
ii

ABSTRACT

Title of Thesis: GRAPH-BASED METHODS FOR PATH

PLANNING WITH DYNAMIC OBSTACLES

USING LINEAR TEMPORAL LOGIC

 Wenqi Han

Master of Science

2018

Thesis Directed By: Professor Jeffrey W. Herrmann

Department of Mechanical Engineering and

Institute for Systems Research

Abstract: Autonomous vehicles are expected to play a key role in rescue and

transportation. Planning an optimal path with the minimum computational effort for

these vehicles in their missions improves their efficiency and adds safety for the

vehicles and third parties on the ground. The objective of this thesis is to study the

computational effort of four planning methods that implement linear temporal logic

(LTL) to translate the high-level mission requirements and environmental

specifications. The Potential Field Method and the Critical Path method required less

iii

computational effort to find one of the shortest paths for the mission The Multigraph

Network Planning method and the Critical Path method can find all the possible paths

with predetermined path length. The Random Walk method required more

computational effort and memory compared to the other three methods.

ii

GRAPH-BASED METHODS FOR PATH PLANNING WITH DYNAMIC

OBSTACLES USING LINEAR TEMPORAL LOGIC

by

Wenqi Han

Thesis submitted to the Faculty of the Graduate School of the

University of Maryland, College Park, in partial fulfillment

of the requirements for the degree of

Master of Science

2018

Advisory Committee:

Professor Jeffrey W. Herrmann, Chair

Assistant Professor Huan Xu

Professor Rance Cleaveland

iii

© Copyright by

Wenqi Han

2018

ii

Acknowledgements

I sincerely thank my advisor Dr. Herrmann for giving me this opportunity to

work on this interesting research problem. With his technical expertise, he inspired me

to come up with different ideas for the research problem. With his insightful and

motivating comments, he guided me to conduct the research step by step when I was

lost in too many different ideas.

I would like to thank Dr. Mumu Xu and Dr. Cleaveland for teaching me model

checking, working with me on UAV path planning projects, and agreeing to serve on

my committee.

I also would like to thank Dr. MacCarthy for helping and encouraging me to take

an extra step on learning programming skills. I acknowledge with a deep sense of gratitude

and most sincere appreciation

Last but not the least, I would like to thank my parents for their support. They

taught me the things that matter the most in life.

iii

Table of Contents

Acknowledgements ... ii

Table of Contents ... iii

List of Tables ... vi

List of Figures ... vii

 Introduction .. 1

1.1 Motivation ... 1

1.2 Problem Definitions .. 4

1.3 Organization .. 5

 Related Work.. 6

 Planning Algorithms .. 10

3.1 Workspace Representation.. 10

3.2 Extended LTL for Environmental Specifications 11

3.3 Problem Formulation .. 12

3.4 State Machine Diagram... 13

3.5 Overview – The Multigraph Network Planning ... 14

3.5.1 Construct Multigraph ... 15

3.5.2 Retrieve Shortest Path .. 17

3.6 Overview – The Random Walk Method ... 18

3.6.1 Random Walk .. 18

3.6.2 Finding shortest path and Pros & Cons ... 21

3.7 Overview – The Potential Field Method ... 21

iv

3.7.1 Create Potential Field ... 22

3.7.2 Finding the shortest path .. 24

3.8 Overview – Critical Path Method ... 28

3.8.1 D* Lite ... 28

3.8.2 Find the Shortest Path on the State Machine Diagram 31

 Implementation and Results ... 35

4.1 Example 1 ... 35

4.1.1 Workspace Representation... 36

4.1.2 Linear Temporal Logic to State Machine Diagram 37

4.1.3 The Multigraph Network Planning Implementation 33

4.1.4 The Random Walk Method Implementation ... 35

4.1.4.1 Workspace Representation and State Machine Diagram 35

4.1.4.2 Find the Shortest Path ... 35

4.1.5 The Potential Field Method Implementation ... 36

4.1.6 The Critical Path Method Implementation .. 37

4.2 Example 2 (A) ... 37

4.3 Example 2 (B) ... 41

4.4 Example 3 (A) ... 46

4.5 Example 3 (B) ... 50

 Evaluation... 53

5.1 Computational time, computer memory consumed, and the length of

potential shortest path found by each approach .. 53

5.2 Random Walk Method Path Length Evaluation ... 62

v

5.3 Improve Multigraph Network Planning method ... 66

 Conclusion and Future Work ... 72

Appendix A ... 75

Appendix B ... 79

Bibliography ... 82

vi

List of Tables

Table 4-1: Example 2 (A) Result sample .. 41

Table 4-2: Example 2 (B) Result sample .. 45

Table 4-3: Example 3 (A) Result Sample ... 49

Table 4-4: Example 3 (B) Results ... 51

Table 5-1: Workspace and Büchi Automaton Comparison between Examples 54

Table 5-2: Length of Potential Shortest Path Found by Each Approach (Steps) 55

Table 5-3: Computational Time (ms) ... 57

Table 5-4: Computer Memory Consumed (bytes) .. 60

Table 5-5: Example 1 Multigraph Network Planning Method Performance with

different estimated total steps ... 67

Table 5-6: Example 2 (A) Multigraph Network Planning Method Performance with

different estimated total steps ... 67

Table 5-7: Example 2 (B) Multigraph Network Planning Method Performance with

different estimated total steps ... 67

Table 5-8: Example 3 (A) Multigraph Network Planning Method Performance with

different estimated total steps ... 68

Table 5-9: Example 3 (B) Multigraph Network Planning Method Performance with

different estimated total steps ... 68

vii

List of Figures

Figure 1-1: UAV fly in the workspace with obstacle area.. 4

Figure 3-1: Workspace Example. A workspace with 6 stations that vehicles can visit.

X4 may be blocked by moving obstacles during certain period. Vehicles can move

according to the actions between stations (i.e.x1, x2). ... 10

Figure 3-2: Vehicles moving rules. The cell with red large confetti pattern represents

obstacle area. ... 12

Figure 3-3: Workspace example (Example 1) for State Machine Diagram Potential

Field Planning with coordinates. X10, where 0 is the y-axis value and 1 is the x-axis

value. ... 23

Figure 3-4: Coordinate system for the Critical Path System 29

Figure 3-5: Original path from S3 to S18 (X6 to X5) planned when the vehicle

arrived at X6 ... 30

Figure 3-6: Updated path from S3 to S18 planned when the vehicle detected an

obstacle in X4 ... 30

Figure 3-7: State machine diagram of Example 1 .. 31

Figure 4-1: Example 1 workspace. A workspace with 6 stations that UAVs can visit.

X4 may be blocked by moving obstacles during certain period. UAVs can fly

according to the actions between stations (i.e. x1, x2, and x3)................................... 36

Figure 4-2: Edge between each discrete cell representation by the linked list 37

Figure 4-3: Example 1 Büchi Automaton ... 38

Figure 4-4: Büchi Automaton Transition Relationship .. 38

file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742757
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742758
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742758
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742758
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742759
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742759
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742760
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742760
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742760
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742761
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742762
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742762
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742763
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742763
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742764
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742765
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742765
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742765
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742767
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742768

viii

Figure 4-5: Example 1 State Machine Diagram ... 33

Figure 4-6 𝒢𝑡𝑜𝑡, Graph combing time and state machine diagram 34

Figure 4-7: Example 1 Potential Shortest Path Length Changing Over 50 Random

Walk Searches ... 36

Figure 4-8: Example 1 workspace with coordinate system .. 37

Figure 4-9 Example 2 Workspace. The transition relationship in Example 2 is that the

UAV can move to up and down, left and right, and diagonally. 38

Figure 4-10 Example 2 (A) - Büchi Automaton. Refer to GIF file Figure 4-10 for a

better view of this figure ... 39

Figure 4-11 Example 2 (A) - State Machine Diagram .. 40

Figure 4-12:Example 2 (B) workspace ... 42

Figure 4-13: Example 2 (B) - State Machine Diagram. Labels of the edges are shown

in Appendix A in text form. .. 43

Figure 4-14: Example 2 (B) - Büchi Automaton. Refer to GIF file Figure 4-14 for a

better view of this figure ... 44

Figure 4-15: Example 3 (A) and (B) workspace representation 47

Figure 4-16: Example 3 (A) Büchi Automaton. Refer to GIF file Figure 4-16 for a

better view of this figure ... 48

Figure 4-17: Example 3 (A) - State Machine Diagram. Labels of the edges are shown

in Appendix B in text form. .. 49

Figure 5-1: Number of Workspace Discrete Cells and States in Büchi Automaton ... 54

Figure 5-2: Length of Potential Shortest Path Found by Each Approach 56

Figure 5-3:Computational Time (ms) of 5 Examples ... 57

file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742769
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742770
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742771
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742771
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742772
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742776
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742778
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742778
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742779
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742781
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742781
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742782
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742783
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742784

ix

Figure 5-4: Computer Memory Consumed by 5 Examples .. 60

Figure 5-5: Example 1 potential shortest path length changing over 50 random walk

searches ... 63

Figure 5-6: Example 2 (B) potential shortest path length changing over 100,000

random walk searches ... 63

Figure 5-7: Example 2 (A) Potential Shortest Path Length Changing Over 100,000

Random Walk Searches .. 64

Figure 5-8: Example 3 (A) potential shortest path length changing over 100,000

random walk searches ... 64

Figure 5-9: Example 3 (B) potential shortest path length changing over 100,000

random walk searches ... 65

Figure 5-10: Percentage of Estimated Total Steps and Computational Effort

Decreased by using Estimation from Potential Field Planning 69

Figure 5-11: Percentage of Computational Time and Memory Reduced by thte Two-

step Planning from the Multigraph Network Planning Method.................................. 71

file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742785
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742786
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742786
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742787
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742787
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742788
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742788
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742789
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742789
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742790
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742790
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742791
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742791
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742792
file:///D:/Thesis/WenqiHan_Thesis%20final%20-v3_edited.docx%23_Toc522742792

1

 Introduction

1.1 Motivation

Motion planning is an important problem in various areas such as robot

navigation, driverless cars, robotic surgery, protein folding, and safety and accessibility

in computer-aided architectural design. The research in this thesis is motivated by the

problem of motion planning for unmanned aerial vehicles (UAV).

 The idea of building flying machines was first conceived around 2,500 years ago

in ancient Greece and China. In 425 BC, Archytas, known as Leonardo da Vinci of the

Ancient World, built the first known autonomous mechanical bird, “the pigeon”, which

is reported to be able to fly about 200 meters [1]. During the same era, the Chinese

experimented different types of flying machines, such as hot air balloons, rockets, and

kites. These machines were used both for entertainment and military. Historical records

show that a “wooden hawk” was used for reconnaissance around 450 BC, and Ming

Dynasty armies used a kite in the shape of a crow to bomb enemy positions [1]. Before

the appearance of manned aviation in the late 1700s, these flying machines had already

shown their potential in various areas. Around the time of First World War (1916),

unmanned aircraft appeared.

In recent years, autonomous robots have replaced a lot of people to do the “dull,

dirty, and dangerous” work over the years. While autonomous on-land vehicles (self-

driving cars) have been used to improve our driving experience, unmanned aerial

vehicles, have had many applications as well. Johns Hopkins researcher Timothy

Amukele et al. [2] demonstrated that drones are safe for transportation of blood products

2

[2]. In Amukele’s experiment, his team not only showed that a drone could transfer blood

samples in places like coastal Haiti after earthquake, where the land is rough, but

waterways are clear, but also successfully tested that blood temperature would be kept in

acceptable levels after 8 to 12 miles travelling at around 330 feet above the ground.

Microdrones' demonstration with the German Lifeguard Association also showed that if

a drone carries a self-inflating flotation device, it can help the swimmer float and give

time to lifeguards to react [3]. Amukele’s study and Microdrones both showed that UAVs

have the potential in helping save lives in emergency situations.

In terms of reacting to industrial accidents or other dangerous situations, UAVs

plays a more important role nowadays, such as radiation detecting for toxic leaks and

tracking hurricanes. Dronemakers FlyCam UAV partnered with US Nuclear Corp., a

radiation detection company, demonstrated that “The UAVs can be used to detect

radiation leaks in nuclear power plants or flown into plumes of smoke from a burning

building to give first responders immediate data about what kinds of hazards might be

present. It can also be used for to monitor public events, sea ports or geographic areas to

detect possible dirty radiological bombs or the use of chemical and biological agents.”

NASA’s RQ-4 Global Hawk is built for watching disasters unfold. In 2016, NASA used

the Global Hawk to drop expendable sensors to record temperatures, pressure, relative

humidity, and wind speed and direction, and transfer the information to scientists to track

Hurricane Matthew [4].

UAVs with their ability to fly, has not only been used in those extreme

environments, but also been used in our everyday life. It has taken roles such as inspection

and monitoring in highly risky fields, surveying and mapping cities, condition survey in

3

civil engineering field, and imaging for HD films, videos, and HR photos. Both in military

and civil operations, more and more complicated tasked are excepted to be done by

UAVs.

To accomplish the mission requirements, a UAV needs to maneuver from the

initial position to the final targets, while avoiding both static and dynamic obstacles.

Researchers have developed real-time obstacle avoidance approaches based on dynamical

systems [5], potential fields [6], and receding horizon control [7]. However, these real-

time obstacle avoidance techniques cannot guarantee perfect obstacle avoidance, and

their computational effort may be excessive when there are many moving obstacles. In

addition, when the mission requirements include a list of targets for the UAV to reach,

real-time obstacle avoidance techniques do not provide the means to yield a shortest path

for the UAV to accomplish its mission using the least time and energy. To solve this

problem, temporal logic has been used to express complex UAV missions.

This thesis compares four different planning approaches that use linear temporal

logic (LTL) to specify the mission requirements: The Multigraph Network Planning

method, the Random Walk method, and the Potential Field method. It also presents the

results of experiments conducted to compare the computational effort and solution quality

of the planning approaches.

4

1.2 Problem Definitions

This thesis focuses on finding a shortest path for unmanned vehicles under high-

level specifications in dynamic environment.

Figure 1-1 shows an example of an UAV rescue mission. Site 1 is the base

(starting point). Sites 2 – 6 for different locations where UAVs can land or possible

mission area. Site 2 is a hospital. Site 3 is a food dropping point. Site 4 is an obstacle area

where an earthquake took place and the weather can be very bad for flying according to

the weather forecast. Also, there are patients waiting for pick-up in site 4. Site 5 and site

6 both provide supplies for UAVs. There is a high mountain in the middle green area.

Because of this mountain, UAVs cannot fly between site 1 and site 6 directly. UAVs shall

go through site 2 or site 5 to avoid the mountain. The same thing applies to transportation

between site 3 and site 4. In robot path planning, mission requirements are usually very

high-level task with some subtasks. For example, requirements can be that the UAV shall

Workspace

Obstacle

area

Mountain

Base/
Site 1

Site 2
Site 3

Site 6

Site 4 Site 5

Figure 1-1: UAV fly in the workspace with obstacle area

5

go to site 3 to drop food, or the UAV shall go to the hospital to pick up nurses and doctors

and send them to the area where an earthquake took place. Radar and other real-time

technologies can help vehicles find the shortest path between two points, but we also want

to find the shortest path that fulfills all the high-level requirements. Researchers have

created different formulations and computational approaches to mathematically represent

these high-level requirements, such as motion sequencing. In this thesis we will focus on

(LTL) and Potential Field. Meanwhile, we also want to find a way to avoid all the

obstacles that may present in the workspace.

1.3 Organization

This section provides an outline of the thesis. Chapter 1 starts why the UAV motion

planning problem should be solved and problem definitions, which goes into more detail

about the problem scenario and relevant assumptions. Chapter 2 is the literature review

of previous work in UAV motion planning with temporal logic and potential field.

Chapter 3 describes the four planning algorithms and how they generate solutions.

Chapter 4 uses Example 1 to show detailed steps of the implementation, results, and

computational effort of each method. Four other examples are also included. Chapter 5

presents the analysis of 5 examples’ results and the recommendations based on the

evaluation. Chapter 6 completes the discussion by providing conclusions and possible

future work.

6

 Related Work

This chapter reviews previous work in UAV motion planning using temporal logic

and potential field - shortest path planning approaches, constraint reachability problem in

path planning for nonlinear systems with temporal logic, and path planning with timing

constraints in the mission requirements.

 As the popularity of UAV increases, so do concerns about safety. The risk to

people on the ground is related to the UAV path. Also, when it comes to rescuing after a

disaster like an earthquake, time is very valuable. High-level motion planning for UAVs

can help lower the risk for people on the path as well as the risk for UAVs by avoiding

predictable weather changes and dangerous areas [1].

 Numerous shortest path planning approaches have been proposed.

Richards and How [8] used the mixed-integer linear program (MILP) to plan a trajectory

with for discrete time steps multiple aircraft to reach multiple targets before a minimum

required time and used a rectangular exclusion region around each aircraft to avoid the

collision. Each aircraft was required to visit some points on the map, but the order of

those visit was selected by the program for overall shortest flight time. This research did

not consider the scenario when the obstacles like a bad weather area can move during the

mission. Jun and Andrea [9] used sensors to build and adjust a probability map for

obstacle avoiding. For path planning, Jun decomposed the region into uniform cells and

then used the Bellman-Ford algorithm and the polygonal path to successfully find the

shortest path for UAVs between two points. Jun also concluded that finding different

paths for multiple UAV mission can decrease the overall risk. Another shortest path

planning that solves dynamic obstacle problem is D* Lite. Koenig and Likhachev [10]

7

introduced D* Lite method, which applies Lifelong Planning A* to vehicle navigation.

This method works very well in terms of avoiding dynamic obstacles. However, these

approaches did not consider the scenario when the mission might have multiple targets

and include requirements like visiting one target before the others.

 Constraint reachability problem in path planning for nonlinear systems with

temporal logic has also be researched. There were different elements that constraints

reachability, such as distance-constrained reachability problem [11]. In path planning,

when there were too many obstacles in the workspace, not all the mission required sites

could be reached. Wolff et al. [12] found a feasible trajectory for a single UAV using a

coarse abstraction of the system and an automation representing the temporal logic

specification, including sampling-based methods for motion planning, reachable set

computations for linear systems, and graph search for finite discrete systems. Shaffer et

al. [13] also implemented LTL for high-level mission planner to reactively fight wildfire,

using TuLiP [14]. This research also detected the minimum number of UAVs to complete

its mission requirements by searching for a feasible trajectory. It was pointed out that “on

an Intel i5-6500 CPU @ 3.20 GHz processor, this total process, approximately 250

regions, took on the order of 8 hours for a system with 16 GB of RAM. Both papers did

not look for an optimized solution. Also, computational time like 8 hours used by TuLiP

to research for reachability may not be quick enough for large wildfire type of disaster.

 Another important factor, timing constraints in the mission requirement, has also

been addressed. Zhou et al. [15] used metric temporal logic (MTL) to encode the task

specifications with timing constraints and mixed integer linear program solver for the

optimization problem. Then, in [16], Zhou et al. used a more direct approach to access

8

the time constraints – timed automata approach using metric interval temporal logic

(MITL) using UPPAAL. On a computer with a 3.4GHz processor and 8GB memory, for

workspace 16 and 64 locations and simple mission requirement, this approach ran very

fast. Maity and Baras [17] extended LTL with bounded time to represent the bounded

time high-level specification and generates a discrete path that met specifications with

optimization. Sophisticated model checking tools such as SPIN Holzmann [18] was used

to generate discrete robot paths.

 Combining sensors and the use of LTL, Ulusoy and Belta [7] presented a

controller that combines both offline high-level trajectory path plan and online receding

horizon control for overall mission requirements which include temporal logic statement,

prior known requests, dynamic requests that could be sensed only locally, and a servicing

priority order over these dynamic requests. This controller had the advantage of

computational efficiency. Ulusoy and Belta [7] also used LTL2BA tool

(http://www.lsv.fr/~gastin/ltl2ba/index.php) [19] to obtain the Büchi automaton.

However, the dynamic request might block the vehicle’s progress and some low-priority

dynamic request might not be serviced due to the sensing range as the vehicle moves

towards a higher-priority dynamic request.

Artificial Potential Field (APF) is another method used in robot path planning.

Khatib first introduced APF to robot real-time obstacle avoidance [20], and other

improvements were made since then [21], [22]. Commonly, a particle representing the

robot is under the influence of an APF, which is denoted by U. APF reflects the free space

structure by identifying the local variation using potential function 𝑈𝑡𝑜𝑡𝑎𝑙 = 𝑈𝑎𝑡𝑡 + 𝑈𝑟𝑒𝑝,

which is the sum of attractive potential and repulsive potential. Attractive potential pulls

9

the vehicle towards the target, while repulsive potential pushes the vehicle away from the

obstacles [20] - [22].

Compared to AI methods like Evolutionary Algorithms (EAs), the APF method

was more efficient in known environments, according to Montiel et al. [23]. However,

the APF method frequently failed due to local minima, and computational effort increases

quickly when introducing real-world landscapes with enormous complexity. In addition,

traditional APF was a local planning method that did not perform very well in terms of

finding a global optimal path, which was also due to the local minimum problem. Montiel

et al. [23] presented a Parallel Evolutionary Artificial Potential Field (PEAPF) to

overcome the local minimum problem, where they used parallel evolutionary

computation for finding dynamically the optimal ka and kr values for the attractive and

repulsive proportional gains in Eq. 3.4.1.2 and 3.4.1.3. Montiel proved that PEAPF

method ensured path optimization even in complex real-world sceneries with dynamic

obstacles. However, the examples in [23] only had one target on the path.

In conclusion, these existing approaches need improvement to solve high-level

mission specifications and dynamic obstacles. Direct shortest path planning methods do

not handle high-level mission requirements. Methods like D* Lite can avoid dynamic

obstacles, but others cannot. Planning methods like MTL and LTL can express those

high-level missions, but they tend to be very time consuming and grows exponentially

as the mission becomes more complex. This is not good when we need to plan a path

for emergency missions. To solve this problem, we need to find a method that can solve

high-level mission requirements and dynamic obstacles, requiring less computational

effort than existing methods.

10

 Planning Algorithms

This chapter provides detailed explanation about the workspace representation,

state machine diagram, the extended linear temporal logic (LTL) for environmental

specifications, four planning algorithms, and how they generate solutions: The Multigraph

Network Planning method, the Random Walk method, the Potential Field method, and

the Critical Path method.

3.1 Workspace Representation

 The workspace, 𝒲, represents the whole space that is involved in the mission.

We can partition the continuous workspace 𝒲 by dividing 𝒲 into small cells.

X1 X2

X5 X4

X3

X6

𝑥4/ 𝑥5

𝑥1/ 𝑥4 𝑥3/ 𝑥6

𝑥2/ 𝑥3 𝑥1/ 𝑥2

𝑥5/ 𝑥6

𝑥1/ 𝑥5

𝑥2/ 𝑥4 𝑥2/ 𝑥6

𝑥3/ 𝑥5

𝑥2/ 𝑥5

Figure 3-1: Workspace Example. A workspace with 6 stations that vehicles

can visit. X4 may be blocked by moving obstacles during certain period.

Vehicles can move according to the actions between stations (i.e.x1, x2).

11

Let 𝑿 = {X1, 𝑋2, … , Xn} be a partition in the workspace. Figure 3-1 shows an

example of the workspace. 𝒜 denotes the set of actions the vehicle can take in the

workspace. 𝒜 = {𝑥1, 𝑥2, … , 𝑥𝑛}. Each action has its physical meaning, for example, 𝑥1

means moving to the discrete cell space X1. The vehicle can be anywhere within the

discrete cell space. We assume the vehicle always uses one step to perform one action.

3.2 Extended LTL for Environmental Specifications

Here we define a new operator to describe dynamic obstacles in the environment ¬[𝑡1,𝑡2].

This is an addition to the extended operators in [17].

 Definition 3.1.1: The extension of the LTL grammar is 𝜙 ∷= ¬𝜙[𝑡1, 𝑡2]

 𝑡1, 𝑡2 ∈ 𝒯, where 𝒯 is the maximum time in which vehicles shall fly within their

physical constraints. Note that ¬𝜙[𝑡0, ∞) is equivalent to ¬𝜙, where 𝑡0 is starting time

of 𝜎.

 Definition 3.1.2: The semantics of ¬𝜙[𝑡1, 𝑡2] is defined as:

 𝜎[1, 2, …] ⊨ ¬𝑝[𝑡1,𝑡2]

iff ∀ 𝑡, 𝑤ℎ𝑒𝑟𝑒 𝑡1 ≤ 𝑡 ≤ 𝑡2, 𝜎[𝑡1, 𝑡1 + 1, … , 𝑡2] ⊭ 𝑝,

 This is very convenient for path planning because the mission predetermines when

an obstacle area may have obstacles in there.

12

3.3 Problem Formulation

To find the shortest path the fulfills the mission specifications under the

environmental specifications for the dynamic obstacles, we assume that the information

of workspace, the mission specifications for vehicles, and the environmental specification

are all known. We also assume that it takes one step for a vehicle to move around its

current location, as shown in Figure 3-2. We assume that each movement across cells the

vehicle takes the same amount of time, which can be defined according to the various

types and speed of the vehicles. The vehicle can be anywhere within the cell. The distance

of the vehicle’s one step is not considered when finding the shortest path, as long as the

distance is reachable by that vehicle’s velocity. Hence, in this thesis, the shortest path

should contain the least number of steps in it. Note that researchers can also modify the

algorithm to compare the distance or time of the vehicles’ shortest path.

While the control methodologies developed in this research can be extended to

three dimensions, it is assumed that the vehicle is moving on the same altitude (layer).

In addition, we do not consider bounded time requirements for the vehicles. Time is

counted using the number of steps and is only considered for obstacle avoiding

Figure 3-2: Vehicles moving rules. The cell with red large confetti pattern

represents obstacle area.

13

3.4 State Machine Diagram

With each new action step, the vehicle will be in a set of states. For instance, a

vehicle has only flown to X1 and then to X2 on its path, we define that when the vehicle

was in X1, 𝑥1 = fly to X1, the vehicle was in state S1. S1 represents that the vehicle has

only flown to X1. After the vehicle flew to X2, 𝑥2 = fly to X2, the vehicle was

transferred to state S2. S2 represents that vehicle has been to X1 and X2 in the workspace.

If the vehicle returns to X1, it achieves a new state, this state represents that vehicle has

been to X1, X2, and X1 again in the workspace. Combining all the possible states creates

a State Machine Diagram, 𝒢𝑠𝑚: S, S = {S1, S2, … , Sk}.

Let 𝒜𝑠𝑘
 (⊆ 𝒜) denote all the possible transition for a VEHICLE at state Sk to

take in the state machine diagram. 𝒜𝑠𝑘
= {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} . 𝒜𝑠𝑘

 also follows the

transition rules of 𝒲.

LTL2BA tool (http://www.lsv.fr/~gastin/ltl2ba/index.php) [19] generates a Büchi

Automaton ℬ𝒶 for the LTL rules specified. For all the four methods we researched, only

the mission specifications were translated in to LTL and were used to create the Büchi

Automaton. we reconstruct the State Machine Diagram based on Büchi Automaton. This

thesis used Finite State Machine Designer (http://madebyevan.com/fsm/) [24] to draw the

graph form state machine diagram. Note that !𝑥𝑛 means any action other than move to

cell Xn. One (1) is the power set of the possible actions set by the state that are allowed

to be taken for any number of times. The rules are as follows:

http://www.lsv.fr/~gastin/ltl2ba/index.php

14

• Create a dummy initial state “init” to represent the state when the vehicle

is at rest. This is different from the “init” state in the Büchi Automaton

• Based on the purpose of finding the shortest path, we assume that for any

edge in the state machine diagram, when an action 𝑥𝑘 (𝑥𝑘 ∈ 𝒜𝑠𝑘
) is

combined with ! 𝑥𝑛, ! 𝑥𝑛 means do not do 𝑥𝑛 and the end location of that

edge shall be 𝑥𝑘.

• Eliminate the edges that require more than one end location in the physical

workspace.

• When there is only ! 𝑥𝑛, it means that the vehicle can conduct any possible

action from its current state other than cell Xn. This means the vehicle can

go to any possible cell space that is reachable from its current cell space

but cannot go to Xn in the next time unit.

• One (1) means any singular action. For example, if 𝒜𝑠𝑘
=

{𝑥2, 𝑥3}, 𝑥2 && 𝑥3 is not allowed. Only ∅, 𝑥2, 𝑎𝑛𝑑 𝑥3 is allowed

3.5 Overview – The Multigraph Network Planning

 The overall approach of the Multigraph Network Planning is to use LTL to

translate the high-level mission (user requirements) for the vehicles, to build a multigraph

(network) for the workspace, 𝒲 , mission specifications, 𝜙 , and environmental

specification, ℇ, and to find the shortest path that fulfills the requirements from the

multigraph.

15

 Algorithm 1: Extended LTL

Input: Workspace 𝒲 , global mission specification 𝜙 , environmental

specifications ℰ for the dynamic obstacles ℰ

Output: Shortest path 𝑆𝑃 that fulfills the global mission 𝜙

1 Use 𝒲 to construct a graph 𝒢 to represent the workspace

2 Use 𝒲 and ℰ to construct Büchi automaton, ℬ𝒶

3 Translate ℬ𝒶 to a state machine diagram 𝒢𝑠𝑚

4 Construct a Multigraph 𝒢𝑡𝑜𝑡 which has a subgraph for each state in the 𝒢𝑠𝑚

5 Find the shortest path 𝑆𝑃 according to 𝒢𝑡𝑜𝑡’s accepting state subgraph incoming

edges and time count

3.5.1 Construct Multigraph

Based on the workspace and the reconstructed state machine diagram, we can

construct graphs 𝒢 and 𝒢𝑠𝑚. The next step is to construct subgraphs for each state (node)

in 𝒢𝑠𝑚, based on 𝒢. The goal is to include time step into these graphs. We define the

network of these subgraphs as a multigraph 𝒢𝑡𝑜𝑡. The total number of steps t used in

Algorithm 2 is the estimated total steps needed to complete all the mission requirements.

In this thesis, for the first time we test Multigraph Network Planning implementation, we

assumed that all the mission requirements could have been completed sometime before

the vehicle moved the one more step than the total number of discrete cells in the

workspace. For instance, in a workspace partitioned into 25 discrete cells, we assume the

16

total number of step t is 26. Based on the complexity of mission requirements and the

result of the first path planning result, researchers can adjust the value of t as needed.

 Algorithm 2: Multigraph 𝒢𝑡𝑜𝑡

 Input: Workspace graph 𝒢, state machine graph 𝒢𝑠𝑚, global mission

specification 𝜙, environmental specifications ℰ for the dynamic obstacles

1 t = the number of discrete cells in 𝒢 +1 // Assume the total number of steps is t

 //Create subgraph for each state:

2 Construct a set of vertices 𝑉1 for S1 in 𝒢𝑠𝑚 (appropriate x1, x2, …, xn n at step 1,

2, 3…, t)

3 Delete all vertices in 𝑉1 that violate ℰ

4 Add edges according to the transition relationship in 𝒢 in 𝑉1

5 Construct a set of vertices 𝑉2 for S2 in 𝒢𝑠𝑚 (appropriate x1, x2, …, xn n at step 1,

2, 3…, t)

6 Delete all vertices in 𝑉2 that violate ℰ

7 Add edges according to the transition relationship in 𝒢 in 𝑉2

8 For each edge e in 𝒢sm do

9

if e has a beginning vertex at S1 and ending vertex at S2 do

10 Add an edge from 𝑉1 to e’s label in 𝑉2

 Repeat line 4 - 10 to construct vertices and edges for all the states in 𝒢𝑠𝑚

For each vertex in 𝒢𝑡𝑜𝑡 , it has a location ID, time, and state. In a multigraph,

location ID can be repeated in each subgraph, but the combination of the location ID,

time, and state, is unique. When construct vertices for one state (Algorithm 2, line 4),

17

include every discrete cell, except the cells that are the ending vertices of that state’s

outgoing edges to other states. Edges within a state’s subgraph follow the transition

relationship in 𝒢 (Algorithm 2, line 5). Except for the initial vertex, all the vertices must

have at least one incoming edge in order to have outgoing edges. For edges between

different states’ subgraph, if 𝒢sm has such an edge that connects the two states, the

vertices in the beginning state’s subgraph can have an interstate edge to the ending state’s

vertices that have the same location ID as the edge’s action (Algorithm 2, line 9-11). An

edge can only connect vertices that have a time difference of 1. The beginning vertex’s

time must be smaller than the ending vertex’s time (Algorithm 2, line 11). To make sure

all the edges are created, building the state machine diagram requires that the state

machine graph’s vertices are create in such an order that a node shall not be create until

all incoming edges connecting to this node and the nodes where these incoming edges

come from have been created. Otherwise, some interstate edges may not be created.

3.5.2 Retrieve Shortest Path

According to the state machine diagram 𝒢sm , we can easily determine the

accepting state subgraph in the multigraph 𝒢𝑡𝑜𝑡 . Each vertex in the accepting state’s

subgraph means all the mission specifications have been completed. Hence, the vertex

with the shortest time in the accepting state’s subgraph is the ending vertex in the shortest

path we are looking for. To find the shortest path, we can backtrack vertices in the

incoming edges of the ending vertex. By repeating the backtracking step, we can find the

entire shortest path. One advantage of this planning method is that we can easily find all

the possible paths within the preset total number of steps in the multigraph.

18

3.6 Overview – The Random Walk Method

The overall approach of the Random Walk method uses the idea of random walk

to generate random paths. It uses the workspace information 𝒲, mission specifications 𝜙,

and environment information ℰ to make a state machine diagram 𝒢𝑠𝑚 as in Multigraph

Network Planning. Among the valid paths found by the random path generator and

verified in the workspace according to the state machine diagram 𝒢𝑠𝑚, we can choose the

shortest path.

 Algorithm 3: StateMachineChecker (𝒢, 𝒢𝑠𝑚 , 𝜙, ℰ, 𝑓𝑟𝑜𝑚)

Input: Workspace graph 𝒢 and state machine graph 𝒢𝑠𝑚 , global mission

specification 𝜙, environmental specifications ℰ, initial location name from

Output: Shortest path that fulfills the global mission, 𝑆𝑃

1 StateMachineChecker (𝒢, 𝒢𝑠𝑚, 𝜙, ℰ, 𝑓𝑟𝑜𝑚):

2

Assign a cell in 𝒢 to be the initial location based on 𝑓𝑟𝑜𝑚

3

Add 𝑓𝑟𝑜𝑚 to the list of location names, onPath

4

Find the vertex f in 𝒢 with the location name 𝑓𝑟𝑜𝑚

5

CurrentState = the initial state 𝑆𝑖 in 𝒢𝑠𝑚

6

Call RandomWalker (Algorithm 5) for desired times to find the possible

shortest path

7 Find the shortest path by running this algorithm multiple times

3.6.1 Random Walk

 This RandomWalker Algorithm walks on the State Machine Diagram to ensure

that the output path fulfills the global mission specification 𝜙. This is because that each

location to where the vehicle moves follow the State 𝒢𝑠𝑚 according to 𝜙. The Algorithm

19

4 is the random action generator. The listActions is a list of actions the vehicle can

undergo from its current location. The listEdgeGsm is a list of edges from the vehicle’s

current state in the state machine diagram. The action generated by Algorithm belongs to

both the listActions and the listEdgeGsm.

Algorithm 4: randomAction (𝒢, 𝒢𝑠𝑚, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒, 𝑓𝑟𝑜𝑚)

Input: Workspace graph 𝒢 and state machine graph 𝒢𝑠𝑚, current state (CurrentState),

initial action from

Output: random action, 𝑥𝑐

randomAction (𝒢, 𝒢𝑠𝑚, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒, 𝑓𝑟𝑜𝑚):

1 listActions = from.getOutgoingEdgeLabel()

 // find all the possible actions the vehicle can take after action from

2 listEdgeGsm = all the valid edges from CurrentState

3 Randomly choose 𝑥𝑐 from listEdgeGsm’s labels

4 while (𝑥𝑐 is not in listActions) do

5 Randomly choose another 𝑥𝑐 from listEdgeGsm’s labels

6 Return 𝑥𝑐

We record the state 𝑆𝑘 of the vehicle for each action it takes (𝑥𝑛 ∈ 𝒜𝑆𝑘
). When

it reaches the accepting state, the program has found a path, where 𝑝𝑎𝑡ℎ ⊨ 𝜙. For each

𝑥𝑛, the algorithm checks it against the environmental specifications ℰ. If 𝑥𝑛 violates ℰ,

we will take another random action where 𝑥𝑛 (∈ 𝒜𝑆𝑘
).

Algorithm 5: RandomWalker (𝑓𝑟𝑜𝑚, 𝑆𝑃):

Input: initial action from, previous Shortest path that fulfills the global mission, 𝑆𝑃

 Output: Shortest path that fulfills the global mission, 𝑆𝑃

1 RandomWalker (𝑓𝑟𝑜𝑚, 𝑆𝑃):

20

2 Add 𝑓𝑟𝑜𝑚 to onPath

3 if 𝑓𝑟𝑜𝑚 violate ℰ

4
Obs = true // Obs is Boolean to record whether 𝑓𝑟𝑜𝑚 hit the

obstacle

5 else

6 Obs = false

7 Remove 𝑓𝑟𝑜𝑚 to onPath

8 if current state is the same as accepting state in 𝒢𝑠𝑚 && Obs ==false do

9 if the verified path = null

10 onPath is the current shortest path, 𝑆𝑃

11 CurrentState = the initial state 𝑆𝑖

12 else

13 Compare the length of onPath and 𝑆𝑃

14 𝑆𝑃 = the path with shorter length

15 Reset onPath with only the starting cell X1

16 Return 𝑆𝑃

17 else

18 randomAction 𝑥𝐶 (∈ 𝒜𝑆𝑖
) (Algorithm 4)

 // 𝑥𝑐 is any random label of the edges from 𝑓𝑟𝑜𝑚 to 𝐶

19 Repeat line 3-7 to check 𝑥𝐶

20 If Obs ==true

21 Obs = false;

22 return RandomWalker(the last action 𝑥𝑛 on onPath, 𝑆𝑃);

23 else

24 Obs ==false

25 If 𝑥𝐶 cause a change in state based on 𝒢𝑠𝑚 from 𝑆𝑖

27 Set the current state to the new state, 𝑆𝑗

28 Add 𝐶 to onPath

29 Return RandomWalker(𝐶, 𝑆𝑃)

21

3.6.2 Finding shortest path and Pros & Cons

 With the random walk algorithm, the computer makes random choices resulting

in verified paths with varying lengths. Each time we find a path that fulfills all the mission

requirements under the environment specifications, we say that this path is our potential

shortest path 𝑆𝑃. We can run the random walk search algorithm many times and update

𝑆𝑃 with shorter verified onPath.

The biggest advantage of this approach is the minimum programming effort. It

does not require a Multigraph for each state. Hence it does not require extensive

programming time to identify a path that fulfills all the mission requirements under the

given environment specifications.

The randomization means it is possible for the vehicle to have a minimal amount

of random walk searchers; however, since the vehicle is programmed randomly, it may

end up taking excessive steps to find its verified path. The worst case is that during one

random walk search, the computer may never find a verified path before StackOverflow

Error (for Java). Therefore, as 𝒢 and 𝜙 get larger, it is more likely to take more random

walk searches to find the shortest path.

3.7 Overview – The Potential Field Method

Comparing to the Random Walk method, the Potential Field method uses the

potential field to guide the vehicle instead of total random walk. It uses the workspace

information 𝒲, mission specifications 𝜙, and environment information ℰ to make a state

machine diagram 𝒢𝑠𝑚 as in Multigraph Network Planning. In addition, we add the

22

potential field to the 𝒢𝑠𝑚 . Like Random Walk method, we have a path generator to

generate and verify paths in the workspace according to the state machine diagram 𝒢𝑠𝑚.

When the generator chooses which action to take, the discrete cells with larger total force

have higher priority than the cells with smaller total force. Among the verified paths, we

can find the shortest path. Ge and Cui in [21] defined that the total force, 𝐹𝑡𝑜𝑡𝑎𝑙(𝑞), which

is applied to the vehicle, is the sum of the attractive force 𝐹𝑎𝑡𝑡 and the repulsive force 𝐹𝑟𝑒𝑝.

3.7.1 Create Potential Field

 The Potential Field method uses Algorithm 5 to find the potential shortest path,

but in line 18, instead of Algorithm 4, Algorithm 6 is used to find listG, a list of vertices

around the current location with Potential Field information. Based on [25] and [23], we

need to define a coordinate system for cells in the workspace. In this thesis, we define the

coordinate system as shown in Figure 3-3. The increment is based on the x-axes and y-

axes. We always set the starting location as X10. 0 is the y-axis value and 1 is the x-axis

value. Because we assumed that the vehicle can move to any cell along the blue arrows

in one step, we do not consider the velocity of the vehicle or actual distance between the

cells. If it takes one step to move to the next cell in the x-axis direction, that cell is X20.

23

If it takes one step to move to the next cell in the y-axis direction, that cell is X11. If it

goes both on the x-axis and y-axis positive direction, that cell is X21.

Based on the attractive and repulsive force equation in [23], we can calculate

potential field 𝑈𝑡𝑜𝑡𝑎𝑙(𝑞) for a vehicle q, in our coordinate system, q = (x, y).

𝑈𝑡𝑜𝑡𝑎𝑙(𝑞) = 𝑈𝑎𝑡𝑡(𝑞) + 𝑈𝑟𝑒𝑝(𝑞) (Eq. 3.4.1.1)

𝑈𝑎𝑡𝑡(𝑞) =
1

2
𝑘𝑎(𝑞 − 𝑞𝑓)

2
 (Eq. 3.4.1.2)

𝑈𝑟𝑒𝑝(𝑞) = {
1

2
𝑘𝑟 (

1

𝜌
−

1

𝜌0
)

2

 𝑖𝑓 𝜌 ≤ 𝜌0

0 𝑖𝑓 𝜌 > 𝜌0

 (Eq. 3.4.1.3)

 In Eq. 3.4.1.1, the potential field 𝑈𝑡𝑜𝑡𝑎𝑙(𝑞) comprises two terms, the attractive

potential function 𝑈𝑎𝑡𝑡(𝑞) (Eq. 3.4.1.2), and the repulsive potential function 𝑈𝑟𝑒𝑝(𝑞)

(Eq.3.4.1.3). The start position q0 is the vehicle’s current position, qf is the target position,

X10 X20

X21 X11

X30

X31

𝑥11/𝑥21

𝑥10/ 𝑥11 𝑥30/ 𝑥31

𝑥20/ 𝑥30 𝑥10/ 𝑥20

𝑥21/ 𝑥31

𝑥10/ 𝑥21

𝑥20/ 𝑥11 𝑥20/ 𝑥31

𝑥30/ 𝑥21

𝑥20/ 𝑥21

Figure 3-3: Workspace example (Example 1) for State Machine Diagram Potential

Field Planning with coordinates. X10, where 0 is the y-axis value and 1 is the x-

axis value.

24

and 𝑘𝑎 and 𝑘𝑟 are scalar variables. The obstacles have their position 𝑂1, … , 𝑂𝑛, and the

limited distance of influence of the potential field 𝜌0. If the vehicle is further away than

𝜌0, the obstacle does not influence the vehicle’s current path plan. The value 𝜌 is the

shortest distance from the vehicle to the obstacle. Velocity is not considered in this thesis.

In this listG, the next action 𝑥𝑐 is to where the potential field has the total force 𝐹𝑡𝑜𝑡𝑎𝑙(𝑞).

As mentioned earlier, the total force, 𝐹𝑡𝑜𝑡𝑎𝑙(𝑞) is the sum of the attractive force

𝐹𝑎𝑡𝑡 and the repulsive force 𝐹𝑟𝑒𝑝:

𝐹𝑡𝑜𝑡𝑎𝑙(𝑞) = 𝐹𝑎𝑡𝑡 + 𝐹𝑟𝑒𝑝 (Eq. 3.4.1.4)

 𝐹𝑎𝑡𝑡 = −∇𝑈𝑎𝑡𝑡 = 𝑘𝑎(𝑞𝑓 − 𝑞) (Eq. 3.4.1.5)

 𝐹𝑟𝑒𝑝(𝑞) = −∇𝑈𝑎𝑡𝑡

 = {
𝑘𝑟 (

1

𝜌
−

1

𝜌0
) ∗ (

1

𝜌2) ∗ ∇𝜌 𝑖𝑓𝜌 ≤ 𝜌0

0 𝑖𝑓 𝜌 > 𝜌0

 (Eq. 3.4.1.6)

 According to the Eq. 3.4.1.5, the attractive force 𝐹𝑎𝑡𝑡 is a negative gradient

function of the attractive field and converges to zero as the robot approaches the target.

According to Khatib [20], ∇𝜌 =
𝜕𝜌

𝜕𝑞
, denotes the partial derivative vector of the distance

from the vehicle to the obstacle.

𝜕𝜌

𝜕𝑞
= [

𝜕𝜌

𝜕𝑥

𝜕𝜌

𝜕𝑦
]

𝑇

 (Eq. 3.4.1.6)

3.7.2 Finding the shortest path

Since one mission may have multiple mission requirements, and there can be a

sequence of requirements about which target to visit first, the targets in the potential field

25

change according to the state machine diagram, current location of the vehicle, and the

current state of the vehicle and the appearance of any dynamic obstacles. To find the

shortest path, the goal is to transit from the initial state to the end state with the least

amount of transition. Therefore, we need a potential field for each state. The targets of

each state’s potential field are the labels of that state’s outgoing edges. Meanwhile, the

environmental specifications apply to each state. Therefore, based on the current time of

the path, the obstacles may create a different repulsive force on the vehicle.

For the discrete cells in the workspace that are far away from the targets or

obstacles, they should not be set to normal. The affecting ranges of targets and obstacles

depend on the problem. The value normal is a score set by the researcher depending on

the size of the problem. It should be relatively higher than the attraction scores but lower

than repulsive scores.

In addition, it will not be efficient to calculate potential field for the whole

workspace for each step the vehicle takes, especially if the workspace has more than 9

discrete cells in the workspace. This is because the discrete cells do not have an impact

on the vehicle’s path plan if the discrete cells are beyond the reach of the vehicle from its

current location. Therefore, in Algorithm 6, we only calculate potential field for the

discrete cells that the vehicle can physically move to in the next step. In line 8, Uatt

calculates the attractive force using Eq. 3.4.1.5, and in line 10 Urep calculates the

repulsive force using Eq. 3.4.1.6.

26

Algorithm 6: PotentialField (𝒢, 𝒢𝑠𝑚 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑜𝑐, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒, 𝑡𝑖𝑚𝑒, ℰ)

Input: Workspace graph 𝒢 and state machine graph, 𝒢𝑠𝑚, current location, currentloc,

current state, CurrentState, current time, time, environmental specifications, ℰ

Output: listG, list of vertices around current location with Potential Field information

PotentialField (𝒢, 𝒢𝑠𝑚, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒, 𝑓𝑟𝑜𝑚):

1 listG  currentloc.getOutgoingEdge().getTo() // for each outgoing edge of

currentloc

 // Find all the possible physical cells where the vehicle can reach in one step

from its current location

2 listEdgeGsm  𝒢𝑠𝑚.findVertexByState(CurrentState)

 // find all the possible edges from CurrentState in 𝒢𝑠𝑚

3 list  edge.getLable() // for each edge in listEdgeGsm get its label

4 For each Vertex v in listG do

5 v.setScore(normal) // Set scores to normal when movement to theta

cell does not lead to another state

6 For each edge e in listEdgeGsm

7 If e links two different state in 𝒢𝑠𝑚

8 score  Uatt(v, e.getLabel()) // Uatt is attractive potential

9 If v.getScore()>score then v.setScore(score)

10 v.setScore(-1*v.getScore() + Urep(v)) // Urep is repulsive potential

11 For each vertex 𝑥 in listG

12 if 𝑥 ∉ list then remove 𝑥

13 Return listG

Algorithm 7 calculates an attractive potential score 𝑎𝑡𝑡, which will be further

processed in Algorithm 6 for the correct direction pointing to the target.

27

Algorithm 7: Uatt(v, e.getLabel())

Input: Vehicle current location’s name v, target vertex (target action for the vehicle to

take) e.getLabel()

Output: Negative attractive potential 𝑎𝑡𝑡

Uatt(v, e.getLabel()):

1 Obtain coordinates of the vehicle current location: x1, y1

2 Obtain coordinates of the vehicle’s target: x2, y2

3 𝑘𝑎 1

4 att = 0.5*ka*((𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2)

5 Return 𝑎𝑡𝑡

Algorithm 8 calculates a repulsive potential force 𝑟𝑒𝑝, which is used in Algorithm

7 for the total potential force.

Algorithm 8: Urep (v, e.getLabel())

Input: Vehicle current location’s name v, vertex with obstacle area alert,

e.getLabel()

Output: Repulsive force 𝑟𝑒𝑝

Urep(v, e.getLabel()):

1 Obtain coordinates of the vehicle current location: x1, y1

2 𝑘𝑟 1, 𝜌0  2

3 for each obstacle area 𝑂𝑛 do (n =1, 2, 3…)

4 if the obstacle area is in alert do

5 Obtain coordinates of the obstacle area: x2, y2

6 𝜌 sqrt (((𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2)

7 If 𝜌 < 𝜌0 do

8
𝐹𝑟𝑒𝑝𝑛 = 0.5 ∗ 𝑘𝑟 ∗ (

1

𝜌
−

1

𝜌0
) ∗ (

1

𝜌
)

2

(n =1, 2, 3…)

9 else

10 𝐹𝑟𝑒𝑝𝑛 = 0.0 (n =1, 2, 3…)

11 𝑟𝑒𝑝 = ∑𝐹𝑟𝑒𝑝𝑛 (n =1, 2, 3…)

12 Return 𝑟𝑒𝑝

28

3.8 Overview – Critical Path Method

Like the combination of the state machine diagram and the potential field path

planning method, the Critical Path method combines the state machine diagram with D*

Lite. Koenig and Likhachev [10] presented D* Lite method and demonstrated that this

method can plan paths for robots in an unknown environment with dynamic obstacles.

This Critical Path method uses Java code written by Beard [25] in DStarLiteJava

(https://github.com/daniel-beard/DStarLiteJava) to obtain the shortest path between two

cells in the workspace. The state machine diagram guides the vehicle to move in the

way that fulfills the mission requirements and environmental specifications.

3.8.1 D* Lite

According to Koenig and Likhachev [10], D* Lite repeatedly calculates the

shortest path from its current location to the target, based on the dynamic obstacle

information. Therefore, based on the given dynamic obstacle information, when the

vehicle reaches a new state in the state machine diagram, D* Lite can plan a shortest

path to the next state based on the current time and dynamic obstacle information. D*

Lite also allows us to set permanent obstacles in the workspace. The Critical Path

method used this feature to set the boundary of the workspace and permanent obstacles

that exist in the mission.

Based on Beard’s code [26], we use the x and y axes coordinate system that is

also used in the Potential Field method, where the workspace’s most bottom left cell is

X10. And we assume that the vehicle always starts from X10, as shown in Figure 3-4.

29

To set the boundary of the workspace, we assume that for each mission, there are

permanent obstacles are the cells around the workspace in the coordinate system with

the block color. Orange and brown colored cells are involved in the mission

requirements. Brown colored cell means that the target needs to be visited in a certain

order. Red large confetti pattern means these areas may have obstacles at certain time

according to the environmental specifications.

An example of D* Lite implementation using the workspace of Example 2 (B)

(Section 4.3) is shown in Figure 3-5 and Figure 3-6 for understanding the planning

algorithm. The vehicle planned its path X6, X7, X8, X4, and X5, where X6 was the

target cell for the state S3, and X5 was the target cell for the state S18 in Figure 4-13.

However, when the vehicle reached X8, by checking the dynamic obstacle information

Figure 3-4: Coordinate system for the Critical Path System

30

from the environmental specifications, it realizes that during the next step, an obstacle

may show up in X4. Hence, D* Lite planned a new path as shown in Figure 3-6.

Figure 3-5: Original path from S3 to S18 (X6 to X5) planned when

the vehicle arrived at X6

Figure 3-6: Updated path from S3 to S18 planned when the vehicle

detected an obstacle in X4

31

3.8.2 Find the Shortest Path on the State Machine Diagram

The use of the state machine diagram is to guide the vehicle to fulfill the mission

requirements by reaching the accepting state. To find the shortest path from the initial

state to the accepting state, we need to know the cost (path length) of each edge in the

state machine diagram. However, unlike the traditional path planning problem, for

example, the state S5 from Example 1 in Figure 3-7, its arrival time may vary

depending on which state the vehicle comes from and where the vehicle comes from in

the physical workspace. In Figure 3-7, we define that a state has its arrival time, 𝑡𝑖𝑗𝑘 …,

where i, j, k, …, records the previous state the vehicle has been to.

Unlike traditional path planning problem that requires path planning in the

physical workspace, each edge in the state machine diagram have multiple cost. This is

because there may be different ways to arrive at the state in the physical workspace and

Figure 3-7: State machine diagram of Example 1

32

hence different ways to transit to the next state. For state S5, the vehicle may come from

X3 or X2, resulting two arrival time 𝑡25 and 𝑡35. Furthermore, because the arrival

locations in S5 are different, when we calculate the arrival time for S6, when cannot

pick the smaller arrival time in S5. Because in the physical workspace, the arrival time

of X2 may be different from the arrival time of X3, and the paths from X2 to X4 and

from X3 to X4 will be different. One thing to notice here is that maybe

𝑡25 is small than 𝑡35, that does not conclude that 𝑡256 will also be small than 𝑡356.

Therefore, from S5 to S6, we will have two different arrival time 𝑡256 and 𝑡356. To find

the shortest path from the initial state to the state S6, we need to compare 𝑡256, 𝑡356, and

𝑡246.

Algorithm 9 calculates all the states’ arrival time and paths between the states.

HashMap is used as the output for retrieving the path. Algorithm 9 requires that the

state machine graph’s nodes are created in such an order that a node shall not be created

until all its predecessors have been created. Because when we use D* Lite to plan the

path for an edge, the starting time of the path is required for dynamic obstacle

avoidance. When planning a path for a state’s outgoing edge, all of that state’s incoming

edges’ information is required.

Algorithm 9: CriticalPathPlan (v, e.getLabel())

Input: Workspace graph 𝒢 and state machine graph 𝒢𝑠𝑚 , current time, time,

environmental specifications ℰ

Output: Update HashMap list, which include the transition relationships between each

pair of connecting state and the arrival time of the ending state;

Update HashMap map, which records the shortest paths in the physical

workspace for each transition between connecting states in list

33

CriticalPathPlan (v, e.getLabel()):

1 for each node v in 𝒢𝑠𝑚 do

2 if the node is the initial state in 𝒢𝑠𝑚 do

3 Record v’s arrival information to a HashMap origins (arrival

information includes: physical starting cells name (x00, a dummy

node), state name (init), and starting time as the value (n/a, because

this is a dummy node) as the key in origins, and the arrival time to

v (0, dummy time) as the value to the key)

4 Add 𝒢𝑠𝑚 starting and ending node state name – init to S1, path

starting and target cell name (X00 to X10), and total path cost (1)

as a key in HashMap and vehicle path in the workspace (go from

X00 to X10) as the key’s value to map

5 else

6 for each incoming edge eIn of the node v, do

7 if e’s starting node preV has only one incoming edge do

8 Record v’s arrival information to a HashMap origins

(physical starting cells name, state name, and starting time

as the value as the key in origins, and the arrival time

arrivalTime (cost of eIn) to v as the value to the key)

9 else

10 for each incoming edge preE of preV do

11 if there is only 1 vehicle path in the workspace for eIn

12 Record v’s arrival information to a HashMap

origins. arrivalTime = length of preE + length of

eIn - 1

13 else

14 For each vehicle path p in the workspace for eIn

do

15 if eIn’s starting location in workspace ==

p’s ending location in workspace, do

16 Record v’s arrival information to a

HashMap origins. arrivalTime = cost

of preE + cost of p -1

17 For each arrival information key, k, in the origins do

18 Obtain coordinates of the vehicle starting location: x1, y1

19 For each outgoing edge eOut do

20 Obtain coordinates of the vehicle’s target: x2, y2

34

21 Add obstacles in the workspace based on the state

machine diagram 𝒢𝑠𝑚 and the environmental

specifications ℰ

22 Use D* Lite to plan a path from (x1, y1) to (x2, y2), path

23 Total path length for path from original starting point =

origns.get(k)+(path.size()-1)

24 Record path in e

25 Add transition information to list (𝒢𝑠𝑚 starting and

ending node state name – preV to v, and path starting and

target cell name as the key in list, and path length

calculated by D* Lite as the value of the key)

26 Add 𝒢𝑠𝑚 starting and ending node state name –preV to v,

path starting and target cell name, and total path cost (1)

to v as a key in HashMap and vehicle path in the

workspace as the key’s value to map

To find the shortest path, simple start from the smallest arrival time of the

accepting state and retrieve the whole path based on the arrival time and physical

locations of the vehicle in its previous states. One thing to notice here is that one state

may have multiple incoming edges but the target location of some of these edges may

be the same. When retrieving the whole path, we should not only check one state’s

direct incoming edges, but also which state this incoming edge is from.

35

 Implementation and Results

While the algorithms are applicable to myriad vehicle types, this research

recorded the movements of unmanned aerial vehicles (UAV). This chapter shows 5

examples of UAV missions that implement the linear temporal logic (LTL) and four

planning methods, the Multigraph Network Planning method, the Random Walk

method, and the Potential Field method and the Critical Path method. The programs

were run on an Intel CORE i5-3337U processor @ 1.8 GHz. The system had 256MB of

RAM. In the experiment, most of the time the Random Walk method took much longer

to find a path that had the same length as the other two method’s results. Because more

random walk searches would eventually yield a more optimized path, this thesis

compares random walk searches up to 100,000 times for any complex examples using

the Random Walk method and use that result to compare with other path planning

methods.

4.1 Example 1

 A UAV shall complete its mission requirements in the workspace shown in Figure

4-1. The UAV starts from Site X1. One environmental specification is that Site X4 may

have several storms from step 4 to 5. Mission requirements included:

1. Go to X3 to drop food.

2. Go to X4 to pick up patients.

3. Before the UAV goes to X4, the UAV must go to X2 to pick up a nurse.

36

4.1.1 Workspace Representation

As shown in Figure 4-1, the workspace had been partitioned into 6 rectangular,

X1, X2, X3, X4, X5, and X6. The UAV could move forward, backward, diagonally, or

stay at the same discrete cell. Figure 4-2 shows the transitional relationship in the form

of a linked list.

The goal was to find the shortest path 𝑆𝑃 for a UAV so that it fulfilled the

operation goals. In this example, the vehicle shall start from X1. Because it needed time

to take off, we assumed that it took one step to finish taking off at X1. Then, the vehicle

shall visit X2 before it can visit X4. And the vehicle shall visit X3 and X4 at least once

on its path. In addition, X4 will not be available at step 4 to 5. LTL cannot directly express

all the operation rules as stated in Section 1.1.3 due to the explicit time specification.

X1 X2

X5 X4

X3

X6

𝑥4/ 𝑥5

𝑥1/ 𝑥4 𝑥3/ 𝑥6

𝑥2/ 𝑥3 𝑥1/ 𝑥2

𝑥5/ 𝑥6

𝑥1/ 𝑥5

𝑥2/ 𝑥4 𝑥2/ 𝑥6

𝑥3/ 𝑥5

𝑥2/ 𝑥5

Figure 4-1: Example 1 workspace. A workspace with 6 stations that UAVs

can visit. X4 may be blocked by moving obstacles during certain period.

UAVs can fly according to the actions between stations (i.e. x1, x2, and x3).

37

Hence, this specification was expressed using the extended LTL according to Maity and

Baras [17].

Figure 4-2: Edge between each discrete cell representation by the linked list

Using the extended LTL to translate the mission requirements 𝜙1, there were three

LTL rules, and one extended LTL rule for the dynamic obstacles.

• x2 B x4

• F x3

• F x4

• !x4[4,5] – Extended LTL

4.1.2 Linear Temporal Logic to State Machine Diagram

According to the physical constraints given in Figure 4-2, we could reconstruct

the State Machine Diagram based on the original Büchi Automaton. LTL2BA tool

developed by Gastin and Oddoux [19] (http://www.lsv.fr/~gastin/ltl2ba/index.php)

created the Büchi Automaton for the first three LTL rules in Figure 4-3 and Figure 4-4.

http://www.lsv.fr/~gastin/ltl2ba/index.php

38

Figure 4-3: Example 1 Büchi Automaton

Figure 4-4: Büchi Automaton Transition Relationship

39

Note that !x4 meant any action other than move to the cell X4. One (1) was the

power set of the possible actions set from the state are allowed to be taken for any number

of times. The translation steps were as follows:

• Create a dummy initial state “init” to represent the state when the vehicle is at

rest. This is different from the “init” state in the Büchi Automaton

• Based on the purpose of finding the shortest path, we assume that for any edge in

the state machine diagram, when an action 𝑥𝑘 (𝑥𝑘 ∈ 𝒜𝑠𝑘
) is combined with ! 𝑥𝑛,

! 𝑥𝑛 means do not do 𝑥𝑛 and the end location of that edge shall be 𝑥𝑘.

• Eliminate the edges that require more than one end location in the physical

workspace.

• When there is only !x4, it means the UAV can conduct any possible action from

its current state other than x4. This means the UAV can go to any possible cell space that

is reachable from its current cell space but cannot go to X4 in the next step.

• One (1) means the all the singular action. For example, if 𝒜𝑠 = {𝑥2, 𝑥3}, x2 &&

x3 is not allowed. Only ∅, 𝑥2, 𝑎𝑛𝑑 𝑥3 is allowed.

As shown in Figure 4-5 the Büchi automaton was translated into a state machine

diagram.

33

4.1.3 The Multigraph Network Planning Implementation

This section shows how example implements the Multigraph Network Planning

algorithm. Figure 4-6 is a simplified Multigraph for this problem. Each node was named

as “X#, #”. The first “X#” represents the physical discrete cell, and the second number is

the time. All the nodes in the accepting state (S6) in 𝒢𝑠𝑚 connects to the END node. To

promote a clearer understanding of Multigraph and finding a potential shortest path,

Figure 4-6 does not show all the nodes created in this approach for all the steps and

locations.

Figure 4-5: Example 1 State Machine Diagram

34

Figure 4-6 𝒢𝑡𝑜𝑡, Graph combing time and state machine diagram

35

As shown in Figure 4-6, node X3, 5 connected to the END node and it had the

smallest number of steps used. Therefore, the shortest path ended at cell X3, 5. Following

the incoming edges, the program could retrieve the rest of the path. For example, from

X3, 5, the previous step could be either X2, 4 or X5, 4. Randomly pick one of the cells

could yield one of the shortest paths. Retrieving all the possible combinations could yield

all the possible paths with the smallest number of steps.

 One of the shortest paths found using Multigraph Network Planning for Example

1 is X1, X2, X4, X2, X3. The computational time was 16 ms, and the program used

3,995,104 bytes of memory.

4.1.4 The Random Walk Method Implementation

4.1.4.1 Workspace Representation and State Machine Diagram

 The workspace representation, the Büchi Automaton, and the state machine

diagram are the same as in

4.1.4.2 Find the Shortest Path

 Random Walk method does not generate the best result every time. Nevertheless,

as the program conducted more random walk searches, it was more likely to generate a

potential shortest path with short path length, comparing to Multigraph Network

Planning’s results. In this experiment, we tested the program with 50 random walk

searches. Figure 4-7 shows the shortest path we found in this experiment is 5, which is

36

the same as the Multigraph Network Planning method’s result. The shortest path found

was X1, X2, X4, X5, X3. The computational time used was 38 ms, and the program

consumed 20,659,896 bytes of memory.

4.1.5 The Potential Field Method Implementation

 To build the potential field around the UAV, we assigned coordinates to each cell.

As shown in Figure 4-8, The step distance was calculated based on the coordinates of the

current UAV location and the targets. The state machine diagram was the same as Figure

4-5 in Section 4.1.2, except the labels changed according to the new names of each

discrete cell in the workspace using the coordinate system. This applies to all the other

examples as well.

12

10
9

7

5

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45

P
at

h
 le

n
gt

h
 (

st
ep

s)

Number of random walk searches

Example 1 Potential Shortest Path Length Changing
Over 50 Random Walk Searches

Figure 4-7: Example 1 Potential Shortest Path Length Changing Over 50 Random

Walk Searches

37

The shortest path found was X1, X2, X4, X2, X3 (X10, X20, X11, X20, X30).

The computational time was 44 ms, and the program used 20,667,808 bytes of memory

for 10 iterations of searches.

4.1.6 The Critical Path Method Implementation

This implementation method was explained in Section 3.8.2. The shortest path

found by this method was X1, X2, X3, X2, X4. The computational time was 29 ms, and

the program used 19,328,560 bytes of memory

4.2 Example 2 (A)

 Example 2 has a workspace partitioned into 25 discrete cells (5 rows of 5 cells).

In Example 2, the mission requirements included:

X10 X20

X21 X11

X30

X31

𝑥11/𝑥21

𝑥10/ 𝑥11 𝑥30/ 𝑥31

𝑥20/ 𝑥30 𝑥10/ 𝑥20

𝑥21/ 𝑥31

𝑥10/ 𝑥21

𝑥20/ 𝑥11 𝑥20/ 𝑥31

𝑥30/ 𝑥21

𝑥20/ 𝑥21

Figure 4-8: Example 1 workspace with coordinate system

38

• The UAV shall visit X6, X12, and X24 at least once on its path.

• The UAV shall visit X5 before it goes to X12.

The environmental specification was that X4 have obstacles from step 4 to 5.

Figure 4-9 Example 2 Workspace. The transition relationship in Example 2 is that the

UAV can move to up and down, left and right, and diagonally.

 Hence, we can get mission requirements, 𝜙2 , and one extended LTL

specifications for the dynamic obstacles, as below:

• !((!x5) U x12)

• Fx12 && Fx24 && Fx6

• !x4[4,5] – Extended LTL

39

Figure 4-10 Example 2 (A) - Büchi Automaton. Refer to GIF file Figure 4-10 for a

better view of this figure

40

LTL2BA tool (http://www.lsv.fr/~gastin/ltl2ba/index.php) [19] generated a Büchi

Automaton for the first four LTL rules in Figure 4-10. Figure 4-11 is the State Machine

Diagram drawn based on Figure 4-10 using [24]. Results of each method are shown in

Table 4-1. The paths were shown using the workspace without coordinate system.

Figure 4-11 Example 2 (A) - State Machine Diagram

http://www.lsv.fr/~gastin/ltl2ba/index.php

41

Table 4-1: Example 2 (A) Result sample

 Shortest Path Path Length Computational Effort

Multigraph

Network

Planning

X1, X6, X2, X8,

X9, X5, X9, X8,

X12, X18, X24

11 Total execution time: 979 ms

Used 35,450,240 memory

Random

Walk

method

X1, X6, X1, X7,

X8, X3, X4, X5,

X4, X8, X12, X18,

X24,

[205, 193, 58, 51,

38, 36, 20, 17, 14,

13]

Total execution time: 47,556

ms

Used memory 51,541,792

after 100,000 random walk

searches

Potential

Field

method

X1, X6, X2, X3,

X9, X5, X9, X13,

X12, X18, X24

11 Total execution time: 34 ms

Used memory 20,659,592

bytes after 10 random walk

searches

Critical

Path

method

X1, X6, X7, X8,

X9, X5, X9, X8,

X12, X18, X24

11 Total execution time: 34 ms

Used memory 20,660,008

bytes

4.3 Example 2 (B)

Example 2 (B) had a workspace partitioned into 25 discrete cells (5 rows of 5

cells). In Example 2 (B), the mission requirements included:

42

• The UAV shall visit X6, X12, X21, and X24 at least once on its path.

• The UAV shall visit X5 before it is able to go to X12.

The environmental specification included:

• X18 and X19 will have obstacles from time step 6 to 10.

• X4 will have obstacles from time step 6 to 12.

Therefore, we could translate the mission requirements 𝜙4 and environmental

specifications into extended LTL form as follows:

• F x6 && F x12 && F x21 && F x24

• x5 B x12

• !x4[6,12]

• !x18[6,10] && !x19[6,10]

Figure 4-12 is a representation of the workspace for example 2 (B). Using mission

requirements, 𝜙4 , LTL2BA tool (http://www.lsv.fr/~gastin/ltl2ba/index.php) [19]

generated a Büchi Automaton for the first four LTL rules. Then, we construct the state

machine diagram [24] accordingly. The state machine diagram and Büchi Automaton are

Figure 4-12:Example 2 (B) workspace

http://www.lsv.fr/~gastin/ltl2ba/index.php

43

shown in Figure 4-13 and Figure 4-14. The paths were shown using the workspace

without coordinate system.

Figure 4-13: Example 2 (B) - State Machine Diagram. Labels of the edges are shown in

Appendix A in text form.

44

Figure 4-14: Example 2 (B) - Büchi Automaton. Refer to GIF file Figure 4-14 for a better view of this figure

45

Table 4-1 records all the results. The paths were shown using the workspace

without coordinate system.

Table 4-2: Example 2 (B) Result sample

 Shortest Path Path Length Computational Effort

Multigraph

Network

Planning

X1, X6, X2, X3, X4,

X5, X9, X13, X17,

X21, X16, X12, X18,

X24

14 Total execution time: 7,017

ms

Used memory 45,266,224

bytes

Random Walk

method

X1, X7, X6, X7, X13,

X9, X5, X4, X3, X7,

X12, X16, X12, X18,

X24

[72, 70, 62,

59, 43, 34,

32, 31, 22,

21, 19, 17,

15]

Total execution time:

91,711 ms

Used memory 120,292,640

bytes after 100,000 bytes

random walk searches

Potential

Field method

X1, X6, X11, X16,

X21, X22, X23, X24,

X18, X14, X10, X5,

X9, X13, X12

[16, 15] Total execution time: 44 ms

Used 24,655,760 bytes

memory for 10 random

walk searches

Critical Path

method

X1, X6, X7, X3, X4,

X5, X9, X8, X12, X16,

X21, X22, X23, X24

14 Total execution time: 99 ms

Used 29,981,744 bytes

memory

46

4.4 Example 3 (A)

 Example 3 (A) had a workspace partitioned into 64 discrete cells (8 rows of 8

cells). In Example 3 (A), the mission requirements included:

• The UAV shall visit X14, X38, X51, and X62 at least once on its path.

• The UAV shall visit X51 before it is able to go to X32.

The environmental specification included:

• X4, X12, and X20 will have obstacles from time step 10 to 20.

• X34 will have obstacles from time step 6 to 12.

• X55 will have obstacles from time step 16 to 22.

Therefore, we could translate the mission requirements 𝜙3 and environmental

specifications into extended LTL form as follows:

• F x14 && F x38 && F x51 && F x62

• x51 B x32

• !x4[10,20] && !x12[10,20] && !x20[10,20]

• !x34[6,12]

• !x55[16,22]

47

 Using mission requirements, 𝜙3 , LTL2BA tool

(http://www.lsv.fr/~gastin/ltl2ba/index.php) [19] generated a Büchi Automaton for the

first four LTL rules in Figure 4-16. Then, we generated the state machine diagram

accordingly, as shown in Figure 4-17 using [24]. Table 4-3 records all the results. The

paths were shown using the workspace without coordinate system.

Figure 4-15: Example 3 (A) and (B) workspace

representation

http://www.lsv.fr/~gastin/ltl2ba/index.php

48

Figure 4-16: Example 3 (A) Büchi Automaton. Refer to GIF file Figure 4-16 for a better view of this figure

49

Table 4-3: Example 3 (A) Result Sample

 Shortest Path Path Length Computational Effort

Multigraph

Network

Planning

X1, X2, X11, X4, X13, X14,

X21, X29, X38, X45, X53,

X62, X53, X44, X51

15 Total execution time:

106,586 ms

Used memory

165,504,464 bytes

Figure 4-17: Example 3 (A) - State Machine Diagram. Labels of the edges are

shown in Appendix B in text form.

50

Random

Walk

method

X1, X2, X3, X12, X5, X14,

X22, X29, X38, X46, X53,

X62, X53, X60, X52, X51

[207, 157,

110, 104,

81, 64, 42,

36, 29, 28,

27, 16]

Total execution time:

376,385 ms

Used memory 90,835,976

bytes after 100,000

iterations

Potential

Field

method

X1, X10, X11, X12, X13,

X14, X22, X30, X38, X46,

X54, X62, X53, X52, X51

[15] Total execution time: 35

ms

Used 23,323,800 bytes

memory for 10 times of

search

Critical

Path

method

X1, X2, X3, X12, X13, X14,

X22, X30, X38, X46, X54,

X62, X61, X52, X51

15 Total execution time:83

ms

Used memory 25,986,432

bytes

4.5 Example 3 (B)

 Example 3 (B) had a workspace partitioned into 64 discrete cells (8 rows of 8

cells) as Example 3 (A). In Example 3 (B), the mission requirements included:

• The UAV shall visit X14, X38, X51, and X62 at least once on its path.

• The UAV shall visit X32 before it is able to go to X51.

The environmental specifications are the same as Example 3 (A), which includes:

51

• X4, X12, and X20 will have obstacles from time step 10 to 20.

• X34 will have obstacles from time step 6 to 12.

• X55 will have obstacles from time step 16 to 22.

Therefore, we could translate the mission requirements 𝜙4 and environmental

specifications into extended LTL form as following:

• F x14 && F x38 && F x51 && F x62

• X83 B X 51

• !x4[10,20] && !x12[10,20] && !x20[10,20]

• !x34[6,12]

• !x55[16,22]

For evaluation purpose, Example 3 (B) had the same workspace as Example 3

(A). Also, the mission requirements of Example 3 (B) was the same as Example 2 (B)

except with different names for the discrete cells and how they locate in the workspace.

Therefore, we had the same the Büchi Automaton and the state machine diagram as

Example 2 (B) except the name of the labels. Table 4-4 records all the results. The paths

were shown using the workspace without coordinate system.

Table 4-4: Example 3 (B) Results

 Shortest Path Path Length Computational Effort

Multigraph

Network

Planning

X1, X2, X11, X4, X5, X14,

X23, X32, X31, X38, X45,

X53, X62, X53, X44, X51

16 Total execution time:

178,224 ms

52

Used 255,219,664 bytes

memory

Random

Walk

method

X1, X10, X2, X3, X12, X5,

X13, X22, X31, X38, X31,

X39, X47, X48, X40, X32,

X31, X32, X39, X46, X53,

X52, X61, X62

[245, 99,

80, 63, 49,

46, 41, 29,

26, 24]

Total execution time:

587,014 ms

Used 73,334,496 bytes

memory after 100,000

iterations

Potential

Field

method

X1, X10, X3, X4, X5, X14,

X23, X32, X39, X38, X46,

X54, X62, X61, X52, X51

[16] Total execution time: 48

ms

Used 24,654,768 bytes

memory for 10 times of

search

Critical

Path

method

X1, X2, X3, X12, X13, X14,

X23, X32, X31, X38, X45,

X44, X51, X52, X61, X62

16 Total execution time: 92

ms

Used 33,984,648 bytes

memory

53

 Evaluation

This chapter evaluates the four path planning methods based on their performance

in Chapter 4. Multigraph Network Planning was used to find all the possible paths within

the estimated number of steps. Therefore, if the Multigraph Network Planning method

yielded a valid shortest path, we considered that path length to be the shortest path length

we could find for that example. As mentioned in Chapter 4, although more random walk

searches gave a more optimized path, we r ran random walk searches up to 100,000 times

for any complex example in this thesis and used that result to compare with other path

planning methods. Another reason for this is discussed in Section 5.2. For the Potential

Field method, it was not very likely to happen that within the cells the vehicle could move

from its current location because there were no more than two cells that had the same

potential force. Hence, there were not as many different paths that could be generated by

this method. Based on the experiment, we found that for all the examples except Example

2 (B), potential filed path searches that were run up to 10 times could find a path that had

the same path length as the Multigraph Network Planning method’s result.

5.1 Computational time, computer memory consumed, and the length of potential

shortest path found by each approach

Based on the results in Section 4.1 – 4.4, we can analyze how the number of states

in Büchi Automaton affects the computational time, computer memory consumed, and

the length of potential shortest path found by each approach. The size of the workspace

54

can increase the size of the multigraph and the number of moving direction choices in

path planning. The number of states in the Büchi Automaton increases exponentially as

the number of LTL requirements increases based on the mission requirements.

Table 5-1: Workspace and Büchi Automaton Comparison between Examples

Number of discrete

cells

Number of states in Büchi

Automaton

Example 1 6 7

Example 2 (A) 25 13

Example 2 (B) 25 23

Example 3 (A) 64 17

Example 3 (B) 64 23

0

10

20

30

40

50

60

70

Example 1 Example 2 (A) Example 2 (B) Example 3 (A) Example 3 (B)

C
o

u
n
t

Example Index

Number of Workspace Discrete Cells and States in

Büchi Automaton

Number of discrete cellls Number of states in BA

Figure 5-1: Number of Workspace Discrete Cells and States in Büchi Automaton

55

In Table 5-1 and Figure 5-1, Example 2 (A)/(B) and Example 3 (A)/(B) had the

same number of discrete cells in their workspace – 25 and 64 respectively. Example 2 (B)

has more states in the Büchi Automaton than Example 2 (A) has. Example 3 (B) has more

states in the Büchi Automaton than Example 3 (A) has. Example 2 (B) and Example 3

(B) have the same number of states in the Büchi Automaton. Different mission

requirements and obstacle areas in the workspace result in different shortest path planned

for each example.

Table 5-2: Length of Potential Shortest Path Found by Each Approach (Steps)

Multigraph

Network

Planning

Random Walk

method

(100,000

searches)

Potential Field

method (10

searches)

Critical Path

Method

Example 1 5 5 6 5

Example 2

(A) 11 13 11 11

Example 2

(B) 14 15 15 14

Example 3

(A) 15 16 15 15

Example 3

(B) 16 24 16 16

56

 Table 5-2: Length of Potential Shortest Path Found by Each Approach Table 5-2

and Figure 5-2 show that the Multigraph Network Planning method and the Critical

Path method found the shortest path for all the examples. The Potential Field found the

shortest path for all examples except Example 2 (B). This was caused by the physical

location of each target. When a connecting state’s target was very close to the vehicle’s

current location, that target location had very high attractive potential to get the vehicle

move towards it first, even though moving toward that target might have cost more

steps in the path due to dynamic obstacles. On the other hand, the Random Walk

method’s path length increased when the workspace size and number of states in the

Büchi Automaton increased.

0

5

10

15

20

25

Example 1 Example 2 (A) Example 2 (B) Example 3 (A) Example 3 (B)

P
at

h
 L

en
g
th

Example Number

Best Length of Potential Shortest Path Found

Multigraph Network Planning Random Walk method (100,000 searches)

Potential Field method (10 searches) Critical Path Method

Figure 5-2: Length of Potential Shortest Path Found by Each Approach

57

Table 5-3: Computational Time (ms)

Multigraph

Network

Planning

Random Walk

method

(100,000

searches)

Potential Field

method (10

searches)

Critical

Path

Method

Example 1
 17 34 44 29

Example 2 (A)
 979 47,556 34 59

Example 2 (B)
 7,017 91,711 50 99

Example 3 (A)
 106,586 376,385 35 83

Example 3 (B)
 174,472 587,014 48 92

 1

 8

 64

 512

 4,096

 32,768

 262,144

Example

1

Example

2 (A)

Example

2 (B)

Example

3 (A)

Example

3 (B)

T
im

e
(m

s)

(l
o
g
2
 s

ca
le

)

Example Number

Computational time (ms)

Multigraph Network Planning

Random Walk method (100,000 searches)

Potential Field method (10 searches)

Critical Path Method

Figure 5-3:Computational Time (ms) of 5 Examples

58

As shown in Table 5-3 and Figure 5-3, when the workspace size was small and

there were not many mission requirements, as in Example 1, all four methods had similar

short computational time to find the shortest path(below 60 ms). The computational time

of the Multigraph Network Planning method and the Random Walk method both

increased much faster than the Potential Field method did. As the workspace size and

number of states in the Büchi Automaton increased the Multigraph Network Planning

method required less time than the Random Walk method did in all the examples. The

Potential Field method had the overall best performance in computational time for all of

the examples. There was a very small change in computational time when the mission

requirements became more complex (i.e. from Example 1 to Example 3 (A)). The longest

time finding the shortest path took by the Potential Field method was 50 ms for Example

3 (B), which was much shorter than the Multigraph Network Planning method or the

Random Walk method did. The Critical Path method used the second shortest

computational time to find shortest paths for all the examples. The computational time it

took was steady and very close to the time used by the Potential Field method. The longest

time it used was 99 ms for Example 2 (B). For the more complex missions among the

five examples, Example 2 (B) and Example 3 (B) required the longer time than Example

2 (A) and Example 3 (A).

 The workspace size varies in different examples. When the size of workspace

increased from 25 to 64 discrete cells (from Example 2 (B) to Example 3 (B)) and the

number of states in the Büchi Automaton remained at 23, the Multigraph Network

Planning method’s computational time increased 24.8 times, the Random Walk (100,000

searches) method’s computational time increased 6.4 times, and the Potential Field (10

59

searches) method and the Critical method almost used the same amount of time. When

the number of states in the Büchi Automaton increased from 13 to 23 (from Example 2

(A) to Example 2 (B)) and the workspace size remained at 25 discrete cells, the

Multigraph Network Planning method’s computational time increased 7.2 times, the

Random Walk (100,000 searches) method’s computational time increased 1.9 times, the

Potential Field (10 searches) method’s computational time increased 1.5 times, and the

Critical Path method’s computational time increased by 1.7 times.

The number of states in the Büchi Automaton also varies in different examples.

When the number of states in the Büchi Automaton increased from 17 to 23 (from

Example 3 (A) to Example 3 (B)) and the workspace size remained at 64 discrete cells,

the Multigraph Network Planning method’s computational time increased 1.6 times, the

Random Walk (100,000 searches) method’s computational time increased 1.6 times, the

Potential Field (10 searches) method’s computational time increased 1.4 times, and the

Critical Path method’s computational time increased by 1.1 times. The workspace size

had a bigger influence on the computational time than the number of mission

requirements for the Multigraph Network Planning method.

60

Table 5-4: Computer Memory Consumed (bytes)

Multigraph

Network

Planning

Random Walk

method (100,000

searches)

Potential Field

method (10

searches)

Critical Path

Method

Example 1 3,995,104 3,995,104 20,661,408 20,667,808

Example 2

(A)
35,450,240

35,450,240 51,541,792 20,659,592

Example 2

(B)
29,565,104

45,266,224 120,292,640 24,655,760

Example 3

(A)
165,504,464

165,504,464 90,835,976 23,323,800

Example 3

(B)
255,219,664

255,219,664 73,334,496 24,654,768

1

4

16

64

256

1,024

4,096

16,384

65,536

262,144

1,048,576

4,194,304

16,777,216

67,108,864

268,435,456

Example 1 Example 2

(A)

Example 2

(B)

Example 3

(A)

Example 3

(B)

C
o
m

p
u
te

r
m

em
o
ry

 u
se

d
 (

b
y
te

s)

(l
o
g
2
 S

ca
le

)

Example Number

Computer Memory Consumed

Multigraph Network Planning

Random Walk method (100,000 searches)

Potential Field method (10 searches)

Critical Path Method

Figure 5-4: Computer Memory Consumed by 5 Examples

61

 The computer memory consume by each method was calculated when running

the java code on Eclipse Java Oxygen, using Java Runtime class’s methods:

Runtime.getRuntime().totalMemory()-Runtime.getRuntime().freeMemory(). Table 5-4

and Figure 5-4 show that when the workspace was small and there are not many

mission requirements, as in Example 1, all four methods consumed computer memory,

and the Multigraph Network Planning method performed much better than the two other

methods. Except the Random Walk method, the computer memory consumed by the

three other methods all increased as the workspace size and the number of states in the

Büchi Automaton increased. The Multigraph Network Planning method required more

computer memory than the Potential Field method and the Critical method did. For

Although the Random Walk method’s computer memory consumption was less than the

Multigraph method, and the path it found was longer than the other methods. In

addition, because the paths were randomly chosen, each time we ran the program could

result in very different computer memory consumption depending on how fast we were

able to find a shorter path. Example 2 (B) required more memory than any other

examples using the Random Walk method. This may be caused by extreme long paths

found by the program during the path planning. Regarding computer memory, the

Potential Field method was the best method to find one valid path with the shortest path

length. It required the lease computer memory. The Critical Path method requires a little

more memory than the Potential Field method but was much better than the Multigraph

Network Planning method and the Random Walk method.

Overall, we can see a general trend that as the workspace size and the number of

states in the Büchi Automaton increases, the computational time, the computer memory

62

consumed, and the length of the potential shortest path found by each approach all tend

to increase. Although the Critical Path method performed not as well as the Potential

Field method, it consistently performed in all aspects and was able to find all the shortest

paths for all the example with the best quality of path length. Potential Field method also

had steady performance. However, due to the algorithm it used to find paths, the physical

location of the targets in the mission may influence the quality of the path length this

method could planned. The Multigraph Network Planning method performed well for the

small workspace and could find all the possible shortest paths. The Random Walk method

required less programming effort, but it performed poorly compared with the other

methods.

5.2 Random Walk Method Path Length Evaluation

The Random Walk method used extensive computational time and memory for

all the examples, yet the paths generated were not optimized for most examples.

Therefore, we investigated how the potential shortest path length changed as the computer

conducted more random walk searches.

63

87

58

45

19 18 17

0

10

20

30

40

50

60

70

80

90

100

1 4 16 64 256 1024 4096 16384

P
at

h
 l

en
g
th

 (
st

ep
s)

Number of random walk searches

(log2 scale)

Example 2 (B) Potential Shortest Path Length Changing

Over 100,000 Random Walk Searches

Figure 5-6: Example 2 (B) potential shortest path length changing over 100,000

random walk searches

12

10
9

7

5

0

2

4

6

8

10

12

14

0 5 10 15 20 25 30 35 40 45

P
at

h
 l

en
g
th

Number of random walk searches

Example 1 Potential Shortest Path Length Changing Over

50 Random Walk Searches

Figure 5-5: Example 1 potential shortest path length changing over 50 random

walk searches

64

205 193

58 51

38
36

20 17 14 130

50

100

150

200

250

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192 16384

P
at

h
 L

en
gt

h

Number of Random Walk searches

Example 2 (A) Potential Shortest Path Length Changing Over 100,000 Random Walk Searches

Figure 5-7: Example 2 (A) Potential Shortest Path Length Changing Over 100,000 Random Walk Searches

147

112
96

85
6764

52 443731 30 29 21

0
20
40
60
80

100
120
140
160

1 2 4 8 16 32 64 128 256 512 1024 2048 4096 8192

P
at

h
 l

en
g
th

 (
st

ep
s)

Number of random walk searches

(log2 scale)

Example 3 (A) Potential Shortest Path Length Changing Over 100,000 Random Walk Searches

Figure 5-8: Example 3 (A) potential shortest path length changing over 100,000 random walk searches

65

Figure 5-5 shows that the path length yield by the Random Walk method

decreased quickly during the first 50 random walk searches and then reached the

optimized shortest path for a simple mission like Example 1. On the other hand, Figure

5-6 to Figure 5-9 all demonstrated that after the first 64 random walk searches, the path

length decreased very slowly. For future research, the researcher can step up criteria on

how to balance between the path length and the computational effort.

259

85

53
35 34

31
25

19 17

0

20

40

60

80

100

120

140

160

180

200

220

240

260

280

1 4 16 64 256 1024 4096 16384

P
at

h
 l

en
g
th

 (
st

ep
s)

Number of random walk search

ticks placed on log2 scale

Example 3 (B) Potential Shortest Path Length Changing

Over 100,000 Random Walk Searches

Figure 5-9: Example 3 (B) potential shortest path length changing over 100,000

random walk searches

66

5.3 Improve Multigraph Network Planning method

One advantage of the Multigraph Network Planning method is that this method

provides all possible paths that fulfill the mission requirements under the given

environmental specifications. For future research, we may want multiple vehicles to

operate on the same mission to increase the possibility of success. Therefore, it would be

helpful to know all the possible paths with the shortest path length.

According to the results in Section 5.1, the total estimated steps for the Multigraph

Network Planning method was critical for the method’s performance. The reason for this

is that the workspace size had the most influence on performance, and workspace size

directly affected the estimated total steps we used in the method. To find at least one valid

path, our estimated total steps were much bigger than the actual shortest path length.

Therefore, we need to find a way to better estimate the total steps. The Potential Field

method can be a good solution. This method aims to find one shortest path and had very

good performance in terms of computational time. The Potential Field method could

provide a good estimation of the total steps for creating the multigraph, and then using

the Multigraph Network Planning method could help find all the valid shortest paths.

Combining two methods, we have a two-step path planning method that worked more

efficient for complex missions. Table 5-5 to Table 5-7 show that the performance of the

Multigraph Network Planning method is better using the path length generated by the

Potential Field method for complex examples like Example 2 (B), Example 3 (A), and 3

(B).

67

Table 5-5: Example 1 Multigraph Network Planning Method Performance with

different estimated total steps

Table 5-6: Example 2 (A) Multigraph Network Planning Method Performance with

different estimated total steps

Method

With an estimate

from workspace

size

With an estimate

from potential field

planning

Estimated total steps 26 11

Computational Time (ms) 1,073 366

Computer Memory Consumed

(bytes)
 35,450,240 14,584,984

Table 5-7: Example 2 (B) Multigraph Network Planning Method Performance with

different estimated total steps

Method

With an estimate

from workspace

size

With an estimate

from potential field

planning

Estimated total steps 26 15

Computational Time (ms) 7,017 1,763

Computer Memory Consumed

(bytes)
45,266,224 5,848,184

Method

With an estimate

from workspace

size

With an estimate

from potential field

planning

Estimated total steps 7 5

Computational Time (ms) 17 10

Computer Memory Consumed

(bytes)
 3,995,104 2,663,416

68

Table 5-8: Example 3 (A) Multigraph Network Planning Method Performance with

different estimated total steps

Method

With an estimate

from workspace

size

With an estimate

from potential field

planning

Estimated total steps 65 15

Computational Time (ms) 106,586 5,499

Computer Memory Consumed

(bytes)
165,504,464 30,105,440

Table 5-9: Example 3 (B) Multigraph Network Planning Method Performance with

different estimated total steps

Method

With an estimate

from workspace

size

With an estimate

from potential

field planning

Estimated total steps 65 16

Computational Time (ms) 174,472 8,752

Computer Memory Consumed

(bytes)
255,219,664 49,057,144

 The results show that for all the five examples using the Potential Field method

to estimate the total number of steps reduced the computational effort and memory

requirements for complex missions. As shown in Figure 5-10, when the percentage of

decreased estimation of total steps increased, the percentage of decreased computational

effort increased. In addition, this result was also influenced by the missions’ workspace

size on complexity of the mission requirements. Example 2 (B) did not save much total

estimated steps, but due to its complex mission, the computational time and memory were

both reduced.

69

For instance, in Example 2 (B), estimating with the Potential Field method saved

74.9% of the time used by the workspace size estimating method. When the number of

states in the Büchi Automaton was 17 and the workspace size was at 64 discrete cells

(Example 3 (A)), estimating with the Potential Field method saved 94.8% of the time

used by the workspace size estimating method. When the workspace size increased from

25 to 64 discrete cells and the number of states in the Büchi Automaton remained the

28.57

57.69

42.31

76.92 75.38

41.18

65.89

74.88

94.84 94.98

33.33

58.86

87.08

81.81 80.78

 -

 10.00

 20.00

 30.00

 40.00

 50.00

 60.00

 70.00

 80.00

 90.00

 100.00

Example 1 Example 2 (A) Example 2 (B) Example 3 (A) Example 3 (B)

P
er

ce
n

ta
g
e

(%
)

Example Index

Percentage of Estimated Total Steps and Computational Effort

Reduced by Using Estimation From Potential Field Planning

Estimated total steps Computational Time (ms) Computer Memory Consumed

Figure 5-10: Percentage of Estimated Total Steps and Computational Effort Decreased

by using Estimation from Potential Field Planning

70

same (from Example 2 (B) to Example 3 (B)), estimating with the Potential Field method

saved 95.0% of the time used by the workspace size estimating method.

 Computed memory was save using the estimate from Potential Field method. The

computer memory consumed by the Multigraph Network Planning method was reduced

by 87.1% (Example 2 (B)), 81.8% (Example 3 (A)), and 80.8% (Example 3 (B)) using

the estimation from the potential field planning method, comparing with the computer

memory consumed by using the estimation from workspace size method.

For more complex problems, the computer memory size used by the Potential

Field method had less influence on the overall computer memory consumed for path

planning. The total computational time and memory used to run the Potential Field

method and the Multigraph Network Planning method was evaluated. As shown in Figure

5-11, this two-step path planning saved much computational time and memory for the

large workspace and complex mission examples. Other than Example 1, computational

time was reduced for all the examples. Time was reduced up to 95% for Example 3 (A)

and 3 (B). Computer memory consumed by Example 1 and 2 (B) was increased. When

the size of workspace increased to 64 discrete cells, the two-step path planning method

saved more than 50% of the computer memory. This demonstrates that the two-step

planning method suits the missions involve large workspace.

71

According to Jun and Andrea [9], finding different paths for multiple UAV

mission can decrease the overall risk. Based on the results, we can conclude that using

the Potential Field method for estimating total steps in the Multigraph Network Planning

method is a good way to improve the method.

-484%

1%

-3%
68%

71%

-218%

59% 74%
95% 95%

-600%

-500%

-400%

-300%

-200%

-100%

0%

100%

Example 1 Example 2

(A)

Example 2

(B)

Example 3

(A)

Example 3

(B)

P
er

ce
n
ta

g
e

(%
)

Example Index

Percentage of Computational Time and Memory Reduced

by thte Two-step Planning from the Multigraph Network

Planning Method

Computer Memory Consumed Computational Time (ms)

Figure 5-11: Percentage of Computational Time and Memory Reduced by thte Two-step

Planning from the Multigraph Network Planning Method

72

 Conclusion and Future Work

This thesis compared four different path planning methods that use LTL for

missions with a list of mission requirements and known environmental specifications. By

using LTL, we were able to translate the high-level specifications and build a Büchi

Automaton. Based on the Büchi Automaton we can build a state machine diagram for a

single vehicle and then use it in the four path planning methods. All four methods were

capable of finding paths that fulfill the mission requirements under the given

environmental specifications.

The Potential Field method was the best method to find one of the shortest paths

for the mission with minimum computational effort and memory requirement.

Computational time required was very short and increased very slowly even with more

complex missions. Computer memory it consumed increased the least among the four

methods. It successfully found one shortest path for all the examples, except Example 2

(B) where the path found was one step longer than the shortest path’s length. Another

disadvantage of the method was that it was only able to find one shortest path.

The Critical Path method had the ability to find all shortest path and the

computational effort and memory requirement was low and steady. One disadvantage of

this method is that when we create the state machine diagram, we not only had to spend

time to modify the Büchi Automaton’s edges, but also need to make sure that the nodes

in the state machine created in such an order that a node shall not be created until all the

other nodes with outgoing edge connecting to this node have been created. The same

problem applies to the Multigraph Network Planning method.

73

The Multigraph Network Planning method was also able to find all the possible

paths with the shortest path length. The required computational time and memory grew

as the workspace size and mission requirements’ complexity increased. When a valid path

for the mission existed, this method could always find it. The disadvantage of this method

was that the required computational time and memory grew very fast especially when the

workspace size increased. This is because before we planned the path for the first time,

we did not know the least number of steps we would need. To find a valid path, we may

have had to use a rather large estimated total steps for this method. This caused the quick

growing in computational time and memory consumed. The Potential Field method was

a very good solution to this problem. For simple missions, running the Potential Field

method could add unnecessary computational time and memory. However, this extra step

of total step estimation saved much computational time and memory for the complex

missions like Example 3 (B). The next step for these the Multigraph Network Planning

method will be finding a way to estimate the total steps needed for a mission so that we

can plan paths for multiple vehicles.

The Random Walk method required the least programming effort. Nevertheless,

this method did not suit big workspace or complex mission requirements because of the

extensive computational time and memory required for this method to find the shortest

path. The next step for this method is to study how to balance between the path length

and the computational time and memory we are willing to spend for the number of the

random walk researches we use to find a valid path.

In conclusion, the Potential Field method and the Critical Path method are good

for quickly finding one shortest path for the mission. A trade-off analysis for these two

74

methods needs to be conducted in terms of path length requirements and computational

effort and memory requirement, and the number of paths required for the mission. If only

a very short path is required for the mission and computational effort and memory is

considered more important than the optimal path length, Potential Field method is better.

If it’s more important to find the optimal shortest path and multiple paths for a mission,

then the Critical Path method is better. The Multigraph Network Planning method is a

good method to look for all possible paths with predetermined path length but requires

high computational time and memory. The Random Walk method is not efficient in

solving this shortest path planning with dynamic obstacle problem. All the methods need

to be improved for mission requirements involving time constraints for the vehicles.

Other possible extensions to the work detailed in this thesis exist. An algorithm

that can translate the Büchi Automaton directly to state machine diagram will help

increase the path planning efficiency for all the path planning methods. It is also important

to improve the path planning methods so that they can conduct multiple vehicle path

planning. Continuous time path planning will provide more accurate path length and path

plan for fulfilling the missions successfully.

75

Appendix A

Example 2 (B) state machine diagram in text form

never { /* !((!x50)Ux22) && Fx22 && Fx44 && Fx11 && Fx14 */

T0_S1 : /* S1 */

 if

 :: (!x12) -> goto T0_S1

 :: (!x12 && x21) -> goto T0_S2

 :: (!x12 && x6) -> goto T0_S3

 :: (!x12 && x24) -> goto T0_S5

 :: (!x12 && x5) -> goto T0_S9

 fi;

T0_S2 : /* 1 */

 if

 :: (!x12) -> goto T0_S2

 :: (!x12 && x6) -> goto T0_S4

 :: (!x12 && x24) -> goto T0_S6

 :: (!x12 && x5) -> goto T0_S10

 fi;

T0_S3 : /* 2 */

 if

 :: (!x12) -> goto T0_S3

 :: (!x12 && x21) -> goto T0_S4

 :: (!x12 && x24) -> goto T0_S7

 :: (!x12 && x5) -> goto T0_S11

 fi;

T0_S4 : /* 3 */

 if

 :: (!x12) -> goto T0_S4

 :: (!x12 && x24) -> goto T0_S8

 :: (!x12 && x5) -> goto T0_S12

 fi;

T0_S5 : /* 4 */

 if

 :: (!x12) -> goto T0_S5

 :: (!x12 && x21) -> goto T0_S6

 :: (!x12 && x6) -> goto T0_S7

 :: (!x12 && x5) -> goto T0_S13

 fi;

T0_S6 : /* 5 */

 if

 :: (!x12) -> goto T0_S6

 :: (!x12 && x6) -> goto T0_S8

76

 :: (!x12 && x5) -> goto T0_S14

 fi;

T0_S7 : /* 6 */

 if

 :: (!x12) -> goto T0_S7

 :: (!x12 && x21) -> goto T0_S8

 :: (!x12 && x5) -> goto T0_S15

 fi;

T0_S8 : /* 7 */

 if

 :: (!x12) -> goto T0_S8

 :: (!x12 && x5) -> goto T0_S16

 fi;

T0_S9 : /* 8 */

 if

 :: (1) -> goto T0_S9

 :: (x21) -> goto T0_S10

 :: (x6) -> goto T0_S11

 :: (x24) -> goto T0_S13

 :: (x12) -> goto T1_S23

 fi;

T1_S23 : /* 9 */

 if

 :: (1) -> goto T1_S23

 :: (x21) -> goto T1_S22

 :: (x6) -> goto T1_S21

 :: (x24) -> goto T2_S19

 fi;

T1_S22 : /* 10 */

 if

 :: (1) -> goto T1_S22

 :: (x6) -> goto T1_S20

 :: (x24) -> goto T2_S18

 fi;

T1_S21 : /* 11 */

 if

 :: (1) -> goto T1_S21

 :: (x21) -> goto T1_S20

 :: (x24) -> goto T3_S17

 fi;

T1_S20 : /* 12 */

 if

 :: (1) -> goto T1_S20

 :: (x24) -> goto accept_all

 fi;

77

T2_S19 : /* 13 */

 if

 :: (1) -> goto T2_S19

 :: (x21) -> goto T2_S18

 :: (x6) -> goto T3_S17

 fi;

T2_S18 : /* 14 */

 if

 :: (1) -> goto T2_S18

 :: (x6) -> goto accept_all

 fi;

T3_S17 : /* 15 */

 if

 :: (1) -> goto T3_S17

 :: (x21) -> goto accept_all

 fi;

T0_S10 : /* 16 */

 if

 :: (1) -> goto T0_S10

 :: (x6) -> goto T0_S12

 :: (x24) -> goto T0_S14

 :: (x12) -> goto T1_S22

 fi;

T0_S11 : /* 17 */

 if

 :: (1) -> goto T0_S11

 :: (x21) -> goto T0_S12

 :: (x24) -> goto T0_S15

 :: (x12) -> goto T1_S21

 fi;

T0_S12 : /* 18 */

 if

 :: (1) -> goto T0_S12

 :: (x24) -> goto T0_S16

 :: (x12) -> goto T1_S20

 fi;

T0_S13 : /* 19 */

 if

 :: (1) -> goto T0_S13

 :: (x21) -> goto T0_S14

 :: (x6) -> goto T0_S15

 :: (x12) -> goto T2_S19

 fi;

T0_S14 : /* 20 */

 if

78

 :: (1) -> goto T0_S14

 :: (x6) -> goto T0_S16

 :: (x12) -> goto T2_S18

 fi;

T0_S15 : /* 21 */

 if

 :: (1) -> goto T0_S15

 :: (x21) -> goto T0_S16

 :: (x12) -> goto T3_S17

 fi;

T0_S16 : /* 22 */

 if

 :: (1) -> goto T0_S16

 :: (x12) -> goto accept_all

 fi;

accept_all : /* 23 */

 skip

}

79

Appendix B

Example 3 (A) state machine diagram in text form

never { /* !((!x51)Ux32) && Fx14 && Fx38 && Fx51 && Fx62 */

T0_S1 : /* S1 */

 if

 :: (!x32) -> goto T0_S1

 :: (!x32 && x62) -> goto T0_S2

 :: (!x32 && x38) -> goto T0_S3

 :: (!x32 && x14) -> goto T1_S5

 :: (!x32 && x51) -> goto T0_S9

 fi;

T0_S2 : /* S2 */

 if

 :: (!x32) -> goto T0_S2

 :: (!x32 && x38) -> goto T0_S4

 :: (!x32 && x14) -> goto T1_S6

 :: (!x32 && x51) -> goto T0_S10

 fi;

T0_S3: /* S3 */

 if

 :: (!x32) -> goto T0_S3

 :: (!x32 && x62) -> goto T0_S4

 :: (!x32 && x14) -> goto T2_S7

 :: (!x32 && x51) -> goto T0_S11

 fi;

T0_S4 : /* S4 */

 if

 :: (!x32) -> goto T0_S4

 :: (!x32 && x14) -> goto T2_S8

 :: (!x32 && x51) -> goto T0_S12

 fi;

T1_S5 : /* S5 */

 if

 :: (!x32) -> goto T1_S5

 :: (!x32 && x62) -> goto T1_S6

 :: (!x32 && x38) -> goto T2_S7

 :: (!x32 && x51) -> goto T1_S13

 fi;

T1_S6 : /* S6 */

 if

 :: (!x32) -> goto T1_S6

 :: (!x32 && x38) -> goto T2_S8

 :: (!x32 && x51) -> goto T1_S14

80

 fi;

T2_S7 : /* S7 */

 if

 :: (!x32) -> goto T2_S7

 :: (!x32 && x62) -> goto T2_S8

 :: (!x32 && x51) -> goto T3_S15

 fi;

T2_S8 : /* S8 */

 if

 :: (!x32) -> goto T2_S14

 :: (!x32 && x51) -> goto S16

 fi;

T0_S9 : /* S9 */

 if

 :: (1) -> goto T0_S9

 :: (x62) -> goto T0_S10

 :: (x38) -> goto T0_S11

 :: (x14) -> goto T1_S13

 fi;

T0_S10 : /* S10 */

 if

 :: (1) -> goto T0_S10

 :: (x38) -> goto T0_S12

 :: (x14) -> goto T1_S14

fi;

T0_S11 : /* S11 */

 if

 :: (1) -> goto T0_S11

 :: (x62) -> goto T0_S12

 :: (x14) -> goto T3_S15

fi;

T0_S12 : /* S12 */

 if

 :: (1) -> goto T0_S12

 :: (x14) -> goto S16

 fi;

T1_S13 : /* S13 */

 if

 :: (1) -> goto T1_S13

 :: (x62) -> goto T1_S14

 :: (x38) -> goto T3_S15

 fi;

T1_S14 : /* S14 */

 if

 :: (1) -> goto T1_S14

81

 :: (x38) -> goto S16

 fi;

T3_S15 : /* S15 */

 if

 :: (1) -> goto T3_S15

 :: (x62) -> goto S16

 fi;

S16 : /* S16 */ (accept all)

 skip

}

82

Bibliography

[1] K. P. Valavanis and G. J. Vachtsevanos, “Handbook of unmanned aerial

vehicles,” Handb. Unmanned Aer. Veh., pp. 1–3022, 2015.

[2] T. Amukele, P. M. Ness, A. A. R. Tobian, J. Boyd, and J. Street, “Drone

transportation of blood products,” Transfusion, vol. 57, no. 3, pp. 582–588, 2017.

[3] J. Reagan, “German Company Demonstrates _Lifeguard_ Drone -

DRONELIFE.” DRONELIFE, 2018.

[4] Kelsey D. Atherton, “NASA Sent A Drone Out To Track Hurricane Matthew.”

POPULAR SCIENCE, 2016.

[5] S. Mohammad Khansari-Zadeh and A. Billard, “A dynamical system approach to

realtime obstacle avoidance,” Auton. Robots, vol. 32, no. 4, pp. 433–454, 2012.

[6] G. C. S. Cruz and P. M. M. Encarnação, “Obstacle Avoidance for Unmanned

Aerial Vehicles,” J. Intell. Robot. Syst., vol. 65, no. 1–4, pp. 203–217, 2012.

[7] A. Ulusoy and C. Belta, “Receding horizon temporal logic control in dynamic

environments,” Int. J. Rob. Res., vol. 33, no. 12, pp. 1593–1607, 2014.

[8] A. Richards and J. P. How, “Aircraft trajectory planning with collision avoidance

using mixed integer linear programming,” Am. Control Conf., vol. 3, no. 2, pp.

1936–1941 vol.3, 2002.

[9] M. Jun and R. D. Andrea, “Path Planning for Unmanned Aerial Vehicles in

Uncertain and Adversarial Environment,” Coop. Control Model. Appl.

Algorithms, pp. 95–111, 2003.

[10] S. Koenig and M. Likhachev, “D* Lite,” Proc. Eighteenth Natl. Conf. Artif.

83

Intell., pp. 476–483, 2002.

[11] R. Jin, “Distance-Constraint Reachability Computation in Uncertain Graphs,”

VLDB - 37th Int. Conf. Very Large Data Bases, vol. 4, no. 9, pp. 551–562, 2011.

[12] E. M. Wolff, U. Topcu, and R. M. Murray, “Automaton-guided controller

synthesis for nonlinear systems with temporal logic,” Intell. Robot. Syst. (IROS),

2013 IEEE/RSJ Int. Conf., pp. 4332–4339, 2013.

[13] J. Shaffer, E. Carrillo, and H. Xu, “Receding Horizon Synthesis and Dynamic

Allocation of UAVs to Fight Fires,” pp. 1–8.

[14] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray, “TuLiP: A

Software Toolbox for Receding Horizon Temporal Logic Planning,” Proc. 14th

Int. Conf. Hybrid Syst. Comput. Control, pp. 313–314, 2011.

[15] Y. Zhou, D. Maity, and J. S. Baras, “Optimal mission planner with timed

temporal logic constraints,” 2015 Eur. Control Conf. ECC 2015, pp. 759–764,

2015.

[16] Y. Zhou, D. Maity, and J. S. Baras, “Timed automata approach for motion

planning using metric interval temporal logic,” 2016 Eur. Control Conf., pp.

690–695, 2016.

[17] D. Maity and J. S. Baras, “Motion planning in dynamic environments with

bounded time temporal logic specifications,” 2015 23rd Mediterr. Conf. Control

Autom., pp. 940–946, 2015.

[18] G. J. Holzmann, “The Model Checker,” Ieee Trans. Softw. Eng., vol. 23, no. 5,

pp. 279–295, 1997.

[19] P. Gastin and D. Oddoux, “Fast LTL to büchi automata translation,” Lect. Notes

84

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes

Bioinformatics), vol. 2102, no. 1, pp. 53–65, 2001.

[20] O. Khatib, “Real time obstacle avoidance for manipulators and mobile robots,”

Int. J. Robot. Res., vol. 5, no. 1, pp. 90–98, 1986.

[21] S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path planning,”

Robot. Autom. IEEE Trans., vol. 16, no. 5, pp. 615–620, 2000.

[22] S. L. Smith, T. Jana, C. Belta, and D. Rus, “Optimal path planning for

surveillance with temporal-logic constraints,” vol. 30, no. 14, pp. 1695–1708,

2011.

[23] O. Montiel, R. Sepúlveda, and U. Orozco-Rosas, “Optimal Path Planning

Generation for Mobile Robots using Parallel Evolutionary Artificial Potential

Field,” J. Intell. Robot. Syst., vol. 79, no. 2, pp. 237–257, 2015.

[24] E. Wallace, “Finite State Machine Designer,” 2010. [Online]. Available:

http://madebyevan.com/fsm/. [Accessed: 14-Feb-2018].

[25] W. Chen, X. Wu, and Y. Lu, “An improved path planning method based on

artificial potential field for a mobile robot,” Cybern. Inf. Technol., vol. 15, no. 2,

pp. 181–191, 2015.

[26] Beard, Daniel, DStarLiteJava source code, [Source code]. 2012

https://github.com/daniel-beard/DStarLiteJava

