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Abstract: Autonomous vehicles are expected to play a key role in rescue and 

transportation. Planning an optimal path with the minimum computational effort for 

these vehicles in their missions improves their efficiency and adds safety for the 

vehicles and third parties on the ground. The objective of this thesis is to study the 

computational effort of four planning methods that implement linear temporal logic 

(LTL) to translate the high-level mission requirements and environmental 

specifications. The Potential Field Method and the Critical Path method required less 
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computational effort to find one of the shortest paths for the mission The Multigraph 

Network Planning method and the Critical Path method can find all the possible paths 

with predetermined path length. The Random Walk method required more 

computational effort and memory compared to the other three methods.
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 Introduction 

1.1 Motivation 

Motion planning is an important problem in various areas such as robot 

navigation, driverless cars, robotic surgery, protein folding, and safety and accessibility 

in computer-aided architectural design. The research in this thesis is motivated by the 

problem of motion planning for unmanned aerial vehicles (UAV). 

 The idea of building flying machines was first conceived around 2,500 years ago 

in ancient Greece and China. In 425 BC, Archytas, known as Leonardo da Vinci of the 

Ancient World, built the first known autonomous mechanical bird, “the pigeon”, which 

is reported to be able to fly about 200 meters [1]. During the same era, the Chinese 

experimented different types of flying machines, such as hot air balloons, rockets, and 

kites. These machines were used both for entertainment and military. Historical records 

show that a “wooden hawk” was used for reconnaissance around 450 BC, and Ming 

Dynasty armies used a kite in the shape of a crow to bomb enemy positions [1]. Before 

the appearance of manned aviation in the late 1700s, these flying machines had already 

shown their potential in various areas. Around the time of First World War (1916), 

unmanned aircraft appeared. 

In recent years, autonomous robots have replaced a lot of people to do the “dull, 

dirty, and dangerous” work over the years. While autonomous on-land vehicles (self-

driving cars) have been used to improve our driving experience, unmanned aerial 

vehicles, have had many applications as well. Johns Hopkins researcher Timothy 

Amukele et al. [2] demonstrated that drones are safe for transportation of blood products 
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[2]. In Amukele’s experiment, his team not only showed that a drone could transfer blood 

samples in places like coastal Haiti after earthquake, where the land is rough, but 

waterways are clear, but also successfully tested that blood temperature would be kept in 

acceptable levels after 8 to 12 miles travelling at around 330 feet above the ground. 

Microdrones' demonstration with the German Lifeguard Association also showed that if 

a drone carries a self-inflating flotation device, it can help the swimmer float and give 

time to lifeguards to react [3]. Amukele’s study and Microdrones both showed that UAVs 

have the potential in helping save lives in emergency situations. 

In terms of reacting to industrial accidents or other dangerous situations, UAVs 

plays a more important role nowadays, such as radiation detecting for toxic leaks and 

tracking hurricanes. Dronemakers FlyCam UAV partnered with US Nuclear Corp., a 

radiation detection company, demonstrated that “The UAVs can be used to detect 

radiation leaks in nuclear power plants or flown into plumes of smoke from a burning 

building to give first responders immediate data about what kinds of hazards might be 

present. It can also be used for to monitor public events, sea ports or geographic areas to 

detect possible dirty radiological bombs or the use of chemical and biological agents.” 

NASA’s RQ-4 Global Hawk is built for watching disasters unfold. In 2016, NASA used 

the Global Hawk to drop expendable sensors to record temperatures, pressure, relative 

humidity, and wind speed and direction, and transfer the information to scientists to track 

Hurricane Matthew [4].  

UAVs with their ability to fly, has not only been used in those extreme 

environments, but also been used in our everyday life. It has taken roles such as inspection 

and monitoring in highly risky fields, surveying and mapping cities, condition survey in 
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civil engineering field, and imaging for HD films, videos, and HR photos. Both in military 

and civil operations, more and more complicated tasked are excepted to be done by 

UAVs. 

To accomplish the mission requirements, a UAV needs to maneuver from the 

initial position to the final targets, while avoiding both static and dynamic obstacles. 

Researchers have developed real-time obstacle avoidance approaches based on dynamical 

systems [5], potential fields [6], and receding horizon control [7]. However, these real-

time obstacle avoidance techniques cannot guarantee perfect obstacle avoidance, and 

their computational effort may be excessive when there are many moving obstacles. In 

addition, when the mission requirements include a list of targets for the UAV to reach, 

real-time obstacle avoidance techniques do not provide the means to yield a shortest path 

for the UAV to accomplish its mission using the least time and energy. To solve this 

problem, temporal logic has been used to express complex UAV missions.  

This thesis compares four different planning approaches that use linear temporal 

logic (LTL) to specify the mission requirements: The Multigraph Network Planning 

method, the Random Walk method, and the Potential Field method. It also presents the 

results of experiments conducted to compare the computational effort and solution quality 

of the planning approaches.  
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1.2 Problem Definitions 

This thesis focuses on finding a shortest path for unmanned vehicles under high-

level specifications in dynamic environment.  

Figure 1-1 shows an example of an UAV rescue mission. Site 1 is the base 

(starting point). Sites 2 – 6 for different locations where UAVs can land or possible 

mission area. Site 2 is a hospital. Site 3 is a food dropping point. Site 4 is an obstacle area 

where an earthquake took place and the weather can be very bad for flying according to 

the weather forecast. Also, there are patients waiting for pick-up in site 4. Site 5 and site 

6 both provide supplies for UAVs. There is a high mountain in the middle green area. 

Because of this mountain, UAVs cannot fly between site 1 and site 6 directly. UAVs shall 

go through site 2 or site 5 to avoid the mountain. The same thing applies to transportation 

between site 3 and site 4. In robot path planning, mission requirements are usually very 

high-level task with some subtasks. For example, requirements can be that the UAV shall 

Workspace 

Obstacle 

area 

Mountain 

Base/ 
Site 1 

Site 2 
Site 3 

Site 6 

Site 4 Site 5 

Figure 1-1: UAV fly in the workspace with obstacle area 
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go to site 3 to drop food, or the UAV shall go to the hospital to pick up nurses and doctors 

and send them to the area where an earthquake took place. Radar and other real-time 

technologies can help vehicles find the shortest path between two points, but we also want 

to find the shortest path that fulfills all the high-level requirements. Researchers have 

created different formulations and computational approaches to mathematically represent 

these high-level requirements, such as motion sequencing. In this thesis we will focus on 

(LTL) and Potential Field. Meanwhile, we also want to find a way to avoid all the 

obstacles that may present in the workspace. 

 

1.3 Organization 

This section provides an outline of the thesis. Chapter 1 starts why the UAV motion 

planning problem should be solved and problem definitions, which goes into more detail 

about the problem scenario and relevant assumptions. Chapter 2 is the literature review 

of previous work in UAV motion planning with temporal logic and potential field. 

Chapter 3 describes the four planning algorithms and how they generate solutions.  

Chapter 4 uses Example 1 to show detailed steps of the implementation, results, and 

computational effort of each method. Four other examples are also included. Chapter 5 

presents the analysis of 5 examples’ results and the recommendations based on the 

evaluation. Chapter 6 completes the discussion by providing conclusions and possible 

future work. 
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 Related Work 

This chapter reviews previous work in UAV motion planning using temporal logic 

and potential field - shortest path planning approaches, constraint reachability problem in 

path planning for nonlinear systems with temporal logic, and path planning with timing 

constraints in the mission requirements. 

 As the popularity of UAV increases, so do concerns about safety. The risk to 

people on the ground is related to the UAV path. Also, when it comes to rescuing after a 

disaster like an earthquake, time is very valuable. High-level motion planning for UAVs 

can help lower the risk for people on the path as well as the risk for UAVs by avoiding 

predictable weather changes and dangerous areas [1].  

 Numerous shortest path planning approaches have been proposed. 

Richards and How [8] used the mixed-integer linear program (MILP) to plan a trajectory 

with for discrete time steps multiple aircraft to reach multiple targets before a minimum 

required time and used a rectangular exclusion region around each aircraft to avoid the 

collision. Each aircraft was required to visit some points on the map, but the order of 

those visit was selected by the program for overall shortest flight time. This research did 

not consider the scenario when the obstacles like a bad weather area can move during the 

mission. Jun and Andrea [9] used sensors to build and adjust a probability map for 

obstacle avoiding. For path planning, Jun decomposed the region into uniform cells and 

then used the Bellman-Ford algorithm and the polygonal path to successfully find the 

shortest path for UAVs between two points. Jun also concluded that finding different 

paths for multiple UAV mission can decrease the overall risk. Another shortest path 

planning that solves dynamic obstacle problem is D* Lite. Koenig and Likhachev [10] 
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introduced D* Lite method, which applies Lifelong Planning A* to vehicle navigation. 

This method works very well in terms of avoiding dynamic obstacles. However, these 

approaches did not consider the scenario when the mission might have multiple targets 

and include requirements like visiting one target before the others. 

 Constraint reachability problem in path planning for nonlinear systems with 

temporal logic has also be researched. There were different elements that constraints 

reachability, such as distance-constrained reachability problem [11]. In path planning, 

when there were too many obstacles in the workspace, not all the mission required sites 

could be reached. Wolff et al. [12] found a feasible trajectory for a single UAV using a 

coarse abstraction of the system and an automation representing the temporal logic 

specification, including sampling-based methods for motion planning, reachable set 

computations for linear systems, and graph search for finite discrete systems. Shaffer et 

al. [13] also implemented LTL for high-level mission planner to reactively fight wildfire, 

using TuLiP [14]. This research also detected the minimum number of UAVs to complete 

its mission requirements by searching for a feasible trajectory. It was pointed out that “on 

an Intel i5-6500 CPU @ 3.20 GHz processor, this total process, approximately 250 

regions, took on the order of 8 hours for a system with 16 GB of RAM. Both papers did 

not look for an optimized solution. Also, computational time like 8 hours used by TuLiP 

to research for reachability may not be quick enough for large wildfire type of disaster. 

 Another important factor, timing constraints in the mission requirement, has also 

been addressed.  Zhou et al. [15] used metric temporal logic (MTL) to encode the task 

specifications with timing constraints and mixed integer linear program solver for the 

optimization problem. Then, in [16], Zhou et al. used a more direct approach to access 
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the time constraints – timed automata approach using metric interval temporal logic 

(MITL) using UPPAAL. On a computer with a 3.4GHz processor and 8GB memory, for 

workspace 16 and 64 locations and simple mission requirement, this approach ran very 

fast. Maity and Baras [17] extended LTL with bounded time to represent the bounded 

time high-level specification and generates a discrete path that met specifications with 

optimization. Sophisticated model checking tools such as SPIN Holzmann [18] was used 

to generate discrete robot paths.  

 Combining sensors and the use of LTL, Ulusoy and Belta [7] presented a 

controller that combines both offline high-level trajectory path plan and online receding 

horizon control for overall mission requirements which include temporal logic statement, 

prior known requests, dynamic requests that could be sensed only locally, and a servicing 

priority order over these dynamic requests. This controller had the advantage of 

computational efficiency. Ulusoy and Belta [7] also used LTL2BA tool 

(http://www.lsv.fr/~gastin/ltl2ba/index.php) [19] to obtain the Büchi automaton. 

However, the dynamic request might block the vehicle’s progress and some low-priority 

dynamic request might not be serviced due to the sensing range as the vehicle moves 

towards a higher-priority dynamic request. 

Artificial Potential Field (APF) is another method used in robot path planning. 

Khatib first introduced APF to robot real-time obstacle avoidance [20], and other 

improvements were made since then [21], [22]. Commonly, a particle representing the 

robot is under the influence of an APF, which is denoted by U. APF reflects the free space 

structure by identifying the local variation using potential function 𝑈𝑡𝑜𝑡𝑎𝑙 = 𝑈𝑎𝑡𝑡 + 𝑈𝑟𝑒𝑝, 

which is the sum of attractive potential and repulsive potential. Attractive potential pulls 
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the vehicle towards the target, while repulsive potential pushes the vehicle away from the 

obstacles [20] - [22].  

Compared to AI methods like Evolutionary Algorithms (EAs), the APF method 

was more efficient in known environments, according to Montiel et al. [23]. However, 

the APF method frequently failed due to local minima, and computational effort increases 

quickly when introducing real-world landscapes with enormous complexity. In addition, 

traditional APF was a local planning method that did not perform very well in terms of 

finding a global optimal path, which was also due to the local minimum problem. Montiel 

et al. [23] presented a Parallel Evolutionary Artificial Potential Field (PEAPF) to 

overcome the local minimum problem, where they used parallel evolutionary 

computation for finding dynamically the optimal ka and kr values for the attractive and 

repulsive proportional gains in Eq. 3.4.1.2 and 3.4.1.3. Montiel proved that PEAPF 

method ensured path optimization even in complex real-world sceneries with dynamic 

obstacles. However, the examples in [23] only had one target on the path. 

In conclusion, these existing approaches need improvement to solve high-level 

mission specifications and dynamic obstacles. Direct shortest path planning methods do 

not handle high-level mission requirements. Methods like D* Lite can avoid dynamic 

obstacles, but others cannot. Planning methods like MTL and LTL can express those 

high-level missions, but they tend to be very time consuming and grows exponentially 

as the mission becomes more complex. This is not good when we need to plan a path 

for emergency missions. To solve this problem, we need to find a method that can solve 

high-level mission requirements and dynamic obstacles, requiring less computational 

effort than existing methods. 
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 Planning Algorithms 

This chapter provides detailed explanation about the workspace representation, 

state machine diagram, the extended linear temporal logic (LTL) for environmental 

specifications, four planning algorithms, and how they generate solutions: The Multigraph 

Network Planning method, the Random Walk method, the Potential Field method, and 

the Critical Path method. 

 

 

3.1 Workspace Representation 

 The workspace, 𝒲, represents the whole space that is involved in the mission. 

We can partition the continuous workspace 𝒲 by dividing 𝒲 into small cells.  

 

X1 X2 

X5 X4 

X3 

X6 

𝑥4/ 𝑥5 

𝑥1/ 𝑥4 𝑥3/ 𝑥6 

𝑥2/ 𝑥3 𝑥1/ 𝑥2 

𝑥5/ 𝑥6 

𝑥1/ 𝑥5 

𝑥2/ 𝑥4 𝑥2/ 𝑥6 

𝑥3/ 𝑥5 

𝑥2/ 𝑥5 

Figure 3-1: Workspace Example. A workspace with 6 stations that vehicles 

can visit. X4 may be blocked by moving obstacles during certain period. 

Vehicles can move according to the actions between stations (i.e.x1, x2). 
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Let 𝑿 = {X1, 𝑋2, … , Xn} be a partition in the workspace. Figure 3-1 shows an 

example of the workspace. 𝒜  denotes the set of actions the vehicle can take in the 

workspace. 𝒜 = {𝑥1, 𝑥2, … , 𝑥𝑛}. Each action has its physical meaning, for example, 𝑥1 

means moving to the discrete cell space X1. The vehicle can be anywhere within the 

discrete cell space. We assume the vehicle always uses one step to perform one action.  

 

 

3.2 Extended LTL for Environmental Specifications 

Here we define a new operator to describe dynamic obstacles in the environment ¬[𝑡1,𝑡2]. 

This is an addition to the extended operators in [17]. 

 Definition 3.1.1: The extension of the LTL grammar is 𝜙 ∷=  ¬𝜙[𝑡1,   𝑡2] 

 𝑡1, 𝑡2 ∈ 𝒯, where 𝒯 is the maximum time in which vehicles shall fly within their 

physical constraints.  Note that ¬𝜙[𝑡0,   ∞) is equivalent to ¬𝜙, where 𝑡0 is starting time 

of 𝜎. 

 Definition 3.1.2: The semantics of ¬𝜙[𝑡1,   𝑡2] is defined as: 

 𝜎[1, 2, … ] ⊨ ¬𝑝[𝑡1,𝑡2]  

iff ∀ 𝑡, 𝑤ℎ𝑒𝑟𝑒 𝑡1 ≤ 𝑡 ≤ 𝑡2, 𝜎[𝑡1, 𝑡1 + 1, … , 𝑡2] ⊭ 𝑝,  

 This is very convenient for path planning because the mission predetermines when 

an obstacle area may have obstacles in there. 
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3.3 Problem Formulation 

To find the shortest path the fulfills the mission specifications under the 

environmental specifications for the dynamic obstacles, we assume that the information 

of workspace, the mission specifications for vehicles, and the environmental specification 

are all known. We also assume that it takes one step for a vehicle to move around its 

current location, as shown in Figure 3-2. We assume that each movement across cells the 

vehicle takes the same amount of time, which can be defined according to the various 

types and speed of the vehicles. The vehicle can be anywhere within the cell. The distance 

of the vehicle’s one step is not considered when finding the shortest path, as long as the 

distance is reachable by that vehicle’s velocity. Hence, in this thesis, the shortest path 

should contain the least number of steps in it. Note that researchers can also modify the 

algorithm to compare the distance or time of the vehicles’ shortest path. 

 

While the control methodologies developed in this research can be extended to 

three dimensions, it is assumed that the vehicle is moving on the same altitude (layer). 

In addition, we do not consider bounded time requirements for the vehicles. Time is 

counted using the number of steps and is only considered for obstacle avoiding 

Figure 3-2: Vehicles moving rules. The cell with red large confetti pattern 

represents obstacle area. 
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3.4 State Machine Diagram 

With each new action step, the vehicle will be in a set of states. For instance, a 

vehicle has only flown to X1 and then to X2 on its path, we define that when the vehicle 

was in X1, 𝑥1 = fly to X1, the vehicle was in state S1. S1 represents that the vehicle has 

only flown to X1. After the vehicle flew to X2,  𝑥2 = fly to  X2, the vehicle was 

transferred to state S2. S2 represents that vehicle has been to X1 and X2 in the workspace. 

If the vehicle returns to X1, it achieves a new state, this state represents that vehicle has 

been to X1, X2, and X1 again in the workspace. Combining all the possible states creates 

a State Machine Diagram, 𝒢𝑠𝑚: S, S = {S1, S2, … , Sk}.  

Let 𝒜𝑠𝑘
 (⊆ 𝒜) denote all the possible transition for a VEHICLE at state Sk to 

take in the state machine diagram.  𝒜𝑠𝑘
= {𝑥1, 𝑥2, 𝑥3, … , 𝑥𝑛} . 𝒜𝑠𝑘

 also follows the 

transition rules of 𝒲. 

LTL2BA tool (http://www.lsv.fr/~gastin/ltl2ba/index.php) [19] generates a Büchi 

Automaton ℬ𝒶 for the LTL rules specified. For all the four methods we researched, only 

the mission specifications were translated in to LTL and were used to create the Büchi 

Automaton. we reconstruct the State Machine Diagram based on Büchi Automaton. This 

thesis used Finite State Machine Designer (http://madebyevan.com/fsm/) [24] to draw the 

graph form state machine diagram. Note that !𝑥𝑛 means any action other than move to 

cell Xn. One (1) is the power set of the possible actions set by the state that are allowed 

to be taken for any number of times. The rules are as follows: 

http://www.lsv.fr/~gastin/ltl2ba/index.php
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• Create a dummy initial state “init” to represent the state when the vehicle 

is at rest. This is different from the “init” state in the Büchi Automaton 

• Based on the purpose of finding the shortest path, we assume that for any 

edge in the state machine diagram, when an action 𝑥𝑘 (𝑥𝑘 ∈ 𝒜𝑠𝑘
) is 

combined with ! 𝑥𝑛, ! 𝑥𝑛 means do not do 𝑥𝑛 and the end location of that 

edge shall be 𝑥𝑘.  

• Eliminate the edges that require more than one end location in the physical 

workspace. 

• When there is only ! 𝑥𝑛, it means that the vehicle can conduct any possible 

action from its current state other than cell Xn. This means the vehicle can 

go to any possible cell space that is reachable from its current cell space 

but cannot go to Xn in the next time unit.  

• One (1) means any singular action. For example, if 𝒜𝑠𝑘
=

{𝑥2, 𝑥3}, 𝑥2 && 𝑥3 is not allowed. Only ∅, 𝑥2, 𝑎𝑛𝑑 𝑥3 is allowed  

 

 

3.5 Overview – The Multigraph Network Planning 

 The overall approach of the Multigraph Network Planning is to use LTL to 

translate the high-level mission (user requirements) for the vehicles, to build a multigraph 

(network) for the workspace, 𝒲 , mission specifications, 𝜙 , and environmental 

specification, ℇ, and to find the shortest path that fulfills the requirements from the 

multigraph. 
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  Algorithm 1: Extended LTL 

 

Input: Workspace 𝒲 , global mission specification 𝜙 , environmental 

specifications ℰ for the dynamic obstacles ℰ 

 

Output: Shortest path 𝑆𝑃 that fulfills the global mission 𝜙 

          
1 Use 𝒲 to construct a graph 𝒢 to represent the workspace 

2 Use 𝒲 and ℰ to construct Büchi automaton, ℬ𝒶 

3 Translate ℬ𝒶 to a state machine diagram 𝒢𝑠𝑚 

4 Construct a Multigraph 𝒢𝑡𝑜𝑡 which has a subgraph for each state in the 𝒢𝑠𝑚 

5 Find the shortest path 𝑆𝑃 according to 𝒢𝑡𝑜𝑡’s accepting state subgraph incoming 

edges and time count 

 

3.5.1 Construct Multigraph  

Based on the workspace and the reconstructed state machine diagram, we can 

construct graphs 𝒢 and 𝒢𝑠𝑚. The next step is to construct subgraphs for each state (node) 

in 𝒢𝑠𝑚, based on 𝒢. The goal is to include time step into these graphs. We define the 

network of these subgraphs as a multigraph 𝒢𝑡𝑜𝑡. The total number of steps t used in 

Algorithm 2 is the estimated total steps needed to complete all the mission requirements. 

In this thesis, for the first time we test Multigraph Network Planning implementation, we 

assumed that all the mission requirements could have been completed sometime before 

the vehicle moved the one more step than the total number of discrete cells in the 

workspace. For instance, in a workspace partitioned into 25 discrete cells, we assume the 
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total number of step t is 26. Based on the complexity of mission requirements and the 

result of the first path planning result, researchers can adjust the value of t as needed.  

  Algorithm 2: Multigraph 𝒢𝑡𝑜𝑡 

 Input: Workspace graph 𝒢, state machine graph 𝒢𝑠𝑚, global mission 

specification 𝜙, environmental specifications ℰ for the dynamic obstacles 

 
1 t = the number of discrete cells in 𝒢 +1 // Assume the total number of steps is t 

 //Create subgraph for each state: 

2 Construct a set of vertices 𝑉1 for S1 in 𝒢𝑠𝑚 (appropriate x1, x2, …, xn n at step 1, 

2, 3…, t) 

3 Delete all vertices in 𝑉1 that violate ℰ 

4 Add edges according to the transition relationship in 𝒢 in 𝑉1 

5 Construct a set of vertices 𝑉2 for S2 in 𝒢𝑠𝑚 (appropriate x1, x2, …, xn n at step 1, 

2, 3…, t) 

6 Delete all vertices in 𝑉2 that violate ℰ 

7 Add edges according to the transition relationship in 𝒢 in 𝑉2 

8 For each edge e in 𝒢sm do 

9 

 

if e has a beginning vertex at S1 and ending vertex at S2 do 

10  Add an edge from 𝑉1 to e’s label in 𝑉2 

 Repeat line 4 - 10 to construct vertices and edges for all the states in 𝒢𝑠𝑚 

 

For each vertex in 𝒢𝑡𝑜𝑡 , it has a location ID, time, and state. In a multigraph, 

location ID can be repeated in each subgraph, but the combination of the location ID, 

time, and state, is unique. When construct vertices for one state (Algorithm 2, line 4), 
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include every discrete cell, except the cells that are the ending vertices of that state’s 

outgoing edges to other states.  Edges within a state’s subgraph follow the transition 

relationship in 𝒢 (Algorithm 2, line 5). Except for the initial vertex, all the vertices must 

have at least one incoming edge in order to have outgoing edges. For edges between 

different states’ subgraph, if 𝒢sm  has such an edge that connects the two states, the 

vertices in the beginning state’s subgraph can have an interstate edge to the ending state’s 

vertices that have the same location ID as the edge’s action (Algorithm 2, line 9-11). An 

edge can only connect vertices that have a time difference of 1. The beginning vertex’s 

time must be smaller than the ending vertex’s time (Algorithm 2, line 11). To make sure 

all the edges are created, building the state machine diagram requires that the state 

machine graph’s vertices are create in such an order that a node shall not be create until 

all incoming edges connecting to this node and the nodes where these incoming edges 

come from have been created. Otherwise, some interstate edges may not be created.  

 

3.5.2 Retrieve Shortest Path 

According to the state machine diagram 𝒢sm , we can easily determine the 

accepting state subgraph in the multigraph 𝒢𝑡𝑜𝑡 . Each vertex in the accepting state’s 

subgraph means all the mission specifications have been completed. Hence, the vertex 

with the shortest time in the accepting state’s subgraph is the ending vertex in the shortest 

path we are looking for. To find the shortest path, we can backtrack vertices in the 

incoming edges of the ending vertex. By repeating the backtracking step, we can find the 

entire shortest path. One advantage of this planning method is that we can easily find all 

the possible paths within the preset total number of steps in the multigraph. 
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3.6 Overview – The Random Walk Method 

The overall approach of the Random Walk method uses the idea of random walk 

to generate random paths. It uses the workspace information 𝒲, mission specifications 𝜙, 

and environment information ℰ to make a state machine diagram 𝒢𝑠𝑚 as in Multigraph 

Network Planning. Among the valid paths found by the random path generator and 

verified in the workspace according to the state machine diagram 𝒢𝑠𝑚, we can choose the 

shortest path. 

 

  Algorithm 3: StateMachineChecker (𝒢, 𝒢𝑠𝑚 , 𝜙, ℰ, 𝑓𝑟𝑜𝑚) 

 

Input: Workspace graph 𝒢  and state machine graph 𝒢𝑠𝑚 , global mission 

specification 𝜙, environmental specifications ℰ, initial location name from 

 
Output: Shortest path that fulfills the global mission, 𝑆𝑃 

1 StateMachineChecker (𝒢, 𝒢𝑠𝑚, 𝜙, ℰ, 𝑓𝑟𝑜𝑚): 

2 

 

Assign a cell in 𝒢 to be the initial location based on 𝑓𝑟𝑜𝑚 

3 

 

Add 𝑓𝑟𝑜𝑚 to the list of location names, onPath 

4 

 

Find the vertex f in 𝒢 with the location name 𝑓𝑟𝑜𝑚 

5 

 

CurrentState = the initial state 𝑆𝑖 in 𝒢𝑠𝑚  

6 

 

Call RandomWalker (Algorithm 5) for desired times to find the possible 

shortest path 

7  Find the shortest path by running this algorithm multiple times 

3.6.1 Random Walk  

 This RandomWalker Algorithm walks on the State Machine Diagram to ensure 

that the output path fulfills the global mission specification 𝜙. This is because that each 

location to where the vehicle moves follow the State 𝒢𝑠𝑚 according to 𝜙. The Algorithm 
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4 is the random action generator. The listActions is a list of actions the vehicle can 

undergo from its current location. The listEdgeGsm is a list of edges from the vehicle’s 

current state in the state machine diagram. The action generated by Algorithm belongs to 

both the listActions and the listEdgeGsm. 

 

Algorithm 4: randomAction (𝒢, 𝒢𝑠𝑚, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒, 𝑓𝑟𝑜𝑚) 

Input: Workspace graph 𝒢 and state machine graph 𝒢𝑠𝑚, current state (CurrentState), 

initial action from 

Output: random action, 𝑥𝑐 

randomAction (𝒢, 𝒢𝑠𝑚, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒, 𝑓𝑟𝑜𝑚): 

1 listActions = from.getOutgoingEdgeLabel() 

 // find all the possible actions the vehicle can take after action from 

2 listEdgeGsm = all the valid edges from CurrentState 

3 Randomly choose 𝑥𝑐 from listEdgeGsm’s labels 

4 while (𝑥𝑐 is not in listActions) do 

5  Randomly choose another 𝑥𝑐 from listEdgeGsm’s labels 

6 Return 𝑥𝑐 

 

We record the state 𝑆𝑘 of the vehicle for each action it takes (𝑥𝑛 ∈  𝒜𝑆𝑘
). When 

it reaches the accepting state, the program has found a path, where 𝑝𝑎𝑡ℎ ⊨ 𝜙. For each 

𝑥𝑛, the algorithm checks it against the environmental specifications ℰ. If 𝑥𝑛 violates ℰ, 

we will take another random action where 𝑥𝑛 (∈ 𝒜𝑆𝑘
). 

  
Algorithm 5: RandomWalker (𝑓𝑟𝑜𝑚, 𝑆𝑃): 

 
Input: initial action from, previous Shortest path that fulfills the global mission, 𝑆𝑃 

 Output: Shortest path that fulfills the global mission, 𝑆𝑃 

1  RandomWalker (𝑓𝑟𝑜𝑚, 𝑆𝑃): 
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2  Add 𝑓𝑟𝑜𝑚 to onPath 

3  if  𝑓𝑟𝑜𝑚 violate ℰ 

4   
Obs = true // Obs is Boolean to record whether 𝑓𝑟𝑜𝑚 hit the 

obstacle 

5  else 

6   Obs = false 

7  Remove 𝑓𝑟𝑜𝑚 to onPath 

8  if current state is the same as accepting state in 𝒢𝑠𝑚 && Obs ==false do 

9   if the verified path = null 

10    onPath is the current shortest path, 𝑆𝑃 

11    CurrentState = the initial state 𝑆𝑖 

12   else 

13    Compare the length of onPath and 𝑆𝑃 

14    𝑆𝑃 = the path with shorter length 

15    Reset onPath with only the starting cell X1 

16    Return 𝑆𝑃 

17  else 

18   randomAction 𝑥𝐶 (∈ 𝒜𝑆𝑖
) (Algorithm 4) 

   // 𝑥𝑐 is any random label of the edges from 𝑓𝑟𝑜𝑚 to 𝐶 

19   Repeat line 3-7 to check 𝑥𝐶 

20   If Obs ==true 

21    Obs = false; 

22    return RandomWalker(the last action 𝑥𝑛 on onPath, 𝑆𝑃); 

23   else 

24    Obs ==false 

25   If 𝑥𝐶 cause a change in state based on 𝒢𝑠𝑚 from 𝑆𝑖 

27    Set the current state to the new state, 𝑆𝑗 

28    Add 𝐶 to onPath 

29  Return RandomWalker(𝐶, 𝑆𝑃) 

 



 

21 

 

3.6.2 Finding shortest path and Pros & Cons 

 With the random walk algorithm, the computer makes random choices resulting 

in verified paths with varying lengths. Each time we find a path that fulfills all the mission 

requirements under the environment specifications, we say that this path is our potential 

shortest path 𝑆𝑃. We can run the random walk search algorithm many times and update 

𝑆𝑃 with shorter verified onPath. 

The biggest advantage of this approach is the minimum programming effort. It 

does not require a Multigraph for each state. Hence it does not require extensive 

programming time to identify a path that fulfills all the mission requirements under the 

given environment specifications.   

The randomization means it is possible for the vehicle to have a minimal amount 

of random walk searchers; however, since the vehicle is programmed randomly, it may 

end up taking excessive steps to find its verified path. The worst case is that during one 

random walk search, the computer may never find a verified path before StackOverflow 

Error (for Java). Therefore, as 𝒢 and 𝜙 get larger, it is more likely to take more random 

walk searches to find the shortest path. 

 

3.7 Overview – The Potential Field Method 

Comparing to the Random Walk method, the Potential Field method uses the 

potential field to guide the vehicle instead of total random walk. It uses the workspace 

information 𝒲, mission specifications 𝜙, and environment information ℰ to make a state 

machine diagram 𝒢𝑠𝑚  as in Multigraph Network Planning. In addition, we add the 
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potential field to the 𝒢𝑠𝑚 . Like Random Walk method, we have a path generator to 

generate and verify paths in the workspace according to the state machine diagram 𝒢𝑠𝑚. 

When the generator chooses which action to take, the discrete cells with larger total force 

have higher priority than the cells with smaller total force. Among the verified paths, we 

can find the shortest path. Ge and Cui in [21] defined that the total force, 𝐹𝑡𝑜𝑡𝑎𝑙(𝑞), which 

is applied to the vehicle, is the sum of the attractive force 𝐹𝑎𝑡𝑡 and the repulsive force 𝐹𝑟𝑒𝑝. 

 

3.7.1 Create Potential Field 

 The Potential Field method uses Algorithm 5 to find the potential shortest path, 

but in line 18, instead of Algorithm 4, Algorithm 6 is used to find listG, a list of vertices 

around the current location with Potential Field information. Based on [25] and [23], we 

need to define a coordinate system for cells in the workspace. In this thesis, we define the 

coordinate system as shown in Figure 3-3. The increment is based on the x-axes and y-

axes. We always set the starting location as X10. 0 is the y-axis value and 1 is the x-axis 

value. Because we assumed that the vehicle can move to any cell along the blue arrows 

in one step, we do not consider the velocity of the vehicle or actual distance between the 

cells. If it takes one step to move to the next cell in the x-axis direction, that cell is X20. 
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If it takes one step to move to the next cell in the y-axis direction, that cell is X11. If it 

goes both on the x-axis and y-axis positive direction, that  cell is X21. 

 

Based on the attractive and repulsive force equation in [23], we can calculate 

potential field 𝑈𝑡𝑜𝑡𝑎𝑙(𝑞) for a vehicle q, in our coordinate system, q = (x, y). 

𝑈𝑡𝑜𝑡𝑎𝑙(𝑞) = 𝑈𝑎𝑡𝑡(𝑞) + 𝑈𝑟𝑒𝑝(𝑞)               (Eq. 3.4.1.1) 

𝑈𝑎𝑡𝑡(𝑞) =
1

2
𝑘𝑎(𝑞 − 𝑞𝑓)

2
                          (Eq. 3.4.1.2) 

𝑈𝑟𝑒𝑝(𝑞) = {
1

2
𝑘𝑟 (

1

𝜌
−

1

𝜌0
)

2

  𝑖𝑓 𝜌 ≤ 𝜌0

0                            𝑖𝑓 𝜌 > 𝜌0

   (Eq. 3.4.1.3) 

 In Eq. 3.4.1.1, the potential field 𝑈𝑡𝑜𝑡𝑎𝑙(𝑞) comprises two terms, the attractive 

potential function 𝑈𝑎𝑡𝑡(𝑞) (Eq. 3.4.1.2), and the repulsive potential function 𝑈𝑟𝑒𝑝(𝑞) 

(Eq.3.4.1.3). The start position q0 is the vehicle’s current position, qf is the target position, 

X10 X20 

X21 X11 

X30 

X31 

𝑥11/𝑥21 

𝑥10/ 𝑥11 𝑥30/ 𝑥31 

𝑥20/ 𝑥30 𝑥10/ 𝑥20 

𝑥21/ 𝑥31 

𝑥10/ 𝑥21 

𝑥20/ 𝑥11 𝑥20/ 𝑥31 

𝑥30/ 𝑥21 

𝑥20/ 𝑥21 

Figure 3-3: Workspace example (Example 1) for State Machine Diagram Potential 

Field Planning with coordinates. X10, where 0 is the y-axis value and 1 is the x-

axis value. 
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and 𝑘𝑎 and 𝑘𝑟 are scalar variables.  The obstacles have their position 𝑂1, … , 𝑂𝑛, and the 

limited distance of influence of the potential field 𝜌0. If the vehicle is further away than 

𝜌0, the obstacle does not influence the vehicle’s current path plan. The value 𝜌 is the 

shortest distance from the vehicle to the obstacle. Velocity is not considered in this thesis. 

In this listG, the next action 𝑥𝑐 is to where the potential field has the total force 𝐹𝑡𝑜𝑡𝑎𝑙(𝑞). 

As mentioned earlier, the total force, 𝐹𝑡𝑜𝑡𝑎𝑙(𝑞) is the sum of the attractive force 

𝐹𝑎𝑡𝑡 and the repulsive force 𝐹𝑟𝑒𝑝: 

𝐹𝑡𝑜𝑡𝑎𝑙(𝑞) = 𝐹𝑎𝑡𝑡 + 𝐹𝑟𝑒𝑝                         (Eq. 3.4.1.4) 

             𝐹𝑎𝑡𝑡 = −∇𝑈𝑎𝑡𝑡 = 𝑘𝑎(𝑞𝑓 − 𝑞)               (Eq. 3.4.1.5) 

              𝐹𝑟𝑒𝑝(𝑞) = −∇𝑈𝑎𝑡𝑡 

           = {
𝑘𝑟 (

1

𝜌
−

1

𝜌0
) ∗ (

1

𝜌2) ∗ ∇𝜌  𝑖𝑓𝜌 ≤ 𝜌0 

0                                            𝑖𝑓 𝜌 > 𝜌0

  (Eq. 3.4.1.6) 

 According to the Eq. 3.4.1.5, the attractive force 𝐹𝑎𝑡𝑡  is a negative gradient 

function of the attractive field and converges to zero as the robot approaches the target. 

According to Khatib [20], ∇𝜌 =  
𝜕𝜌

𝜕𝑞
, denotes the partial derivative vector of the distance 

from the vehicle to the obstacle.  

𝜕𝜌

𝜕𝑞
= [ 

𝜕𝜌

𝜕𝑥
  

𝜕𝜌

𝜕𝑦
]

𝑇

                                         (Eq. 3.4.1.6) 

 

3.7.2 Finding the shortest path 

Since one mission may have multiple mission requirements, and there can be a 

sequence of requirements about which target to visit first, the targets in the potential field 
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change according to the state machine diagram, current location of the vehicle, and the 

current state of the vehicle and the appearance of any dynamic obstacles. To find the 

shortest path, the goal is to transit from the initial state to the end state with the least 

amount of transition. Therefore, we need a potential field for each state. The targets of 

each state’s potential field are the labels of that state’s outgoing edges. Meanwhile, the 

environmental specifications apply to each state. Therefore, based on the current time of 

the path, the obstacles may create a different repulsive force on the vehicle. 

For the discrete cells in the workspace that are far away from the targets or 

obstacles, they should not be set to normal. The affecting ranges of targets and obstacles 

depend on the problem. The value normal is a score set by the researcher depending on 

the size of the problem. It should be relatively higher than the attraction scores but lower 

than repulsive scores. 

In addition, it will not be efficient to calculate potential field for the whole 

workspace for each step the vehicle takes, especially if the workspace has more than 9 

discrete cells in the workspace. This is because the discrete cells do not have an impact 

on the vehicle’s path plan if the discrete cells are beyond the reach of the vehicle from its 

current location. Therefore, in Algorithm 6, we only calculate potential field for the 

discrete cells that the vehicle can physically move to in the next step. In line 8, Uatt 

calculates the attractive force using Eq. 3.4.1.5, and in line 10 Urep calculates the 

repulsive force using Eq. 3.4.1.6. 
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Algorithm 6: PotentialField (𝒢, 𝒢𝑠𝑚 , 𝑐𝑢𝑟𝑟𝑒𝑛𝑡𝑙𝑜𝑐, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒, 𝑡𝑖𝑚𝑒, ℰ) 

Input: Workspace graph 𝒢 and state machine graph, 𝒢𝑠𝑚, current location, currentloc, 

current state, CurrentState, current time, time, environmental specifications, ℰ 

Output: listG, list of vertices around current location with Potential Field information 

PotentialField (𝒢, 𝒢𝑠𝑚, 𝐶𝑢𝑟𝑟𝑒𝑛𝑡𝑆𝑡𝑎𝑡𝑒, 𝑓𝑟𝑜𝑚): 

1 listG  currentloc.getOutgoingEdge().getTo()  // for each outgoing edge of 

currentloc 

 // Find all the possible physical cells where the vehicle can reach in one step 

from its current location 

2 listEdgeGsm  𝒢𝑠𝑚.findVertexByState(CurrentState) 

 // find all the possible edges from CurrentState in 𝒢𝑠𝑚 

3 list   edge.getLable() // for each edge in listEdgeGsm  get its label 

4 For each Vertex v in listG do 

5  v.setScore(normal) // Set scores to normal when movement to theta 

cell does not lead to another state 

6  For each edge e in listEdgeGsm 

7   If e links two different state in 𝒢𝑠𝑚 

8   score  Uatt(v, e.getLabel())  // Uatt is attractive potential 

9   If v.getScore()>score then v.setScore(score) 

10  v.setScore(-1*v.getScore() + Urep(v))  // Urep is repulsive potential 

11  For each vertex 𝑥 in listG  

12  if 𝑥 ∉ list then remove 𝑥 

13 Return listG 

 

Algorithm 7 calculates an attractive potential score 𝑎𝑡𝑡, which will be further 

processed in Algorithm 6 for the correct direction pointing to the target. 
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Algorithm 7: Uatt(v, e.getLabel())  

Input: Vehicle current location’s name v, target vertex (target action for the vehicle to 

take) e.getLabel() 

Output: Negative attractive potential 𝑎𝑡𝑡 

Uatt(v, e.getLabel()): 

1 Obtain coordinates of the vehicle current location: x1, y1 

2 Obtain coordinates of the vehicle’s target: x2, y2 

3 𝑘𝑎 1 

4 att = 0.5*ka*((𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2) 

5 Return 𝑎𝑡𝑡 

 

Algorithm 8 calculates a repulsive potential force 𝑟𝑒𝑝, which is used in Algorithm 

7 for the total potential force. 

Algorithm 8: Urep (v, e.getLabel())  

Input: Vehicle current location’s name v, vertex with obstacle area alert, 

e.getLabel() 

Output: Repulsive force 𝑟𝑒𝑝 

Urep(v, e.getLabel()): 

1 Obtain coordinates of the vehicle current location: x1, y1 

2 𝑘𝑟 1, 𝜌0  2 

3 for each obstacle area 𝑂𝑛 do (n =1, 2, 3…)  

4  if the obstacle area is in alert do 

5  Obtain coordinates of the obstacle area: x2, y2 

6  𝜌 sqrt (((𝑥2 − 𝑥1)2 + (𝑦2 − 𝑦1)2) 

7  If 𝜌 < 𝜌0 do 

8  
𝐹𝑟𝑒𝑝𝑛 = 0.5 ∗ 𝑘𝑟 ∗ (

1

𝜌
−

1

𝜌0
) ∗ (

1

𝜌
)

2

(n =1, 2, 3…) 

9  else 

10  𝐹𝑟𝑒𝑝𝑛 = 0.0 (n =1, 2, 3…) 

11 𝑟𝑒𝑝 = ∑𝐹𝑟𝑒𝑝𝑛 (n =1, 2, 3…) 

12 Return 𝑟𝑒𝑝 
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3.8 Overview – Critical Path Method 

Like the combination of the state machine diagram and the potential field path 

planning method, the Critical Path method combines the state machine diagram with D* 

Lite. Koenig and Likhachev [10] presented D* Lite method and demonstrated that this 

method can plan paths for robots in an unknown environment with dynamic obstacles. 

This Critical Path method uses Java code written by Beard [25] in DStarLiteJava 

(https://github.com/daniel-beard/DStarLiteJava) to obtain the shortest path between two 

cells in the workspace. The state machine diagram guides the vehicle to move in the 

way that fulfills the mission requirements and environmental specifications. 

 

3.8.1 D* Lite 

According to Koenig and Likhachev [10], D* Lite repeatedly calculates the 

shortest path from its current location to the target, based on the dynamic obstacle 

information. Therefore, based on the given dynamic obstacle information, when the 

vehicle reaches a new state in the state machine diagram, D* Lite can plan a shortest 

path to the next state based on the current time and dynamic obstacle information. D* 

Lite also allows us to set permanent obstacles in the workspace. The Critical Path 

method used this feature to set the boundary of the workspace and permanent obstacles 

that exist in the mission. 

Based on Beard’s code [26], we use the x and y axes coordinate system that is 

also used in the Potential Field method, where the workspace’s most bottom left cell is 

X10. And we assume that the vehicle always starts from X10, as shown in Figure 3-4. 
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To set the boundary of the workspace, we assume that for each mission, there are 

permanent obstacles are the cells around the workspace in the coordinate system with 

the block color. Orange and brown colored cells are involved in the mission 

requirements. Brown colored cell means that the target needs to be visited in a certain 

order. Red large confetti pattern means these areas may have obstacles at certain time 

according to the environmental specifications. 

 

An example of D* Lite implementation using the workspace of Example 2 (B) 

(Section 4.3) is shown in Figure 3-5 and Figure 3-6 for understanding the planning 

algorithm. The vehicle planned its path X6, X7, X8, X4, and X5, where X6 was the 

target cell for the state S3, and X5 was the target cell for the state S18 in Figure 4-13. 

However, when the vehicle reached X8, by checking the dynamic obstacle information 

Figure 3-4: Coordinate system for the Critical Path System 
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from the environmental specifications, it realizes that during the next step, an obstacle 

may show up in X4. Hence, D* Lite planned a new path as shown in Figure 3-6. 

 

 

Figure 3-5: Original path from S3 to S18 (X6 to X5) planned when 

the vehicle arrived at X6 

Figure 3-6: Updated path from S3 to S18 planned when the vehicle 

detected an obstacle in X4 
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3.8.2 Find the Shortest Path on the State Machine Diagram 

The use of the state machine diagram is to guide the vehicle to fulfill the mission 

requirements by reaching the accepting state. To find the shortest path from the initial 

state to the accepting state, we need to know the cost (path length) of each edge in the 

state machine diagram. However, unlike the traditional path planning problem, for 

example, the state S5 from Example 1 in Figure 3-7, its arrival time may vary 

depending on which state the vehicle comes from and where the vehicle comes from in 

the physical workspace. In Figure 3-7, we define that a state has its arrival time, 𝑡𝑖𝑗𝑘 …, 

where i, j, k, …, records the previous state the vehicle has been to.  

Unlike traditional path planning problem that requires path planning in the 

physical workspace, each edge in the state machine diagram have multiple cost. This is 

because there may be different ways to arrive at the state in the physical workspace and 

Figure 3-7: State machine diagram of Example 1 
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hence different ways to transit to the next state. For state S5, the vehicle may come from 

X3 or X2, resulting two arrival time 𝑡25 and 𝑡35. Furthermore, because the arrival 

locations in S5 are different, when we calculate the arrival time for S6, when cannot 

pick the smaller arrival time in S5. Because in the physical workspace, the arrival time 

of X2 may be different from the arrival time of X3, and the paths from X2 to X4 and 

from X3 to X4 will be different. One thing to notice here is that maybe 

𝑡25 is small than 𝑡35, that does not conclude that 𝑡256 will also be small than 𝑡356. 

Therefore, from S5 to S6, we will have two different arrival time 𝑡256 and 𝑡356. To find 

the shortest path from the initial state to the state S6, we need to compare 𝑡256, 𝑡356, and 

𝑡246.  

Algorithm 9 calculates all the states’ arrival time and paths between the states. 

HashMap is used as the output for retrieving the path. Algorithm 9 requires that the 

state machine graph’s nodes are created in such an order that a node shall not be created 

until all its predecessors have been created. Because when we use D* Lite to plan the 

path for an edge, the starting time of the path is required for dynamic obstacle 

avoidance. When planning a path for a state’s outgoing edge, all of that state’s incoming 

edges’ information is required. 

 

Algorithm 9: CriticalPathPlan (v, e.getLabel())  

Input: Workspace graph 𝒢  and state machine graph 𝒢𝑠𝑚 , current time, time, 

environmental specifications ℰ 

Output: Update HashMap list, which include the transition relationships between each 

pair of connecting state and the arrival time of the ending state;  

Update HashMap map, which records the shortest paths in the physical 

workspace for each transition between connecting states in list 
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CriticalPathPlan (v, e.getLabel()): 

1 for each node v in 𝒢𝑠𝑚 do 

2  if the node is the initial state in 𝒢𝑠𝑚 do  

3  Record v’s arrival information to a HashMap origins (arrival 

information includes: physical starting cells name (x00, a dummy 

node), state name (init), and starting time as the value (n/a, because 

this is a dummy node) as the key in origins, and the arrival time to 

v (0, dummy time) as the value to the key) 

4  Add 𝒢𝑠𝑚  starting and ending node state name – init to S1, path 

starting and target cell name (X00 to X10), and total path cost (1) 

as a key in HashMap and vehicle path in the workspace (go from 

X00 to X10) as the key’s value to map 

5  else 

6  for each incoming edge eIn of the node v, do 

7  if e’s starting node preV has only one incoming edge do 

8  Record v’s arrival information to a HashMap origins 

(physical starting cells name, state name, and starting time 

as the value as the key in origins, and the arrival time 

arrivalTime (cost of eIn) to v as the value to the key) 

9  else 

10  for each incoming edge preE of preV do 

11  if there is only 1 vehicle path in the workspace for eIn 

12  Record v’s arrival information to a HashMap 

origins. arrivalTime = length of preE + length of 

eIn - 1 

13  else  

14  For each vehicle path p in the workspace for eIn 

do  

15  if eIn’s starting location in workspace == 

p’s ending location in workspace, do  

16  Record v’s arrival information to a 

HashMap origins. arrivalTime = cost 

of preE + cost of p -1 

17  For each arrival information key, k, in the origins do 

18  Obtain coordinates of the vehicle starting location: x1, y1 

19  For each outgoing edge eOut do 

20  Obtain coordinates of the vehicle’s target: x2, y2 
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21  Add obstacles in the workspace based on the state 

machine diagram 𝒢𝑠𝑚  and the environmental 

specifications ℰ 

22  Use D* Lite to plan a path from (x1, y1) to (x2, y2), path 

23  Total path length for path from original starting point = 

origns.get(k)+(path.size()-1) 

24  Record path in e 

25  Add transition information to list ( 𝒢𝑠𝑚 starting and 

ending node state name – preV to v, and path starting and 

target cell name as the key in list, and path length 

calculated by D* Lite as the value of the key) 

26  Add 𝒢𝑠𝑚 starting and ending node state name –preV to v, 

path starting and target cell name, and total path cost (1) 

to v as a key in HashMap and vehicle path in the 

workspace as the key’s value to map 

 

To find the shortest path, simple start from the smallest arrival time of the 

accepting state and retrieve the whole path based on the arrival time and physical 

locations of the vehicle in its previous states. One thing to notice here is that one state 

may have multiple incoming edges but the target location of some of these edges may 

be the same. When retrieving the whole path, we should not only check one state’s 

direct incoming edges, but also which state this incoming edge is from. 
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 Implementation and Results 

While the algorithms are applicable to myriad vehicle types, this research 

recorded the movements of unmanned aerial vehicles (UAV). This chapter shows 5 

examples of UAV missions that implement the linear temporal logic (LTL) and four 

planning methods, the Multigraph Network Planning method, the Random Walk 

method, and the Potential Field method and the Critical Path method. The programs 

were run on an Intel CORE i5-3337U processor @ 1.8 GHz. The system had 256MB of 

RAM. In the experiment, most of the time the Random Walk method took much longer 

to find a path that had the same length as the other two method’s results. Because more 

random walk searches would eventually yield a more optimized path, this thesis 

compares random walk searches up to 100,000 times for any complex examples using 

the Random Walk method and use that result to compare with other path planning 

methods.  

 

 

4.1 Example 1 

 A UAV shall complete its mission requirements in the workspace shown in Figure 

4-1. The UAV starts from Site X1. One environmental specification is that Site X4 may 

have several storms from step 4 to 5. Mission requirements included: 

1. Go to X3 to drop food. 

2. Go to X4 to pick up patients. 

3. Before the UAV goes to X4, the UAV must go to X2 to pick up a nurse. 
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4.1.1 Workspace Representation 

As shown in Figure 4-1, the workspace had been partitioned into 6 rectangular, 

X1, X2, X3, X4, X5, and X6. The UAV could move forward, backward, diagonally, or 

stay at the same discrete cell. Figure 4-2 shows the transitional relationship in the form 

of a linked list.  

The goal was to find the shortest path 𝑆𝑃  for a UAV so that it fulfilled the 

operation goals. In this example, the vehicle shall start from X1. Because it needed time 

to take off, we assumed that it took one step to finish taking off at X1. Then, the vehicle 

shall visit X2 before it can visit X4. And the vehicle shall visit X3 and X4 at least once 

on its path. In addition, X4 will not be available at step 4 to 5. LTL cannot directly express 

all the operation rules as stated in Section 1.1.3 due to the explicit time specification. 

X1 X2 

X5 X4 

X3 

X6 

𝑥4/ 𝑥5 

𝑥1/ 𝑥4 𝑥3/ 𝑥6 

𝑥2/ 𝑥3 𝑥1/ 𝑥2 

𝑥5/ 𝑥6 

𝑥1/ 𝑥5 

𝑥2/ 𝑥4 𝑥2/ 𝑥6 

𝑥3/ 𝑥5 

𝑥2/ 𝑥5 

Figure 4-1: Example 1 workspace. A workspace with 6 stations that UAVs 

can visit. X4 may be blocked by moving obstacles during certain period. 

UAVs can fly according to the actions between stations (i.e. x1, x2, and x3). 
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Hence, this specification was expressed using the extended LTL according to Maity and 

Baras [17]. 

 

Figure 4-2: Edge between each discrete cell representation by the linked list 

Using the extended LTL to translate the mission requirements 𝜙1, there were three 

LTL rules, and one extended LTL rule for the dynamic obstacles.  

• x2 B x4      

• F x3  

• F x4 

• !x4[4,5] – Extended LTL 

4.1.2 Linear Temporal Logic to State Machine Diagram 

According to the physical constraints given in Figure 4-2, we could reconstruct 

the State Machine Diagram based on the original Büchi Automaton. LTL2BA tool 

developed by Gastin and Oddoux [19] (http://www.lsv.fr/~gastin/ltl2ba/index.php) 

created the Büchi Automaton for the first three LTL rules in Figure 4-3 and Figure 4-4. 

http://www.lsv.fr/~gastin/ltl2ba/index.php
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Figure 4-3: Example 1 Büchi Automaton 

Figure 4-4: Büchi Automaton Transition Relationship 
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Note that !x4 meant any action other than move to the cell X4. One (1) was the 

power set of the possible actions set from the state are allowed to be taken for any number 

of times. The translation steps were as follows: 

• Create a dummy initial state “init” to represent the state when the vehicle is at 

rest. This is different from the “init” state in the Büchi Automaton 

• Based on the purpose of finding the shortest path, we assume that for any edge in 

the state machine diagram, when an action 𝑥𝑘 (𝑥𝑘 ∈ 𝒜𝑠𝑘
) is combined with ! 𝑥𝑛, 

! 𝑥𝑛 means do not do 𝑥𝑛 and the end location of that edge shall be 𝑥𝑘. 

• Eliminate the edges that require more than one end location in the physical 

workspace.  

• When there is only !x4, it means the UAV can conduct any possible action from 

its current state other than x4. This means the UAV can go to any possible cell space that 

is reachable from its current cell space but cannot go to X4 in the next step.  

• One (1) means the all the singular action. For example, if 𝒜𝑠 = {𝑥2, 𝑥3}, x2 && 

x3 is not allowed. Only ∅, 𝑥2, 𝑎𝑛𝑑 𝑥3 is allowed. 

As shown in Figure 4-5 the Büchi automaton was translated into a state machine 

diagram. 
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4.1.3 The Multigraph Network Planning Implementation 

This section shows how example implements the Multigraph Network Planning 

algorithm. Figure 4-6 is a simplified Multigraph for this problem. Each node was named 

as “X#, #”. The first “X#” represents the physical discrete cell, and the second number is 

the time. All the nodes in the accepting state (S6) in 𝒢𝑠𝑚 connects to the END node. To 

promote a clearer understanding of Multigraph and finding a potential shortest path, 

Figure 4-6 does not show all the nodes created in this approach for all the steps and 

locations. 

Figure 4-5: Example 1 State Machine Diagram 
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Figure 4-6 𝒢𝑡𝑜𝑡, Graph combing time and state machine diagram 
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As shown in Figure 4-6, node X3, 5 connected to the END node and it had the 

smallest number of steps used. Therefore, the shortest path ended at cell X3, 5. Following 

the incoming edges, the program could retrieve the rest of the path. For example, from 

X3, 5, the previous step could be either X2, 4 or X5, 4. Randomly pick one of the cells 

could yield one of the shortest paths. Retrieving all the possible combinations could yield 

all the possible paths with the smallest number of steps.  

 One of the shortest paths found using Multigraph Network Planning for Example 

1 is X1, X2, X4, X2, X3. The computational time was 16 ms, and the program used 

3,995,104 bytes of memory. 

 

4.1.4 The Random Walk Method Implementation 

 

4.1.4.1 Workspace Representation and State Machine Diagram 

 The workspace representation, the Büchi Automaton, and the state machine 

diagram are the same as in  

 

4.1.4.2 Find the Shortest Path 

 Random Walk method does not generate the best result every time. Nevertheless, 

as the program conducted more random walk searches, it was more likely to generate a 

potential shortest path with short path length, comparing to Multigraph Network 

Planning’s results. In this experiment, we tested the program with 50 random walk 

searches. Figure 4-7 shows the shortest path we found in this experiment is 5, which is 
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the same as the Multigraph Network Planning method’s result. The shortest path found 

was X1, X2, X4, X5, X3. The computational time used was 38 ms, and the program 

consumed 20,659,896 bytes of memory. 

 

4.1.5 The Potential Field Method Implementation 

 To build the potential field around the UAV, we assigned coordinates to each cell. 

As shown in Figure 4-8, The step distance was calculated based on the coordinates of the 

current UAV location and the targets. The state machine diagram was the same as Figure 

4-5 in Section 4.1.2, except the labels changed according to the new names of each 

discrete cell in the workspace using the coordinate system. This applies to all the other 

examples as well. 
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Figure 4-7: Example 1 Potential Shortest Path Length Changing Over 50 Random 
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The shortest path found was X1, X2, X4, X2, X3 (X10, X20, X11, X20, X30). 

The computational time was 44 ms, and the program used 20,667,808 bytes of memory 

for 10 iterations of searches. 

 

4.1.6 The Critical Path Method Implementation 

This implementation method was explained in Section 3.8.2. The shortest path 

found by this method was X1, X2, X3, X2, X4. The computational time was 29 ms, and 

the program used 19,328,560 bytes of memory 

 

4.2 Example 2 (A) 

 Example 2 has a workspace partitioned into 25 discrete cells (5 rows of 5 cells). 

In Example 2, the mission requirements included: 

X10 X20 

X21 X11 

X30 

X31 

𝑥11/𝑥21 

𝑥10/ 𝑥11 𝑥30/ 𝑥31 

𝑥20/ 𝑥30 𝑥10/ 𝑥20 

𝑥21/ 𝑥31 

𝑥10/ 𝑥21 

𝑥20/ 𝑥11 𝑥20/ 𝑥31 

𝑥30/ 𝑥21 

𝑥20/ 𝑥21 

Figure 4-8: Example 1 workspace with coordinate system 
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•  The UAV shall visit X6, X12, and X24 at least once on its path. 

• The UAV shall visit X5 before it goes to X12. 

The environmental specification was that X4 have obstacles from step 4 to 5. 

 

Figure 4-9 Example 2 Workspace. The transition relationship in Example 2 is that the 

UAV can move to up and down, left and right, and diagonally. 

 Hence, we can get mission requirements, 𝜙2 , and one extended LTL 

specifications for the dynamic obstacles, as below: 

• !((!x5) U x12)  

• Fx12 && Fx24 && Fx6 

• !x4[4,5] – Extended LTL 
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Figure 4-10 Example 2 (A) - Büchi Automaton. Refer to GIF file Figure 4-10 for a 

better view of this figure 
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LTL2BA tool (http://www.lsv.fr/~gastin/ltl2ba/index.php) [19] generated a Büchi 

Automaton for the first four LTL rules in Figure 4-10. Figure 4-11 is the State Machine 

Diagram drawn based on Figure 4-10 using [24]. Results of each method are shown in 

Table 4-1. The paths were shown using the workspace without coordinate system. 

 

Figure 4-11 Example 2 (A) - State Machine Diagram 

http://www.lsv.fr/~gastin/ltl2ba/index.php
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Table 4-1: Example 2 (A) Result sample 

 Shortest Path Path Length Computational Effort 

Multigraph 

Network 

Planning 

X1, X6, X2, X8, 

X9, X5, X9, X8, 

X12, X18, X24 

11 Total execution time: 979 ms 

Used 35,450,240 memory 

Random 

Walk 

method 

X1, X6, X1, X7, 

X8, X3, X4, X5, 

X4, X8, X12, X18, 

X24,  

[205, 193, 58, 51, 

38, 36, 20, 17, 14, 

13] 

Total execution time: 47,556 

ms 

Used memory 51,541,792 

after 100,000 random walk 

searches 

Potential 

Field 

method 

X1, X6, X2, X3, 

X9, X5, X9, X13, 

X12, X18, X24 

11 Total execution time: 34 ms 

Used memory 20,659,592 

bytes after 10 random walk 

searches 

Critical 

Path 

method 

X1, X6, X7, X8, 

X9, X5, X9, X8, 

X12, X18, X24 

11 Total execution time: 34 ms 

Used memory 20,660,008 

bytes 

 

 

4.3 Example 2 (B) 

Example 2 (B) had a workspace partitioned into 25 discrete cells (5 rows of 5 

cells). In Example 2 (B), the mission requirements included: 
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• The UAV shall visit X6, X12, X21, and X24 at least once on its path. 

• The UAV shall visit X5 before it is able to go to X12. 

The environmental specification included: 

• X18 and X19 will have obstacles from time step 6 to 10. 

• X4 will have obstacles from time step 6 to 12. 

Therefore, we could translate the mission requirements 𝜙4  and environmental 

specifications into extended LTL form as follows: 

• F x6 && F x12 && F x21 && F x24 

• x5 B x12      

• !x4[6,12]  

• !x18[6,10] && !x19[6,10] 

Figure 4-12 is a representation of the workspace for example 2 (B). Using mission 

requirements, 𝜙4 , LTL2BA tool (http://www.lsv.fr/~gastin/ltl2ba/index.php) [19] 

generated a Büchi Automaton for the first four LTL rules. Then, we construct the state 

machine diagram [24] accordingly. The state machine diagram and Büchi Automaton are 

Figure 4-12:Example 2 (B) workspace 

http://www.lsv.fr/~gastin/ltl2ba/index.php
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shown in Figure 4-13 and Figure 4-14. The paths were shown using the workspace 

without coordinate system. 

 

Figure 4-13: Example 2 (B) - State Machine Diagram. Labels of the edges are shown in 

Appendix A in text form. 
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Figure 4-14: Example 2 (B) - Büchi Automaton. Refer to GIF file Figure 4-14 for a better view of this figure 
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Table 4-1 records all the results. The paths were shown using the workspace 

without coordinate system. 

Table 4-2: Example 2 (B) Result sample 

 Shortest Path Path Length Computational Effort 

Multigraph 

Network 

Planning 

X1, X6, X2, X3, X4, 

X5, X9, X13, X17, 

X21, X16, X12, X18, 

X24 

14 Total execution time: 7,017 

ms 

Used memory 45,266,224 

bytes 

Random Walk 

method 

X1, X7, X6, X7, X13, 

X9, X5, X4, X3, X7, 

X12, X16, X12, X18, 

X24 

[72, 70, 62, 

59, 43, 34, 

32, 31, 22, 

21, 19, 17, 

15] 

Total execution time: 

91,711 ms 

Used memory 120,292,640 

bytes after 100,000 bytes 

random walk searches 

Potential 

Field method 

X1, X6, X11, X16, 

X21, X22, X23, X24, 

X18, X14, X10, X5, 

X9, X13, X12 

[16, 15] Total execution time: 44 ms 

Used 24,655,760 bytes 

memory for 10 random 

walk searches 

Critical Path 

method 

X1, X6, X7, X3, X4, 

X5, X9, X8, X12, X16, 

X21, X22, X23, X24 

14 Total execution time: 99 ms 

Used 29,981,744 bytes 

memory  
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4.4 Example 3 (A) 

 Example 3 (A) had a workspace partitioned into 64 discrete cells (8 rows of 8 

cells). In Example 3 (A), the mission requirements included: 

• The UAV shall visit X14, X38, X51, and X62 at least once on its path. 

• The UAV shall visit X51 before it is able to go to X32. 

The environmental specification included: 

• X4, X12, and X20 will have obstacles from time step 10 to 20. 

• X34 will have obstacles from time step 6 to 12. 

• X55 will have obstacles from time step 16 to 22. 

Therefore, we could translate the mission requirements 𝜙3  and environmental 

specifications into extended LTL form as follows: 

• F x14 && F x38 && F x51 && F x62 

• x51 B x32      

• !x4[10,20] && !x12[10,20] && !x20[10,20] 

• !x34[6,12] 

• !x55[16,22] 
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 Using mission requirements, 𝜙3 , LTL2BA tool 

(http://www.lsv.fr/~gastin/ltl2ba/index.php) [19] generated a Büchi Automaton for the 

first four LTL rules in Figure 4-16. Then, we generated the state machine diagram 

accordingly, as shown in Figure 4-17 using [24]. Table 4-3 records all the results. The 

paths were shown using the workspace without coordinate system. 

 

 

 

 

Figure 4-15: Example 3 (A) and (B) workspace 

representation 

http://www.lsv.fr/~gastin/ltl2ba/index.php
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Figure 4-16: Example 3 (A) Büchi Automaton. Refer to GIF file Figure 4-16 for a better view of this figure
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Table 4-3: Example 3 (A) Result Sample 

 Shortest Path Path Length Computational Effort 

Multigraph 

Network 

Planning 

X1, X2, X11, X4, X13, X14, 

X21, X29, X38, X45, X53, 

X62, X53, X44, X51 

15 Total execution time: 

106,586 ms  

Used memory 

165,504,464 bytes 

Figure 4-17: Example 3 (A) - State Machine Diagram. Labels of the edges are 

shown in Appendix B in text form. 
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Random 

Walk 

method 

X1, X2, X3, X12, X5, X14, 

X22, X29, X38, X46, X53, 

X62, X53, X60, X52, X51 

[207, 157, 

110, 104, 

81, 64, 42, 

36, 29, 28, 

27, 16] 

Total execution time: 

376,385 ms 

Used memory 90,835,976 

bytes after 100,000 

iterations 

Potential 

Field 

method 

X1, X10, X11, X12, X13, 

X14, X22, X30, X38, X46, 

X54, X62, X53, X52, X51 

[15] Total execution time: 35 

ms 

Used 23,323,800 bytes 

memory for 10 times of 

search 

Critical 

Path 

method 

X1, X2, X3, X12, X13, X14, 

X22, X30, X38, X46, X54, 

X62, X61, X52, X51 

15 Total execution time:83 

ms 

Used memory 25,986,432 

bytes 

 

 

4.5 Example 3 (B) 

 Example 3 (B) had a workspace partitioned into 64 discrete cells (8 rows of 8 

cells) as Example 3 (A). In Example 3 (B), the mission requirements included: 

• The UAV shall visit X14, X38, X51, and X62 at least once on its path. 

• The UAV shall visit X32 before it is able to go to X51. 

The environmental specifications are the same as Example 3 (A), which includes: 
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• X4, X12, and X20 will have obstacles from time step 10 to 20. 

• X34 will have obstacles from time step 6 to 12. 

• X55 will have obstacles from time step 16 to 22. 

Therefore, we could translate the mission requirements 𝜙4  and environmental 

specifications into extended LTL form as following: 

• F x14 && F x38 && F x51 && F x62 

• X83 B X 51      

• !x4[10,20] && !x12[10,20] && !x20[10,20] 

• !x34[6,12] 

• !x55[16,22] 

For evaluation purpose, Example 3 (B) had the same workspace as Example 3 

(A). Also, the mission requirements of Example 3 (B) was the same as Example 2 (B)  

except with different names for the discrete cells and how they locate in the workspace. 

Therefore, we had the same the Büchi Automaton and the state machine diagram as 

Example 2 (B) except the name of the labels. Table 4-4 records all the results. The paths 

were shown using the workspace without coordinate system. 

 

Table 4-4: Example 3 (B) Results 

 Shortest Path Path Length Computational Effort 

Multigraph 

Network 

Planning 

X1, X2, X11, X4, X5, X14, 

X23, X32, X31, X38, X45, 

X53, X62, X53, X44, X51 

16 Total execution time: 

178,224 ms  
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Used 255,219,664 bytes 

memory 

Random 

Walk 

method 

X1, X10, X2, X3, X12, X5, 

X13, X22, X31, X38, X31, 

X39, X47, X48, X40, X32, 

X31, X32, X39, X46, X53, 

X52, X61, X62 

[245, 99, 

80, 63, 49, 

46, 41, 29, 

26, 24] 

Total execution time: 

587,014 ms 

Used 73,334,496 bytes 

memory after 100,000 

iterations 

Potential 

Field 

method 

X1, X10, X3, X4, X5, X14, 

X23, X32, X39, X38, X46, 

X54, X62, X61, X52, X51 

[16] Total execution time: 48 

ms 

Used 24,654,768 bytes 

memory for 10 times of 

search 

Critical 

Path 

method 

X1, X2, X3, X12, X13, X14, 

X23, X32, X31, X38, X45, 

X44, X51, X52, X61, X62 

16 Total execution time: 92 

ms 

Used 33,984,648 bytes 

memory  
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 Evaluation 

This chapter evaluates the four path planning methods based on their performance 

in Chapter 4. Multigraph Network Planning was used to find all the possible paths within 

the estimated number of steps. Therefore, if the Multigraph Network Planning method 

yielded a valid shortest path, we considered that path length to be the shortest path length 

we could find for that example. As mentioned in Chapter 4, although more random walk 

searches gave a more optimized path, we r ran random walk searches up to 100,000 times 

for any complex example in this thesis and used that result to compare with other path 

planning methods. Another reason for this is discussed in Section 5.2. For the Potential 

Field method, it was not very likely to happen that within the cells the vehicle could move 

from its current location because there were no more than two cells that had the same 

potential force. Hence, there were not as many different paths that could be generated by 

this method. Based on the experiment, we found that for all the examples except Example 

2 (B), potential filed path searches that were run up to 10 times could find a path that had 

the same path length as the Multigraph Network Planning method’s result. 

 

 

5.1 Computational time, computer memory consumed, and the length of potential 

shortest path found by each approach 

 

Based on the results in Section 4.1 – 4.4, we can analyze how the number of states 

in Büchi Automaton affects the computational time, computer memory consumed, and 

the length of potential shortest path found by each approach. The size of the workspace 
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can increase the size of the multigraph and the number of moving direction choices in 

path planning. The number of states in the Büchi Automaton increases exponentially as 

the number of LTL requirements increases based on the mission requirements.  

Table 5-1: Workspace and Büchi Automaton Comparison between Examples 

 

  

Number of discrete 

cells 

Number of states in Büchi 

Automaton 

Example 1 6 7 

Example 2 (A) 25 13 

Example 2 (B) 25 23 

Example 3 (A) 64 17 

Example 3 (B) 64 23 
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In Table 5-1 and Figure 5-1, Example 2 (A)/(B) and Example 3 (A)/(B) had the 

same number of discrete cells in their workspace – 25 and 64 respectively. Example 2 (B) 

has more states in the Büchi Automaton than Example 2 (A) has. Example 3 (B) has more 

states in the Büchi Automaton than Example 3 (A) has. Example 2 (B) and Example 3 

(B) have the same number of states in the Büchi Automaton. Different mission 

requirements and obstacle areas in the workspace result in different shortest path planned 

for each example. 

Table 5-2: Length of Potential Shortest Path Found by Each Approach (Steps) 

  

Multigraph 

Network 

Planning 

Random Walk 

method 

(100,000 

searches) 

Potential Field 

method (10 

searches) 

Critical Path 

Method 

Example 1 5 5 6 5 

Example 2 

(A) 11 13 11 11 

Example 2 

(B) 14 15 15 14 

Example 3 

(A) 15 16 15 15 

Example 3 

(B) 16 24 16 16 
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 Table 5-2: Length of Potential Shortest Path Found by Each Approach Table 5-2 

and Figure 5-2 show that the Multigraph Network Planning method and the Critical 

Path method found the shortest path for all the examples. The Potential Field found the 

shortest path for all examples except Example 2 (B). This was caused by the physical 

location of each target. When a connecting state’s target was very close to the vehicle’s 

current location, that target location had very high attractive potential to get the vehicle 

move towards it first, even though moving toward that target might have cost more 

steps in the path due to dynamic obstacles. On the other hand, the Random Walk 

method’s path length increased when the workspace size and number of states in the 

Büchi Automaton increased.  
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Figure 5-2: Length of Potential Shortest Path Found by Each Approach 
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Table 5-3: Computational Time (ms)  

 

Multigraph 

Network 

Planning 

Random Walk 

method 

(100,000 

searches) 

Potential Field 

method (10 

searches) 

Critical 

Path 

Method 

Example 1 
                 17                    34                 44                29  

Example 2 (A) 
               979             47,556                 34                59  

Example 2 (B) 
            7,017             91,711                 50                99  

Example 3 (A) 
        106,586           376,385                 35                83  

Example 3 (B) 
        174,472           587,014                 48                92  
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Figure 5-3:Computational Time (ms) of 5 Examples 
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As shown in Table 5-3 and Figure 5-3, when the workspace size was small and 

there were not many mission requirements, as in Example 1, all four methods had similar 

short computational time to find the shortest path(below 60 ms). The computational time 

of the Multigraph Network Planning method and the Random Walk method both 

increased much faster than the Potential Field method did. As the workspace size and 

number of states in the Büchi Automaton increased the Multigraph Network Planning 

method required less time than the Random Walk method did in all the examples. The 

Potential Field method had the overall best performance in computational time for all of 

the examples. There was a very small change in computational time when the mission 

requirements became more complex (i.e. from Example 1 to Example 3 (A)). The longest 

time finding the shortest path took by the Potential Field method was 50 ms for Example 

3 (B), which was much shorter than the Multigraph Network Planning method or the 

Random Walk method did. The Critical Path method used the second shortest 

computational time to find shortest paths for all the examples. The computational time it 

took was steady and very close to the time used by the Potential Field method. The longest 

time it used was 99 ms for Example 2 (B). For the more complex missions among the 

five examples, Example 2 (B) and Example 3 (B) required the longer time than Example 

2 (A) and Example 3 (A).  

 The workspace size varies in different examples. When the size of workspace 

increased from 25 to 64 discrete cells (from Example 2 (B) to Example 3 (B)) and the 

number of states in the Büchi Automaton remained at 23, the Multigraph Network 

Planning method’s computational time increased 24.8 times, the Random Walk (100,000 

searches) method’s computational time increased 6.4 times, and the Potential Field (10 
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searches) method and the Critical method almost used the same amount of time. When 

the number of states in the Büchi Automaton increased from 13 to 23 (from Example 2 

(A) to Example 2 (B)) and the workspace size remained at 25 discrete cells, the 

Multigraph Network Planning method’s computational time increased 7.2 times, the 

Random Walk (100,000 searches) method’s computational time increased 1.9 times, the 

Potential Field (10 searches) method’s computational time increased 1.5 times, and the 

Critical Path method’s computational time increased by 1.7 times.  

The number of states in the Büchi Automaton also varies in different examples. 

When the number of states in the Büchi Automaton increased from 17 to 23 (from 

Example 3 (A) to Example 3 (B)) and the workspace size remained at 64 discrete cells, 

the Multigraph Network Planning method’s computational time increased 1.6 times, the 

Random Walk (100,000 searches) method’s computational time increased 1.6 times, the 

Potential Field (10 searches) method’s computational time increased 1.4 times, and the 

Critical Path method’s computational time increased by 1.1 times. The workspace size 

had a bigger influence on the computational time than the number of mission 

requirements for the Multigraph Network Planning method. 
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Table 5-4: Computer Memory Consumed (bytes) 

 
Multigraph 

Network 

Planning 

Random Walk 

method (100,000 

searches) 

Potential Field 

method (10 

searches) 

Critical Path 

Method 

Example 1 3,995,104 3,995,104 20,661,408 20,667,808 

Example 2 

(A) 
35,450,240 

35,450,240 51,541,792 20,659,592 

Example 2 

(B) 
29,565,104 

45,266,224 120,292,640 24,655,760 

Example 3 

(A) 
165,504,464 

165,504,464 90,835,976 23,323,800 

Example 3 

(B) 
255,219,664 

255,219,664 73,334,496 24,654,768 
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 The computer memory consume by each method was calculated when running 

the java code on Eclipse Java Oxygen, using Java Runtime class’s methods: 

Runtime.getRuntime().totalMemory()-Runtime.getRuntime().freeMemory(). Table 5-4 

and Figure 5-4 show that when the workspace was small and there are not many 

mission requirements, as in Example 1, all four methods consumed computer memory, 

and the Multigraph Network Planning method performed much better than the two other 

methods. Except the Random Walk method, the computer memory consumed by the 

three other methods all increased as the workspace size and the number of states in the 

Büchi Automaton increased. The Multigraph Network Planning method required more 

computer memory than the Potential Field method and the Critical method did. For 

Although the Random Walk method’s computer memory consumption was less than the 

Multigraph method, and the path it found was longer than the other methods. In 

addition, because the paths were randomly chosen, each time we ran the program could 

result in very different computer memory consumption depending on how fast we were 

able to find a shorter path. Example 2 (B) required more memory than any other 

examples using the Random Walk method. This may be caused by extreme long paths 

found by the program during the path planning. Regarding computer memory, the 

Potential Field method was the best method to find one valid path with the shortest path 

length. It required the lease computer memory. The Critical Path method requires a little 

more memory than the Potential Field method but was much better than the Multigraph 

Network Planning method and the Random Walk method. 

Overall, we can see a general trend that as the workspace size and the number of 

states in the Büchi Automaton increases, the computational time, the computer memory 
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consumed, and the length of the potential shortest path found by each approach all tend 

to increase. Although the Critical Path method performed not as well as the Potential 

Field method, it consistently performed in all aspects and was able to find all the shortest 

paths for all the example with the best quality of path length. Potential Field method also 

had steady performance. However, due to the algorithm it used to find paths, the physical 

location of the targets in the mission may influence the quality of the path length this 

method could planned. The Multigraph Network Planning method performed well for the 

small workspace and could find all the possible shortest paths. The Random Walk method 

required less programming effort, but it performed poorly compared with the other 

methods. 

 

 

5.2 Random Walk Method Path Length Evaluation 

The Random Walk method used extensive computational time and memory for 

all the examples, yet the paths generated were not optimized for most examples. 

Therefore, we investigated how the potential shortest path length changed as the computer 

conducted more random walk searches. 
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Figure 5-5 shows that the path length yield by the Random Walk method 

decreased quickly during the first 50 random walk searches and then reached the 

optimized shortest path for a simple mission like Example 1. On the other hand, Figure 

5-6 to Figure 5-9 all demonstrated that after the first 64 random walk searches, the path 

length decreased very slowly. For future research, the researcher can step up criteria on 

how to balance between the path length and the computational effort.  
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5.3 Improve Multigraph Network Planning method 

One advantage of the Multigraph Network Planning method is that this method 

provides all possible paths that fulfill the mission requirements under the given 

environmental specifications. For future research, we may want multiple vehicles to 

operate on the same mission to increase the possibility of success. Therefore, it would be 

helpful to know all the possible paths with the shortest path length. 

According to the results in Section 5.1, the total estimated steps for the Multigraph 

Network Planning method was critical for the method’s performance. The reason for this 

is that the workspace size had the most influence on performance, and workspace size 

directly affected the estimated total steps we used in the method. To find at least one valid 

path, our estimated total steps were much bigger than the actual shortest path length. 

Therefore, we need to find a way to better estimate the total steps. The Potential Field 

method can be a good solution. This method aims to find one shortest path and had very 

good performance in terms of computational time. The Potential Field method could 

provide a good estimation of the total steps for creating the multigraph, and then using 

the Multigraph Network Planning method could help find all the valid shortest paths. 

Combining two methods, we have a two-step path planning method that worked more 

efficient for complex missions. Table 5-5 to Table 5-7 show that the performance of the 

Multigraph Network Planning method is better using the path length generated by the 

Potential Field method for complex examples like Example 2 (B), Example 3 (A), and 3 

(B).  



 

67 

 

Table 5-5: Example 1 Multigraph Network Planning Method Performance with 

different estimated total steps 

 

Table 5-6: Example 2 (A) Multigraph Network Planning Method Performance with 

different estimated total steps 

Method 

With an estimate 

from workspace 

size 

With an estimate 

from potential field 

planning 

Estimated total steps  26   11  

Computational Time (ms)  1,073   366  

Computer Memory Consumed 

(bytes) 
 35,450,240  14,584,984  

 

Table 5-7: Example 2 (B) Multigraph Network Planning Method Performance with 

different estimated total steps 

Method 

With an estimate 

from workspace 

size 

With an estimate 

from potential field 

planning 

Estimated total steps 26 15 

Computational Time (ms) 7,017 1,763 

Computer Memory Consumed 

(bytes) 
45,266,224 5,848,184 

Method 

With an estimate 

from workspace 

size 

With an estimate 

from potential field 

planning 

Estimated total steps  7   5  

Computational Time (ms)  17   10  

Computer Memory Consumed 

(bytes) 
 3,995,104   2,663,416  
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Table 5-8: Example 3 (A) Multigraph Network Planning Method Performance with 

different estimated total steps 

Method 

With an estimate 

from workspace 

size 

With an estimate 

from potential field 

planning 

Estimated total steps  65   15  

Computational Time (ms)  106,586   5,499  

Computer Memory Consumed 

(bytes) 
165,504,464  30,105,440  

 

Table 5-9: Example 3 (B) Multigraph Network Planning Method Performance with 

different estimated total steps 

Method 

With an estimate 

from workspace 

size 

With an estimate 

from potential 

field planning 

Estimated total steps  65   16  

Computational Time (ms)  174,472   8,752  

Computer Memory Consumed 

(bytes) 
255,219,664  49,057,144  

 

 The results show that for all the five examples using the Potential Field method 

to estimate the total number of steps reduced the computational effort and memory 

requirements for complex missions. As shown in Figure 5-10, when the percentage of 

decreased estimation of total steps increased, the percentage of decreased computational 

effort increased. In addition, this result was also influenced by the missions’ workspace 

size on complexity of the mission requirements. Example 2 (B) did not save much total 

estimated steps, but due to its complex mission, the computational time and memory were 

both reduced. 
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For instance, in Example 2 (B), estimating with the Potential Field method saved 

74.9% of the time used by the workspace size estimating method. When the number of 

states in the Büchi Automaton was 17 and the workspace size was at 64 discrete cells 

(Example 3 (A)), estimating with the Potential Field method saved 94.8% of the time 

used by the workspace size estimating method. When the workspace size increased from 

25 to 64 discrete cells and the number of states in the Büchi Automaton remained the 
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by using Estimation from Potential Field Planning 
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same (from Example 2 (B) to Example 3 (B)), estimating with the Potential Field method 

saved 95.0% of the time used by the workspace size estimating method.  

 Computed memory was save using the estimate from Potential Field method. The 

computer memory consumed by the Multigraph Network Planning method was reduced 

by 87.1% (Example 2 (B)), 81.8% (Example 3 (A)), and 80.8% (Example 3 (B)) using 

the estimation from the potential field planning method, comparing with the computer 

memory consumed by using the estimation from workspace size method.  

For more complex problems, the computer memory size used by the Potential 

Field method had less influence on the overall computer memory consumed for path 

planning. The total computational time and memory used to run the Potential Field 

method and the Multigraph Network Planning method was evaluated. As shown in Figure 

5-11, this two-step path planning saved much computational time and memory for the 

large workspace and complex mission examples. Other than Example 1, computational 

time was reduced for all the examples. Time was reduced up to 95% for Example 3 (A) 

and 3 (B). Computer memory consumed by Example 1 and 2 (B) was increased. When 

the size of workspace increased to 64 discrete cells, the two-step path planning method 

saved more than 50% of the computer memory. This demonstrates that the two-step 

planning method suits the missions involve large workspace.  
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According to Jun and Andrea [9], finding different paths for multiple UAV 

mission can decrease the overall risk. Based on the results, we can conclude that using 

the Potential Field method for estimating total steps in the Multigraph Network Planning 

method is a good way to improve the method. 
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 Conclusion and Future Work 

This thesis compared four different path planning methods that use LTL for 

missions with a list of mission requirements and known environmental specifications. By 

using LTL, we were able to translate the high-level specifications and build a Büchi 

Automaton. Based on the Büchi Automaton we can build a state machine diagram for a 

single vehicle and then use it in the four path planning methods. All four methods were 

capable of finding paths that fulfill the mission requirements under the given 

environmental specifications. 

The Potential Field method was the best method to find one of the shortest paths 

for the mission with minimum computational effort and memory requirement. 

Computational time required was very short and increased very slowly even with more 

complex missions. Computer memory it consumed increased the least among the four 

methods. It successfully found one shortest path for all the examples, except Example 2 

(B) where the path found was one step longer than the shortest path’s length. Another 

disadvantage of the method was that it was only able to find one shortest path. 

The Critical Path method had the ability to find all shortest path and the 

computational effort and memory requirement was low and steady. One disadvantage of 

this method is that when we create the state machine diagram, we not only had to spend 

time to modify the Büchi Automaton’s edges, but also need to make sure that the nodes 

in the state machine created in such an order that a node shall not be created until all the 

other nodes with outgoing edge connecting to this node have been created. The same 

problem applies to the Multigraph Network Planning method. 
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The Multigraph Network Planning method was also able to find all the possible 

paths with the shortest path length. The required computational time and memory grew 

as the workspace size and mission requirements’ complexity increased. When a valid path 

for the mission existed, this method could always find it. The disadvantage of this method 

was that the required computational time and memory grew very fast especially when the 

workspace size increased. This is because before we planned the path for the first time, 

we did not know the least number of steps we would need. To find a valid path, we may 

have had to use a rather large estimated total steps for this method. This caused the quick 

growing in computational time and memory consumed. The Potential Field method was 

a very good solution to this problem. For simple missions, running the Potential Field 

method could add unnecessary computational time and memory. However, this extra step 

of total step estimation saved much computational time and memory for the complex 

missions like Example 3 (B). The next step for these the Multigraph Network Planning 

method will be finding a way to estimate the total steps needed for a mission so that we 

can plan paths for multiple vehicles. 

The Random Walk method required the least programming effort. Nevertheless, 

this method did not suit big workspace or complex mission requirements because of the 

extensive computational time and memory required for this method to find the shortest 

path. The next step for this method is to study how to balance between the path length 

and the computational time and memory we are willing to spend for the number of the 

random walk researches we use to find a valid path. 

In conclusion, the Potential Field method and the Critical Path method are good 

for quickly finding one shortest path for the mission. A trade-off analysis for these two 



 

74 

 

methods needs to be conducted in terms of path length requirements and computational 

effort and memory requirement, and the number of paths required for the mission. If only 

a very short path is required for the mission and computational effort and memory is 

considered more important than the optimal path length, Potential Field method is better. 

If it’s more important to find the optimal shortest path and multiple paths for a mission, 

then the Critical Path method is better. The Multigraph Network Planning method is a 

good method to look for all possible paths with predetermined path length but requires 

high computational time and memory. The Random Walk method is not efficient in 

solving this shortest path planning with dynamic obstacle problem. All the methods need 

to be improved for mission requirements involving time constraints for the vehicles. 

Other possible extensions to the work detailed in this thesis exist. An algorithm 

that can translate the Büchi Automaton directly to state machine diagram will help 

increase the path planning efficiency for all the path planning methods. It is also important 

to improve the path planning methods so that they can conduct multiple vehicle path 

planning. Continuous time path planning will provide more accurate path length and path 

plan for fulfilling the missions successfully. 
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Appendix A  

Example 2 (B) state machine diagram in text form 

never { /* !((!x50)Ux22) && Fx22 && Fx44 && Fx11 && Fx14 */ 

T0_S1 :    /* S1 */ 

 if 

 :: (!x12) -> goto T0_S1 

 :: (!x12 && x21) -> goto T0_S2 

 :: (!x12 && x6) -> goto T0_S3 

 :: (!x12 && x24) -> goto T0_S5 

 :: (!x12 && x5) -> goto T0_S9 

 fi; 

T0_S2 :    /* 1 */ 

 if 

 :: (!x12) -> goto T0_S2 

 :: (!x12 && x6) -> goto T0_S4 

 :: (!x12 && x24) -> goto T0_S6 

 :: (!x12 && x5) -> goto T0_S10 

 fi; 

T0_S3 :    /* 2 */ 

 if 

 :: (!x12) -> goto T0_S3 

 :: (!x12 && x21) -> goto T0_S4 

 :: (!x12 && x24) -> goto T0_S7 

 :: (!x12 && x5) -> goto T0_S11 

 fi; 

T0_S4 :    /* 3 */ 

 if 

 :: (!x12) -> goto T0_S4 

 :: (!x12 && x24) -> goto T0_S8 

 :: (!x12 && x5) -> goto T0_S12 

 fi; 

T0_S5 :    /* 4 */ 

 if 

 :: (!x12) -> goto T0_S5 

 :: (!x12 && x21) -> goto T0_S6 

 :: (!x12 && x6) -> goto T0_S7 

 :: (!x12 && x5) -> goto T0_S13 

 fi; 

T0_S6 :    /* 5 */ 

 if 

 :: (!x12) -> goto T0_S6 

 :: (!x12 && x6) -> goto T0_S8 
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 :: (!x12 && x5) -> goto T0_S14 

 fi; 

T0_S7 :    /* 6 */ 

 if 

 :: (!x12) -> goto T0_S7 

 :: (!x12 && x21) -> goto T0_S8 

 :: (!x12 && x5) -> goto T0_S15 

 fi; 

T0_S8 :    /* 7 */ 

 if 

 :: (!x12) -> goto T0_S8 

 :: (!x12 && x5) -> goto T0_S16 

 fi; 

T0_S9 :    /* 8 */ 

 if 

 :: (1) -> goto T0_S9 

 :: (x21) -> goto T0_S10 

 :: (x6) -> goto T0_S11 

 :: (x24) -> goto T0_S13 

 :: (x12) -> goto T1_S23 

 fi; 

T1_S23 :    /* 9 */ 

 if 

 :: (1) -> goto T1_S23 

 :: (x21) -> goto T1_S22 

 :: (x6) -> goto T1_S21 

 :: (x24) -> goto T2_S19 

 fi; 

T1_S22 :    /* 10 */ 

 if 

 :: (1) -> goto T1_S22 

 :: (x6) -> goto T1_S20 

 :: (x24) -> goto T2_S18 

 fi; 

T1_S21 :    /* 11 */ 

 if 

 :: (1) -> goto T1_S21 

 :: (x21) -> goto T1_S20 

 :: (x24) -> goto T3_S17 

 fi; 

T1_S20 :    /* 12 */ 

 if 

 :: (1) -> goto T1_S20 

 :: (x24) -> goto accept_all 

 fi; 
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T2_S19 :    /* 13 */ 

 if 

 :: (1) -> goto T2_S19 

 :: (x21) -> goto T2_S18 

 :: (x6) -> goto T3_S17 

 fi; 

T2_S18 :    /* 14 */ 

 if 

 :: (1) -> goto T2_S18 

 :: (x6) -> goto accept_all 

 fi; 

T3_S17 :    /* 15 */ 

 if 

 :: (1) -> goto T3_S17 

 :: (x21) -> goto accept_all 

 fi; 

T0_S10 :    /* 16 */ 

 if 

 :: (1) -> goto T0_S10 

 :: (x6) -> goto T0_S12 

 :: (x24) -> goto T0_S14 

 :: (x12) -> goto T1_S22 

 fi; 

T0_S11 :    /* 17 */ 

 if 

 :: (1) -> goto T0_S11 

 :: (x21) -> goto T0_S12 

 :: (x24) -> goto T0_S15 

 :: (x12) -> goto T1_S21 

 fi; 

T0_S12 :    /* 18 */ 

 if 

 :: (1) -> goto T0_S12 

 :: (x24) -> goto T0_S16 

 :: (x12) -> goto T1_S20 

 fi; 

T0_S13 :    /* 19 */ 

 if 

 :: (1) -> goto T0_S13 

 :: (x21) -> goto T0_S14 

 :: (x6) -> goto T0_S15 

 :: (x12) -> goto T2_S19 

 fi; 

T0_S14 :    /* 20 */ 

 if 
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 :: (1) -> goto T0_S14 

 :: (x6) -> goto T0_S16 

 :: (x12) -> goto T2_S18 

 fi; 

T0_S15 :    /* 21 */ 

 if 

 :: (1) -> goto T0_S15 

 :: (x21) -> goto T0_S16 

 :: (x12) -> goto T3_S17 

 fi; 

T0_S16 :    /* 22 */ 

 if 

 :: (1) -> goto T0_S16 

 :: (x12) -> goto accept_all 

 fi; 

accept_all :    /* 23 */ 

 skip 

} 
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Appendix B 

Example 3 (A) state machine diagram in text form 

never { /* !((!x51)Ux32) && Fx14 && Fx38 && Fx51 && Fx62 */ 

T0_S1 :    /* S1 */ 

 if 

 :: (!x32) -> goto T0_S1 

 :: (!x32 && x62) -> goto T0_S2 

 :: (!x32 && x38) -> goto T0_S3 

 :: (!x32 && x14) -> goto T1_S5 

 :: (!x32 && x51) -> goto T0_S9 

 fi; 

T0_S2 :    /* S2 */ 

 if 

 :: (!x32) -> goto T0_S2 

 :: (!x32 && x38) -> goto T0_S4 

 :: (!x32 && x14) -> goto T1_S6 

 :: (!x32 && x51) -> goto T0_S10 

 fi; 

T0_S3:    /* S3 */ 

 if 

 :: (!x32) -> goto T0_S3 

 :: (!x32 && x62) -> goto T0_S4 

 :: (!x32 && x14) -> goto T2_S7 

 :: (!x32 && x51) -> goto T0_S11 

 fi; 

T0_S4 :    /* S4 */ 

 if 

 :: (!x32) -> goto T0_S4 

 :: (!x32 && x14) -> goto T2_S8 

 :: (!x32 && x51) -> goto T0_S12 

 fi; 

T1_S5 :    /* S5 */ 

 if 

 :: (!x32) -> goto T1_S5 

 :: (!x32 && x62) -> goto T1_S6 

 :: (!x32 && x38) -> goto T2_S7 

 :: (!x32 && x51) -> goto T1_S13 

 fi; 

T1_S6 :    /* S6 */ 

 if 

 :: (!x32) -> goto T1_S6 

 :: (!x32 && x38) -> goto T2_S8 

 :: (!x32 && x51) -> goto T1_S14 
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 fi; 

T2_S7 :    /* S7 */ 

 if 

 :: (!x32) -> goto T2_S7 

 :: (!x32 && x62) -> goto T2_S8 

 :: (!x32 && x51) -> goto T3_S15 

 fi; 

T2_S8 :    /* S8 */ 

 if 

 :: (!x32) -> goto T2_S14 

 :: (!x32 && x51) -> goto S16 

 fi; 

T0_S9 :    /* S9 */ 

 if 

 :: (1) -> goto T0_S9 

 :: (x62) -> goto T0_S10 

 :: (x38) -> goto T0_S11 

 :: (x14) -> goto T1_S13 

 fi; 

T0_S10 :    /* S10 */ 

 if 

 :: (1) -> goto T0_S10 

 :: (x38) -> goto T0_S12 

 :: (x14) -> goto T1_S14 

fi; 

T0_S11 :    /* S11 */ 

 if 

 :: (1) -> goto T0_S11 

 :: (x62) -> goto T0_S12 

 :: (x14) -> goto T3_S15 

fi; 

T0_S12 :    /* S12 */ 

 if 

 :: (1) -> goto T0_S12 

 :: (x14) -> goto S16 

 fi; 

T1_S13 :    /* S13 */ 

 if 

 :: (1) -> goto T1_S13 

 :: (x62) -> goto T1_S14 

 :: (x38) -> goto T3_S15 

 fi; 

T1_S14 :    /* S14 */ 

 if 

 :: (1) -> goto T1_S14 
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 :: (x38) -> goto S16 

 fi; 

T3_S15 :    /* S15 */ 

 if 

 :: (1) -> goto T3_S15 

 :: (x62) -> goto S16 

 fi; 

S16 :    /* S16 */ (accept all) 

 skip 

} 

 

 

 

 

 

 

 

 

  



 

82 

 

Bibliography 

[1] K. P. Valavanis and G. J. Vachtsevanos, “Handbook of unmanned aerial 

vehicles,” Handb. Unmanned Aer. Veh., pp. 1–3022, 2015. 

[2] T. Amukele, P. M. Ness, A. A. R. Tobian, J. Boyd, and J. Street, “Drone 

transportation of blood products,” Transfusion, vol. 57, no. 3, pp. 582–588, 2017. 

[3] J. Reagan, “German Company Demonstrates _Lifeguard_ Drone - 

DRONELIFE.” DRONELIFE, 2018. 

[4] Kelsey D. Atherton, “NASA Sent A Drone Out To Track Hurricane Matthew.” 

POPULAR SCIENCE, 2016. 

[5] S. Mohammad Khansari-Zadeh and A. Billard, “A dynamical system approach to 

realtime obstacle avoidance,” Auton. Robots, vol. 32, no. 4, pp. 433–454, 2012. 

[6] G. C. S. Cruz and P. M. M. Encarnação, “Obstacle Avoidance for Unmanned 

Aerial Vehicles,” J. Intell. Robot. Syst., vol. 65, no. 1–4, pp. 203–217, 2012. 

[7] A. Ulusoy and C. Belta, “Receding horizon temporal logic control in dynamic 

environments,” Int. J. Rob. Res., vol. 33, no. 12, pp. 1593–1607, 2014. 

[8] A. Richards and J. P. How, “Aircraft trajectory planning with collision avoidance 

using mixed integer linear programming,” Am. Control Conf., vol. 3, no. 2, pp. 

1936–1941 vol.3, 2002. 

[9] M. Jun and R. D. Andrea, “Path Planning for Unmanned Aerial Vehicles in 

Uncertain and Adversarial Environment,” Coop. Control Model. Appl. 

Algorithms, pp. 95–111, 2003. 

[10] S. Koenig and M. Likhachev, “D* Lite,” Proc. Eighteenth Natl. Conf. Artif. 



 

83 

 

Intell., pp. 476–483, 2002. 

[11] R. Jin, “Distance-Constraint Reachability Computation in Uncertain Graphs,” 

VLDB - 37th Int. Conf. Very Large Data Bases, vol. 4, no. 9, pp. 551–562, 2011. 

[12] E. M. Wolff, U. Topcu, and R. M. Murray, “Automaton-guided controller 

synthesis for nonlinear systems with temporal logic,” Intell. Robot. Syst. (IROS), 

2013 IEEE/RSJ Int. Conf., pp. 4332–4339, 2013. 

[13] J. Shaffer, E. Carrillo, and H. Xu, “Receding Horizon Synthesis and Dynamic 

Allocation of UAVs to Fight Fires,” pp. 1–8. 

[14] T. Wongpiromsarn, U. Topcu, N. Ozay, H. Xu, and R. M. Murray, “TuLiP: A 

Software Toolbox for Receding Horizon Temporal Logic Planning,” Proc. 14th 

Int. Conf. Hybrid Syst. Comput. Control, pp. 313–314, 2011. 

[15] Y. Zhou, D. Maity, and J. S. Baras, “Optimal mission planner with timed 

temporal logic constraints,” 2015 Eur. Control Conf. ECC 2015, pp. 759–764, 

2015. 

[16] Y. Zhou, D. Maity, and J. S. Baras, “Timed automata approach for motion 

planning using metric interval temporal logic,” 2016 Eur. Control Conf., pp. 

690–695, 2016. 

[17] D. Maity and J. S. Baras, “Motion planning in dynamic environments with 

bounded time temporal logic specifications,” 2015 23rd Mediterr. Conf. Control 

Autom., pp. 940–946, 2015. 

[18] G. J. Holzmann, “The Model Checker,” Ieee Trans. Softw. Eng., vol. 23, no. 5, 

pp. 279–295, 1997. 

[19] P. Gastin and D. Oddoux, “Fast LTL to büchi automata translation,” Lect. Notes 



 

84 

 

Comput. Sci. (including Subser. Lect. Notes Artif. Intell. Lect. Notes 

Bioinformatics), vol. 2102, no. 1, pp. 53–65, 2001. 

[20] O. Khatib, “Real time obstacle avoidance for manipulators and mobile robots,” 

Int. J. Robot. Res., vol. 5, no. 1, pp. 90–98, 1986. 

[21] S. S. Ge and Y. J. Cui, “New potential functions for mobile robot path planning,” 

Robot. Autom. IEEE Trans., vol. 16, no. 5, pp. 615–620, 2000. 

[22] S. L. Smith, T. Jana, C. Belta, and D. Rus, “Optimal path planning for 

surveillance with temporal-logic constraints,” vol. 30, no. 14, pp. 1695–1708, 

2011. 

[23] O. Montiel, R. Sepúlveda, and U. Orozco-Rosas, “Optimal Path Planning 

Generation for Mobile Robots using Parallel Evolutionary Artificial Potential 

Field,” J. Intell. Robot. Syst., vol. 79, no. 2, pp. 237–257, 2015. 

[24] E. Wallace, “Finite State Machine Designer,” 2010. [Online]. Available: 

http://madebyevan.com/fsm/. [Accessed: 14-Feb-2018]. 

[25] W. Chen, X. Wu, and Y. Lu, “An improved path planning method based on 

artificial potential field for a mobile robot,” Cybern. Inf. Technol., vol. 15, no. 2, 

pp. 181–191, 2015. 

[26]    Beard, Daniel, DStarLiteJava source code, [Source code]. 2012 

https://github.com/daniel-beard/DStarLiteJava 


