations faced by electrode materials in batteries utilizing liquid organic electrolytes.148–

150 Simulations of the bilayer symmetric cells should also provide a good understanding of 
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how the porous solid-state electrolyte microstructures would perform in real battery 

conditions.  

 

5.1.    Calculation Approach – Finite Difference Method: 
 
5.1.1.    Updating Individual Voxels: 
 

The following derivation was adapted from Electromagnetic Fields and Energy by 

Haus and Melcher.151 To calculate the static electric potential across a homogenous 3D 

electrolyte microstructure with an arbitrary surface, electrodes that applied fixed boundary 

potentials and acted as sources/sinks for current, and insulating surfaces that prevented 

current from entering/exiting the electrolyte, the Laplace equation was solved for all 3D 

voxels in the microstructure: 

∇ ∙ J⃗ = ∇ ∙ σE""⃗ = 0     (5.1) 

In Equation 5.1, the divergence of the 3D current density vector “J” or the 

divergence of the product of the electrolyte conductivity “σ” and the 3D electric field vector 

“E” must equal 0. Physically, this meant no sources/sinks for current density/electric field 

were present within the region being examined, so all current density/electric field entering 

the region must also exit the region. Since the 3D FIB Tomography microstructures were 

split into discrete voxels and only the electrodes were sources/sinks for current density, 

this meant the current density/electric field entering any electrolyte voxel must equal the 

amount exiting the voxel. Since the 3D electrolyte microstructure should be homogenous, 

this meant the electrolyte conductivity was uniform and could be eliminated from Equation 

5.1 to yield a simpler version in Equation 5.2: 

∇ ∙ E""⃗ = 0     (5.2) 
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This study focused on the static electric potential, meaning no time-varying fields were 

present and thus the electric field “E” was solely determined by the negative gradient of 

the scalar electric potential “𝜑”:  

E""⃗ = −∇φ     (5.3) 

Combining equations 5.2 and 5.3, we were left with the electric potential version of the 

Laplace equation: 

∇5φ = 0     (5.4) 

The term “∇2𝜑” for a 3D microstructure composed of discrete voxels took on the following 

form when examining an arbitrary direction: 

∇5𝜑(𝑥¸) =
¹(v£|)£¹(vR|)R5¹(v°)

Z¢N
= ∑¹(vf)R¹(v°)

Z¢N
  (5.5) 

Extending this to include all three directions: 

∇5𝜑(𝑥¸, 𝑦¸, 𝑧¸) = ∑¹(vf,}°,½°)R¹(v°,}°,½°)
Z¢N

  

+∑¹(v°,}f,½°)R¹(v°,}°,½°)
Z�N

  

+∑¹(v°,}°,½f)R¹(v°,}°,½°)
Z¤N

    (5.6) 
 

To simplify the notation, this was rewritten as: 

∇5𝜑(𝑥¸, 𝑦¸, 𝑧¸) = ∑¹fR¹(v°,}°,½°)
ZfN

= ∑ ¹f
ZfN
− 𝜑(𝑥¸, 𝑦¸, 𝑧¸)∑

|
ZfN

  (5.7) 

Equation 5.7 was valid when the nearest neighbors of a given voxel were either 

electrolyte or part of the electrodes with fixed potential. When one or more of the nearest 

neighbors are part of an insulating region/material, an additional boundary condition was 

necessary to prevent current from crossing the interface and flowing out of the electrolyte 

into the insulator:  

𝑛"⃗ ∙ 𝐽 = 0     (5.8) 
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Here, “n” was the unit vector normal to the electrolyte microstructure surface that 

was considered insulated. The purpose of Equation 5.8 was to eliminate any components 

of the current density vector that would cause current to flow into the insulator. This type 

of condition was necessary in two cases: 1) at the parts of the 3D microstructure that 

intercepted the boundaries of the box enclosing the 3D reconstruction (considered 

insulating when periodic boundaries were not in use) and 2) when parts of the electrolyte 

surface were deliberately assigned to be insulating/next to insulating materials. Using 

previously discussed substitutions, Equation 5.8 became:  

𝑛"⃗ ∙ ∇φ = 011     (5.9) 

This showed the gradient of the electric potential was parallel to “n” (i.e., normal 

to the insulating surface) must be forced to become 0, and the gradient perpendicular to 

“n” (i.e. parallel to the insulating surface) was left unchanged. Fortunately, implementing 

the insulating surface condition was fairly straightforward. To eliminate the gradient 

between the chosen electrolyte voxel and the neighboring voxel across the insulating 

surface, the neighboring voxel was given the same potential as the chosen electrolyte voxel. 

Looking back at the expanded expression for “∇2𝜑” in Equation 5.6, making this change 

caused any of the six directions in the sum that involve an insulating neighbor to become 

0. This was mathematically equivalent to adjusting the sum to exclude any of the six 

directions involving an insulating neighbor. With the insulating boundary condition 

properly accounted for, we used Equation 5.7 to solve the Laplace equation and arrive at 

Equation 5.10, the update condition for the electric potential of any electrolyte voxel in the 

3D electrolyte microstructure: 
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𝜑(𝑥¸, 𝑦¸, 𝑧¸) =
∑ ¹f
ZfN

∑ |
ZfN

¿    (5.10) 

From Equation 5.10, it was clear the update condition changed the potential of the 

chosen electrolyte voxel to the average of the potentials of the neighboring voxels weighted 

by the square of the inverse of the distances between the voxels. In theory, Equation 5.10 

could sequentially “scan” across the entire 3D microstructure, update the electric potential 

of all voxels, and then repeat this process until the calculated changes to the potential 

distribution fell below a user-defined relative threshold. In practice, this approach was 

extraordinarily slow because the true distribution was determined by the global boundary 

conditions of the 3D microstructure, while Equation 5.10 only examined the immediate 

local conditions of each voxel. As such, it would require an extremely long time for the 

effects of the boundary conditions to be propagated throughout the microstructure and 

converge the overall potential distribution to the true distribution.  

 

5.1.2.    Updating Blocks of Voxels Simultaneously: 
 

A more efficient approach was to update the potentials of many voxels 

simultaneously. To do this, Equation 5.7 was rearranged to give it the following form: 

𝜑(𝑥¸, 𝑦¸, 𝑧¸) ∑
|
ZfN
− ∑ ¹f

ZfN
= 0    (5.11) 

Then the 2nd summation was separated to distinguish between neighbors that were 

part of the electrolyte and thus had potentials that needed updating (𝜑i,update), and neighbors 

that were part of the electrode and thus had potentials that were fixed boundary conditions 
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(𝜑i,boundary). Moving the boundary condition terms to the opposite side of the equals sign 

yields Equation 5.12:  

𝜑(𝑥¸, 𝑦¸, 𝑧¸) ∑
|
ZfN
− ∑ ¹f,��VhgK

ZfN
= ∑ ¹f,¦L�PVh��

ZfN
  (5.12) 

Considering the entire 3D microstructure, there was a version of Equation 5.12 for 

every voxel to be updated and thus many repeated references to each updatable voxel. All 

those equations must be solved in order to determine the true electric potential distribution 

of the microstructure, so this constituted a problem described by a set of linear equations. 

To solve this problem required defining the column vector “Φ” as the list of the potentials 

of all updatable voxels in the 3D microstructure; the column vector “b” as the list of the 

boundary condition values of the right side of Equation 5.12 associated with each voxel in 

vector “Φ” (a given term in vector “b” had a value of 0 if the corresponding term in vector 

“Φ” had no neighbors that were part of the electrode); and the square matrix “M” as the 

mathematical object that encoded the relationships on the left side of Equation 5.12 for all 

updatable voxels. This yielded the following linear equation: 

𝑀)Φ"""⃑ = 𝑏"⃑      (5.13) 

In this form, Equation 5.13 described the Laplace equation relationships between 

all electrolyte voxels, the Laplace equation relationships with the fixed potential electrodes, 

and accounted for any insulating surfaces present. Solving Equation 5.13 for “Φ” produces 

the true electric potential distribution for the entire 3D electrolyte microstructure with the 

chosen boundary conditions. Ideally, Equation 5.13 would be solved in one calculation 

covering all the electrolyte voxels present in the 3D microstructure. However, if there are 

N electrolyte voxels to be updated, then the matrix “M” was NxN and thus had N2 entries, 

which was often too many entries to be stored simultaneously in computer memory. A 



 135	

typical way to overcome this limitation was to isolate blocks of the 3D microstructure, 

treating nearest neighbors of perimeter electrolyte voxels as fixed boundary conditions in 

addition to any global boundary voxels present in the block (electrode, insulating surface), 

iteratively solve Equation 5.13 for all updatable voxels in the block until block convergence 

was achieved, then repeat for blocks of the rest of the microstructure until global 

convergence was achieved. Once the true potential distribution was calculated, the 

potential was analyzed for a variety of relevant electrical properties, such as the local 

current/current density, the interfacial current/current density, the total battery 

current/current density, the total battery resistance/ASR, and the total battery overpotential.  
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5.2.    Simulation of 3D FIB Tomography Microstructures – Results and 
Discussion: 
 

Figure 5.1 shows 3D reconstructions of the template-based LLZO garnet porous 

microstructure and four different tape-cast LLCZN garnet porous microstructures, in order 

of decreasing porosity. As previously discussed, the template-based LLZO microstructure 

was composed of thin garnet membranes between large diameter pores, while the tape-cast 

LLCZN microstructure had comparatively large garnet particles and much smaller pores. 

The differences stemmed from using an existing structure for the garnet (the template-

based LLZO) vs. building the structure using a random distribution of pore former spheres 

(the tape-cast LLCZN). The variety of microstructures and porosity made this group of 

samples a good test case for studying porous solid-state electrolytes.  

 
Figure 5.1: 3D reconstructions of A) template-based porous garnet (“Template”), and tape-cast porous garnet 
B) “Porous 1”; C) “Trilayer 1”; D) “Porous 2”; and E) “Porous 3”. Garnet phase was yellow and secondary 
phase was red. The microstructures were in order of decreasing porosity. Reconstruction dimensions were in 
µm. 
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5.2.1.    3D Visualization of Simulation Results: 
 

Using the 3D FIB Tomography microstructures as porous layers, we digitally 

created dense-porous bilayer symmetric cells by attaching a 5 μm thick dense layer to the 

porous layer, shown in Figure 5.2. The garnet electrolyte was shown in yellow, the pore 

space was filled with the positive electrode (red color), and a thin negative electrode (blue 

color) was attached to the planar surface of the dense layer. To focus on the garnet 

microstructure for these bilayers, any secondary phase was replaced by pore space. The 

electrodes were considered to be Li-metal, and since the electronic conductivity of Li-metal 

was many orders of magnitude higher than the ionic conductivity of garnet, the Li-metal 

electrodes were assumed to have uniform electric potentials identical to the potential of the 

corresponding current collector (grey color).  

 
Figure 5.2: Schematic of FIB Tomography bilayer symmetric cells, created using of A) the Template 
microstructure, B) the Porous 1 microstructure; C) the Trilayer 1 microstructure; D) the Porous 2 
microstructure; and E) the Porous 3 microstructure. The garnet electrolyte was yellow, the positive Li-metal 
electrode was red, the negative Li-metal electrode was blue, and the current collectors were grey. All 
visualizations were stretched by 3x along the Z-axis. 
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A potential difference of 1.0 V was applied across the bilayer (+0.5 V at the positive 

electrode, -0.5 V at the negative electrode), and the potential was iteratively relaxed until 

the desired level of convergence was achieved. Insulating boundary conditions were 

applied at the six planar boundaries around the region containing the bilayer structure. The 

details of the MATLAB implementation are given in Appendix F. Due to the large 

dimensions of the bilayers, the bilayers were divided into a number of overlapping sections 

and the set of sections along the “forward” direction (dense layer to porous layer) and along 

the “reverse” direction (porous layer to dense layer) were sequentially converged during 

each iteration. Figure 5.3 shows 3D visualizations of the simulated equilibrium potential 

distribution for the bilayers. Examining the distributions, the entire porous layer in each 

bilayer had the same potential of +0.5 V (white color) as the positive electrode, with only 

the dense layer showing any significant variation. The very high porosity Template bilayer 

(78.98% porosity) was the best example of this behavior. However, as the bilayer porosity 

decreased, more variation was observed in the electric potential in the dense layer. 

Examining the high porosity Porous 1 bilayer (56.67% porosity) and Trilayer 1 bilayer 

(56.03% porosity), the red region of the electric potential (~ 0.27-0.35 V) noticeably 

expanded towards locations on the dense layer surface that interfaced with the porous layer 

garnet. In the medium porosity Porous 2 bilayer (40.58% porosity), the red region of the 

electric potential expanded all the way to the dense layer surface and into parts of the 

porous garnet. This expansion into the porous layer was most extreme for the low porosity 

Porous 3 bilayer (26.45% porosity), where even the underlying electric potential within the 

dense layer was warped.  
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Figure 5.3: Simulated equilibrium electric potentials for bilayers created using of A) the Template 
microstructure, B) the Porous 1 microstructure; C) the Trilayer 1 microstructure; D) the Porous 2 
microstructure; and E) the Porous 3 microstructure. Units are in Volts. All visualizations were stretched by 
3x along the Z-direction. 
 

The local electric field strength in the bilayers was calculated from the equilibrium 

electric potential distribution and the 3D visualizations of the results shown in Figure 5.4. 

The color bar scale units were in Volts/µm and ranged from 0 (blue) to the maximum cutoff 

of 150% of the average electric field strength at the negative Li electrode (white). This 

cutoff level ensured the average electric field strength at the dense layer-negative electrode 

interface always appeared red. As expected from the visible gradients in the electric 

potential distributions, the electric field strength was high in the dense layer (shown in red) 

and 0 in the majority of the porous layer (shown in blue). However, a small transition 

region was observed in the porous layer near the dense layer that transitioned from the high 

field strength of the dense layer to the 0-field strength of the rest of the porous garnet. 

Similar to the bilayer electric potential, the electric field distributions became more 
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complicated as the bilayer porosity decreased. Comparing the very high porosity Template 

bilayer (Figure 5.4a) to the high porosity Porous 1 and Trilayer 1 bilayers (Figure 5.4b, c), 

the reduced porosity caused the electric field transition region to extend further into the 

porous garnet. Moreover, the electric field strength decreased in the dense layer beneath 

the dense-porous garnet interfaces, and the electric field strength increased at the dense 

layer-electrode interfaces. In the medium porosity Porous 2 bilayer (Figure 5.4d), the 

electric field transition region extended even further into the porous garnet and large 

sections of the dense layer now had higher electric field strengths (white color) than the 

average field strength in the dense layer-negative electrode interface (red color). 

Interestingly, the low porosity Porous 3 bilayer (Figure 5.4e) looked very similar to the 

Porous 2 bilayer, in direct opposition to the expectation that the lower porosity would create 

even more extreme variations in the electric field distribution. Since current density was 

proportional to electric field strength, the electric field distributions showed that all the 

bilayers had high current density flowing through the dense layer and no current density 

flowing through the majority of the porous layer, with a thin transition region in the porous 

layer near the dense layer. These current density distributions resulted from the infiltration 

of the Li-metal electrodes into the pores. This infiltration allowed current to flow through 

the majority of the porous layer thickness as electronic current via the extremely high 

conductivity Li-metal, instead of ionic current via the comparatively low conductivity 

porous garnet. Near the dense layer, the electronic current quickly transformed to ionic 

current, as indicated by the transition region in the electric field strength distribution. This 

transformation created regions of very high current density, or “hot spots,” in the bilayer 

microstructure.  
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Figure 5.4: Simulated equilibrium electric fields for bilayers created using of A) the Template microstructure, 
B) the Porous 1 microstructure; C) the Trilayer 1 microstructure; D) the Porous 2 microstructure; and E) the 
Porous 3 microstructure. Units are in Volts/µm. The maximum cutoff of the color bar was set to 150% of the 
average electric field strength at the dense layer-negative electrode interface. All visualizations were 
stretched by 3x along the Z-direction. 
 

5.2.2.    Analysis of 2D Cross-Sections from 3D Visualization: 
 

Given the potential consequences of high current density “hot spots” in a battery, 

further study was warranted on how the current density varied within the interior of the 

dense garnet and the porous garnet near the dense-porous interface. The magnitude of the 

ionic current density entering each voxel was calculated based on local electric field 

strength and a garnet intrinsic conductivity of 5x10-4 S/cm (well within the range of 

conductivities reported for LLZO-based garnets). Since real batteries and symmetric cells 

operate under fixed current conditions, the bilayer ionic current density distribution was 

normalized to give an average current density of 1 mA/cm2 at the negative electrode/current 

collectors. Figures 5.5, 5.6, 5.7, 5.8, and 5.9 show the normalized ionic current density for 
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2D cross-sections of the dense layer at the dense-porous interface and the porous layer at 

distances of ~0.1 µm to ~0.5 µm from the dense layer for the Template, Porous 1, Trilayer 

1, Porous 2, and Porous 3 bilayers, respectively. The porous layer cross-section ~0.1 µm 

from the dense layer was in direct contact with the dense layer. The color bar used has a 

maximum cutoff value of 1.5 mA/cm2.  

 
Figure 5.5: 2D cross-sections of normalized ionic current density in the Template bilayer at A) the dense-
porous interface, and in the porous layer at distances of B) ~0.1µm, C) ~0.2 µm, D) ~0.3 µm, E) ~0.4 µm, 
and F) ~0.5 µm from the dense layer. Ionic current density was normalized to give 1.0 mA/cm2 at the negative 
electrode/current collectors.  
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Figure 5.6: 2D cross-sections of normalized ionic current density in the Porous 1 bilayer at A) the dense-
porous interface, and in the porous layer at distances of B) ~0.1µm, C) ~0.2 µm, D) ~0.3 µm, E) ~0.4 µm, 
and F) ~0.5 µm from the dense layer. Ionic current density was normalized to give 1.0 mA/cm2 at the negative 
electrode/current collectors.  
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Figure 5.7: 2D cross-sections of normalized ionic current density in the Trilayer 1 bilayer at A) the dense-
porous interface, and in the porous layer at distances of B) ~0.1µm, C) ~0.2 µm, D) ~0.3 µm, E) ~0.4 µm, 
and F) ~0.5 µm from the dense layer. Ionic current density was normalized to give 1.0 mA/cm2 at the negative 
electrode/current collectors.  
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Figure 5.8: 2D cross-sections of normalized ionic current density in the Porous 2 bilayer at A) the dense-
porous interface, and in the porous layer at distances of B) ~0.1µm, C) ~0.2 µm, D) ~0.3 µm, E) ~0.4 µm, 
and F) ~0.5 µm from the dense layer. Ionic current density was normalized to give 1.0 mA/cm2 at the negative 
electrode/current collectors.  
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Figure 5.9: 2D cross-sections of normalized ionic current density in the Porous 3 bilayer at A) the dense-
porous interface, and in the porous layer at distances of B) ~0.1µm, C) ~0.2 µm, D) ~0.3 µm, E) ~0.4 µm, 
and F) ~0.5 µm from the dense layer. Ionic current density was normalized to give 1.0 mA/cm2 at the negative 
electrode/current collectors.  
 

Examining the cross-section of the dense layer at the dense-porous interface 

(Figures 5.5a, 5.6a, 5.7a, 5.8a, and 5.9a), there were large regions of ~1.0 mA/cm2 ionic 

current density (orange color) and patches of lower ionic current density (yellow color) 
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surrounded by zones of high ionic current density (red color). The low ionic current density 

regions corresponded to interfaces between the dense garnet and the porous garnet, while 

the ~1.0 mA/cm2 and higher current density regions corresponded to interfaces between 

the dense garnet and the positive Li electrode. This demonstrated the majority of ionic 

current was transferred from the positive Li electrode directly into the dense garnet, with 

only a relatively small amount of ionic current transported through the porous layer. The 

high ionic current density regions surrounding the dense-porous garnet interfaces extended 

further out from large dense garnet-porous garnet interfaces than small dense garnet-porous 

garnet interfaces. These high ionic current density regions and the high ionic current 

density at the porous garnet-electrode interfaces certainly qualified as “hot spots” in the 

bilayer microstructure and may prove problematic for bilayer operation. Examining the 

porous layer cross-sections for the Template microstructure (Figure 5.5b), the ionic current 

density in the porous garnet quickly decreased with increasing distance from the dense 

layer, consistent with earlier observation of a transition region in the electric field strength 

distribution. The porous garnet generally had low ionic current density in the garnet interior 

(yellow/green color) and a thin region of high ionic current density (red color) at the garnet 

surface/interface with the positive Li electrode (grey color). Regions of high ionic current 

density were present within the interior of the porous garnet particles, away from the 

garnet-electrode interface. Examining subsequent porous layer cross-sections (Figures 

5.5c, d, e, f), seemingly interior parts of the garnet structure were actually at or close to the 

garnet surface along the Z-axis. This indicated high ionic current density was being 

transferred into the porous garnet from the electrode and propagated along the Z-axis.  
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Examining cross-sections of the remaining bilayers (Figures 5.6, 5.7, 5.8, and 5.9), 

similar patterns were seen of dense layer surfaces that were a mix of ~1.0 mA/cm2 and low 

ionic current density regions surrounded by high current density regions corresponding to 

the dense garnet-porous garnet interfaces; high ionic current density at the porous garnet-

electrode interfaces and lower ionic current density in the porous garnet interior; and ionic 

current density decreasing within the porous garnet with increasing distance from the dense 

layer. Comparing the very high porosity Template bilayer (Figure 5.5a) to the high porosity 

Porous 1 and Trilayer 1 bilayers (Figures 5.6a and 5.7a), decreasing porosity increased the 

overall ionic current density of the dense garnet-electrode interface. The increase in current 

density resulted from the high ionic current density regions near the dense garnet-porous 

garnet interfaces extending across a larger amount of the dense garnet-electrode interface 

area. The overall ionic current density of the dense garnet-electrode interface increased 

further when examining the medium porosity Porous 2 bilayer (Figure 5.8a), at which point 

all the dense garnet-electrode interface had ionic current densities above 1.0 mA/cm2. The 

ionic current densities at the dense garnet-electrode interface of the low porosity Porous 3 

bilayer (Figure 5.9a) were at or above the maximum cutoff of 1.5 mA/cm2. At the same 

time, overall ionic current density in the porous garnet increased as bilayer porosity 

decreased (Figures 5.5b-f, 5.6 b-f, 5.7 b-f, 5.8 b-f, and 5.9 b-f), though the highest ionic 

current density regions in the porous garnet were still largely confined to near the porous 

garnet-electrode interface. The ionic current density in the interior of the porous garnet also 

increased as the porous layer porosity decreased, consistent with previous observations of 

the porous layer transition region increasing in size with decreasing porosity.  
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Based on the 2D cross-sections, it appeared the highest ionic current densities in 

the porous garnet were flowing through a thin sheath at the garnet surface and the interior 

of the porous garnet carried much lower ionic current density. To confirm this, histograms 

were calculated for the normalized ionic current densities of all garnet voxels, only interior 

garnet voxels away from the garnet-electrode interface, and only surface garnet voxels at 

the garnet-electrode interface. A bin width of 0.01 mA/cm2 was used and the voxel counts 

plotted on a logarithmic scale. The results were shown in Figure 5.10 for the a) Template 

1 bilayer, b) Porous 1 bilayer, c) Trilayer 1 bilayer, d) Porous 2 bilayer, and e) Porous 3 

bilayer. In all the histograms, there were two principle peaks in the bilayer ionic current 

density at 0 mA/cm2 and 1.0 mA/cm2. For the overall garnet and interior garnet histograms, 

the 0 peak was due to the majority of the porous layer not transporting ionic current density, 

while the 1.0 peak was due to all ionic current density in the bilayer eventually flowing 

through the dense layer and smoothing out to 1.0 mA/cm2. For the surface garnet 

histograms, the 0 peak was similarly due to the majority of the porous layer surface not 

being used to inject ionic current ionic into the porous garnet, while the 1.0 peak was due 

to the ionic current density flowing directly from the electrode into the dense layer. All 

three histograms also had garnet voxels with ionic current densities above 1.0 mA/cm2, 

with the overall garnet and surface garnet histograms displaying maximum ionic current 

densities significantly higher than the maximum ionic current density in the interior garnet 

histograms. Both sets of maximums also increased as the bilayer porosity decreased. These 

patterns of increasing ionic current density with decreasing porosity were consistent with 

earlier observations in the 2D cross-sections. The surface garnet histogram also had a 

unique feature wherein the number of voxel decreased as ionic current density increased 
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above 0 mA/cm2 and then the counts sharply increased at 1.0 mA/cm2. In contrast, the 

interior garnet histogram smoothly decreased and then increased to the 1.0 peak. The 

difference originated from the high ionic current densities at the garnet interface spreading 

through the garnet interior and forming a smooth spectrum of lower ionic current densities. 

The greater number of interior garnet voxels meant the overall garnet histogram below the 

1.0 peak and slightly above the 1.0 peak was dominated by the smoothed behavior of the 

interior garnet histogram.  
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Figure 5.10: Histograms of the normalized current density of surface garnet voxels, interior garnet voxels, 
and all garnet voxels for A) the Template 1 bilayer, B) the Porous 1 bilayer, C) the Trilayer 1 bilayer, D) the 
Porous 2 bilayer, and E) the Porous 3 bilayer.  
 

Table 5.1 shows the maximum ionic current density cutoff necessary to include 

90%, 99%, 99.9%, and 99.99% of all garnet voxels, interior garnet voxels, and surface 

garnet voxels. 90% inclusion required a cutoff only slightly above 1 mA/cm2 for all garnet 

and interior garnet voxels and below 0.5 mA/cm2 for the surface garnet. This was due to 

the large number of dense garnet voxels with ionic current densities close to 1 mA/cm2 and 

the majority of the garnet-electrode interface having 0 mA/cm2 ionic current densities. 99% 
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inclusion required only a slightly increased ionic current density cutoff for all garnet and 

interior garnet voxels, while the ionic current density cutoff for the surface garnet voxels 

increased sharply. This indicated the tails above 1 mA/cm2 were being drawn in and 

emphasized how the tail played a stronger role in the surface garnet histogram as there 

were fewer surface garnet voxels than interior garnet voxels. At 99.9% and 99.99% 

inclusion, all ionic current density cutoffs increased substantially as more of the 

distribution tail was included. Comparing the different bilayers, it was evident that an ionic 

current density cutoff of 1.5 mA/cm2 would encompass a minimum of 99% and a maximum 

of nearly 99.99% of all garnet voxels for the bilayers being analyzed. This informed the 

decision to use a cutoff of 1.5 mA/cm2 for the 2D cross-sections of the ionic current density.  

Table 5.1: Maximum current density cutoff necessary to include 90%, 99%, 99.9%, and 99.99% of all garnet 
voxels, core garnet voxels, and surface garnet voxels of simulated 3D FIB Tomography bilayers. 

  Maximum Current Density Cutoff to include X% of Voxels 
(mA/cm2) 

  90% 99% 99.9% 99.99% 
Template All Garnet 1.00 1.04 1.21 1.54 
 Interior Garnet 1.00 1.03 1.12 1.25 
 Surface Garnet 0.02 1.24 1.48 1.87 
Porous 1 All Garnet 1.01 1.10 1.36 1.85 
 Interior Garnet 1.01 1.09 1.27 1.52 
 Surface Garnet 0.06 1.34 1.92 2.55 
Trilayer 1 All Garnet 1.02 1.11 1.41 1.96 
 Interior Garnet 1.02 1.10 1.30 1.59 
 Surface Garnet 0.41 1.45 2.10 2.96 
Porous 2 All Garnet 1.05 1.22 1.66 2.52 
 Interior Garnet 1.05 1.21 1.56 2.09 
 Surface Garnet 0.41 1.77 2.97 4.61 
Porous 3 All Garnet 1.01 1.23 1.71 2.77 
 Interior Garnet 1.02 1.22 1.60 2.27 
 Surface Garnet 0.25 1.89 3.52 6.03 
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5.2.3.    Quantification of Bilayer Simulation Performance: 
 
By combining the unnormalized ionic current densities at the current collectors with 

the 1.0 V potential difference applied across the bilayer, the ASR values of the different 

bilayers were calculated, plotted vs. porous layer porosity in Figure 5.11, and listed in 

Table 5.2. The bilayers ASR values were as low as 1.032 Ω-cm2 for the very high porosity 

Template bilayer (78.98% porosity) and as high as 1.161 Ω-cm2 for low porosity Porous 3 

bilayer (26.45% porosity). This represented only a 12.5% increase in bilayer ASR despite 

a difference of over 50% porosity in the porous layers. In fact, above 56% porosity (i.e., 

the Template, Porous 1, and Trilayer 1 bilayers), the bilayer ASR showed very minor 

variations. It was only for lower porosity bilayers that the ASR began increasing notably 

and even that increase was small. All the dense layers were 5 µm thick and had an ASR of 

1.000 Ω-cm2 when isolated, so the porous layers contributed an additional ASR of 0.032 

Ω-cm2 for the very high porosity Template bilayer and 0.161 Ω-cm2 for the low porosity 

Porous 3 bilayer. These small contributions were consistent with previous observations of 

substantial ionic current density in the dense garnet and significantly less ionic current 

density in the porous garnet, meaning the overall bilayer properties were dominated by the 

dense layer.  
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Figure 5.11: Bilayer Li symmetric cell ASR vs. porosity of the 3D FIB Tomography microstructures used 
for the porous layer.  
 

Table 5.2: 3D FIB Tomography bilayer simulation results for porous layer (PL) porosity, bilayer ASR, porous 
layer 99.99% active region thickness, dense layer (DL) average normalized interfacial ionic current density, 
and maximum porous layer average normalized ionic interfacial current density. The electrode capacity of a 
20 μm porous layer was also listed.  

 PL 
Porosity 

(%) 

Bilayer 
ASR 

(Ω-cm2) 

PL Active 
Region 

Thickness 
(µm) 

DL Avg. Norm. 
Interfacial 

Current Density 
(mA/cm2) 

Max PL Avg. 
Norm. Interfacial 
Current Density 

(mA/cm2) 

Electrode 
capacity for 
20 μm PL 

(mAhr/cm2) 
Template 
 

78.98 1.032 2.01 1.070 0.884 3.257 

Porous 1 
 

56.67 1.048 4.30 1.179 1.416 2.337 

Trilayer 
1 

56.03 1.046 4.97 1.187 1.580 2.311 

Porous 2 
 

40.58 1.114 11.41 1.355 2.099 1.673 

Porous 3 
 

26.45 1.161 11.94 1.490 2.219 1.091 

 

To better understand how charge was transported at different positions in the 

bilayer, the bilayer was divided into 2D “slices” parallel to the XY-plane and the fraction 

of ionic current flowing through each 2D slice was calculated. This was accomplished by 

calculating the total normalized ionic current flowing in the garnet voxels in each 2D slice 

and dividing by the total normalized current flowing through the bilayer. The results were 

plotted vs. distance from the dense layer in Figure 5.12a. Immediately evident was the 

previous trends of ionic current fraction decreasing in the garnet microstructure as the 
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distance from the dense layer increased. The ionic current fraction decreased the quickest 

for the very high porosity Template bilayer, decreased slower for the high porosity Porous 

1 and Trilayer 1 bilayers, decreased even more slowly for the medium porosity Porous 2 

bilayer, and decreased the slowest for the low porosity Porous 3 bilayer. There were also 

jumps in the ionic current fraction when comparing the porous garnet cross-section 

immediately contacting the dense layer (shown as 0.1 µm) and the dense layer cross-section 

at 0 µm. These results were consistent with observations from the 3D visualizations of the 

electric field strength and 2D cross-sections of the normalized ionic current density. 

Notably, the size of the jump in the ionic current fraction decreased as the bilayer porosity 

decreased, revealing the ionic current was substantially redistributed to the porous garnet 

from the dense garnet in less porous bilayers. This indicated the reduced dense garnet-

electrode interfacial area was unable to fully accommodate the battery ionic current despite 

previous observations of higher ionic current densities in the dense layer cross-section of 

less porous bilayers.  
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Figure 5.12: A) fraction of total current flowing through bilayer as ionic current vs. distance from the dense 
layer. B) average normalized interfacial current density vs. distance from the dense layer. C) 99.99% porous 
layer active region thicknesses vs. porous layer porosity. D) bilayer ASR vs. 99.99% porous layer active 
region thickness. 
 

The average normalized current density transported across the garnet-electrode 

interface within each 2D slice of the bilayer was calculated and plotted vs. distance from 

the dense layer in Figure 5.12b. Similar to the previous observations, most of the active 

garnet-electrode interface was at the dense layer (distance of 0 µm) and parts of the porous 

layer close to the dense layer. At the same time, parts of the porous layer interface showed 

interfacial current densities greater than the 1.0 mA/cm2 of the current collector, and the 

dense layer always showed interfacial current densities greater than 1.0 mA/cm2. As the 

bilayer porosity decreased, an increasing amount of the garnet-electrode interface was 

utilized, and an increasing amount of that interface had interfacial current densities greater 

than 1.0 mA/cm2. Figure 5.12b also showed the highest average interfacial current density 
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was generally observed in the porous garnet slice immediately contacting the dense layer, 

appearing as a spike in the plot. The dense layer generally had the second highest average 

interfacial current density. The average interfacial current density in the dense layer cross-

section and the maximum average interfacial current density in the porous garnet cross-

sections both increased as the porosity of the bilayer decreased (Table 5.2). This was likely 

due to a combination of the decreasing dense garnet-electrode interfacial area and the 

increasing garnet particle size, which both appeared to correspond to increasing amounts 

of high ionic current density voxels in the 2D cross-sections. As this was the average 

interfacial current density, combined with the long tails of the previously discussed 

histograms, together they indicated there were parts of the garnet-electrode interface with 

still higher interfacial current densities.  

Quantifying the amount of the porous layer utilized in each bilayer started with 

defining the “porous layer active region thickness” as the distance from the dense layer 

into the porous layer that corresponded to the ionic current fraction dropping below 0.0001 

(meaning 99.99% of total current in the bilayer was being transported by ionic current 

between this point and the dense layer). The results were plotted in Figure 5.12c, showing 

the very high porosity Template bilayer had the smallest active region thickness of 2.01 

µm and the low porosity Porous 3 bilayer had the largest active region thickness of 11.94 

µm, compared to total porous layer thicknesses of 13.77 µm and 22.75 µm, respectively. 

Plotting the bilayer ASR vs. the 99.99% active region thickness in Figure 5.12d showed 

the bilayer ASR generally increased linearly as the active region thickness increased, with 

minor scatter in the results likely due to variations in the porous microstructure. When a 

linear function was fitted to the data, the line intercepted the y-axis at a value of 0.998, 
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very close to the dense layer ASR of 1.000. This was consistent with the earlier discussion 

of the bilayer ASR being dominated by the dense layer properties, so decreasing the active 

region thickness, and thus decreasing the utilization of the higher ASR porous layer, would 

decrease the bilayer ASR towards the minimum ASR limit of the dense layer alone.  

 Alongside bilayer ASR and current density distributions, the electrode loading 

capacity of the bilayer was also a key parameter considered when determining the optimal 

bilayer microstructure. To this end, the areal capacity of the Li-metal electrode loaded into 

the pore network of each bilayer was calculated. However, the different thicknesses of the 

underlying 3D FIB Tomography microstructures meant that direct comparison was not 

possible. Fortunately, the transition regions of each porous layer were significantly smaller 

than the total porous layer thicknesses, suggesting that further increases to the porous layer 

thickness would not increase the bilayer ASR noticeably. This logically followed from the 

fact that less than 0.01% of current was transported as ionic current through the porous 

layer outside the active region, and any additional porous layer would be part of this 

“inactive” region. Thus, the ASR of the bilayers with variable thickness porous layers were 

used as proxies for the ASR of hypothetical bilayers with the same porous microstructures 

but identical porous layer thicknesses with minimal loss of accuracy. Based on this, the 3D 

FIB Tomography bilayer results were extrapolated to hypothetical bilayers with a 20 μm 

porous layer, since this was very close to the real porous layer thicknesses, and the resulting 

the Li-metal areal capacity was calculated (Table 5.2). The hypothetical very high porosity 

Template bilayer could be loaded with 3.257 mAhr/cm2 of Li-metal when the pores were 

fully infiltrated compared to the 1.091 mAhr/cm2 of the hypothetical low porosity Porous 

3 bilayer (Figure 5.13a). Moreover, increasing the porosity of the porous layers also 
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decreased the amount of garnet mass in the bilayer. Given the much higher garnet density 

(5.1 g/cm3) than the Li-metal (0.534 g/cm3), this would give gravimetric capacities of 588.1 

mAhr/g and 105.5 mAhr/g for the hypothetical very high porosity Template bilayer and 

the hypothetical low porosity Porous 3 bilayer, respectively, when only including the 

garnet and infiltrated Li-metal masses (Figure 5.13b).  

 
Figure 5.13: A) bilayer areal capacity for Li-metal infiltrated into 20 μm porous layer vs. porous layer 
porosity. B) bilayer gravimetric capacity for Li-metal infiltrated into 20 μm porous layer vs. porous layer 
porosity. Only the garnet mass and infiltrated Li metal mass were used. 
 

5.2.4.    Implications for Batteries Utilizing Bilayer/Trilayer Garnet 
Electrolytes: 
 

The simulations of equilibrium electric potential, electric field, and ionic current 

density in fully infiltrated bilayer symmetric cells showed that in every meaningful way, a 

bilayer with a higher porosity porous layer would outperform a bilayer with a lower 

porosity porous layer. Specifically, increasing bilayer porosity caused the already low ASR 

to decrease further, reduced the ionic current densities within the bilayer garnet, reduced 

the interfacial current densities at the garnet-electrode interfaces, and increased the 

maximum electrode areal loading capacity. If we included the decreased electrolyte mass 

alongside the increased electrode loading capacity, the gravimetric capacity of a high 

porosity bilayer was dramatically higher than a low porosity bilayer. Based on these 
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patterns, the logical conclusion was that the dense layer alone was the best structure, since 

this would provide the minimum ASR and the minimum current densities due to having a 

100% porosity “porous layer”. However, the limited mechanical strength of the thin dense 

layer without the porous layer would require a thicker dense layer to maintain mechanical 

strength, which dramatically increases the ASR. Also, both thin and thick dense layers have 

difficulty utilizing high capacity electrodes such as Li-metal or sulfur since these electrodes 

change volume dramatically during cycling, risking loss of contact with the current 

collectors. The rigid structure of the porous garnet can contain the electrode in a more fixed 

volume and better maintain current collector contact. Thus, the high porosity bilayer 

structure was actually the best practical structure due to having near-dense layer ASR 

values and enough mechanical strength to remain intact during battery fabrication and 

cycling.  

A clear goal of optimizing the bilayer structure is to decrease the current density, 

both within the garnet and at the garnet-electrode interfaces. The simplest approach was to 

continue increasing the porous layer porosity, but ultimately there is an upper porosity limit 

where the mechanical strength of the bilayer becomes compromised. An alternative 

approach is to fabricate the bilayer from 2 different electrolytes: the thin dense layer from 

LLZO-based garnet, and the porous layer from a higher conductivity material. This 

difference in conductivity reduces the added resistance/ASR for cycling through the porous 

layer and increases the thickness of the transition region in the porous layer while 

maintaining the same ASR. The total bilayer current then transfers into the bilayer 

electrolyte from the infiltrated electrodes across a larger interfacial area, thereby decreasing 

the interfacial current density. The higher porous layer conductivity may also cause the 
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current density within the porous electrolyte to become more homogenous and decrease 

overall garnet current density as well.  

Crucially, the ability of the bilayer to defy the predictions of the earlier M-factor 

analysis and display near-dense layer ASR values for high porosity porous layers depended 

heavily on the ability of electrodes to interface with the dense layer directly. Any situation 

where the electrode does not contact the dense layer, such as failure to initially infiltrate or 

loss of contact during cycling, forces current transported via electronic current in the 

infiltrated Li-metal electrodes in the pores to be transported instead via ionic current in the 

porous layer. In that situation, the reduced effective conductivity of the porous layer garnet 

would substantially increase the bilayer ASR and garnet/interfacial current densities, with 

further increasing the bilayer porosity resulting in worsening performance. While wetting 

electrodes such as Li-metal and sulfur can likely infiltrate through the porous layer to the 

dense layer and use the dense garnet-electrode interface for primary current transport, non-

wetting particle-based electrodes are much more likely to agglomerate and only partially 

infiltrate. Even if the non-wetting electrodes did infiltrate to the dense layer, the discrete 

nature of the electrode particles means that only particles contacting the dense layer operate 

in the ideal low ASR condition. The bulk of the particles would instead contact the porous 

layer and operate in high ASR conditions. For such a situation, a 2nd Li-ion conducting 

electrolyte infiltrated into the pores would provide a low ASR path for Li-ions to reach the 

dense layer that bypasses the high ASR porous garnet.  
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5.3.    Simulation of Column-based Microstructures – Results and 
Discussion: 
 

In studying the simulation results for bilayers using the 3D FIB Tomography 

microstructures, there are  were questions remaining with consequences for application in 

real batteries: how much did the bilayer ASR increase when no dense garnet-electrode 

interface existed?; given the greater abundance of high current densities near larger porous 

garnet particle, would decreasing the particle size reduce overall current density and ASR?; 

and given that decreasing porosity also increased current densities and ASR, how did the 

effect of changing porosity compare to the effect of changing particle size? Answers to 

these questions were sought by simulating a series of artificial bilayer symmetric cells 

where the porous layers were composed of cylindrical columns (Figure 5.14). A primary 

benefit of this approach was the ability to control the microstructure of the bilayer layer by 

independently varying the nominal porous layer porosity, the column diameter, and the 

porous layer thickness/column height, while avoiding the confounding influences of 

tortuosity and bottlenecks. Moreover, the column-based bilayers could be reduced to the 

smallest repeat unit and periodic boundary conditions applied within the XY-plane to 

dramatically reduce the simulation time as compared to the simulation time necessary for 

the 3D FIB Tomography bilayers.  

 
Figure 5.14: Repeat unit for simulating the column-based bilayer. Here, the dense layer was 5 μm thick and 
the porous layer was 20 μm thick, had a nominal porosity of 50%, and had 10 μm diameter columns.  
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5.3.1.    3D Visualization of Simulation Results: 
 
Nine different column-based bilayers were created by varying the nominal porosity 

of the porous layer from 75% to 50% to 25% and varying the column diameter from 10 μm 

to 5 μm to 1 μm. The voxel size was set to 0.05 μm/voxel for the X-, Y-, and Z-axes to 

simplify calculations and ensure that even the 1 μm diameter columns were significantly 

larger than the voxels. The porosity was considered nominal as the discrete nature of voxels 

in the simulation caused the column surfaces to deviate from the ideal shapes of cylinders, 

making the actual porosity slightly different than the nominal value (Table 5.3). To provide 

comparable results to the 3D FIB Tomography bilayers, the dense layer was 5 μm thick, 

the porous layer was 20 μm thick, and the same intrinsic garnet conductivity of 5x10-4 S/cm 

was used. To provide visuals similar to the 3D FIB Tomography bilayers, the different 

repeat units were copied along the X- and Y-axes then truncated to give a bilayer with 

planar dense layer dimensions of 100 μm x 100 μm (Figure 5.15). Figure 5.16 shows the 

resulting bilayer symmetric cells, where the porous layers of the bilayers were 100% 

infiltrated with the positive Li-metal electrode (red color), and a thin negative Li-metal 

electrode (blue color) was attached to the planar surface of the dense layers. The electrolyte 

was shown in yellow and current collectors were shown in grey. A potential difference of 

1.0 V was applied across the bilayer (+0.5 V at the positive electrode, -0.5 V at the negative 

electrode), and the potential in the bilayer was iteratively relaxed until the desired level of 

convergence was achieved. Periodic boundary conditions were applied within the XY 

plane to simulate a bilayer with infinite planar area. The details of the MATLAB 

implementation are given in Appendix F. Due to the small size of the column-based bilayer 
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repeat unit, the entire bilayer repeat unit was relaxed simultaneously so only one iteration 

was necessary.  

 
Figure 5.15: 100 μm x 100 μm x 25 μm (5 μm dense layer, 20 μm porous layer) column-based bilayers, 
showing the range of microstructures generated by varying the nominal porosity values (75%, 50%, and 25%) 
and column diameters (10 μm, 5 μm, and 1 μm).  
 

Table 5.3: Actual porous layer porosity of column-based porous microstructures generated by varying 
nominal porosity values (75%, 50%, and 25%) and column diameters (10 μm, 5 μm, and 1 μm).  

 Nominal Porosity 
Column 

diameter (μm) 
75% 50% 25% 

10 75.1 50.5 25.3 
5 75.4 50.6 26.3 
1 77.2 51.6 29.5 
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Figure 5.16: Schematic of column-based bilayer symmetric cells for range of nominal porosity values (75%, 
50%, and 25%) and column diameters (10 μm, 5 μm, and 1 μm). The garnet electrolyte was yellow, the 
positive Li-metal electrode was red, the negative Li-metal electrode was blue, and the current collectors were 
grey. All visualizations were stretched by 3x along the Z-axis. 
 

From the equilibrium electric potential distributions (not shown), the local electric 

field strength was calculated within each bilayer and shown in Figure 5.17, where the Z-

axis was stretched by 3x for easier viewing. The maximum cutoff of the color bar was set 

to 150% of the average electric field strength at the dense layer-negative electrode 

interface, thereby ensuring that 0 electric field strength always appeared blue and the 

average electric field strength at the dense layer-negative electrode interface always 
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appeared red. The bilayers had regions of high electric field strength (red color) in the dense 

layer, 0 electric field strength (blue color) in the majority of the porous garnet, and a 

transition region in the porous garnet near the dense layer, similar to the 3D FIB 

Tomography bilayers. Notably, the size of the transition region decreased drastically as the 

column diameter was decreased for fixed porosity, while changing the bilayer porosity for 

fixed column diameter had little effect. Simultaneously, the presence of larger diameter 

columns reduced the electric field over large amounts of the dense layer beneath the dense-

porous interface (orange/yellow color), due to the lower electric field within the columns 

relative to the majority of the dense layer. Interestingly, both the porosity and the column 

diameter appeared equally important for determining the dense garnet-electrode interfacial 

current densities and the overall dense layer current densities (i.e., the visible surface of the 

dense layer around the base of the columns). Looking at bilayers with nominal porosity of 

75% (Figure 5.17a, d, g), the bilayer with 10 μm diameter columns had small rings of very 

high current density (white color) at the dense layer surface, while the bilayer with 5 μm 

diameter columns did not. For bilayers with the nominal porosity of 50% (Figure 5.17b, e, 

h), the high current density regions covered most of the dense layer surface for bilayers 

with 10 μm and 5 μm diameter columns, and the high current density region also extended 

into ~1/2 the dense layer thickness for the bilayer with 10 μm diameter columns. For 

bilayers with nominal porosity of 25% (Figure 5.17c, f, i), the high current density regions 

still appeared to cover most of the dense layer surface for bilayers with 10 μm and 5 μm 

diameter columns. The high current density region extended into ~2/3 the dense layer 

thickness for the bilayer with 10 μm diameter columns and a much smaller distance for the 

bilayer with 5 μm diameter columns. The features of the bilayers with 1 μm diameter 
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columns were too small to discern any reliable patterns regarding the dense layer surface, 

though the dense layer had an extremely uniform electric field distribution, in contrast to 

the bilayers with 10 μm and 5 μm diameter columns.  

 
Figure 5.17: Simulated electric field for column-based bilayers for range of nominal porosity values (75%, 
50%, and 25%) and column diameters (10 μm, 5 μm, and 1 μm). Units are Volts/µm. The maximum cutoff 
of the color bar was set to 150% of the average electric field strength at the dense layer-negative electrode 
interface. All visualizations were stretched by 3x along the Z-direction. 
 

5.3.2.    Analysis of 2D Cross-Sections from 3D Visualization – 100% 
Electrode Infiltration: 
 

The magnitude of the ionic current density entering each voxel was calculated 

based on the local electric field strength and a garnet intrinsic conductivity of 5x10-4 S/cm. 

The bilayer ionic current density distribution was then normalized to give an average ionic 
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current density of 1 mA/cm2 at the negative electrode/current collectors. Figure 5.18 shows 

the normalized ionic current density for 2D cross-sections of the dense layer at the dense-

porous interface, and Figure 5.19 shows the normalized ionic current density for 2D cross-

sections of the porous layer at a distance of 0.05 µm (the cross-section immediately 

contacting the dense layer). The color bar maximum cutoff was 1.5 mA/cm2. To better see 

differences between the bilayers, the cross-sections were limited to the repeat units and the 

size of the repeat units adjusted for easier comparison. Examining Figure 5.18, the highest 

ionic current densities in the dense garnet cross-section were at the dense garnet-electrode 

interface (orange, red) and the lowest ionic current densities were at the dense-porous 

garnet interfaces (yellow, green), consistent with observations from the 3D FIB 

tomography bilayers. Also observed were similar regions of high ionic current density 

around the lower ionic current density regions of the dense-porous garnet interfaces for the 

75% nominal porosity bilayers. These regions appeared the same size relative to the 

columns for all column diameters, meaning the high ionic current density regions were 

physically larger around larger columns. This supported the previous observations from 

the 3D FIB tomography bilayers. The overall dense garnet-electrode interfacial current 

density was lowest for the bilayer with 75% nominal porosity and 1 μm diameter columns 

and increased as the column diameters increased and as the nominal porosity decreased. 

However, the change in porosity increased the current density much more significantly 

than the change in the column diameter, as evidenced by the medium ionic current density 

(orange color) in the 75% porosity cross-sections being replaced by high ionic current 

density (red color) in the 25% porosity cross-sections. Increasing the column diameter also 

decreased the ionic current density at the center of the dense garnet-porous garnet 
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interfaces, indicating current was less able to fully propagate through the columns from the 

garnet-electrode interfaces. At the same time, decreasing the bilayer porosity increased the 

ionic current density throughout the dense-porous garnet interfaces, indicating that an 

increasing amount of current was directed through the columns rather than the dense 

garnet-electrode interface.  

 
 

Figure 5.18: 2D cross-sections of the ionic current density in the dense garnet at the dense-porous interface 
for column-based bilayers over range of nominal porosity values (75%, 50%, and 25%) and column diameters 
(10 μm, 5 μm, and 1 μm). 
 

Examining Figure 5.19, the highest ionic current densities in the porous garnet 

cross-section immediately next to the dense layer were at the porous garnet-electrode 

interface (orange, red), and the lowest current densities were at the center of the columns 
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(yellow, green), consistent with observations from the 3D FIB tomography bilayers. 

Similar to the high current ionic density regions in the dense garnet cross-section, the high 

ionic current density regions in Figure 5.19 appeared the same size relative to the columns 

for all column diameters, meaning the high ionic current density regions physically covered 

more of the porous garnet volume for the larger columns. In contrast to the dense garnet 

cross-section, there was no consistent effect of column diameter on the current density in 

the interior of the column. For 75% nominal porosity, the ionic current density increased 

and then decreased around the center of the column as column diameter increased. For both 

the 50% and 25% nominal porosity, the ionic current density around the column center 

initially decreased and then was constant as column diameter increased. Conversely, the 

overall ionic current density in the column clearly increased as the bilayer porosity 

decreased, consistent with earlier observations from the 3D FIB tomography bilayers.  
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Figure 5.19: 2D cross-sections of the ionic current density at the porous garnet at the dense-porous interface 
for column-based bilayers over range of nominal porosity values (75%, 50%, and 25%) and column diameters 
(10 μm, 5 μm, and 1 μm). 
 

5.3.3.    Quantification of Bilayer Simulation Performance: 
 
By combining the unnormalized ionic current densities at the current collectors with 

the 1.0 V potential difference applied across bilayer, we calculated the ASR values of the 

different column-based bilayers and plotted the results in Figure 5.20. For the bilayers with 

1 μm diameter columns, the bilayer ASR increased from 1.01 to 1.03 Ω-cm2 as the porosity 

decreased from 77.2% to 29.5% (actual porosity). For the bilayers with 5 μm diameter 

columns, the bilayer ASR increased from 1.03 to 1.09 Ω-cm2 as the porosity decreased 

from 75.4% to 26.3%. For the bilayers with 10 μm diameter columns, the bilayer ASR 
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increased from 1.06 to 1.17 Ω-cm2 as the porosity decreased from 75.1% to 25.3%. 

Comparing data sets, the bilayer ASR values linearly decreased as porosity increased and 

were projected to reach a minimum ASR of approximately 1.0 Ω-cm2 when the porosity 

reached 100%, corresponding to the ASR of the dense layer alone. This was consistent 

with observations that the majority of current was transported by the dense layer, so 

increasing porosity would increase the dense garnet-electrode interfacial area and utilize 

less of the porous layer, decreasing ASR. The column diameter appeared to control the 

slope of the relation between the bilayer ASR and the porous layer porosity, with increasing 

column diameter resulting in a higher magnitude slope. This meant the effects of the 

column diameter were most significant at low porosity and much less significant at high 

porosity.  

 
Figure 5.20: Column-based bilayer ASR vs. porous layer porosity, separated by column diameter.  
 

The increased ASR associated with increasing column diameter was likely due to 

longer conduction pathways through the columns. As shown by Figure 5.19, the regions of 

high ionic current density in the porous layer became physically larger in larger columns. 

This meant that the underlying electric fields had propagated further towards the center of 

the column, and this was likely true even for 2D cross-sections of the porous layer further 
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from the dense layer. Since pathways of constant electric field must be continuous, this 

meant the conduction pathways between points on the porous garnet-electrode interface 

and the dense layer were elongated arcs predominantly parallel to the column axis, but with 

some components perpendicular to the column axis. The perpendicular components were 

stronger in the larger diameter columns to maintain the same electric field distribution 

relative to the larger, but still cylindrically-shaped, columns. Thus, the resulting pathways 

of constant current density also had stronger perpendicular components, extending the 3D 

conduction pathway length relative to the shortest possible Euclidean/straight path length. 

As porosity decreased, more current would flow through these longer conduction pathways 

and so bilayer ASR would increase faster for the large diameter columns than for the small 

diameter columns when examining the same porosity.  

 To better understand how charge was transported at different positions in the 

bilayer, we calculated the fraction of ionic current flowing through each 2D slice of the 

bilayer by calculating the total normalized ionic current flowing in the garnet voxels in 

each 2D slice and dividing by the total normalized current flowing through the bilayer. The 

results were plotted vs. distance from the dense layer in Figure 5.21 (a, c, e). The average 

normalized current density transported across the garnet-electrode interface was also 

calculated and plotted vs. distance from the dense layer in Figure 5.21 (b, d, f). The plots 

were split based on the column diameter (Figure 5.21 a and b = 1 μm, Figure 5.21 c and d 

= 5 μm, Figure 5.21 e and f = 10 μm) and the curves within each plot were further delineated 

by the porous layer porosity. Looking at the plots of ionic current fraction, the amount of 

the porous garnet actively transporting ionic current increased for all porosities as the 

column diameter increased.  
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This was due to the distribution of ionic current density within the columns scaling with 

column diameter, so larger diameter columns had more voxels with high current density 

and thus more total current was present within the column at a given distance from the 

dense layer. The ionic current fraction also jumped in value when transitioning from the 

porous garnet to the dense garnet, similar to observations of the ionic current fraction in 

the 3D FIB tomography bilayers. The jump appeared extremely similar for different 

column diameters and only noticeably decreased as porosity decreased. For the bilayer with 

nominal porosity of 75% and 1 μm diameter columns, the ionic current fraction reached a 

maximum of 15.47% in the porous layers, meaning 83.53% of total bilayer current was 

transported instead through the Li-metal electrodes and transferred directly to the dense 

layer garnet. As porosity decreased and more current was diverted to the porous garnet, 

that maximum ionic current fraction in the porous layer increased to 55.65% for the bilayer 

with nominal porosity of 25% and 10 μm diameter columns, meaning roughly equal 

amounts of current were transported through the Li-metal electrodes and through the 

porous garnet.  
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Figure 5.21: Fraction of total column-based bilayer current flowing as ionic current through the garnet (A, 
C, E) and the average interfacial current density magnitude (B, D, F) vs. distance from the dense layer. The 
plots were split based on the column diameter (A and B = 1 μm, C and D = 5 μm, E and F = 10 μm) and the 
curves within each plot were designated by the porous layer porosity. 
 

Examining the average normalized current density transported across the garnet-

electrode interface, the extent of the active garnet-electrode interface increased with 

increasing column diameter, consistent with trends in the ionic current fraction. Increasing 

the column diameter also significantly increased the interfacial current density in the 
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porous layer garnet and only marginally increased the interfacial current density at the 

dense layer. While decreasing the porous layer porosity had a similar effect, it was much 

less than the effects of increasing the column diameter. For the bilayer with 1 μm diameter 

columns, the dense layer displayed the highest average interfacial current density for all 

porosities, ranging from 1.10 mA/cm2 for 75% nominal porosity to 1.52 mA/cm2 for 25% 

nominal porosity. As the column diameter increased, the significant increase in the 

interfacial current density in the porous garnet created a spike in the curve when 

transitioning from the dense layer to the porous layer. This was consistent with the previous 

observations of increasing current densities in the porous garnet with increasing column 

diameter, which required increasing interfacial current density as the source of higher 

current density within the porous garnet. Similar behavior was observed in the bilayers 

using 3D FIB Tomography microstructures with lower porosity and higher porous garnet 

particle sizes.  

To confirm the effects of the increased porous layer utilization on the bilayer ASR, 

the 99.99% porous layer active region thickness was calculated and plotted vs. porous layer 

porosity in Figure 5.22a, and the bilayer ASR was plotted vs. the 99.99% porous layer 

active region thickness in Figure 5.22b. However, the plots indicated the 99.99% active 

region thickness was very poorly correlated with porosity, given that the active region 

thickness did not approach 0 as porosity increased to 100%. The ASR was similarly 

observed to have very poor correlation to the active region thickness, with the data forming 

three distinct groupings that projected to ASR values far greater than 1.000 Ω-cm2. This 

was in strong contrast to the 3D FIB Tomography bilayers, where the bilayer ASR showed 

a linear relationship to the porous layer active region thickness in Figure 5.12d. However, 
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the 3D FIB Tomography bilayers also showed a strong correlation between the active 

regions thickness and porosity (Figure 5.12c). Given that bilayer ASR was well-correlated 

with porosity while sporadically correlated with active region thickness, it appeared the 

99.99% active layer thickness was likely over-estimating the relevant porous layer 

thickness and therefore porosity was a more reliable controlling variable for bilayer ASR. 

This also suggested the bilayer ASR was more strongly determined by bilayer transport 

near the dense layer than initially thought. To confirm, the dense layer average normalized 

interfacial current density and the porous layer maximum average normalized interfacial 

current density for the 3D FIB Tomography bilayers were plotted together in Figure 5.23a 

and plotted separately for the column-based bilayers in Figures 5.23b and c. For both sets 

of bilayers, the ASR was well-correlated with the dense layer average interfacial current 

density (indicated by linear intercepts close to 1.000 Ω-cm2) and poorly coordinated with 

the porous layer maximum interfacial current density. The reason for correlation with one 

parameter but not the other was not immediately apparent, though it may indicate the 

bilayer ASR depended on ion transport in the entire transition region in the porous layer 

and not just the porous layer directly contacting the dense layer.  

 
Figure 5.22: A) porous layer active region thicknesses vs. porous layer porosity. B) column-based bilayer 
ASR vs. porous layer active region thickness. Both plots were separated by column diameter.  
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Figure 5.23: A) 3D FIB Tomography bilayer ASR vs. average normalized interfacial current density in the 
dense layer and the maximum in porous layer. Column-based bilayer ASR vs. B) average normalized 
interfacial current density in the dense layer and C) maximum average normalized interfacial current density 
in the porous layer. 
 

5.3.4.    Comparing Simulation Results for Column-based Bilayers and 3D 
FIB Tomography Bilayers: 
 

In regarding the ASR, the very high porosity Template bilayer with 78.98% 

porosity was most similar to the column-based bilayer with 77.2% porosity and 1 μm 

dimeter columns, while the low porosity Porous 3 bilayer with 26.45% porosity was most 

similar to the column-based bilayer with 25.3% porosity and 10 μm dimeter columns. The 

distributions of ionic current fraction were also similar for these pairs of bilayers. 

Interestingly, the average normalized interfacial current density of the very high porosity 

Template bilayer and the 77.2% porosity, 1 μm dimeter column-based bilayer appeared 

very similar, while the low porosity Porous 3 bilayer had a noticeably smaller spike in the 
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interfacial current density curve than the 25.3% porosity, 10 μm dimeter column-based 

bilayer. This was unexpected given the 3D FIB Tomography microstructures had 

significant amounts of tortuosity and constricting bottlenecks that reduced the porous layer 

effective conductivity, which should concentrate the interfacial current density more in the 

porous layer cross-sections near the dense layer to minimize bilayer ASR. Examining 

Figure 5.9 again shows the low porosity Porous 3 bilayer had high ionic current density 

regions both at the porous garnet-electrode interface and the interior of the porous garnet, 

while the column-based bilayers only had high ionic current density regions at the porous 

garnet-electrode interfaces. This meant for the same porosity and same nominal transport 

distances through the porous layer, more of the porous garnet volume in the low porosity 

Porous 3 bilayer was utilized compared to the column-based bilayer, allowing interfacial 

current to spread over a wider area and reduce the porous layer interfacial current density. 

Based on these results, increasing porous layer porosity and decreasing porous layer 

particle size were the best approaches to decreasing bilayer ASR and interfacial current 

densities, with the possibility that engineering some tortuosity into the porous 

microstructure could further reduce interfacial current densities by improving access to the 

underutilized porous garnet interior.  

 

5.3.5.    Effect of Changing Porous Layer Thickness: 
 
 Based on observations that most of the porous layer was not utilized for transporting 

current, we previously theorized that increasing or decreasing the porous layer thickness 

would not alter the bilayer ASR so long as the porous layer remained thicker than the main 

active region of the porous layer. Given the estimates of the active region thickness were 
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likely too high, this suggested the relevant portion of the porous layer was extremely small 

for the column-based bilayers studied here. To determine if this was true, the equilibrium 

electric potential simulations were repeated on the column-based bilayers with porous layer 

thicknesses of 10 μm and 30 μm. Tables 5.4, 5.5, and 5.6 show the bilayer ASR values 

calculated for bilayers with 10 μm thick porous layers, bilayers with the original 20 μm 

thick porous layers, and bilayers with 30 μm thick porous layers, respectively. To within 

three decimal places, the ASR values for every combination of porosity and column 

diameters were identical across the different porous layer thickness. The ionic current 

fraction and interfacial current density distributions were also virtually identical across the 

different porous layer thickness. This confirmed the bilayer ASR was virtually independent 

of the porous layer thickness as long as it is thicker than the active porous layer thickness. 

Since practical bilayers for commercial use do not use porous layers less than 10 μm thick 

due to low electrode loading capacity, it was unnecessary to continue simulating porous 

layers with even thinner electrodes.  

Table 5.4: Simulated column-based bilayer ASR for 10 μm thick porous layer, over the range of nominal 
porosity values (75%, 50%, and 25%) and column diameters (10 μm, 5 μm, and 1 μm).  

 Nominal Porosity 
Column 

diameter (μm) 
75% 50% 25% 

10 1.056 1.107 1.170 
5 1.033 1.059 1.089 
1 1.015 1.020 1.026 

 
Table 5.5: Simulated column-based bilayer ASR for 20 μm thick porous layer, over the range of nominal 
porosity values (75%, 50%, and 25%) and column diameters (10 μm, 5 μm, and 1 μm).  

 Nominal Porosity 
Column 

diameter (μm) 
75% 50% 25% 

10 1.056 1.107 1.170 
5 1.033 1.059 1.089 
1 1.015 1.020 1.026 
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Table 5.6: Simulated column-based bilayer ASR for 30 μm thick porous layer, over the range of nominal 
porosity values (75%, 50%, and 25%) and column diameters (10 μm, 5 μm, and 1 μm).  

 Nominal Porosity 
Column 

diameter (μm) 
75% 50% 25% 

10 1.056 1.107 1.170 
5 1.033 1.059 1.089 
1 1.015 1.020 1.026 

 

5.3.6.    Effect of 50% Electrode Infiltration:  
 
 Up to now, this work presented focused on the ideal case of the porous layer fully 

infiltrated by the Li-metal electrode and allowing current to transport directly from the Li-

metal electrode to the dense layer. However, it is always possible the electrode will not 

fully infiltrate during initial battery fabrication or will lose contact with the dense layer 

during cycling. This is particularly relevant when considering the infiltration of non-

wetting electrodes or particle-based electrodes, so investigating the effects of partial 

electrode infiltration is important. To that end, additional simulations were run on bilayers 

with electrodes infiltrated 50% of the distance from the top of the porous layer towards the 

dense layer. Figure 5.24 shows the resulting bilayer symmetric cells, where the porous 

layers of the bilayers were 50% infiltrated with the positive Li-metal electrode (red color), 

and a thin negative Li-metal electrode (blue color) was attached to the planar surface of the 

dense layers. The electrolyte was shown in yellow, current collectors were shown in grey, 

and the empty pores were shown in black. 
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Figure 5.24: Schematic of 50% infiltrated column-based bilayer symmetric cells for range of nominal 
porosity values (75%, 50%, and 25%) and column diameters (10 μm, 5 μm, and 1 μm). The garnet electrolyte 
was yellow, the positive Li-metal electrode was red, the negative Li-metal electrode was blue, the current 
collectors were grey, and the empty pores were black. All visualizations were stretched by 3x along the Z-
axis. 
 

The local electric field strength was calculated within each 50% infiltrated bilayer 

and shown in Figure 5.25. The porous layer of each bilayer was divided into two regions: 

1) a high field strength region at the maximum color bar cutoff corresponding to empty 

pores near the dense layer, and 2) a transition region of decreasing field strength 

corresponding to infiltrated pores far from the dense layer. This distribution originated 
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from the positive Li electrode ending before reaching the dense layer, forcing electronic 

current in the Li electrode to convert to ionic current in the porous garnet and transport 

solely as ionic current through the empty pore region. This also created high field strength 

zones at the dense garnet-porous garnet interface and the dense layer interior, since the 

high electric field in the porous layer transferred to the dense layer through a limited 

interfacial area. As porosity decreased for fixed column diameter, the size of the transition 

region in the porous layer decreased, the electric field strength in the empty pore region 

and the dense layer decreased relative to the color bar cutoff, and the dense layer electric 

field became more homogenous. As column diameter decreased for fixed porosity, the size 

of the transition region in the porous layer significantly decreased, the electric field strength 

in the empty pore region and the dense layer decreased relative to the color bar cutoff, and 

the dense layer electric field became more homogenous. This indicated the porous layer 

porosity and the column diameter were equally important for the determining electric field 

strength distribution in the 50% infiltrated bilayers.  
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Figure 5.25: Simulated electric field for 50% infiltrated column-based bilayers for range of nominal porosity 
values (75%, 50%, and 25%) and column diameters (10 μm, 5 μm, and 1 μm). Units are Volts/µm. The 
maximum cutoff of the color bar was set to 150% of the average electric field strength at the dense layer-
negative electrode interface. All visualizations were stretched by 3x along the Z-direction. 
 

Figure 5.26 shows the ASR values for the 50% infiltrated bilayers for the previously 

discussed ranges of porosity and column diameters, as well as 10 μm, 20 μm, and 30 μm 

thick porous layers. The ASR of the 50% infiltrated bilayer increased with increasing 

porosity for all column diameters and porous layer thicknesses, in sharp contrast to the 

fully infiltrated bilayers that showed decreasing ASR with increasing porosity. The 

differences were due to the presence of the dense garnet-electrode interface in the fully 

infiltrated bilayers and the absence of that interface in the 50% infiltrated bilayers. The 
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lowest ASR was 2.474 Ω-cm2 for 1 μm diameter columns, 25% nominal porosity, and 10 

μm thick porous layer, and the highest ASR was 15.285 Ω-cm2 for 10 μm diameter 

columns, 75% nominal porosity, and 30 μm thick porous layer. There was also a clear 

pattern of 50% infiltrated bilayer ASR increasing with increasing porous layer thickness, 

likely due to the increased distance the ionic current traveled through the porous garnet. 

Interestingly, increasing the column diameter generally increased the 50% infiltrated 

bilayer ASR, but the amount of increase was greater for higher porosity bilayers. Moreover, 

the difference in the ASR of a 50% infiltrated bilayer with 1 μm and 10 μm diameter 

columns became smaller as the porous layer thickness increased, with the 1 μm diameter 

columns giving a higher ASR than the 5 μm diameter columns for 30 μm thick porous 

layers and 75% nominal porosity. These observations and the similar appearances of the 

three plots suggested the 50% infiltrated bilayer ASR likely was a consistent function of 

the porous layer porosity and the rate the function scaled with porosity was affected by the 

column diameter. While this was similar to the fully infiltrated bilayers, the scaling rate of 

the function relating the 50% infiltrated bilayer ASR to porosity was also affected by 

porous layer thickness, which became a more dominant factor than column diameter as 

thickness was increased.  

 
Figure 5.26: 50% infiltrated bilayer ASR for range of nominal porosity values (75%, 50%, and 25%), column 
diameters (10 μm, 5 μm, and 1 μm), and porous layer thicknesses (10 μm, 20 μm, and 30 μm).  
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 Similar to the fully infiltrated bilayers, constant current density in the 50% 

infiltrated columns followed elongated arcs within parts of the columns with garnet-

electrode interfaces that applied fixed boundary potentials. However, the lack of fixed 

boundary potential in the porous layer region with empty pores meant the current density 

spread out and became more homogenous within the column. After a long enough distance, 

the current density in the columns was uniform across the column cross-section, meaning 

all conduction pathways were virtually parallel to the column axis and following the 

minimum distance pathways. This homogenization of the current density became more 

complete and accounted for a larger fraction of the total column length as the porous layer 

thickness increased, which decreased the effect of column diameter on bilayer ASR.  

To better observe the effects of the porous layer thickness, the column diameter 

was fixed at 10 μm and the 50% infiltrated bilayer ASR plotted for nominal porosities of 

25%, 50%, and 75%, and porous layer thicknesses of 10, 20, and 30 μm in Figure 5.27. 

The 50% infiltrated bilayers ASR exhibited more consistent behavior than when plotting 

with different column diameters, displaying increasing ASR as porosity increased and 

consistently increasing ASR as the porous layer thickness increased. In fact, the ASR 

appeared to increase by fixed amounts when the porous layer thickness was increased, and 

the ASR changes were larger at higher porosity. Table 5.7 shows the 50% infiltrated bilayer 

ASR values for increasing porous layer thickness and increasing porosity, which showed 

the ASR changes were driven primarily by changes in porosity. Based on earlier discussion 

of conduction pathways through the columns, it was expected the increased ASR was 

largely due to increased length of the porous layer columns without infiltrated electrode, 

which accounted for half the total change in porous layer thickness, or 5 μm. Using the 
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ceramic fraction in the porous layer, geometric tortuosity of 1.0, constriction factor of 1.0, 

and percolation factor of 1.0, Equation 1.3 gave M-factors of 0.7475, 0.4954, and 0.2487 

for the porous layers with column diameters of 10 μm and porosities of 25.25%, 50.46%, 

and 75.13%, respectively.  The ASR was calculated for a 5 μm porous layer with the same 

intrinsic conductivity of 5 x 10-4 S/cm, modified by the M-factors, and recorded the results 

in Table 5.7. The actual ASR changes and the expected ASR change from adding 5 μm of 

porous layer without infiltrated electrode were in very good agreement, showing less than 

0.4% differences.  

 
Figure 5.27: 50% infiltrated bilayer ASR vs. porous layer porosity, with column diameter fixed at 10 μm and 
the data delineated by porous layer thickness.  
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Table 5.7: Increase in simulated 50% infiltrated bilayer ASR for different changes in porous layer thickness 
and different porous layer porosities, as well as the ASR increase from adding 5 μm thick porous layer 
without infiltrated electrode. For all calculations, column diameter was fixed at 10 μm.  

 
 
 

Actual Porous Layer Porosity 
 

25.25% 50.46% 75.13% 
 

ASR increase from increasing porous 
layer thickness from 10 μm to 20 μm 

(Ω-cm2) 
 

 
1.341 

 
2.024 

 
4.035 

ASR increase from increasing porous 
layer thickness from 20 μm to 30 μm 

(Ω-cm2) 
 

 
1.336 

 
2.026 

 
4.010 

    
ASR increase from adding 5 μm of 

porous layer without infiltrated 
electrode (Ω-cm2) 

 
1.338 

 
2.019 

 
4.021 

 

 For the 50% infiltrated bilayer, the fraction of total current was plotted vs. distance 

from the dense layer in Figure 5.28 (a, c, e). The average normalized current density 

transported across the garnet-electrode interface was also plotted vs. distance from the 

dense layer in Figure 5.28 (b, d, f). The plots were split based on the porous layer thickness 

(A and B = 10 μm, C and D = 20 μm, E and F = 30 μm) and the curves within each plot 

were designated by the porous layer porosity. Examining the plots of total current fraction 

vs. distance from the dense layer, all plots showed current fractions of 1.0 between the 

dense layer and the end of the infiltration zone, after which the current fraction gradually 

decreased towards the top of the porous layer. For bilayers with 20 μm and 30 μm thick 

porous layers, the current fraction reached 0 at or before the top of the porous layer, while 

the bilayer with 10 μm thick porous layers reached a minimum current fraction of 0.095. 

Current fraction distribution was unaffected by the porous layer porosity, likely due to all 

current still flowing through the porous layer regardless of porosity. Examining the plots 

of average interfacial current density vs. distance from the dense layer, the interfacial 
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current density spiked at the end of the infiltration zone and gradually decreased towards 

the top of the porous layer. Increasing the sample porosity caused the interfacial current 

density of the spike and all points towards the top of the porous layer to increase. The 

maximum interfacial current densities were dramatically higher than the maximum 

interfacial current densities of the fully infiltrated bilayers, which only showed a maximum 

of 2.92 mA/cm2. While the distribution was lengthened when the porous layer was made 

thicker, the shape of the distribution remained unchanged.  
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Figure 5.28: Fraction of total 50% infiltrated bilayer current flowing as ionic current through the garnet (A, 
C, E) and the average interfacial current density magnitude (B, D, F) vs. distance from the dense layer. The 
plots were split based on the porous layer thickness (A and B = 10 μm, C and D = 20 μm, E and F = 30 μm) 
and the curves within each plot were designated by the porous layer porosity.  
 

5.3.7.    Implications for Batteries Utilizing Bilayer/Trilayer Garnet 
Electrolytes: 
 
 Simulating the performance of Li-metal symmetric cell bilayers using column-

based porous layers with varied microstructures helped answer several questions remaining 

from analyzing the bilayers using the 3D FIB Tomography microstructures. Fully 

infiltrated bilayers with porosities ranging from 25.3% to 77.2%, column diameters ranging 
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from 1 μm to 10 μm diameter, and porous layer thicknesses varying from 10 μm to 30 μm 

produced ASR’s between 1.015 and 1.170 Ω-cm2. The range of these ASR values was 

similar to the range of ASR values observed for the 3D FIB Tomography bilayers, 

demonstrating that low ASR was a universal feature of fully-infiltrated dense-porous 

bilayers. The porous layer porosity and the column diameter were both found to affect the 

bilayer ASR, with decreasing porosity linearly increasing bilayer ASR and increasing 

column diameter increasing the magnitude of the slope of the ASR-porosity relationship. 

Since the bilayer column diameter was essentially a proxy for the particle size of the porous 

garnet, this indicated that real porous garnet layers with high porosity and small garnet 

particle sizes would produce bilayers with the lowest ASR. The porosity had the greatest 

effect on the distribution of ionic current fraction near the dense layer, and a combination 

of porosity and column diameter determined the ionic current density in the garnet. This 

increased the list of benefits of using small porous garnet particle sizes and demonstrated 

the benefits of using high porosity porous layers to maximize the dense garnet-electrode 

interfacial area. The porous layer thickness did not have any noticeable effect on the 

bilayer, due to only the dense layer and a very small region of the porous layer being 

utilized for charge transport. Thus, the bilayer porous layer could be tailored to be thicker 

or thinner to match the desired electrode loading without the risk of radically increasing 

the bilayer ASR.  

Simulations on 50%-infiltrated bilayers with porosities ranging from 25.3% to 

77.2%, column diameters ranging from 1 μm to 10 μm diameter, and porous layer 

thicknesses varying from 10 μm to 30 μm produced ASR’s between 2.754 and 15.285 Ω-

cm2. Increasing the porosity of the porous layer significantly increased the ASR of the 
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50%-infiltrated bilayers and dramatically increased the interfacial current densities at the 

porous garnet-electrode interface, with the maximum observed average interfacial current 

density reaching 21.07 mA/cm2. Increasing the porous layer thickness also increased the 

ASR of the 50%-infiltrated bilayers but had no effect on the interfacial current densities. 

Increasing the column diameter increased the ASR of the 50%-infiltrated bilayers, though 

this change was the smallest relative to changing porosity or porous layer thickness. This 

was in stark contrast to the fully infiltrated bilayers, demonstrating the importance of 

achieving and maintaining full infiltration of the electrode in the porous garnet to fully 

benefit from the low resistance dense garnet-electrode interface. If full infiltration is not 

possible, then a 2nd electrolyte infiltrated between the electrode and the dense garnet layer 

would provide a low ASR pathway to transport Li-ions to the dense layer and bypass the 

high ASR porous layer garnet.  
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6.    Conclusions and Future Outlook: 
 
 
 The research within this thesis investigated a range of potentially useful porous 

garnet electrolyte microstructures, with analysis of performance performed either 

experimentally via EIS measurements, theoretically via M-factor analysis, or theoretically 

via electrochemical simulations. Of note, simulations of dense-porous bilayer symmetric 

cells were found to be a superior tool for characterizing performance and provided 

significant insight into the granular details of charge transport within the garnet 

microstructure. From those insights, it was possible to identify microstructural trends likely 

to reduce bilayer ASR and improve overall performance metrics. A summary of these 

insights and conclusions is shown below, along with potential areas for future research.  

 

6.1.    Summary of Research Results: 
 
6.1.1.    Solid-State Li-Ion Electrolyte with Tape-Cast Porous Microstructure 
 

Tape-cast porous LLCZN microstructures ranging from ~26% porosity to ~57% 

porosity were directly characterized using 3D FIB Tomography. The microstructures were 

reconstructed from the resulting image sets and analyzed for phase volume fraction, 

geometric tortuosity, constriction factor, and percolation factor. The microstructure factor, 

or M-factor, was then calculated to determine how much the porous microstructure 

inhibited ion transport by reducing the effective ionic conductivity of the porous garnet. 

The garnet and pore phases were found to be highly connected, providing percolation 

factors of nearly the maximum value 1.0 and showing that connectivity variations had 

minimal effect on the M-factor. Conversely, the M-factor was strongly dependent on the 

volume fraction of the phase being analyzed, followed by the constriction factor (or 
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bottleneck factor), and finally the geometric tortuosity. While surprising that the geometric 

tortuosity was the 3rd most important factor for ion transport, this was observed for all tape-

cast samples across the porosity range. The LLCZN M-factor was found to reach a 

minimum of 0.160 for the highest porosity sample and a maximum of 0.410 for the lowest 

porosity sample, while the corresponding pore phase M-factor reach a maximum of 0.267 

and a minimum of 0.052. This immediately demonstrated that an optimal tape-cast porous 

LLCZN microstructure requires balancing a high LLCZN M-factor (to minimize porous 

layer ASR) with a high pore phase M-factor (to ensure effective electrode infiltration). The 

relatively low values of the pore phase M-factor compared to the garnet M-factor suggested 

diffusion through the pore network was more easily affected by changes to the sample 

microstructure. While this was expected to only slightly affect the infiltration of wetting 

electrodes, non-wetting electrodes and particle-based electrodes are thought to greatly 

benefit from easier diffusion through the pore network. This suggested that maximizing the 

pore phase M-factor by increasing sample porosity would provide greater gains due to 

better infiltrated electrodes offsetting losses due to lower LLCZN effective conductivity 

and higher ASR. This was supported by higher porosity allowing for higher electrode 

loading while reducing electrolyte mass, thus facilitating higher battery energy density. 

Alternatively, increasing the diameters of bottlenecks within the garnet and pore phases 

would improve the M-factor and thus ion transport without requiring a penalty to the M-

factor of the opposing phase, as was the case for changing the sample porosity.  

To confirm the observed trends of decreasing M-factor with increasing sample 

porosity, we performed EIS measurements on a range of tape-cast porous LLCZN samples 

to measure the effective conductivity and used SEM images of polished, epoxy-filled cross-
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sections to estimate the microstructure porosity. This “2D porosity” was found to be very 

close to the true “3D porosity” obtained from the 3D reconstructions of several 

microstructures. The effective ionic conductivity decreased exponentially as 2D porosity 

increased, similar to observations of the garnet M-factor decreasing exponentially with 

increasing 3D porosity. However, the theoretical effective conductivity values estimated 

from the M-factor values were consistently higher than the measured effective conductivity 

values. This suggested that bulk conductivity was also decreasing with increasing tape-cast 

sample porosity, with one possible explanation being enhanced Li-loss during sintering 

due to the increased garnet surface area of the higher porosity microstructures. This was 

further supported by XRD analysis of 2D porosity samples that showed nearly pure cubic 

phase LLCZN with some minor impurity peaks, indicating the decrease in sample 

conductivity was not due to LLCZN phase decomposition. The potential influence of 

higher sample surface area on bulk conductivity of tape-cast porous LLCZN samples 

emphasized the importance of carefully maintaining optimum sintering conditions when 

fabricating solid-state Li-ion electrolytes with significant microstructural porosity.  

 

6.1.2.    Solid-State Li-Ion Electrolyte with Template-based Porous 
Microstructure: 

 
A cellulose fiber template was infiltrated with LLZO sol gel precursor solution and 

the infiltrated template was sintered to burn away the organic components. As a result, 

remaining sintered garnet adopted the same microstructure as the template fibers and was 

found to provide an extraordinarily high porosity of ~79%. The template-based porous 

LLZO microstructure was directly characterized using 3D FIB Tomography and the 

performance of the microstructure analyzed in a similar manner to the tape-cast garnet. The 
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template-based garnet M-factor was 0.060 and the corresponding pore phase M-factor was 

0.201, suggesting that effective ionic conductivity of the garnet structure was significantly 

reduced and diffusion through the pore network was likely moderately obstructed. 

Transport through the garnet microstructure was primarily limited by the low LLZO 

volume fraction, while diffusion in the pore phase was primarily limited by bottlenecks 

that resulted in a low constriction factor. Given the average feature size and bottleneck size 

in the pore phase were significantly larger than in the garnet phase, it was surprising the 

pore phase constriction factor was much lower than the garnet constriction factor. In 

contrast, the much lower tortuosity of the pore phase resulted in a tortuosity reduction 

factor much closer to 1.0 when compared to the garnet phase. Notably, significant 

anisotropy was observed in the garnet phase tortuosity, with a low tortuosity plane and a 

high tortuosity direction normal to this plane. This was consistent with the expected 

orientation of the fibers within the cellulose template.  

Comparing the template-based microstructure to the tape-cast microstructures, the 

template-based microstructure was by far the most porous microstructure examined in this 

work. By comparison, the tape-cast microstructures displayed a maximum porosity of 

56.67%, though this was likely not the upper limit on porosity obtainable from future tape-

cast microstructures. The garnet M-factor of the template-based microstructure was lower 

than the garnet M-factor of the highest porosity tape-cast microstructure, consistent with 

the trend of decreasing M-factor with decreasing volume fraction. However, the pore phase 

M-factor of the template-based microstructure was also lower than the pore phase M-factor 

of the highest porosity tape-cast microstructure. Comparing the different microstructures, 

the template-based microstructure pore phase was more constricted by bottlenecks than the 
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tape-cast microstructure pore phase for comparable geometric tortuosity values. This 

further supported the earlier conclusion that the garnet and pore phase performance could 

be significantly improved if the diameter of bottlenecks were increased relative to the 

average garnet/pore phase diameters. Barring that, a medium porosity microstructure (~40-

55% porosity) appears to provide the ideal compromise between maximizing the garnet 

effective conductivity and maximizing electrode infiltration/loading capacity.  

 

6.1.3.    Simulation of 3D FIB Tomography Microstructures:  
 

The previous M-factor analyses showed that high porosity garnet microstructures 

(>50%) had low effective conductivities and thus produce high resistance/ASR values. 

However, symmetric cell cycling in dense-porous garnet bilayers using Li-metal anodes 

infiltrated into porous garnet showed very low bilayer ASR and overpotentials. This 

suggested the M-factor analysis was overestimating the ASR due to the porous garnet, 

which was attributed to the M-factor describing Li-ion transport through the entire porous 

layer. In contrast, a full-infiltrated bilayer has the electrode interfacing directly with the 

dense layer, theoretically allowing most current to bypass the high ASR porous layer and 

flow directly into the low ASR dense layer. To test this, we digitally assembled dense-

porous bilayer symmetric cells by attaching a 5 μm thick dense layer to a porous layer 

made of the 3D FIB Tomography microstructure. The pore space was filled with the 

positive electrode, a thin negative electrode was attached to the planar surface of the dense 

layer and a potential difference of 1.0 V was applied to the system. By simultaneously 

solving the Laplace equation for blocks of the bilayer, the equilibrium electric potential 
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distribution in the bilayer was iteratively solved. The local electric field and current 

densities were then calculated, which allowed for the calculation of the bilayer ASR.  

The bilayers were found to have ASR values as low as 1.032 Ω-cm2 for the highest 

porosity microstructure (i.e., the template-based porous garnet, 78.98% porosity) and as 

high as 1.161 Ω-cm2 for the lowest porosity microstructure (i.e., the tape-cast porous 

garnet, 26.45% porosity). These results were similar to the bilayer/trilayer ASR values 

estimated from published symmetric cell cycling results and represented only a 12.5% 

increase in bilayer ASR despite a 50% difference in porous layer porosity. These low ASR 

values resulted from only a small region of the porous layer being actively utilized to 

transport charge while most charge transport occurred across the dense garnet-electrode 

interface. Increasing the porous layer porosity increased the dense garnet-electrode 

interfacial area, thus allowing more current to bypass the high ASR porous layer. The 

relative insensitivity of the fully-infiltrated bilayer to changes in the porous layer porosity 

was particularly encouraging, indicating well-infiltrated bilayers and trilayers with a range 

of porosities could provide ASR values close to the ASR of dense layers alone and fully 

benefit from using a thin dense layer instead of a thick dense pellet. The simulations also 

showed a bilayer with a higher porosity porous layer outperformed a bilayer with a lower 

porosity porous layer in other meaningful ways. Specifically, increasing the porous layer 

porosity reduced the current densities within the bilayer garnet, reduced the interfacial 

current densities at the garnet-electrode interfaces, and increased the maximum electrode 

areal loading capacity of the bilayer. If the decreased electrolyte mass is included along 

with increased electrode loading, the gravimetric capacity of a high porosity bilayer was 

dramatically higher than a low porosity bilayer. In theory, the best bilayer structure is a 
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dense layer alone, since this provides the minimum ASR, the minimum current density, 

and maximum “porosity” possible. However, the mechanical strength of such thin ceramic 

layers is limited, so a porous layer appears required to support the dense layer.  

Of note was the ability of the bilayer to defy the predictions of the earlier M-factor 

analysis and display near-dense layer ASR values for high porosity, although this depended 

heavily on the electrode’s ability to interface directly with the dense layer. Any situation 

where the electrode did not contact the dense layer (i.e., failure to initially infiltrate or loss 

of contact during cycling) forced the current flowing from the positive electrode to be 

transported entirely by the porous layer until reaching the dense layer, rather than largely 

transporting directly across the dense garnet-electrode interface. In that situation, the 

reduced effective conductivity of the porous layer was expected to substantially increase 

the bilayer ASR and garnet/interfacial current densities, with further increases in porosity 

resulting in worsening performance. While wetting electrodes will likely infiltrate through 

the porous layer to the dense layer and avoid this issue, infiltrating non-wetting electrodes 

or particle-based electrodes prone to agglomeration will depend strongly on the effective 

diffusivity of the pore phase network. Even if full infiltration is achieved, many electrode 

materials have far lower electronic and ionic conductivity values than Li-metal electrodes, 

which meant only the electrode contacting the dense layer would operate in the ideal low 

ASR condition, while the majority of the electrode instead will transfer Li-ions into the 

porous layer and operate in high ASR conditions. Additionally, the discrete nature of 

particle-based electrodes significantly inhibits current transport between neighboring 

electrode particles, resulting in a similar split between low ASR conditions for the electrode 

contacting the dense layer and high ASR conditions for the majority of the electrode 



 200	

particles. For these situations, a second Li-ion conducting electrolyte infiltrated in the pores 

could quickly transport Li-ions from the electrodes to the dense layer and bypass the high 

ASR porous garnet.  

 

6.1.3.    Simulation of Column-based Microstructures:  
 
 Simulations of bilayers using the 3D FIB Tomography microstructures and 

predictions of effective conductivity from M-factor analyses of those microstructures 

emphasized the importance of fully infiltrating electrodes into the bilayer to facilitate low 

ASR transport from the electrode directly into the dense layer. Still, interest remained in 

understanding how varying aspects of the microstructure affect performance under full-

infiltrated conditions and what changes occur with only partial infiltration. To answer these 

questions, simulations were run on a series of artificial bilayer symmetric cells where the 

porous layers were composed of non-contacting circular columns. This approach allowed 

for independent control of the microstructure by varying the nominal porous layer porosity, 

the column diameter, and the porous layer thickness/column height while avoiding the 

potentially confounding influences of tortuosity and bottlenecks. Moreover, the column-

based bilayers could be reduced to the smallest repeat unit and periodic boundary 

conditions applied within the XY-plane to dramatically reduce the simulation time relative 

to the time necessary for the 3D FIB Tomography microstructures.  

We used column-based bilayers nominal porosities in the porous layer ranging from 

75% to 50% to 25%, the column diameters ranging from 10 μm to 5 μm to 1 μm, and 

porous layer thickness/column heights ranging from 10 μm to 20 μm and 30 μm. For fully 

infiltrated bilayers, the minimum ASR observed was 1.015 170 Ω-cm2 for 1 μm diameter 
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columns and 75% nominal porosity, while the highest ASR observed was 1.170 Ω-cm2 for 

10 μm diameter columns and 25% nominal porosity. These ASR values were similar to the 

range of ASR values observed for bilayers using the 3D FIB Tomography microstructures, 

demonstrating that low ASR was a universal feature of fully-infiltrated dense-porous 

bilayers. Column diameter had the greatest effect on the bilayer ASR and the extent of the 

transition region in the porous layer between the high current density dense layer and the 

majority of the unutilized porous layer. Since the bilayer column diameter was essentially 

a proxy for the particle size of the porous garnet, this suggested that real porous garnet 

layers with small garnet particle sizes would produce bilayers with low ASR. The porosity 

had the greatest effect on the distribution of current near the dense layer, and a combination 

of porosity and column diameter determined the current density in the garnet. This 

increased the list of benefits of using small porous garnet particle sizes and demonstrated 

the benefits of using high porosity porous layers to maximize the dense garnet-electrode 

interfacial area. The porous layer thickness did not have any noticeable effect on the bilayer 

due to only the dense layer and a small region of the porous layer being utilized for charge 

transport. Thus, the bilayer porous layer could be tailored to be thicker or thinner to match 

the desired electrode loading without the risk of radically increasing the bilayer ASR.  

Simulations on 50%-infiltrated bilayers with porosities ranging from 25.3% to 

77.2%, column diameters ranging from 1 μm to 10 μm diameter, and porous layer 

thicknesses varying from 10 μm to 30 μm produced ASR’s between 2.754 and 15.285 Ω-

cm2. In particular, increasing the porosity of the porous layer significantly increased the 

ASR of the 50%-infiltrated bilayers and dramatically increased the interfacial current 

densities at the porous garnet-electrode interface, with the maximum observed average 
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interfacial current density reaching 21.07 mA/cm2. Increasing the porous layer thickness 

also increased the ASR of the 50%-infiltrated bilayers but had no effect on the interfacial 

current densities. Increasing the column diameter further increased the ASR of the 50%-

infiltrated bilayers, though this change was the smallest relative to the changes due to 

changing porosity or porous layer thickness. This contrasted greatly to the fully infiltrated 

bilayers, demonstrating the importance of achieving and maintaining full infiltration of the 

electrode in the porous garnet to benefit fully from the low resistance dense garnet-

electrode interface. If full infiltration was not possible, then a second electrolyte infiltrated 

between the electrode and the dense garnet layer could provide a low ASR pathway to 

transport Li-ions to the dense layer and bypass the high ASR porous layer garnet. 

Moreover, replacing the porous layer garnet with a porous layer of higher conductivity 

electrolyte may decrease interfacial and overall garnet current densities by increasing the 

transition region thickness and improving current density homogeneity within the porous 

electrolyte. 
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6.2.    Future Work: 
 
 This work produced a number of findings that improve understanding of variable 

porosity solid-state Li-ion conducting electrolytes and support ongoing efforts to create all 

solid-state batteries utilizing these complex microstructures. Those findings also raise 

further questions and suggest several potential avenues for future research.  

 A clear extension of this work would involve characterizing the microstructures of 

a larger pool of porous solid-state electrolytes and determine the benefits and limitations 

of each, with the goal of identifying either the best microstructures or methods to improve 

existing ones. The striking differences between the largely isotropic tape-cast garnet and 

the anisotropic template-based garnet suggest possibilities of tailoring the porous structure 

to preferentially orient the pore and garnet networks along the Z-axis of the 3D 

microstructures (i.e., the direction that ionic current nominally flows), thus decreasing 

tortuosity and improving ion transport/electrode infiltration. 3D printing of garnet porous 

layers may lend itself to this approach, so characterizing 3D printed microstructures and 

comparing them to tape-cast and template-based structures could prove insightful. This 

work also showed that bottlenecks were substantial inhibitors of efficient ion transport 

through the porous layer, suggesting that reducing or eliminating bottlenecks within the 

porous microstructure could substantially improve porous layer effective conductivity. 

This may provide small improvements in fully infiltrated bilayers but yield more 

substantial improvements in partially-infiltrated bilayers or bilayers using discrete, 

particle-based electrodes.  

 The ability to simulate bilayer performance from artificial structures (such as the 

column-based porous layers) or real microstructures (such as 3D FIB Tomography 
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reconstructions) offers a wide array of opportunities for future work. Our investigations of 

bilayers 50%-infiltrated with Li-metal anodes showed bilayer ASR increased substantially 

with loss of contact with the dense layer. Further investigation of bilayer ASR for a range 

of electrode infiltration amounts is useful to identify how quickly the bilayer ASR increases 

as the infiltration amount decreases. This could reveal that the bulk of the increase was 

from the initial loss of contact with the dense layer (emphasizing the importance of 

maintaining the dense garnet-electrode interface or including a high conductivity 

intermediary electrolyte), or the decrease may be more drawn out (suggesting some loss of 

contact would still result in acceptable bilayer ASR values). A similar study based on the 

3D FIB Tomography microstructures would reveal whether the effects of tortuosity and 

bottlenecks were important only for determining the porous layer effective conductivity or 

if these structural features have additional impacts on ASR, current density, and other 

metrics of bilayer performance. Extending the simulation to include different conductivity 

electrolytes supports testing the use of higher conductivity electrolytes in the porous layer 

as a possible way to reduce current densities. Additionally, charge transfer resistance at 

interfaces between different materials can be a significant source of ASR in a battery and 

was not covered in the studies presented in this thesis. Implementing charge transfer 

resistance into the bilayer simulations should increase the bilayer ASR and may also alter 

the distribution of current density across the garnet-electrode interface, potentially 

decreasing current densities within the bilayer.  

 A goal of potential research should include furthering collaboration with other 

research groups to expand the bilayer simulations to include more complex electrodes, such 

as electrode/binder/electronic conductor assemblies associated with electrically insulating 
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electrodes (e.g., LCO or sulfur). The symmetric cell simulations in this work provided 

substantial information regarding the performance of the solid-state garnet bilayers 

utilizing wetting Li-metal electrodes, so even greater breakthroughs are possible by 

studying how different electrode materials and electrode assemblies interact with the garnet 

bilayers. Given the prevalence of discrete, particle-based electrodes such as LCO and NMC 

(known to have poor electronic conductivity), simulating such systems could highlight 

possible limitations in solid-state batteries utilizing these electrodes and guide efforts to 

address those limitations. Extending the bilayer simulations from equilibrium, steady-state 

conditions to dynamic, time-dependent conditions could help describe the changes in an 

actively cycling bilayer battery. Such full cell simulations are technologically feasible, yet 

simulation studies are in early stages of investigating solid-state battery performance, 

especially for LLZO-based garnet electrolytes with complex structures. Collaboration, 

experience, and the capacity to simulate cycling behavior of full cells with complex solid-

state electrolytes would greatly expand scientific understanding of a promising battery 

architecture and potentially have a lasting impact on energy storage and consumption in 

the world.  
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Appendix: 
 
 
Appendix A: MATLAB Code used to Reduce Interface Artifacts and Curtain 
Artifacts in Segmented Images: 
 

1. Import the segmented 2D/3D TIFF image(s) for the current sample and store in the 
raw 2D/3D image matrix, “Image”. 

2. Begin Part 1: interface artifact removal 
a. Assign value to user-defined variables: “maximum change length,” 

“minimum contiguous particle size,” “maximum gold expansion.” 
b. Identify all contiguous pixels of each phase in the image (excluding pore 

phase). 
i. If each group of contiguous pixels had a pixel count less than/equal 

to “minimum contiguous particle size”, then change that group to 
the average of the surrounding neighbors.  

c. Identify all contiguous gold phase pixels. 
i. Loop 1 start: expand gold phase into neighboring LLCZN and 

secondary phase to remove double layer coating artifact.  
1. Identify neighboring pixels around contiguous gold pixels. 
2. If neighboring pixels are LLCZN/secondary phase AND 

current loop iteration was less than/equal to the “maximum 
gold expansion”, then change neighboring pixels to gold 
phase. 

ii. Loop 1 (Step 2.a.i) ends when loop iteration equals the “maximum 
gold expansion.”  

d. Loop 2 start: split the image into row/column, identify contiguous pixels of 
each phase, and change each group of contiguous pixels to match 
neighboring pixels if that group has a length less than/equal to “minimum 
contiguous length.” 

i. Select a row/column of the image and identify all contiguous phase 
pixels. 

ii. Identify the neighboring pixels of the contiguous phase.  
iii. If both neighboring pixels were the same AND the length of a given 

group of contiguous phase pixels was less than/equal to “minimum 
contiguous particle size,” change the contiguous pixels to match the 
neighboring pixels.  

iv. Loop 2 (Step 2.f) ends when all rows and columns have been 
scanned across.  

e. Loop 3 start: split the image into row/column, identify contiguous 
secondary phase pixels, and remove secondary phase pixels based on 
neighboring pixels and whether length of contiguous secondary phase 
pixels is less than/equal to “maximum change length.” 

i. Select a row/column of the image and identify all contiguous 
secondary phase pixels. 

ii. Identify the neighboring pixels of the contiguous secondary phase.  
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iii. If the length of a given group of contiguous secondary phase pixels 
was less than/equal to “maximum change length,” remove/retain the 
secondary phase based on the neighboring pixels.  

1. If neighboring pixels were exactly 1 pore phase pixel and 1 
LLCZN pixel, change the current group of contiguous 
secondary phase pixels to pore phase.  

2. If neighboring pixels were exactly 1 gold phase pixel and 1 
LLCZN pixel, change the current group of contiguous 
secondary phase pixels to pore phase.  

3. If neighboring pixels were exactly 1 gold phase pixel and 1 
pore pixel, change the current group of contiguous 
secondary phase pixels to pore phase.  

4. If neighboring pixels were exactly 2 pore phase pixels, 
change the current group of contiguous secondary phase 
pixels to pore phase.  

5. If neighboring pixels were exactly 2 LLCZN phase pixels, 
change the current group of contiguous secondary phase 
pixels to pore phase.  

iv. Loop 3 (Step 3.g) ends when all rows and columns have been 
scanned across.  

f. End Part 1: interface artifact removal 
3. Begin Part 2: curtaining artifact removal (for 3D image sets only) 

a. Assign value to user-defined variables, “maximum 3D object size” and 
“maximum pore fraction.” 

b. Identify all 3D contiguous secondary phase and filter out all identified 
objects that have less voxels than “maximum 3D object size.” 

c. Loop 4 start: identify the remaining secondary phase in each image, find the 
corresponding pixels in the image before/after the current image, and 
remove secondary phase in current image based on what pixels are present 
in the “projection” in the neighboring images.  

i. In each 2D image in the 3D image set, identify all contiguous 
secondary phase. 

ii. Identify the row-column coordinates of pixels in each group of 
contiguous secondary phase in each image and locate pixels with the 
same coordinates in the next image after the current image.  

iii. Identify the fraction of LLCZN, secondary phase, and pore phase 
pixels in the “projected” region in the next image. If the fraction of 
pore phase is greater than “maximum pore fraction”, then change 
the group of contiguous secondary phase in the current image to pore 
phase.  

1. Record whether secondary phase was removed during this 
step.  

iv. Repeat Step 3.d.i to Step 3.d.iii, this time projecting onto the image 
before the current image.  

1. Record whether secondary phase was removed during this 
step.  
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v. Loop 4 (Step 3.d) ends when no more secondary phase is removed 
during the most recent loop iteration.  

d. End Part 2: curtaining artifact removal (for 3D image sets only) 
4. Identify all contiguous pixels of each phase in the image (excluding pore phase). 

a. If each group of contiguous pixels had a pixel count less than/equal to 
“minimum contiguous particle size”, then change that group to pore phase. 

5. Save final 2D image/3D image set as TIFF, with “post-process” appended to name 
of original image name.  
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Appendix B: MATLAB Code Used to Calculate 2D Perimeter and 2D 
Perimeter/2D Area Ratio from Segmented Images: 
 

1. Import the segmented and post-processed 2D TIFF image(s) for the current sample 
and store in the raw 2D image matrix, “Image”. 

a. Relabel any gold phase present as pore phase.  
2. Assign the appropriate physical sizes to the pixel dimensions (pixel x-, y-direction 

size in nanometers/microns/etc.).  
3. From the matrix “Image”, create a binary mask where voxels of the Chosen Phase 

are assigned values of 1 and all other voxels (Not-Chosen Phase) are assigned 
values of 0, creating the binary map “Chosen Phase”. 

4. Identify all adjacent pixels that share a side with the “Chosen-Phase” pixels, which 
will be labeled as “Nearest-neighbors” pixels.  

5. For each “Nearest-neighbors” pixel, identify how many “Chosen-Phase” pixels 
share a side with the current pixel and store in corresponding pixels in the “Shared 
Sides Count” matrix.  

6. Sum up the values in the “Shared Sides Count” matrix to determine the total number 
of interface edge segments for all “Chosen-Phase” pixels and multiply this number 
by the physical size of each edge/pixel (in µm/pixel) to calculate the total “2D 
Perimeter” (measured in µm) of the chosen phase.  

7. Count the number of “Chosen-Phase” pixels and multiply this number by the area 
of each pixel (in µm2/pixel2) to calculate the total “2D Area” of the chosen phase.  

8. Divide the “2D Perimeter” by the “2D Area” to calculate the “2D Perimeter/Area 
Ratio” for the current phase. 

a. If multiple images were imported for the current image, calculate the mean 
and standard deviation of the “2D Perimeter”, “2D Area”, and “2D 
Perimeter/Area Ratio”.  

9. Repeat Step 2 to Step 8 for all remaining phases.  
10. Save the results.  

 
  



 210	

Appendix C: MATLAB Code Used to Calculate Geometric Tortuosity Along 
the X-, Y-, and Z-directions of from 3D FIB Tomography Reconstruction, as 
well as Characteristic Geometric Tortuosity: 
 

1. Import the segmented and post-processed 3D TIFF image set. These imported 
images are combined and stored in the raw 3D image matrix, “Image”.  

2. Assign the appropriate physical sizes to the voxel dimensions (voxel x-, y-, z-
direction size in nanometers/microns/etc.).  

3. From the matrix “Image”, create a binary mask where voxels of the Chosen Phase 
are assigned values of 1 and all other voxels (Not-Chosen Phase) are assigned 
values of 0, creating the binary map “Chosen Phase”. 

4. Create the cumulative distance map “Distance” of the same size as the binary map 
“Chosen Phase”, with all values of “Distance” initially set to 0.  

5. Loop 1 start: calculate the shortest lengths for continuous paths from each of the 6 
boundary planes surrounding the 3D image region (designated as the “Starting 
Plane”) through the binary map “Chosen Phase” to the parallel boundary plane 
(designated as the “Ending Plane”).  

a. Select 1 of the 6 boundary planes surrounding the 3D image region and 
designate it as the “Starting Plane,” designate the opposite plane as the 
“Ending Plane,” identify all “Chosen-Phase” voxels on the “Starting Plane” 
and label them as “Visited,” and label all other “Chosen-Phase” voxels as 
“Usable”.  

a. Set “Iteration” variable to 0.  
b. Loop 1.1 start: calculate the shortest lengths for continuous paths from the 

Starting Plane through the binary map “Chosen Phase” to the Ending Plane.  
i. Increase the value of the “Iteration” variable by 1.  

ii. Calculate the “Allowed Wave Propagation Distance” variable 
(Dwave) from the pixel size along the current direction (Δdcurrent), the 
current “Iteration” variable value, and the minimum pixel size value 
(min[Δ dx/y/z]) with the following equation: 

1. 𝐷X`B= = ∆𝑑?cDD=C@ + (𝐼𝑡𝑒𝑟𝑎𝑡𝑖𝑜𝑛 − 1) ∗
𝑚𝑖𝑛Å∆𝑑v/}/½R`vAEÆ 

iii. Identify all “Usable” voxels that contact the faces, edges, or corners 
of any “Visited” voxels, and label these identified voxels as 
“Active”.  

iv. Calculate the distance from each “Visited” voxel to the surrounding 
“Active” voxels, add these distances to the distance value in the 
cumulative distance map “Distance” that corresponds to the current 
“Visited” voxels to calculate the initial cumulative path length for 
each “Active” voxel, identify all instances of “Active” voxels that 
have initial cumulative path lengths less than the “Allowed Wave 
Propagation Distance”, and make a list of these “Accepted Active” 
voxels. 

v. Identify all “Visited” voxels that contact the faces, edges, or corners 
of any “Accepted Active” voxels, calculate the distance from each 
“Accepted Active” voxel to the surrounding “Visited” voxels, add 
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these distances to the distance values in the cumulative distance map 
“Distance” that corresponds to the “Visited” voxels to calculate the 
updated cumulative path length for each “Accepted Active” voxel, 
identify the minimum updated cumulative path length and the 
corresponding “Visited” voxel for each “Accepted Active” voxel, 
and save the minimum cumulative path length for each “Accepted 
Active” voxel in the corresponding voxel in the cumulative distance 
map “Distance”. 

vi. Relabel all “Accepted Active” voxels as “Visited” voxels. 
vii. Identify all “Visited” voxels that are not contacting “Usable” or 

“Active” voxels, and label these as “Complete”. 
viii. Loop 1.1 ends when all “Visited” voxels are re-labeled as 

“Complete”. 
b. For each “slice” of the 3D volume along the current propagation direction, 

divide the values in the cumulative distance map “Distance” by the 
Euclidean/straight path length to that “slice” to calculate the cumulative 
geometric tortuosity map “Tortuosity”. Convert the values in the cumulative 
geometric tortuosity map “Tortuosity” into values ranging from 50-255 
(with all tortuosity values above a cutoff being assigned values of 255), and 
export as a TIFF image.  

c. For each “slice” of the 3D volume along the current propagation direction, 
gather the non-zero values in the cumulative geometric tortuosity map 
“Tortuosity”, and calculate the average and standard deviation for the set of 
cumulative geometric tortuosity values for each “slice.” 

d. For the entire 3D image region, divide the number of “Complete” voxels by 
the number of “Chosen-Phase” voxels to determine the fraction of 
contiguous “Chosen-Phase” voxels that were processed during the run and 
label as the “Percolation Factor”. 

e. Save out lists of the cumulative geometric tortuosity and percolation factor 
for each “slice” of the 3D volume along the current propagation direction.  

f. Loop 1 ends when all 6 directions have been analyzed. 
6. Average the values for the “forward” and “reverse” directions for each axis to give 

a single cumulative geometric tortuosity value and percolation factor for the x-, y-
, and z-axes. The standard deviation is recalculated for each. Save the results. 

7. Calculate the characteristic geometric tortuosity and the average geometric 
tortuosity from the direction-averaged x-, y-, and z-axes cumulative geometric 
tortuosity. The standard deviation is recalculated for using error propagation. Save 
the results. 
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Appendix D: MATLAB Code Used to Calculate Continuous Particle Size 
Distribution (c-PSD) from 3D FIB Tomography Reconstruction: 
 

1. Import the segmented and post-processed 3D TIFF image set. These imported 
images are combined and stored in the raw 3D image matrix, “Image”.  

2. Assign the appropriate physical sizes to the voxel dimensions (voxel x-, y-, z-
direction size in nanometers/microns/etc.).  

3. From the matrix “Image”, create a binary mask where voxels of the Chosen Phase 
are assigned values of 1 and all other voxels (Not-Chosen Phase) are assigned 
values of 0, creating the binary map “Chosen Phase”. 

4. Loop 1 start: calculate a distance map that determines the distance between each 
Chosen Phase voxel and the closest Not-Chosen Phase voxel, saved as distance map 
“Distance”. 

a. With Not-Chosen Phase voxels used as boundaries, apply the scanning 
approach described by Ref [141] generalized to 3D in order to efficiently 
calculate the distance between each Chosen Phase voxel and the nearest 
boundary, and store in the distance map “Distance”.  

b. Loop 1 ends once all Chosen Phase voxels have been assigned a distance in 
the distance map “Distance”. 

5. Loop 2 start: for increasing sphere radii “R”, filter the distance map “Distance” to 
accept all voxels with distances greater-than R and store as the binary map “Sphere 
Centers,” dilate from the Sphere Centers through the binary map “Chosen Phase” 
create a new distance map “Dilation,” and filter the distance map “Dilation” to 
accept all voxels with distances less-than-or-equal-to R and store as the binary map 
“Sphere Coverage”. 

a. Select a sphere radius “R” and filter the distance map “Distance” to accept 
all voxels with distances greater-than R and store as the binary map “Sphere 
Centers”, where accepted voxels have values of 1 and rejected voxels have 
values of 0. 

b. Loop 2.1 start: dilate from the Sphere Centers through the binary map 
“Chosen Phase” to create a new distance map “Dilation”. 

i. With Sphere Center voxels used as boundaries, apply the scanning 
approach described by Ref [141] generalized to 3D in order to 
efficiently calculate the distance between each Chosen Phase voxel 
and the nearest boundary, and store in the distance map “Dilation”.  

ii. Loop 2.1 ends once all Chosen Phase voxels have been assigned a 
distance in the distance map “Dilation”. 

c. Filter the distance map “Dilation” to accept all voxels with distances less-
than-or-equal-to R and store as the binary map “Sphere Coverage”, where 
accepted voxels have values of 1 and rejected voxels have values of 0. 

d. Sum the binary map “Sphere Coverage” to calculate the total number of 
Sphere Coverage voxels and divide by the total number of Chosen Phase 
voxels to calculate the “Sphere Coverage Fraction” for the current sphere 
radius “R” and corresponding sphere diameter “D”.  

e. Filter the distance map “Dilation” to accept all voxels with distances less-
than-or-equal-to R+2x and store as the binary map “Updated Chosen 
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Phase”, where x is the 3D diagonal distance between the center voxel of a 
3x3x3 box and the corner voxel. 

f. For the next iteration of Loop 2, replace the binary map “Chosen Phase” 
with the binary map “Updated Chosen Phase” in order to remove Chosen 
phase voxels that will fail the acceptance criteria for later iterations of the 
binary map “Sphere Coverage”.  

g. Loop 2 ends when the binary map “Sphere Centers” has no accepted voxels 
present.  

6. From the list of sphere diameters “D” and “Sphere Coverage Fraction”, use linear 
interpolation to calculate the sphere diameter for 50% sphere coverage (dc-PSD,50).  

7. Save the distributions and the 50% sphere coverage values.  
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Appendix E: MATLAB Code Used to Calculate Mercury Intrusion 
Porosimetry PSD (MIP-PSD) from 3D FIB Tomography Reconstruction: 
 

1. Import the segmented and post-processed 3D TIFF image set. These imported 
images are combined and stored in the raw 3D image matrix, “Image”.  

2. Assign the appropriate physical sizes to the voxel dimensions (voxel x-, y-, z-
direction size in nanometers/microns/etc.).  

3. From the matrix “Image”, create a binary mask where voxels of the Chosen Phase 
are assigned values of 1 and all other voxels (Not-Chosen Phase) are assigned 
values of 0, creating the binary map “Chosen Phase”. 

4. Loop 1 start: calculate a distance map that determines the distance between each 
Chosen Phase voxel and the closest Not-Chosen Phase voxel, saved as distance map 
“Distance”. 

a. With Not-Chosen Phase voxels used as boundaries, apply the scanning 
approach described by Ref [141] generalized to 3D in order to efficiently 
calculate the distance between each Chosen Phase voxel and the nearest 
boundary, and store in the distance map “Distance”.  

b. Loop 1 ends once all Chosen Phase voxels have been assigned a distance in 
the distance map “Distance”. 

5. Loop 2 start: for increasing sphere radii “R”, filter the distance map “Distance” to 
accept all voxels with distances greater-than R and store as the binary map “Sphere 
Centers,” create 6 binary maps “Accepted Sphere Centers” where accepted Sphere 
Center voxels are contiguous and connected to 1 of the 6 boundary planes 
surrounding the 3D image region, dilate from each of the 6 sets of Sphere Centers 
through the binary map “Chosen Phase” create new distance maps “Dilation,” and 
filter the distance maps “Dilation” to accept all voxels with distances less-than-or-
equal-to R and store as the binary maps “Sphere Coverage”. 

a. Select a sphere radius “R” and filter the distance map “Distance” to accept 
all voxels with distances greater-than R and store as the binary map “Sphere 
Centers”, where accepted voxels have values of 1 and rejected voxels have 
values of 0. 

b. Loop 2.1 start: for each of the 6 boundary planes surrounding the 3D image 
region, identify all Sphere Center voxels that are contiguous and connected 
to that boundary, store the Accepted Sphere Center voxels in the binary map 
“Sphere Center”, dilate from the Sphere Centers through the binary map 
“Chosen Phase” create the distance map “Dilation,” and filter the distance 
map “Dilation” to accept all voxels with distances less-than-or-equal-to R 
and store as the binary map “Sphere Coverage”. 

i. Select 1 of the 6 boundary planes surrounding the 3D image region, 
identify all Sphere Center voxels that are contiguous and connected 
to that boundary, and store the Accepted Sphere Center voxels in the 
binary map “Sphere Center”. 

ii. Loop 2.1.1 start: dilate from the Sphere Centers through the binary 
map “Chosen Phase” to create a new distance map “Dilation”. 

1. With Sphere Center voxels used as boundaries, apply the 
scanning approach described by Ref [141] generalized to 3D 
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in order to efficiently calculate the distance between each 
Chosen Phase voxel and the nearest boundary, and store in 
the distance map “Dilation”.  

2. Loop 2.1.1 ends once all Chosen Phase voxels have been 
assigned a distance in the distance map “Dilation”. 

iii. Filter the distance map “Dilation” to accept all voxels with distances 
less-than-or-equal-to R and store as the binary map “Sphere 
Coverage”, where accepted voxels have values of 1 and rejected 
voxels have values of 0. 

iv. Sum the binary map “Sphere Coverage” to calculate the total 
number of Sphere Coverage voxels and divide by the total number 
of Chosen Phase voxels to calculate the “Sphere Coverage Fraction” 
for the current sphere radius “R” and corresponding sphere diameter 
“D”.  

v. Filter the distance map “Dilation” to accept all voxels with distances 
less-than-or-equal-to R+2x and store as the binary map “Updated 
Chosen Phase”, where 2x is the 3D diagonal distance between the 
center voxel of a 3x3x3 box and the corner voxel. 

i. For the next iteration of Loop 2, replace the binary map “Chosen 
Phase” with the binary map “Updated Chosen Phase” when 
analyzing the currently selected boundary plane in order to remove 
Chosen phase voxels that will fail the acceptance criteria for later 
iterations of the binary map “Sphere Coverage”.  

vi. Loop 2.1 ends when the binary map “Sphere Centers” has no 
accepted voxels present for the currently selected boundary plane.  

c. Loop 2.1 ends when the binary map “Sphere Centers” has no accepted 
voxels present for any of the 6 boundary planes.  

6. Average the distributions for parallel boundaries together to give a single 
distribution for each axis.  

7. From the list of sphere diameters “D” and “Sphere Coverage Fraction”, use linear 
interpolation to calculate the direction-averaged 50% sphere coverage for each axis 
(dx-axis,MIP-PSD,50, dy-axis,MIP-PSD,50, dz-axis,MIP-PSD,50).  

8. Average the average distributions for the 3 axes together to give a single 
distribution.  

9. From the list of sphere diameters “D” and “Sphere Coverage Fraction”, use linear 
interpolation to calculate the average 50% sphere coverage for the entire sample 
(dMIP-PSD,50).  

10. Save the distributions and the 50% sphere coverage values.  
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Appendix F: MATLAB Code Used to Calculate the Equilibrium Electric 
Potential within a 3D Electrolyte Microstructure with Arbitrary Electrode 
Geometry: 
 

1. Designate the physical thickness of the dense layer, the % of the porous layer 
infiltrated with the positive electrode, the comparison threshold that determines 
when the loop calculating the equilibrium electric potential will end.  

2. Import the segmented and post-processed 3D TIFF image set. These imported 
images are combined and stored in the raw 3D image matrix, “Image”.  

3. Assign the appropriate physical sizes to the voxel dimensions (voxel x-, y-, z-
direction size in nanometers/microns/etc.).  

4. For the 3 different directions, use the voxel dimensions to calculate the inverse 
voxel length squared for each direction and store in the list, “Inverse Voxel Length 
Squared”.  

5. From the matrix “Image”, create a binary mask where voxels of the Chosen Phase 
are assigned values of 1 (referred to as Electrolyte voxels) and all other voxels (Pore 
voxels) are assigned values of 0, creating the binary map “Electrolyte Phase”. 

6. Create a matrix with the same X- and Y-dimensions as the matrix “Image”, the Z-
dimension equal to the number of dense layer voxels plus the Z-dimension of the 
matrix “Image,” and label this the bilayer identity map, “Bilayer.” For the dense 
layer portion, assign values of 1 to all voxels to label them as Electrolyte voxels 
and copy the binary map “Electrolyte Phase” into the porous layer portion.  

7. Based on the % of porous layer infiltrated, assign values of 2 to the Pore voxels in 
the porous layer of the map “Bilayer” to label them as “Positive Electrode” voxels.  

8. Along the Z-direction of the map “Bilayer”, add a layer of Positive Electrode voxels 
in a new plane next to the top of the porous layer, and add a layer of voxels with 
values of 3 (“Negative Electrode”) in a new plane next to the bottom of the dense 
layer. Pad the surfaces of the map “Bilayer” with 0’s to prevent issues during later 
calculations. 

9. Create a matrix of the same size as the map “Bilayer” to store the calculated electric 
potential values and call this the potential map “Electric Potential.” 

10. Based on the map “Bilayer”, assign fixed potentials of +0.5 Volts and -0.5 Volts to 
all voxels in the map “Electric Potential” that correspond to Positive Electrode 
voxels and Negative Electrode voxels, respectively.  

11. Based on the map “Bilayer” and the % of porous layer infiltrated, identify all voxels 
in the map “Electric potential” that correspond to Electrolyte voxels, select any 
Electrolyte voxels between the Negative Electrode voxels and the closest plane with 
Positive Electrode voxels, and assign a potentials gradient from -0.5 Volts to +0.5 
Volts to these selected Electrolyte voxels. For all remaining Electrolyte voxels, 
assign potentials of +0.49 Volts.  

12. Copy the map “Electric Potential” and store as a reference in the electric potential 
map “Previous Electric Potential”.  

13. Loop 1 start: alternating between the forward and reverse directions, select batches 
of consecutive planes in the map “Electric Potential”, and solve the Laplace 
equation for Electrolyte voxels in each batch to update the electric potentials of the 
Electrolyte voxels. Compare the final updated map “Electric Potential” to the 
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previous iteration map “Previous Electric Potential”, calculate the average relative 
difference between the maps, and continue the loop until the average relative 
difference becomes smaller than the assigned threshold.  

a. Create a list of the batches of consecutive planes along the forward direction 
of the map “Electric Potential”, ensuring that batches are as large as possible 
without exceeding the RAM limits of the computer. Batches are set to 
overlap with half of the neighboring batches.  

b. Create a list of the batches of consecutive planes along the reverse direction 
of the map “Electric Potential”, ensuring that batches are as large as possible 
without exceeding the RAM limits of the computer. Batches are set to 
overlap with half of the neighboring batches.  

c. Loop 1.1 start: alternating between the forward and reverse directions, 
select batches of consecutive planes in the map “Electric Potential” and 
solve the Laplace equation for Electrolyte voxels in each batch to update 
the electric potentials of the Electrolyte voxels.  

i. Select a batch of consecutive planes in the map “Electric Potential” 
and the map “Bilayer”.  

ii. Identify all Electrolyte voxels represented in the batch and store the 
indices for these voxels in the list “Electrolyte to Update”. 

iii. Identify all nearest neighbor voxels sharing faces with the 
Electrolyte voxels in the list “Electrolyte to Update” and store the 
coordinates of the neighboring voxels in the list “Nearest 
Neighbors”.  

iv. Using the list “Nearest Neighbors” and the map “Bilayer, check the 
identities of all nearest neighbor voxels and store in the list 
“Neighbor Identity List”.  

v. Find all Electrolyte voxels in the list “Neighbor Identity List”, 
identify any neighboring Electrolyte voxels that are outside the 
batch of consecutive planes, and assign values of 4 to these voxels 
in the list “Neighbor Identity List” to identify them as “Boundary 
Electrolyte” voxels.  

vi. Create an empty list of Laplace equation coefficients for the 
electrolyte voxels to be updated that is the same size as the list 
“Electrolyte to Update” and call this new list “Coefficient for 
Electrolyte to Update”.  

vii. For each Electrolyte voxel in the list “Electrolyte to Update”, check 
the corresponding nearest neighbors in the list “Neighbor Identity 
List” and find all neighbors with identify values greater than 0 
(meaning they are Electrolyte, Electrode, or Boundary Electrolyte 
voxels). Sum the “Inverse Length Squared” values for the directions 
of these accepted neighbors relative to the chosen Electrolyte voxel 
and store the final value in the position of the list “Coefficient for 
Electrolyte to Update” corresponding to the chosen Electrolyte 
voxel.  



 218	

viii. Create an empty list of Laplace equation coefficients for nearest 
neighbor voxels that is the same size as the list “Nearest Neighbors” 
and call this new list “Coefficient for Neighbors to Update”.  

ix. For each Electrolyte voxel in the list “Electrolyte to Update”, check 
the list “Neighbor Identity List” and find all neighboring Electrolyte 
voxels (excluding Boundary Electrolyte voxels). Insert the “Inverse 
Length Squared” value for the direction of the neighboring 
Electrolyte voxel relative to the chosen “Electrolyte to Update” 
voxel into the positions of the list “Coefficient for Neighbors to 
Update” corresponding to each neighbor.  

x. Create an empty list of Laplace equation boundary values for the 
electrolyte voxels to be updated that is the same size as the list 
“Electrolyte to Update” and call this new list “Boundary Values”.  

xi. For each Electrolyte voxel in the list “Electrolyte to Update”, check 
the list “Neighbor Identity List” and find all neighboring Electrode 
and Boundary Electrolyte voxels. For the accepted voxels, look up 
the corresponding potentials in the map “Electric Potential”, 
multiply each potential by the “Inverse Length Squared” value for 
the direction of the Electrode/Boundary Electrolyte voxel relative to 
the chosen Electrolyte voxel, sum the set of values, and store the 
final value in the position of the list “Boundary Values” 
corresponding to the chosen Electrolyte voxel. 

xii. Create the empty, sparse list “Potentials to Update” that is the same 
size as the list “Electrolyte to Update” and insert the corresponding 
potential values from the map “Electric Potential.” 

xiii. Convert the list “Boundary Values” to a sparse format.  
xiv. Loop 1.1.1 start: create the sparse, square matrix “Linear Equations” 

and fill all relevant positions with the coefficients of the Electrolyte 
voxels to update and the neighboring Electrolyte voxels to update. 

1. Create the empty, sparse, square matrix “Linear Equations” 
that has sides with the same length as the list “Electrolyte to 
Update”. Create the empty, sparse list “Potentials to Update” 
that is the same size as the list “Electrolyte to Update”. 
Convert the list “Boundary Values” to a sparse format.  

2. For each entry in the list “Coefficient for Electrolyte to 
Update”, assign the value to the diagonal position of the 
square matrix “Linear Equations” such that the row of the 
diagonal position and the row of the entry in the list 
“Coefficient for Electrolyte to Update” are the same.  

3. For each entry in the list “Coefficient for Neighbors to 
Update”, multiply the value by -1 and assign this value to the 
off-diagonal position of the square matrix “Linear 
Equations” such that the row of the off-diagonal position and 
the row of the entry in the list “Coefficient for Electrolyte to 
Update” are the same, and the column of the off-diagonal 
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position and the row of the neighboring Electrolyte voxel 
found in the list “Electrolyte to Update” are the same.  

4. Loop 1.1.1 ends when all coefficients of the Electrolyte 
voxels to update and the neighboring Electrolyte voxels to 
update have been assigned.  

xv. Use the “bicgstab” MATLAB function to take the square matrix 
“Linear Equations”, the list “Potentials to Update”, and the list 
“Boundary Values” as inputs, iteratively relax the electric potentials 
until the average relative difference of the batch becomes less than 
the assigned threshold divided by 2.  

xvi. For the corresponding Electrolyte positions in the map “Electric 
Potential”, replaced the potentials with final values in the list 
“Potentials to Update”.  

xvii. Loop 1.1 ends once all batches along the forward and reverse 
directions have been updated.  

d. Compare the final updated map “Electric Potential” to the previous iteration 
map “Previous Electric Potential” and calculate the average relative 
difference between the maps.  

e. Loop 1 ends when the average relative difference becomes smaller than the 
assigned threshold.  

14. Save the final updated map “Electric Potential” and the map “Bilayer” to an 
external .mat file for future analysis 
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