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A fundamental problem in perception-based systems is to define and learn

representations of the scene that are more robust and adaptive to several nuisance

factors. Over the recent past, for a variety of tasks involving images, learned repre-

sentations have been empirically shown to outperform handcrafted ones. However,

their inability to generalize across varying data distributions poses the following

question: Do representations learned using deep networks just fit a given data dis-

tribution or do they sufficiently model the underlying structure of the problem ?

This question could be understood using a simple example: If a learning algorithm

is shown a number of images of a simple handwritten digit, then the representation

learned should be generic enough to identify the same digit in a different form. With

regards to deep networks, although the learned representation has been shown to be

robust to various forms of synthetic distortions such as random noise, they fail in

the presence of more implicit forms of naturally occurring distortions. In this disser-

tation, we propose approaches to mitigate the effect of such distortions and in the



process, study some vulnerabilities of deep networks to small imperceptible changes

that occur in the given input. The research problems that comprise this dissertation

lie in the cross section of two open topics: (1) Studying and developing methods

that enable neural networks learn robust representations (2) Improving generaliza-

tion of neural nets across domains. The first part of the dissertation approaches the

problem of robustness from two broad viewpoints: Robustness to external nuisance

factors that occur in the data and robustness (or a lack thereof) to perturbations of

the learned feature space. In the second part, we focus on learning representations

that are invariant to external covariate shift, which is more commonly termed as

domain shift.

Towards learning representations robust to external nuisance factors, we pro-

pose an approach that couples a deep convolutional neural network with a low-

dimensional discriminative embedding learned using triplet probability constraints

to solve the unconstrained face analysis problem. While previous approaches in

this area have proposed scalable yet ad-hoc solutions to this problem, we propose

a principled and parameter free formulation which is based on maximum likelihood

estimation. In addition, we employ the principle of transfer learning to realize a

deep network architecture that can train faster and on lesser data yet significantly

outperforms existing approaches on the unconstrained face verification task. We

demonstrate the robustness of the approach to challenges including age, pose, blur

and clutter by performing clustering experiments on challenging benchmarks.

Recent seminal works have shown that deep neural networks are susceptible

to visually imperceptible perturbations of the input. In this dissertation, we build



on their ideas in two unique ways: (a) We show that neural networks that perform

pixel-wise semantic segmentation tasks also suffer from this vulnerability, despite

being trained with more extra information compares to simple classification tasks.

In addition, we present a novel self correcting mechanism in segmentation networks

and provide an efficient way to generate such perturbations (b) We present a novel

approach to regularize deep neural networks by perturbing intermediate layer acti-

vations in an efficient manner, thereby exploring the trade-off between conventional

regularization and adversarial robustness within the context of very deep networks.

Both of these works provide interesting directions towards understanding the secure

nature of deep learning algorithms.

While humans find it extremely simple to generalize their knowledge across

domains, machine learning algorithms including deep neural networks suffer from

the problem of domain shift across what are commonly termed as ’source’ (S) and

’target’ (T) distributions. Let the data that a learning algorithm is trained on be

sampled from S. If the real data used to evaluate the model is then sampled from T,

then the learnt model under-performs on the target data. This inability to generalize

is characterized as domain shift. Our attempt to address this problem involves

learning a common feature subspace, where distance between source and target

distributions are minimized. Estimating the distance between different domains

is highly non-trivial and is an open research problem in itself. In our approach

we parameterize the distance measure by using a Generative Adversarial Network

(GAN). A GAN involves a two player game between two mappings com- monly

termed as generator and discriminator. These mappings are learned simultaneously



by employing an adversarial game, i.e. by letting the generator fool the discriminator

and enabling the discriminator to outperform the generator. This adversarial game

can be formulated as a minimax problem. In our approach, we learn three mappings

simultaneously: the generator, discriminator and a feature mapping that contains

information about both the content and the domain of the input. We deploy a two-

level minimax game, where the first level is a competition between the generator

and a discriminator similar to a GAN; the second level game is where the feature

mapping attempts to fool the discriminator thereby introducing domain invariance

in the learned feature representation. We have extensively evaluated this approach

for different tasks such as object classification and semantic segmentation, where

we achieve state of the art results across several real datasets. In addition to the

conceptual novelty, our approach presents a more efficient and scalable solution

compared to other approaches that attempt to solve the same problem.

In the final part of this dissertation, we describe some ongoing efforts and

future directions of research. Inspired from the study of perturbations described

above, we propose a novel metric on how to effectively choose pixels to label given

an image, for a pixel-wise segmentation task. This has the potential to significantly

reduce the labeling effort and our preliminary results for the task of semantic seg-

mentation are encouraging. While the domain adaptation approach proposed above

considered static images, we propose an extension to video data aided by the use

of recurrent neural networks. Use of full temporal information, when available,

provides the perceptual system additional context to disambiguate among smaller

object classes that commonly occur in real scenes.
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Chapter 1. Introduction

1.1 Motivation

Feature representations have been the cornerstone of perception-based systems

which combine algorithms from machine learning and computer vision to enable

a machine understand the natural scene. Starting from the early work of David

Marr [Mar82], that provides a computational framework for processing the visual

information, several advances have been made in how to efficiently compress the in-

formation yet retain as much information content as possible. These started as nat-

urally occurring features in the images such as corners, edges [S+94] and associated

gradients such as optical flow [PCF06], followed by sophisticated hand-crafted fea-

tures such as Scale Invariant Feature Transform (SIFT) [Low04], Histogram of Gra-

dients (HOG) [DT05] and Speeded up Robust Features (SURF) [BTVG06]. These

feature representations were shown to remarkably improve the ability of a learning

algorithm to perform visual tasks such as identifying the class of a given image.

Handcrafted representations lack the ability to learn and adapt to variations due to

illumination, pose, resolution and distrbutional shifts. Artificial Neural Networks

(ANNs) have been studied for more than three decades with the advent of algorithms

such as Neocognitron [FM82] and Hopfield networks [Hop82]. These were followed
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by early instances of the modern day convolutional neural networks by Lecun et

al [LBBH98]. While these algorithms provided a way to simulate a neural process

of learning and adapting to different forms of distortions presented in the input,

they were notoriously hard to train or converge if provided with a large collection of

input images. Concurrent development in statistical machine learning, optimization

theory and computational breakthroughs such as use of Graphical Processing units

(GPUs) led to performing backpropagation in a computationally efficient manner.

The notion of ”deep” networks, which is the subject of this dissertation, came about

since the work of Krizhevsky et al. [KSH12a], who demonstrated a significant im-

provement in performance on the Imagenet data challenge by training a deep neural

network consisting of 60M parameters to learn, using backpropagation. Since then,

deep networks have been adopted by the machine learning and computer vision

communities and achieved state of the art results on several benchmarks.

Despite impressive performance gains, deep networks are not known to obtain

great generalization. On the one hand, this statement does not treat DNNS fairly,

since studies have shown that they generalize better than previously existing learn-

ing algorithms and feature representations. On the other hand, if DNNs do indeed

simulate the neural process of modeling visual stimuli, then one would expect them

to model the underlying structure of an object if enough examples of the object

are given and thereby generalize well to different appearances of the object due to

different viewpoints, blur and other forms of noise, especially given that these are

easier tasks for humans. Thus, in this dissertation, we study the behavior and per-

formance of DNNs on data which is drawn from a different distribution compared
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to the data using which the networks were trained. This difference can be a result

of natural distortion due to viewpoint changes in face analysis, adversarial pertur-

bations of the input or explicit shift in the data distribution such as synthetic/real

datasets.

1.2 Proposed Approaches and Contributions

In this section, we briefly describe the approaches introduced in this disserta-

tion and their key contributions.

Triplet Probabilistic Embedding: In this approach, we propose a greedy op-

timization method to construct a low-dimensional embedding of the deep features

that are more robust to external nuisance factors yet augment the discriminative

information present in the original representation. To obtain the original represen-

tation, we propose a deep network architecture for the face recognition task and

a faster training approach inspired from prior work in transfer learning. The key

contributions include a faster training mechanism that can yield better performance

on relatively smaller datasets and a greedy online optimization based on a maxi-

mum likelihood formulation that replaces the ad-hoc solutions to the same problem

proposed in previous works. We show the efficacy of the above approaches on chal-

lenging benchmarks such as the IJB-A dataset and on controlled settings such as

Celebrity in Frontal-Profile datasets, both of which contain celebrity images in the

wild. We show through clustering experiments how the proposed embedding ap-

proach results in better qualitative description of the nuisance factors present in the
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data.

Guided Perturbations: While TPE dealt with naturally occurring distortions

to the input images, in this approach, we address a specific type of distortion called

“adversarial perturbations” which are minor perturbations of the feature space that

when carried over to the input destabilizes the behavior of well trained deep net-

works. The effect of these perturbations have been well studied for classification

problems in the past, but in this thesis we shed light on their effect on the task

of semantic segmentation. We present an intriguing behavior: pretrained deep net-

works can be made to improve their predictions by structurally perturbing the input.

We observe that these perturbations - referred as Guided Perturbations - enable

a trained network to improve its prediction performance without any learning or

change in network weights. We perform various ablative experiments to understand

how these perturbations affect the local context and feature representations. Our

studies show that guided perturbations are a by product of adversarial perturbations

for the case of the semantic segmentation task, which includes an explicit ensemble

decision step at the output. Furthermore, we demonstrate that this idea can im-

prove the performance of several existing approaches on the semantic segmentation

and scene labeling tasks.

Layerwise Adversarial Regularization: A traditional approach to mitigate

the effect of adversarial perturbations mentioned in the previous work is to infuse

adversarial noise during the training of the deep network. In earlier works, adver-
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sarial training has been shown to regularize small scale neural networks in addition

to increasing their robustness to adversarial examples. However, its impact on very

deep state of the art networks has not been fully investigated. We present an ef-

ficient approach to perform adversarial training by perturbing intermediate layer

activations and study the use of such perturbations as a regularizer during training.

We use these perturbations to train very deep models such as ResNets and show

improvement in performance both on adversarial and original test data. Our exper-

iments highlight the benefits of perturbing intermediate layer activations compared

to perturbing only the inputs. The results on CIFAR-10 and CIFAR-100 datasets

show the merits of the proposed adversarial training approach. Additional results

on WideResNets show that our approach provides significant improvement in clas-

sification accuracy for a given base model, outperforming dropout and other base

models of larger size. Furthermore, our ablative experiment on training with cor-

rupted labels shows the significant advantage provided by the proposed layerwise

regularization approach.

Generative approach to address Domain Shift: Visual domain adaptation

is a problem of immense importance in computer vision. Previous approaches show-

case the inability of even deep neural networks to learn informative representations

across domain shifts. This problem is more severe for tasks where acquiring hand

labeled data is extremely hard and tedious. In this approach, we focus on adapting

the representations learned by segmentation networks across synthetic and real do-

mains. Contrary to previous approaches that use a simple adversarial objective or
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superpixel information to aid the process, we propose an approach based on Genera-

tive Adversarial Networks (GANs) that brings the embeddings closer in the learned

feature space. To showcase the generality and scalability of our approach, we show

that we can achieve state of the art results on two challenging scenarios of synthetic

to real domain adaptation. Additional exploratory experiments show that our ap-

proach: (1) generalizes to novel domains and (2) results in improved alignment of

source and target distributions.

1.3 Organization

Chapter 2 introduces the ideas of metric learning, deep learning and convo-

lutional neural networks, generative modeling including generative adversarial net-

works and variational autoencoders, which will be used in subsequent chapters of

this dissertation. Chapter 3 presents the triplet probabilistic embedding approach

for face analysis. Chapter 4 discusses the effect and presents a thorough experi-

mental analysis of input perturbations on neural networks primarily designed for

semantic segmentation. Chapter 5 describes the layerwise adversarial regularization

approach for very deep state of the art deep networks. Chapter 6 addresses the

problem of domain shift at scale for the task of semantic segmentation, describing

our solution based on a generative adversarial network. Chapter 7 concludes the

dissertation and discusses future research directions.
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Chapter 2. Background and Literature Review

2.1 Deep Learning and Convolutional Neural Networks

In this section, we provide a brief review of the properties of Convolutional

Neural Networks (CNNs) and their widespread use in computer vision. For a more

detailed review the reader is referred to [GBC16].

A standard Neural Network (NN) consists of many functional units called

neurons each producing a sequence of real-valued activations. Input neurons get

activated through sensors per- ceiving the environment, other neurons get activated

through weighted connections from previously active neurons.Some neurons may

influence the environment by triggering actions. Designing a learning algorithm is

about finding weights that make the NN exhibit desired behavior, such as driving a

car. Depending on the problem and how the neurons are connected, such behavior

may require long causal chains of computational stages (Sec. 3), where each stage

transforms (often in a non-linear way) the aggregate activation of the network. Deep

Learning is about accurately assigning the parameters across many such stages in

order to obtain the desired behavior. For more details about evolution of the field,

the readers may refer to [Sch15].

Traditionally, neural network approaches have been used to learn complex
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Figure 2.1: Convolutional layer with each neuron connecting to its receptive field at the

input. Figure from [Kar16]

functional dependencies by considering input features and neurons as vector inputs.

To specialize this idea to structures inputs like images, Convolutional Neural Net-

works (CNN) were developed. In CNN’s, the input to the neural nets are images

and the neurons are convolutional filters which connect to a local region of the in-

put. A convolutional layer, which is the core building block of a CNN, is shown in

Figure 2.1. The layer’s parameters consist of a set of learnable filters (or kernels),

which have a small receptive field, but extend through the full depth of the input

volume. The network operates in two modes: forward pass and backward pass.

During the forward pass, each filter is convolved across the width and height of the

input volume, computing the dot product between the entries of the filter and the

input and producing a two-dimensional activation map of that filter. As a result,

the network learns filters that activate when they see some specific type of feature

at some spatial position in the input.

Stacking the activation maps for all filters along the depth dimension forms

the full output volume of the convolution layer. Every entry in the output volume
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Figure 2.2: A simple (shallow) 3-layer neural network with two hidden layers and one

output layer. Figure from [Kar16]

Figure 2.3: Arrangement of layers in a CNN. Figure from [Kar16]

can thus also be interpreted as an output of a neuron that looks at a small region

in the input and shares parameters with neurons in the same activation map.

During the backward pass, the parameters of the convolutional filters are up-

dated based on the gradient of the loss function that is propagated backwards along

the network. This procedure is aptly termed as backpropagation. More details re-

garding the computation of gradients for traditional CNN architectures can be found

in [IGC16]. As an example, let us consider a simple neural network, shown in Figure

2.2 and perform gradient computation using backpropagation.

A CNN arranges its neurons in three dimensions (width, height, depth), as
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Figure 2.4: Architecture of AlexNet - winner of 2012 ImageNet Object Classification Chal-

lenge. Figure from [KSH12a]

visualized in Figure 2.3 in one of the layers. Every layer of a CNN transforms the

3D input volume to a 3D output volume of neuron activations. In this example, the

red input layer holds the image, so its width and height would be the dimensions of

the image, and the depth would be 3 (Red, Green, Blue channels).

More complex architectures for image classification tasks were proposed over

the years. One very popular architecture is AlexNet [KSH12a] which was the winner

of the 2012 ImageNet Classification Challenge. The network is shown in Figure 2.4.

The main functional units of AlexNet architecture are explained below:

• Convolutional Layer: computes the output of neurons that are connected to

local regions in the input, each computing a dot product between their weights

and a small region they are connected to in the input volume.

• Max. Pooling: performs a downsampling operation along the spatial dimen-

sions (width, height) by taking a maximum over pre specified window size.

• Rectified Liner Unit (ReLU): applies an elementwise activation function, such

as the max(0,x) thresholding at zero. This leaves the size of the volume un-
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changed.

• Stride: applies the convolutional filter at specified stride - higher strides results

in less operations and sparser feature maps which are beneficial for classifica-

tion.

• Fully Connected Layer (FC): learns a linear classifier over the convolutional

features and the output neurons equal the number of input classes over the

training dataset.

• Dropout: strategy employed to learn FC layers that has been shown to improve

convergence. During training, a random fraction of connections is deactivated

and only the rest are updated. The fraction is specified as a parameter for the

algorithm.

Several strategies have been employed to learn the parameters of a deep ar-

chitecture. The most common learning algorithm, that is also employed throughout

this dissertation, is the mini-batch Stochastic Gradient Descent (SGD), which is a

standard gradient descent technique with gradients computed over a mini batch of

training examples at each iteration. Since the function learnt by a deep network is

typically a non-convex function the possibility of getting stuck in local minima is

very high. To avoid such pitfalls, the gradient descent update is augmented using

momentum [SMDH13].

Let the magnitude of weights at time t be denoted by Wt. Let the update

value be Vt+1 and the updated weights be Wt+1 at iteration t + 1. Then given the
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Figure 2.5: Simplified Dataflow diagram for training a traditional CNN such as AlexNet

update Vt and current weights Wt, the update with momentum can be written as:

Vt+1 = µVt − α∇L(Wt);Wt+1 = Wt + Vt+1 (2.1)

where α is the learning rate and µ is the momentum, which is a scalar.

The dataset of image-label pairs (X,Y) is given and fixed. The weights start

out as random numbers and can change. During the forward pass the score function

computes class scores, stored in vector f. The loss function contains two components:

The data loss computes the compatibility between the scores f and the labels y. The

regularization loss is only a function of the weights. During gradient descent, we

compute the gradient on the weights (and optionally on data if we wish) and use

them to perform a parameter update.

The deep features that are learnt over different layers of the AlexNet network

are shown in Figure 2.6. The important observation from the visualization is that

the shallow layers learn more basic and general features like corners/edges which are

combined in the higher layers to learn abstract concepts like face/eyes etc. In Chap-

ter 3, we utilize this property of deep architectures to design a deep network that

has accelerated convergence using the knowledge already learned from a different

task.
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Figure 2.6: Deeper layers learn higher levels of abstraction. Figure from [Kar16].

2.2 Metric Learning

Consider a situation where we must compute similarity or distances over pairs

of images (for example, for clustering or nearest neighbor classification). A basic

question that arises is precisely how to assess the similarity or distance between the

pairs of images. For instance, if our goal is to find matching faces based on iden-

tity, then we should choose a distance function that emphasizes appropriate features

(hair color, ratios of distances between facial keypoints, etc). But we may also have

an application where we want to determine the pose of an individual, and there-

fore require a distance function that captures pose similarity. To handle multiple

similarity or distance metrics, we could attempt to determine by hand an appro-

priate distance function for each task, using an appropriate choice of features and

the combination of those features. However, this approach may require significant

effort and may not be robust to changes in the data. A desirable alternative is to

apply metric learning,which aims to automate this process and learn task-specific
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distance functions in a supervised manner.

As discussed above, specific features are important for specific tasks and the

success of the metric learning method depends on the type of features used. As-

suming that we are already given a suitable representation (say, SIFT/HOG/CNN

features) we would like to learn a parameterized mapping D : RN × RN → R+
0 ,

that takes in two feature vectors that belong to a N-dimensional space and out-

puts a scalar value. Note that, the feature vectors could belong to more complex

spaces such as Riemannian manifold spaces or need not be vectors at all. We have

considered only RN here for the purpose of illustration.

Before going into more specifics, lets define what we mean by a metric. A

mapping D : X× X→ R+
0 over a vector space X is called a metric if for all vectors

{xi, xj, xk} ∈ X, it satisfies the following properties:

• Triangular inequality: D(xi, xj) + D(xj, xk) ≥D(xi, xk)

• Non negativity: D(xi, xj) ≥ 0

• Symmetry: D(xi, xj) = D(xj, xi)

• Distinguishability: D(xi, xj) = 0 ⇐⇒ xi = xj

In strict terms, a mapping that satisfies only the first three conditions is called

a pseudometric but in this dissertation we use the terms metric and pseudometric

interchangeably.

In this dissertation, we consider only linear metric learning methods, since the

input features used are from CNN’s which are highly optimized non-linear functions
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of the input. More details on different types of metric learning approaches could

be found in [Kul12]. Specifically, we focus on the class of methods which learn a

Mahalanobis metric based on a given set of constraints. The constraints could be

of the following types:

• First-order: constraints of the form that x belongs to class c

• Pairwise: (x, y) belong to the same or different class

• Triplet : (x, y, z) such that x is more similar to y than z.

In this approach, we work with metrics that deal with either pairwise or triplet

constraints. One of the main proponents of metric learning approaches over pair-

wise and triplet constraints is the Large Margin Nearest Neighbour (LMNN) metric

learning approach [WBS05]. The loss function considered in LMNN is the following:

L(M) = (1− µ)
∑
i,j∈P

DM (xi, xj) + µ
∑
i,j

∑
l∈N

max(1 + DM (xi, xj)−DM (xi, xl), 0)

(2.2)

where DM (xi, xj) = (xi−xj)
TM(xi−xj); P corresponds to the set of positives

which contain items that belong to the same class as xi and N is the set of negatives

which contain items that belong to a different class than xi. To understand the loss

function lets consider the two terms separately. The first term DM (xi, xj) considers

the distance between items from the same class: intra-class distance. The second

term is active only if: DM (xi, xj) > 1 + DM (xi, xl) > 0, that is, if the distance

between the positive pairs (xi, xj) is greater than the distance between negative
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pairs (xi, xl). Thus, optimizing this loss function brings together samples from the

same class and pushes apart samples from the different class. This would then

result in better discrimination between classes in a given data. Since the above

formulation is convex in M , the optimization problem is solved by framing it in the

form of a Semi-definite Programming (SDP) problem. In its original form, this does

not scale to large amounts of data since solving an SDP becomes very expensive

when presented with millions of data points. We propose a simple modification of

the above problem that could be solved in a very scalable way.

2.3 Adversarial Machine Learning

In machine learning, the notion of adversarial learning relates to modeling

secure learning systems. A detailed description can be obtained from the work of

Huang et al. [HJN+11]. Here we provide a short overview. In general, these systems

are modeled as a game between an attacker and a defender where the attacker’s

job is to manipulate data to evade the learning algorithm picked by the defender in

order to thwart the defender’s objective. This game can be formalized in terms of

a learning algorithm H, the model M and the attackers data corruption strategies

Atrain and Aeval. The resulting game can be described as follows:

• Defender: Choose learning algorithm H and model M for selecting hypotheses

based on observed data

• Attacker: Choose attack procedures Atrain and Aeval. This can be done in

a white-box setting (with the knowledge of H and M or black-box setting
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Figure 2.7: Adversarial game between attacker and defender. Figure taken from

[HJN+11]. Refer to the text for more details.

(input-output knowledge obtained by querying the model in finite time)

• Learning: Obtain dataset Dtrain with contamination from Atrain. Learn hy-

pothesis f ∈ H.

• Evaluation: Obtain dataset Deval with contamination from Aeval. Compare

predictions f(x) to y for each data point (x, y) ∈ Deval.

The game described above includes the interactions between the defender and at-

tacker in choosing the model and attack strategies. These steps are depicted in

Figure 2.7. The defender chooses H to select hypotheses that predict well regardless

of Atrain and Aeval, while the attacker chooses Atrain and Aeval to produce poor pre-

dictions. Furthermore, different types of game strategies define different valid moves

that players can make. In exploratory attacks, the procedure Atrain is not used in the

game, and thereby the attacker only influences Deval. Meanwhile, in the causative

game the attacker also has indirect influence on f through its choice of Atrain. In
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an integrity attack, the attacker desires false negatives and therefore will use Atrain

and/or Aeval to create or discover false negatives, whereas in an availability, the at-

tacker will also try to create or exploit false positives. Finally, in a targeted attack

the attacker only cares about the predictions for a small number of instances, while

an indiscriminate attacker cares about prediction for a broad range of instances. In

this section, we have described an adversarial machine learning system in general.

In the next section, we describe a concrete application of this system for generative

modeling, namely generative adversarial networks, which employ on a two player

adversarial game to train a generative model.

2.4 Generative Modeling and Variational Inference

Generative modeling involves the process of learning models that can allow us

to sample from the underlying true data distribution. This has been a long standing

open research topic in machine learning and over the past decade has spawned a

plethora of research. Earlier approaches to generative modeling included Markov

Random Fields (MRFs) and its variants, sampling techniques such as Monte-Carlo

approaches and their variants. Even though these techniques are in use today, with

the growing amounts of data and computational power, recent approaches have

focused on developing more efficient sampling schemes by coming up with approx-

imate solutions to the density estimation problem. In this section, we will review

two recent popular approaches to generative modeling: Variational Auto Encoders

(VAEs) which are based on Variational Inference and Generative Adversarial Net-
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works (GANs) which rely on an adversarial game.

2.4.1 Generative Adversarial Networks: Overview

In this section, we provide a brief overview of GANs accompanied by a stan-

dard derivation of the equilibrium point of the adversarial game. For a more detailed

analysis, we suggest the reader to refer to the work of Goodfellow et al. [GPAM+14].

Most work on deep generative models focused on models that provided a parametric

specification of a probability distribution function. The model can then be trained

by maximizing the log likelihood. In this family of model, perhaps the most success-

ful is the deep Boltzmann machines [SL10]. Such models generally have intractable

likelihood functions and therefore require numerous approximations to the likelihood

gradient. GANs belong to the class of algorithms commonly termed as ”generative

machines”, which can be trained without exact parameterization of the likelihood

function and by using exact backpropagation. In the GAN framework, the gener-

ative model is pitted against an adversary: a discriminative model that learns to

determine whether a sample is from the model distribution or the data distribution.

As observed in [GPAM+14], the generative model can be thought of as analogous to

a team of counterfeiters, trying to produce fake currency and use it without detec-

tion, while the discriminative model is analogous to the police, trying to detect the

counterfeit currency. Competition in this game drives both teams to improve their

methods until the counterfeits are indistinguishable from the genuine currency.
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2.4.2 Problem Setup and Theoretical Results:

Let X be the data drawn as samples from the true distribution pdata. A GAN

consists of two mappings learned simultaneously: generator G(z; θg) and discrimi-

nator D(x; θd). For ease of understanding, both G and D are differential functions

modeled as multi layer neural networks. To learn the generators distribution pg over

data X, we define a prior on input noise variables pz(z), then represent a mapping

to data space as G(z; θg). D(x; θd) outputs a single scalar. D(x) represents the

probability that x is from the data rather than the generator distribution pg. D is

trained to maximize the probability of assigning the correct label to both training

examples and samples from G, which is simultaneously trained to minimize the log

loss, log(1D(G(z))). In other words, D and G play the following two-player minimax

game with the value function V (G,D):

min
G

max
D

V (G,D) = Ex∼pdata [f(D(x))] + Ez∼pnoise [f(1−D(G(z)))] (2.3)

where f is any non-increasing function. A commonly used choice is the log func-

tion. The training involves alternating stochastic optimization steps of ascending

the gradient of D and descending the gradient of the generator G. In what follows,

we will prove two results that compute the global optimum of the game presented

above and show that it can be achieved given infinite capacity and training time.

Proposition For G fixed, the optimal discriminator D is given by D∗G = pdata
pdata+pg

Proof The objective is to maximize the quantity V (G,D).
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min
G

max
D

V (G,D) =

∫
x

pdata(x) log(D(x))dx+

∫
z

pnoise(z) log(1−D(G(z)))dz

=

∫
x

(pdata(x) log(D(x))dx+ pg(z) log(1−D(x)))dx (2.4)

It remains then to find the value of D(x) ∈ (0, 1) which maximizes the value

function formulated above. By simple algebra, we obtain D∗G(x) = pdata
pdata+pg

, conclud-

ing the proof.

Alternatively, the training objective for D can also be interpreted as maximiz-

ing the log-likelihood for estimating the conditional probability P (Y = y|x), where

Y indicates whether x comes from pdata (with y = 1) or from pg (with y = 0). The

minimax game in Eq. 2.3 can now be reformulated as:

C(G) = max
D

V (G,D)

= Ex∼pdata [log(D∗G(x))] + Ex∼pdata [log(1−D∗G(x))]

= Ex∼pdata [log(
pdata

pdata + pg(x)
)] + Ex∼pdata [log(1− pdata

pdata + pg(x)
)] (2.5)

Theorem The global minimum of the virtual training criterion C(G) is achieved

if and only if pg = pdata. At that point, C(G) achieves the value -log 4.

Proof At pg = pdata, it follows from Eq. 2.4 that D∗G(x) = 1/2. Substituting this

in Eq. 2.5, we see that C(G) = − log 4. Conversely, to see that this is the best

possible value reached for C(G), observe that the following hold:
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C(G) = − log(4) + log(4) + max
D

V (G,D)

= − log(4)− 2 log(1/2) +

∫
x

(pdata(x) log(
pdata

pdata + pg(x)
)

+ pg(x)(1− log(
pdata

pdata + pg(x)
)))dx

= − log(4) +KL(pdata||
pdata + pg

2
) +KL(pg||

pdata + pg
2

)

= − log(4) + 2 JSD(pg||pdata) (2.6)

Since the Jensen-Shannon divergence between two distributions is non-negative,

the global minimum of C(G) is − log(4), which is achieved when pg = pdata, con-

cluding the proof.

2.4.3 Variational Autoencoders

In the previous section, we described GANs, a class of generative models that

learn a generator mapping by framing it as an adversarial game, which at the equi-

librium point yields the optimal solution, pg = pdata. The issue with GANs is when

this equilibrium is achieved and more broadly, does this equilibrium exist ? These

two questions have spanned a plethora of research in the recent years and still re-

main an actively researched open problem. Several techniques have been proposed

to stabilize the GAN training but without giving any theoretical guarantees. In this

section, we describe a generative model that gives a nice theoretical guarantee of

convergence by maximizing a loss function that can be formulated as a lower bound

of the true data likelihood. This brings us to the topic of Variational Autoencoders

(VAEs). We provide a brief overview of the mechanism of the VAEs and derive
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the evidence lower bound being maximized by a VAE. For detailed exposition, the

reader is referred to the works of Kingma et al. [KW13] and Doersch et al. [Doe16].

An autoencoder is a multi-layer neural network that is optimized to reconstruct

the input signal at the output. Training an autoencoder without explicit regular-

ization techniques results in overfitting, leading the model to assign zero variance to

points in the training set, i.e. memorizing the training data. Several variants were

proposed to alleviate this issue including contractive or denoising versions. Varia-

tional autoencoders tackle this problem by introducing stochasticity when sampling

from the latent space.

2.4.4 VAE: Problem Setup

Consider some dataset X = {x(i)}Ni=1 consisting of N i.i.d. samples of some

continuous or discrete variable x. We operate under the assumption that the data

are generated by some random process, involving an unobserved continuous random

variable z following a two-step procedure: (1) a value z(i) is generated from some

prior distribution pθ∗(z) (2) a value x(i) is generated from some conditional distribu-

tion pθ∗(x|z). The true parameters θ∗ as well as the values of the latent variables z(i)

are unknown. The VAE is based on the Autoencoding Variational Bayes (AEVB)

algorithm that does not make common simplifying assumptions. More specifically,

the estimator should work well in cases where: (a) the marginal likelihood pθ(z)

and the posterior density pθ(z|x) are intractable (hence algorithms like EM cannot

be applied (b) The datasets used to learn the parameters are large hence sampling

techniques such as MCMC approaches become intractable. The AEVB algorithm
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tackles these issues by optimizing a variational lower bound and designing a Stochas-

tic Variational estimator to approximate the true posterior density.

2.4.5 Variational Lower Bound and AEVB algorithm

The marginal log likelihood over data is composed of a sum over the marginal

log likelihoods of individual datapoints, log pθ(x
(1), x(2), ..., x(N)) =

∑N
i=1 log pθ(x

(i)).

The technique of variational inference involves estimating an intractable density by

assuming a proposal distribution and minimizing the distance between it and the

sampled true density, thereby converting the density estimation problem to an opti-

mization problem. For our case, lets assume the proposal distribution to be qφ(z|x),

which is called the encoder, since it encodes the inputs x to the latent code z. Each

data likelihood term can then be expressed using the proposal distribution as follows:

log pθ(x
(i)) =

∫
qφ(z|x(i)) log pθ(x

(i))dz

=

∫
qφ(z|x(i))(log pθ(x

(i))
qφ(z|x(i))

qφ(z|x(i))
)dz

=

∫
qφ(z|x(i)) log

pθ(x
(i), z)

q(z|x(i))
+

∫
qφ(z|x(i)) log

qφ(z|x(i))

pθ(z|x(i))

= Eqφ(z|x)(
log pθ(x

(i), z)

qφ(z|x(i))
) +KL(qφ(z|x(i))||pθ(z|x(i))) (2.7)

(2.8)

Since the KL divergence term is non-negative, the log likelihood for each term

is lower bounded by the first term in Eq. 2.8. For ease of terminology let the first

term be represented as L(θ, φ; x(i)). This term is popularly referred to the Evidence

Lower Bound or ELBO. From above, the ELBO can be seen as a lower bound on
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the true data likelihood. By maximizing the ELBO, we can then get as close to the

true density as possible. Thus we have:

log pθ(x
(i)) >= L(θ, φ; x(i))

= Eqφ(z|x)(log pθ(x
(i), z)− log qφ(z|x(i)))

= −KL(qφ(z|x(i))||pθ(z)) + Eqφ(z|x)[log(pθ(x
(i)|z))] (2.9)

The second equality above is obtained by expanding the joint probability term

into the prior and the marginal likelihood and rearranging the terms. The goal of

the AEVB algorithm is to estimate the lower bound by using a stochastic gradient

procedure. Under some mild conditions outlined in [KW13] for a chosen approximate

posterior qφ(z|x) we can reparameterize the random variable z̃ ∼ qφ(z|x) using a

differentiable transformation gφ(ε, x) of an (auxiliary) noise variable, i.e. z̃ = gφ(ε, x)

with ε ∼ p(ε). For the case of VAEs, the prior distribution commonly used is

the gaussian distribution; qφ and pθ are modeled as deep neural networks. In the

case of gaussian distribution, the transformation gφ can be easily obtained directly:

z ∼ p(z|x) = N(µ, σ2). Then, a valid reparameterization is z = µ + σε, where

ε ∼ N(0, 1). This reparameterization enables one to backpropagate through the

stochastic sampling process, which is not possible otherwise.

Furthermore, using the form of gaussian distribution, the ELBO term L(θ, φ; x(i))

can be estimated analytically as a function of the parameters (θ, φ), which can be

optimized using standard backpropagation. The similarity to autoencoder can be

more clearly observed by noting that in Eq. 2.9, when the decoder is implemented
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Figure 2.8: Video frame prediction task using different loss functions compared to the

ground truth frame. Traditional VAEs typically result in slightly blurry

outputs compared to adversarial generative models such as GANs. Figure

from [LKC15].

as a Gaussian MLP, the second term reduces to a pixelwise mean square error. The

KL term then provides an implicit regularization that prevents the posterior from

collapsing by ensuring that it does not deviate too far from the prior distribution.

While both VAEs and GANs provide an ability to learn a underlying data

distribution from large datasets, GANs have been more popular especially for image

based tasks such as the ones considered in this dissertation. The reason is the quality

of the images produced by GANs are superior to the ones produced by VAEs. This

can be alluded to the respective loss functions. Since VAEs use a MSE loss, the result

is an averaged version of the output signal whereas the adversarial loss employed

by GANs picks the most plausible explanation for the input resulting in a sharp

output. This is illustrated in Figure 2.8 by an example from Lotter et al. [LKC15],

where a model is trained to predict the next frame of a given video sequence using

different loss functions. It is clear that the adversarial loss yields a much sharper
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output compared to the MSE loss which is used in VAE-based approaches. In this

dissertation, we employ GANs as generative model due to their ease of training

within the context deep neural networks. However, the methods described are not

limited to the type of generative models and usage of VAEs will be a subject of

future work.
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Chapter 3. Triplet Probabilistic Embedding for Face Analysis

3.1 Introduction

1 Recently, with the advent of curated face datasets like Labeled faces in the

Wild (LFW) [HRBLM07] and advances in learning algorithms like deep neural nets,

there is more hope that the unconstrained face verification problem can be solved.

A face verification algorithm compares two given templates that are typically not

seen during training. Research in face verification has progressed well over the

past few years, resulting in the saturation of performance on the LFW dataset,

yet the problem of unconstrained face verification remains a challenge. This is

evident by the performance of traditional algorithms in the publicly available IJB

datasets ( [KTB+15], [CSPC15]) that were released recently. Moreover, despite the

superb performance of CNN-based approaches compared to traditional methods,

a drawback of such methods is the long training time needed. In this chapter,

we present a Deep CNN (DCNN) architecture that ensures faster training, and

investigate how much the performance can be improved if we are provided domain

specific data. Specifically, our contributions are as follows:

• We propose a deep network architecture and a training scheme that ensures

1 The material presented in this chapter is part of an externally published work [SACC16]
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faster training time.

• We formulate a triplet probability embedding learning method to improve the

performance of deep features for face verification and subject clustering.

During training, we use a publicly available face dataset to train our deep

architecture. Each image is pre-processed and aligned to a canonical view before

passing it to our deep network whose features are used as the representation of the

image. In the case of IJB-A dataset, the data is divided into 10 splits, each split

containing a training set and test set. Hence, to further improve performance, we

learn the proposed triplet probability embedding using the training set provided

with each split over the features extracted from our DCNN model. During the

deployment phase, given a face template, we extract the deep features using the

raw CNN model after some automatic pre-processing steps such as face detection

and fiducial extraction. The deep features are projected onto a low-dimensional

space using the embedding matrix learned during training (note that the projection

involves only matrix multiplication). We use the 128-dimensional feature as the

final representation of the given face template.

This chapter is organized as follows: Section 3.2 places our work among the

recently proposed approaches for face verification. Section 3.3 details the network

architecture and the training scheme. The triplet probabilistic embedding learning

method is described in Section 3.4 followed by results on the IJB-A and CFP datasets

and a brief discussion in Section 6.4. In Section 3.6, we demonstrate the ability of the

proposed method to cluster a media collection from the LFW and IJB-A datasets.
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3.2 Related Work

The proposed approach broadly consists of two components: the deep network

used as a feature extractor and the learning procedure that projects the input fea-

tures onto a discriminative low-dimensional space. In the past few years, there have

been numerous works in using deep features for tasks related to face verification.

The DeepFace [TYRW14] approach uses a carefully crafted 3D alignment procedure

to preprocess face images and feeds them to a deep network (with 120M param-

eters) that is trained with a large training set. A kernel classifier is then trained

on the resulting features to make the final verification decision. More recently,

Facenet [SKP15a] uses the inception architecure and a large private dataset to train

a deep network using a triplet distance loss function. The training time for this net-

work is of the order of few weeks. Since the release of the IJB-A dataset [KTB+15],

there have been several works that have published verification results for this dataset.

Previous approaches presented in [WOJ15] and [PVZ15] train deep networks using

the CASIA-WebFace dataset [YLLL14] and the VGG-Face dataset respectively, re-

quiring substantial training time. This chapter proposes a network architecture and

a training scheme that needs shorter training time and a small query time.

The idea of learning a compact and discriminative representation has been

around for decades. Weinberger et al. [WBS05] used a Semi Definite Programming

(SDP)-based formulation to learn a metric satisfying pairwise and triplet distance

constraints in a large margin framework. More recently, this idea has been success-

fully applied to face verification by integrating the loss function within the deep
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network architecture ( [SKP15a], [PVZ15]). Joint Bayesian metric learning has

been another popular metric used for face verification ( [SPVZ13], [CPC15]). These

methods either require a large dataset for convergence or learn a metric directly

therefore not amenable to subsequent operations like discriminative clustering or

hashing. Classic methods like t-SNE [VdMH08], t-STE [VDMW12] and Crowd

Kernel Learning (CKL) [TLB+11] perform extremely well when used to visualize or

cluster a given data collection. They either operate on the data matrix directly or

the distance matrix generated from the data by generating a large set of pairwise or

triplet constraints. The objective of the optimization algorithm is to minimize the

violations in the constraint set. While these methods perform very well on a given

set of data points, they do not generalize to out-of-sample data. In the current

work, we aim to generalize such formulations, to a more traditional classification

setting, where domain specific training and testing data is provided. We formulate

an optimization problem based on triplet probabilities that performs dimensional-

ity reduction aside from improving the discriminative ability of the test data. The

embedding scheme described in this chapter is a more general framework that can

be applied to any setting where labeled training data is available.

3.3 Network Architecture

This section details the architecture and training algorithm for the deep net-

work used in our work. Our architecture consists of 7 convolutional layers with

varying kernel sizes. The initial layers have a larger size rapidly subsampling the
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image and reducing the parameters while the later layers consist of small filter sizes,

which has proved to be very useful in face recognition tasks ( [PVZ15], [YLLL14]).

Furthermore, we use the Parametric Rectifier Linear units (PReLUs) instead of

ReLU, since they allow a negative value for the output based on a learned threshold

and have been shown to improve the convergence rate [HZRS15].

Layer Kernel Size/Stride #params

conv1 11x11/4 35K

pool1 3x3/2

conv2 5x5/2 614K

pool2 3x3/2

conv3 3x3/2 885K

conv4 3x3/2 1.3M

conv5 3x3/1 2.3M

conv6 3x3/1 2.3M

conv7 3x3/1 2.3M

pool7 6x6/2

fc6 1024 18.8M

fc7 512 524K

fc8 10548 10.8M

Softmax Loss Total: 39.8M

Table 3.1: Deep Network architecture details

The top three convolutional layers (conv1-conv3) are initialized with the weights

from the AlexNet model [KSH12a] trained on the ImageNet challenge dataset. Sev-

eral recent works ( [YCBL14], [LW15]) have empirically shown that this transfer of

knowledge across different networks, albeit for a different objective, improves per-

formance and more significantly reduces the need to train over a large number of
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iterations.

The compared methods either learn their deep models from scratch ( [PVZ15],

[YRC+16]) or finetune only the last layer of fully pre-trained models. The former

approach results in large training time and the latter approach does not generalize

well to the task at hand (face verification) and hence results in a sub-optimal per-

formance. In the current work, even though we use a pre-trained model (AlexNet)

to initialize the proposed deep network, we do so only for the first three convolu-

tional layers, since they retain more generic information ( [YCBL14]). Subsequent

layers learn representations which are more specific to the task at hand. Thus, to

learn more domain specific information, we add 4 convolutional layers each consist-

ing of 512 kernels of size 3 × 3. The layers conv4-conv7 do not downsample the

input thereby learning more complex higher dimensional representations. This hy-

brid architecture proves to be extremely effective as our raw CNN representation

outperforms some very deep CNN models on the IJB-A dataset (Table 2 in Re-

sults). In addition, we achieve that performance by training our deep network on

the relatively smaller CASIA-WebFace dataset.

The architecture of our network is shown in Figure 3.1. Layers conv4-conv7

and the fully connected layers fc6-fc8 are initialized from scratch using random

Gaussian distributions. PReLU activation functions are added between each layer.

Since the network is used as a feature extractor, the last layer fc8 is removed during

deployment, thus reducing the number of parameters to 29M. The inputs to the

network are 227x227x3 RGB images. When the network is deployed, the features

are extracted from the fc7 layers resulting in a dimensionality of 512. The network
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is trained using the Softmax loss function for multiclass classification using the Caffe

deep learning platform [JSD+14].

3.4 Learning a Discriminative Embedding

In this section, we describe our algorithm for learning a low-dimensional em-

bedding such that the resulting projections are more discriminative. Aside from an

improved performance, this embedding provides significant advantages in terms of

memory and enables post-processing operations like visualization and clustering.

Consider a triplet t := (vi, vj, vk), where vi (anchor) and vj (positive) are from

the same class, but vk (negative) belongs to a different class. Consider a function

SW : RN ×RN 7→ R that is parameterized by the matrix W ∈ Rn×N , that measures

the similarity between two vectors vi, vj ∈ RN . Ideally, for all triplets t that exist

in the training set, we would like the following constraint to be satisfied:

SW(vi, vj) > SW(vi, vk) (3.1)

Thus, the probability of a given triplet t satisfying (3.1) can be written as:

pijk =
eSW(vi,vj)

eSW(vi,vj) + eSW(vi,vk)
(3.2)

The specific form of the similarity function is given as: SW(vi, vj) = (Wvi)
T ·

(Wvj). In our case, vi and vj are deep features normalized to unit length. To learn

the embedding W from a given set of triplets T, we solve the following optimization:
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argmin
W

∑
(vi,vj ,vk)∈T

− log(pijk) (3.3)

(3.3) can be interpreted as maximizing the likelihood (3.1) or minimizing the

negative log-likelihood (NLL) over the triplet set T. In practice, the above problem

is solved in a Large-Margin framework using Stochastic Gradient Descent (SGD)

and the triplets are sampled online. The gradient update for the W is given as:

Wτ+1 = Wτ − η ∗Wτ ∗ (1− pijk) ∗ (vi(vj − vk)
T

+(vj − vk)v
T
i ) (3.4)

where Wτ is the estimate at iteration τ , Wτ+1 is the updated estimate, (vi, vj, vk)

is the triplet sampled at the current iteration and η is the learning rate.

By choosing the dimension of W as n × N with n < N , we achieve dimen-

sionality reduction in addition to better performance. For our work, we fix n = 128

based on cross validation and N = 512 is the dimensionality of our deep features.

W is initialized with the first n principal components of the training data. At each

iteration, a random anchor and a random positive data point are chosen. To choose

the negative, we perform hard negative mining, ie. we choose the data point that

has the least likelihood (3.2) among the randomly chosen 2000 negative instances

at each iteration.

Since we compute the embedding matrix W by optimizing over triplet prob-

abilities, we call this method Triplet Probability Embedding (TPE). The tech-

nique closest to the one presented in this section, which is used in recent works
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( [SKP15a], [PVZ15]) computes the embedding W based on satisfying a hinge loss

constraint:

argmin
W

∑
(vi,vj ,vk)∈T

max{0, α + (vi − vj)
TWTW(vi − vj)−

(vi − vk)
TWTW(vi − vk)} (3.5)

α acts a margin parameter for the loss function. To be consistent with the

terminology used in this dissertation, we call it Triplet Distance Embedding (TDE).

To appreciate the difference between the two approaches, let us look at the gradient

update step for (3.5):

Wτ+1 = Wτ − η ∗Wτ ∗ ((vi − vj)(vi − vj)
T

−(vi − vk)(vi − vk)
T ) (3.6)

Figure 3.1 shows the case where the gradient update for the TDE method

(3.6) occurs. If the value of α is not appropriately chosen, a triplet is considered

good even if the positive and negative are very close to one another. But under the

proposed formulation, both cases referred to in Figure 3.1 will update the gradient

but their contribution to the gradient will be modulated by the probability with

which they violate the constraint in (3.1). This modulation factor is specified by

the (1 − pijk) term in the gradient update for TPE in (5.4) implying that if the

likelihood of a sampled triplet satisfying (3.1) is high, then the gradient update is

given a lower weight and vice-versa. Thus, in our method , the margin parameter

(α) is automatically set based on the likelihood.

To compare the relative performances of the raw features before projection,
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Figure 3.1: Gradient update scenarios for the TDE method (3.5). The notation is ex-

plained in the text

with TDE and with TPE (proposed method), we plot the traditional ROC curve

(TAR (vs) FAR) for split 1 of the IJB-A verify protocol for the three methods

in Figure 3.2. The Equal Error Rate (EER) metric, which is a popular measure

to compare classification systems is specified for each method. The performance

improvement due to TPE is significant, especially at regions of FAR= {10−4, 10−3}.

We observed a similar behaviour for all the ten splits of the IJB-A dataset.

3.5 Experimental setup and Results

In this section we evaluate the proposed method on two challenging datasets:

1. IARPA Janus Benchmark-A (IJB-A) [KTB+15]: This dataset contains

500 subjects with a total of 25,813 images (5,399 still images and 20,414 video
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Figure 3.2: Performance improvement on IJB-A split 1: FAR (vs) TAR plot. EER values

are specified in brackets.

frames sampled with a rate of 1 in 60). The faces in the IJB-A dataset con-

tain extreme poses and illuminations, much harder than LFW [HRBLM07]. An

additional challenge of the IJB-A verification protocol is that the template com-

parisons include image to image, image to set and set to set comparisons. In the

experiments, if a given test template of the IJB-A data we perform two kinds of

pooling to produce its final representation:

• Average pooling (CNNave): The deep features of the images and/or frames

present in the template are combined by taking a componentwise average to

produce one feature vector. Thus each feature equally contributes to the final

representation.

• Media pooling (CNNmedia): The deep features are combined keeping in mind

the media source they come from. The metadata provided with IJB-A gives us
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(a) Frontal-Frontal (b) Frontal-Profile

Figure 3.3: Sample comparison pairs from the CFP dataset

Figure 3.4: Images from the IJB-A dataset

the media id for each item of the template. Thus to get the final feature vector,

we first take an intra-media average and then combine these by taking the inter-

media average. Thus each feature’s contribution to the final representation is

weighted based on its source. Some sample images from the IJB-A dataset are

shown in Figure 3.4.

2. Celebrities in Frontal-Profile (CFP) [SCC+16]: This dataset contains 7000

images of 500 people. The dataset is used for evaluating how face verification

approaches handle pose variation. Hence, it consists of 5000 images in frontal

view and 2000 images in extreme profile. The data is organized into 10 splits,

each containing equal number of frontal-frontal and frontal-profile comparisons.

Sample comparison pairs of the CFP dataset are shown in Figure 3.3.
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3.5.1 Pre-processing

In the training phase, given an input image, we use the HyperFace method

[RPC16] for face detection and fiducial point extraction. The HyperFace detector

automatically extracts all the faces from a given image. For the IJB-A dataset,

since most images contain more than one face, we use the bounding boxes provided

along with the dataset to select the person of interest from the list of automatic

detections. We select the detection that has the maximum area overlap with the

manually provided bounding box. In the IJB-A dataset, there are few images for

which the HyperFace detector cannot find the relevant face. For the missed cases,

we crop the face using the bounding box information provided with the dataset

and pass it to HyperFace to extract fiducials. We use six fiducial points (eyes and

mouth corners) to align the detected image to a canonical view using the similarity

transform. For the CFP dataset, since the six keypoints cannot be computed for

profile faces we only use three keypoints on one side of the face for aligning them.

3.5.2 Parameters and training times

The training of the proposed deep architecture is done using SGD with mo-

mentum, which is set to 0.9 and the learning rate is set to 1e-3 and decreased

uniformly by a factor of 10 every 50K iterations. The weight decay is set to 5e-4

for all layers. The training batch size is set to 256. The training time for our deep

network is 24 hours on a single NVIDIA TitanX GPU. For the IJB-A dataset, we

use the training data provided with each split to obtain the triplet embedding which
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takes 3 minutes per split. This is the only additional splitwise processing that is

done by the proposed approach. During deployment, the average enrollment time

per image after pre-processing, including alignment and feature extraction is 8ms.

3.5.3 Evaluation Pipeline

Given an image, we pre-process it as described in Section 3.5.1. The deep

features are computed as an average of the image and its flip. Given two face images

to compare, we compute their cosine similarity score. More specifically, for the

IJB-A dataset, given a template containing multiple faces, we flatten the template

features by average pooling or media pooling to obtain a vector representation. For

each split, we learn the TPE projection using the provided training data. The final

representation is obtained as: y = Wx, where x is the deep feature and W is the

TPE projection matrix. Given two templates for comparison, we compute the cosine

similarity score using the projected 128-d representations.

3.5.4 Evaluation Metrics

We report two types of results for the IJB-A dataset: Verification and Identifi-

cation. For the verification protocol, we report the False Non-Match Rate (FNMR)

values at several False Match Rates (FMR). For the identification results, we report

open set and closed set metrics. The True Positive Identification Rate (TPIR) quan-

tifies the fraction of subjects that are classified correctly among the ones that exist

in probe but not in gallery. For the closed set metrics, we report the CMC numbers

at different values of False Positive Identification Rates (FPIRs) and Ranks. More
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Method

IJB-A Verification (FNMR@FMR) IJB-A Identification

0.001 0.01 0.1 FPIR=0.01 FPIR=0.1 Rank=1 Rank=10

GOTS [KTB+15] 0.8 (0.008) 0.59 (0.014) 0.37 (0.023) 0.047 (0.02) 0.235 (0.03) 0.443 (0.02) -

VGG-Face [PVZ15] 0.396 (0.06) 0.195 (0.03) 0.063(0.01) 0.46 (0.07) 0.67 (0.03) 0.913 (0.01) 0.981 (0.005)

Masi et al. [MTL+16] 0.275 0.118 - - - 0.902 0.968

NAN [YRC+16] 0.215 (0.03) 0.103 (0.01) 0.041 (0.005) - - - -

CNNave (Ours) 0.287 (0.05) 0.146 (0.01) 0.051 (0.006) 0.626 (0.06) 0.795 (0.02) 0.90 (0.01) 0.974 (0.004)

CNNmedia (Ours) 0.234 (0.02) 0.129 (0.01) 0.048 (0.005) 0.67 (0.05) 0.82 (0.013) 0.925 (0.01) 0.978 (0.005)

CNNmedia+TPE (Ours) 0.187 (0.02) 0.10 (0.01) 0.036 (0.005) 0.753 (0.03) 0.863 (0.014) 0.932 (0.01) 0.977 (0.005)

Table 3.2: Identification and Verification results on the IJB-A dataset. For identification,

the scores reported are TPIR values at the indicated points. The results are

averages over 10 splits and the standard deviation is given in the brackets for

methods which have reported them. ′−′ implies that the result is not reported

for that method. The best results are given in bold.

details on the evaluation metrics for the IJB-A protocol can be found in [KTB+15].

For the CFP dataset, following the protocol set in [SCC+16], we report the

Area under the curve (AUC) and Equal Error Rate (EER) values as averages across

splits, in addition to the classification accuracy. To obtain the accuracy for each

split, we threshold our CNN similarity scores where the threshold is set to the value

that provides highest classification accuracy over the training data for each split.

3.5.5 Discussion

Performance on IJB-A

Table 3.2 presents the results for the proposed method compared to the other

approaches applied to the IJB-A verification and identification protocols. The com-

pared methods are described below:
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• Government-of-the-Shelf (GOTS) [KTB+15] is the baseline performance provided

along with the IJB-A dataset.

• Parkhi et al. [PVZ15] train a very deep network (22 layers) over the VGG-Face

dataset which contains 2.6M images from 2622 subjects.

• The Neural Aggregation network (NAN) [YRC+16] is trained over large amount

of videos from the CELEB-1000 dataset [LZLY14] starting from the GoogleNet

[SLJ+15] architecture. Furthermore, a separate siamese network is trained for

verification experiments starting from the NAN network.

• Masi et al. [MTL+16] use a deep CNN based approach that includes a combi-

nation of in-plane aligned images, 3D rendered images to augment their perfor-

mance. The 3D rendered images are also generated during test time per template

comparison, which results in a large query time per template comparison.

Compared to these methods, the proposed method trains a single CNN model

on the CASIA-WebFace dataset which consists of about 500K images and requires

much shorter training time and has a very fast query time (8ms after face detection

per image pair). Our raw CNN features after media pooling have the best per-

formance among the compared methods in Table 3.2 in the IJB-A verification and

identification protocols with the exception of Rank-10 accuracy where we are very

close to the best result. The TPE method provides significant improvement for both

the identification and verification tasks as shown in Table 3.2.

Table 3.3 shows results using the method by Crosswhite et al. [CBP+16] that
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FMR Ours Crosswhite et al. [CBP+16]

1e-2 0.10 (0.012) 0.061 (0.013)

1e-1 0.036 (0.005) 0.017 (0.007)

Table 3.3: Recent results on the IJB-A verification protocol. Reported as FNMR at FMR

uses the VGG-Face network [PVZ15] descriptors (4096-d) as the raw features. They

use the concept of template adaptation [WHT09] to improve the face recognition

performance as follows: when pooling multiple faces of a given template, they train

a linear SVM with the features of this template as positive and a fixed set of

negatives extracted from the training data of the IJB-A splits. Let’s denote the

pooled template feature and classifier pair as (t, w). Then, at query time when

comparing two templates (t1, w1) and (t2, w2), the similarity score is computed as:

1
2

(t1 · w2 + t2 · w1). Even when using a carefully engineered fast linear classifier

training algorithm, this procedure increases the run time of the pooling procedure

and hence the query time per template comparison significantly. In contrast, our

approach requires a matrix multiplication and a vector dot product per comparison.

By using a simple neural network architecture, a relatively smaller training dataset

and a fast embedding method we have realized a faster and more efficient end-to-end

system. By incorporating video data into our approach, the performance could be

improved further. We leave this for future work.
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Algorithm

Frontal-Frontal Frontal-Profile

Accuracy EER AUC Accuracy EER AUC

Sengupta et al. [SCC+16] 96.40 (0.69) 3.48 (0.67) 99.43 (0.31) 84.91 (1.82) 14.97 (1.98) 93.00 (1.55)

Human Accuracy 96.24 (0.67) 5.34 (1.79) 98.19 (1.13) 94.57 (1.10) 5.02 (1.07) 98.92 (0.46)

CNN (Ours) 96.93 (0.61) 2.51 (0.81) 99.68 (0.16) 89.17 (2.35) 8.85 (0.99) 97.00 (0.53)

Table 3.4: Results on the CFP dataset [SCC+16]. The numbers are averaged over ten test

splits and the numbers in brackets indicate standard deviations of those runs.

The best results are given in bold.

Performance on CFP

On the CFP dataset, we set a new state-of-art on both Frontal-Frontal and

Frontal-Profile comparisons, the latter by a large margin. More specifically, for

the Frontal-Profile case, we manage to reduce the error rate by 40.8%. It should

be noted that for a fair comparison we have used our raw CNN features without

performing TPE. This shows that the raw CNN features we learn are effective even

at extreme pose variations.

3.6 Clustering Faces

This section illustrates how the proposed TPE method can be used to cluster

a given data collection. We perform two clustering experiments:

1. We perform clustering on the entire LFW [HRBLM07] dataset that consists of

13233 images of 5749 subjects. It should be noted that about 4069 subjects have

only one image.
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(a) (b)

(c) (d)

(e) (f)

Figure 3.5: Sample clusters output from the Clustering approach discussed in Section 6 for

the data from the split 1 of the IJB-A dataset. Top row (a,b) shows robustness

to pose and blur; Middle row (c,d) contains clusters that are robust to age;

Bottom row (e,f) shows instances that are robust to disguise.

2. We use the IJB-A dataset and cluster the templates corresponding to the query

set for each split the IJB-A verify protocol.

For evaluating the clustering results, we use the metrics defined in [OWJ16].

These are summarized below:

• Pairwise Precision (Ppair): The fraction of pairs of samples within a cluster among

all possible pairs which are of the same class , over the total number of same cluster

pairs.

• Pairwise Recall (Rpair): The fraction of pairs of samples within a class among

all possible pairs which are placed in the same cluster, over the total number of

same-class pairs.
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Using these metrics, the F1-score is computed as:

F1 =
2 ∗ Ppair ∗Rpair

Rpair + Ppair
(3.7)

The simplest way we found to demonstrate the effectiveness of our deep fea-

tures and the proposed TPE method, is to use the standard MATLAB implemen-

tation of the agglomerative clustering algorithm with the average linkage metric.

We use the cosine similarity as as our basic clustering metric. The simple cluster-

ing algorithm that we have used here has computational complexity of O(N2). In

its current form, this does not scale to large datasets with millions of images. We

believe this is not an insurmountable limitation and we are currently working on a

more efficient and scalable (yet approximate) version of this algorithm.

3.6.1 Clustering LFW

The images in the LFW dataset are pre-processed as described in Section

3.5.1. For each image and its flip, the deep features are extracted using the proposed

architecture and their component-wise average normalized to unit L2 norm is used

as the final representation. We run the clustering algorithm over the entire data

in a single shot. The clustering algorithm takes as input a cut-off parameter which

acts as a distance threshold (below which any two clusters will not be merged). In

our experiments, we vary this cut-off parameter over a small range and evaluate

the resulting clustering using the F1-score. We pick the result that yields the best

F1-score. Table 3.5 shows the result of our approach and compares it to a recently

released clustering approach based on approximate Rank-order clustering [OWJ16].
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Method F1-score Clusters

[OWJ16] 0.87 6508

CNN (Ours) 0.955 5351

Table 3.5: F1-score for comparison of the two clustering schemes on the LFW dataset.

The ground truth cluster number is 5749.

Method F1-score Clusters After Pruning

CNNmedia 0.79 293 (22) 173

CNNmedia+TPE 0.843 258(17) 167

Table 3.6: Clustering metrics over the IJB-A 1:1 protocol. The standard deviation is

indicated in brackets. The ground truth subjects per each split is 167.

It should be noted that, in the case of [OWJ16], the clustering result is chosen by

varying the number of clusters and picking the one with the best F1-score. In our

approach, we vary the cut-off threshold which is the property of the deep features

and hence is a more intuitive parameter to tune. We see from Table 3.5 that aside

from better performance, the total cluster estimate is closer to the ground truth

value of 5749 than [OWJ16].

3.6.2 Clustering IJB-A

The IJB-A dataset is processed as described in Section 3.5.1. In this section,

we aim to cluster the query templates provided with each split for the verify protocol.

We report the results of two experiments: with the raw CNN features (CNNmedia)
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Figure 3.6: Precision-Recall curve plotted over cut-off threshold varied from 0 to 1.

and with the projected CNN features, where the projection matrix is learned through

the proposed TPE method (CNNmedia+TPE). The cut-off threshold required for our

clustering algorithm is learned automatically based on the training data, i.e. we

choose the threshold that gives the maximum F1-score over the training data. The

scores reported in Table 3.6 are average values over ten splits. As expected, the

TPE method improves the clustering performance of our raw features. The subject

estimate is the number of clusters produced as a direct result of our clustering

algorithm. The pruned estimate is obtained by ignoring the clusters which have less

than 3 images.

For a more complete evaluation of our performance over varying threshold

values, we plot the Precision-Recall (PR) curve for the IJB-A clustering experiment

in Figure 3.6. As can be observed, the PR curve for clustering the IJB-A data

using embedded features exhibits a better performance at all operating points. This

is a more transparent evaluation than reporting only the F1-score since the latter

effectively fixes the operating point but the PR curve reveals the performance at all
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operating points.

3.7 Conclusion

In this chapter, we proposed a deep CNN-based approach coupled with a low-

dimensional discriminative embedding learned using triplet probability constraints

in a large margin fashion. The proposed pipeline enables a faster training time and

improves face verification performance especially at low FMRs. We demonstrated

the effectiveness of the proposed method on two challenging datasets: IJB-A and

CFP and achieved performance competitive with the state of the art while using a

deep model which is more compact and trained using a moderately sized dataset.

We demonstrated the robustness of our features using a simple clustering algorithm

on the LFW and IJB-A datasets. Avenues for future work include extension of

the proposed approach to video data. One promising direction is as follows: Given

frames of a video, the sample covariance matrix can be reliably computed , which

can be considered to be a point on the Grassmann manifold. The TPE approach can

then be extended to operate on arbitrary data spaces such as Riemannian manifolds.

The proposed clustering scheme can be scaled in a distributed manner to handle

large scale scenarios such as large impostor sets of the order of millions.
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Chapter 4. Perturbation analysis of Segmentation Networks

4.1 Introduction

1 Convolutional Neural Networks (CNNs) have achieved state of the art results

on several computer vision benchmarks such as ILSVRC [RDS+15] and PASCAL

VOC [EEVG+15] over the past few years. Despite their overwhelming success, re-

cent results have highlighted that they can be sensitive to small adversarial noise in

the input [GSS14a] or can be easily fooled using structured noise patterns [NYC15].

To understand how a CNN can learn complex and meaningful representations but

at the same time be easily fooled by simple and imperceptible perturbations still

remains an open research problem. The work of Goodfellow et. al. [GSS14a] and

Szegedy et al. [SZS+13a] among others, bring out the intriguing properties of neu-

ral networks by introducing perturbations in either the hidden layer weights or the

input image. While these approaches have focused on understanding the effect of

adversarial noise in deep networks, in this chapter we present an intriguing obser-

vation: input perturbations can enable a CNN to correct its mistakes. We find

that these perturbations exploit the local neighborhood information from network’s

prediction which in turn results in contextually smooth predictions.

1 The material presented in this chapter is part of an externally published work [SJNL17]
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Figure 4.1: Self-corrective behavior due to Guided Perturbations (GP) for segmentation

and classification tasks.

In almost all the CNN-based approaches, the output is obtained using a single

forward pass during the prediction time. In the proposed approach, we use the

prediction made by the network during the forward pass to generate perturbations

at the input. Specifically, we backpropagate the gradient of the prediction error

all the way to the input. We would like to emphasize that the error gradients

are generated purely based on the network’s prediction without any knowledge of

ground truth. We perturb the input image by adding to it a scaled version of the

gradient signal. This is fed back to the network again for prediction. Figure 4.1

shows an example of the self-corrective behavior of the generated perturbations for

segmentation and classification tasks. This example shows that these perturbations

of the input image could be viewed as a form of structured distortion that is added

to the input such that the context gets amplified in each pixel’s neighborhood which

enables the network to correct its own mistakes. The proposed approach is simple

and easy to implement and does not require retraining or modification in network’s
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architecture.

Existing approaches to improve performance on segmentation and classifica-

tion tasks have been geared towards novelties in network architecture or using large

amount of training data or both. While these are valid ways to improve the networks

performance, the proposed approach highlights an inherent behavior of CNNs that

can be used to improve their prediction without requiring additional learning or

training data. We would like to note here that while the behavior of Guided Pertur-

bations (GP) is similar to Conditional Random Fields (CRF) based approaches, the

difference in our case is that there is no explicit modeling of context or neighborhood

interactions. Since our approach is network independent, this doesn’t preclude net-

works which model context explicitly and we show improvements in such networks

too.

To the best of our knowledge, this is the first approach to show the existence

of a self-corrective behavior in CNNs and use of such behavior for improvement in

performance on segmentation and classification tasks. To summarize, the major

contributions of the proposed approach are:

• We present a novel and intriguing observation: there exist structured pertur-

bations which when used to perturb the input leads to a corrective behavior

in CNNs.

• We propose a generalized framework to improve the performance of any pre-

trained CNN model that is architecture independent and requires no learning

assuming the network is trained end-to-end.

53



4.2 Background

In recent years, there have been several approaches that attempt to analyze

the behavior of CNNs for classification problems. Mahendran et al [MV15] pro-

posed an approach to invert the function learned by the CNN in order to generate

as faithful a reconstruction of the input as possible. This is performed by mini-

mizing a regularized energy function that approximates the representation function

that is learned by the deep network. Another interesting work in this direction is

the fooling images work of Nguyen et al [NYC15] that is further extended by Yosin-

ski et al [YCN+15]. The main objective in both the approaches is to synthesize

images to confuse CNN by maximizing the activation of individual neurons from

different layers of a deep network. This leads to interesting results such as images

that look like random noise but which the CNN classifies into different classes with

high confidence. The approaches that are closer in spirit to our proposed approach

are: Szegedy et al [SZS+13a] and Goodfellow et al [GSS14a]. Their study shows

that there exist a lot of adversarial examples which are the result of minor pertuba-

tions of the input that causes the CNN to misclassify input images on classification

tasks; these examples can be generated by adding a fraction of the gradient that is

generated by wiggling the classifier output in the direction of the target class.

One of the applications that this chapter focuses on is semantic segmentation.

Significant research has gone into understanding the expressive ability of CNNs for

such problems. Recent methods for image segmentation such as Fully Convolutional

Networks (FCN) by Long et al [SLD16] have provided an easy framework that casts
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the image segmentation problem as a pixelwise label classification problem. The

major difference in their work was the image level output generation and backpro-

pogation which was made possible by the work of Zeiler et al [ZKTF10]. This image

level back propogation provides a simple way to learn a discriminative representa-

tion of classes at the pixel level. Several recent approaches such as CRFasRNN by

Zheng et al [ZJRP+15], DeepLab by Chen et al [CPK+16] and GCRF by Vemu-

lapalli et al [VTLC16] have improved the FCN framework by explicitly modeling

context. CRFasRNN casts the CRF iterations, which has been traditionally used

as a post processing function in image segmentation problem to ensure label com-

patibility, as a Recurrent Neural Network. They formulate the steps required to

perform a mean field iteration in a CRF including message passing and learning a

label compatibility transform as a layer in a CNN, which is unrolled in time over T

iterations. The unary potentials are computed using the FCN-8s network which is

then refined using the RNN strucure. By casting this as a CNN layer they perform

end-to-end training. More recently, Yu et al [YK15] propose to train a multiscale

context aggregation module on top of a modified FCN-8s network. This context

module improves the performance of the base network on its own or in combination

with CRF based approaches.

In this chapter, we describe an interesting property of deep networks about

how it can change its predictions for the better using minor perturbations of the

input. Furthermore, we provide useful applications of our approach by showing how

it can be used to improve prediction performance on challenging computer vision

tasks.
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4.3 Our Approach

In this section, we describe our approach to generate guided perturbations

by using the gradient information obtained from the network’s output. We perform

experiments to study the different aspects of these perturbations and how they affect

the network representations. Since our approach to generate guided perturbation is

different for segmentation and classification tasks, we discuss them separately.

4.3.1 Semantic Segmentation

Figure 4.2 illustrates our approach for semantic segmentation task. Given an

input image we perform a forward pass to compute the output - which is usually the
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Figure 4.2: Processing pipeline for the proposed approach for semantic segmentation
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output of a softmax function that gives a class probability vector for each pixel. The

prediction output is then binarized by setting the probability of the most confident

class to one and the others to zero. This is done for each pixel and the error gradient

is computed at the softmax layer by setting this modified output as ground truth.

Let X ∈ RM×N×Cin represent the input image to the deep network, Y ∈ RM×N×Cout

represent ground truth labeling, where Cin is the number of input channels, Cout

is the number of classes and M × N is the dimensionality of the input image.

Let θ represent the parameters of the network and J(θ,X,Y) represent the loss

function that is optimized during training. During prediction time, let Ypred be

the predicted labeling. In order to generate an error gradient for backpropagation,

we create a pseudo ground truth labeling Ypseudo by modifying Ypred as follows: We

initialize Ypseudo with Ypred. Let the kth component of Ypseudo be represented as yk =

[yk1 , .., ykCout ], which is a Cout-dimensional score vector. We modify yk to be a 1-hot

encoded vector with the maximally confident class set to 1 and others to zero. Then,

the error gradient signal is computed based on the loss function J(θ,X,Ypseudo) and

backpropagated through the network up to the input. Let the backpropagated error

gradient signal at the input be represented as: ∇XJ(θ,X,Ypseudo). The perturbed

input in then generated as follows:

Xper = X + εsign(∇XJ(θ,X,Ypseudo)), ε > 0 (4.1)

where ε is a non negative scaling factor that is model dependent and sign(.)

represents the signum function taken elementwise. Xper is then fed into the network

for a forward pass to generate the final output.
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It can be argued that the above method of generating gradients using the net-

work’s prediction can lead to inaccurate gradient information propagated through

the network especially in cases where the network’s output contains many misclas-

sified pixels. The key insight we provide in this chapter is that despite misclassifica-

tions by the deep network, the gradients at the input obtained from the network’s

prediction, in general, improve the final output of the deep network.

4.3.2 Understanding Guided Perturbations

In this section, we perform several experiments to provide insight into different

aspects of guided perturbations. Please refer to Figure 4.2 for the steps (Step 1,

Step 2, Step 3) mentioned in this section.

Impact of perturbations on filter responses: To get a clear understand-

ing of what happens during the forward pass in Step 3 that vastly changes the

network’s prediction, we visualize the filter responses for the FCN-32s network in

Figure 4.3. This model was chosen due to its simpler architecture but we observed

similar behavior in other deep architectures too. In Figure 4.3, we plot the average

filter responses at different layers through the deep network after upsampling them

bilinearly to image size. As can be observed, the influence of the added perturba-

tions are not visually explicit until the pool5 layer but the difference of the filter

responses in Column (c) indicate that the information propagates from layers as

early as pool2.

Next, we analyze the pixels for which the network predictions changed from

Step 1 to Step 3. Figure 4.4(c) shows the pixels that were classified wrongly during
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Figure 4.3: Visualization of filter responses showing how the correct context is propagated

along the FCN-32s network. Column (a): filter responses during the forward

pass using the original input. Column (b): filter responses during the forward

pass using the perturbed input. Column (c): difference between (a) and (b)

59



the forward pass in Step 1 but were correctly classified at the final output. On the

other hand, 4.4(d) shows the pixels that were correctly classified in Step 1 but were

incorrect at the final output. Observe that, the correctly classified pixels between

Step 1 and Step 3 are mostly internal to the image where additional contextual

information is available for the network to switch its prediction whereas the small

number of misclassified pixels are largely concentrated along the boundary regions

of the image where the context is ambiguous. We present more of such visualization

examples in the supplementary material.

Approximating ideal gradient direction: In this experiment, we would

like to answer the question: what are the ideal perturbations that can be generated

at the input? The best one can do is to use the ground truth to generate error gra-

dients at the softmax layer which is then backpropagated to generate the perturbed

input. When this perturbed input is fed back to the network, the result is a vastly

improved prediction as shown in Figure 4.5 (c). While perturbations from ground

truth significantly improve the performance, this information is not available during

prediction time. The novelty of the current work is that the ground truth gradient

(a) (b) (c) (d)

Figure 4.4: (a) Output of FCN-32s network (b) Output from the proposed approach (c)

Pixels that were incorrectly classified by FCN-32s corrected by our approach

(d) Pixels that were incorrectly classified by our approach that FCN-32s clas-

sified correctly.
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direction is being approximated well enough by the predicted gradient directions

that are computed using only the network’s prediction.

(a) (b)

(d) (e) (f)

(c)

Figure 4.5: (a) Output of FCN-32s (b)Ground truth labeling (c) Output of perturbed

input using ground truth gradients (d)-(f) Output of perturbed input using

guided perturbations for iteration 1, 2 and 3 respectively.

To understand the extent of usefulness of the predicted gradients, we performed

an experiment where the three steps outlined in our approach (Figure 4.2) is applied

over successive iterations Figure 4.5 (d) shows the output of our approach obtained

in the first iteration and Figure 4.5 (e)-(f) show the output over successive iterations.

This shows that the most significant improvement happens at the first iteration and

the subsequent iterations yield little improvement. We observe similar behavior on

average over the PASCAL VOC2012 validation set.

Intuition based on overlapping receptive fields: In a CNN, the receptive

fields of neighboring pixels define a context for their interactions. The advantage

of having overlapping receptive fields is that the neighborhood connectivity is es-

tablished automatically without explicitly specifying it. As long as the errors made

by the CNN are sparse with respect to each pixel’s receptive fields, the error gra-
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dients when accumulated over the entire network and used to perturb the input

image exhibit a corrective behavior. The effect of GP can be seen as a type of

residual information that is propagated through the network which results in con-

textual smoothing. This is evident by looking at the filter responses in Figure 4.3,

more specifically in Column 3, which shows the difference in responses with and

without GP. It can be observed from the pool5 responses that the peak activations

occur around neighborhoods where there are competing classes. GP perturb these

neighborhoods the most thus resulting in contextually smooth predictions in those

regions.

Analyzing GP in depth: In Figure 4.6, we show how guided perturbations

impact the decisions made by the deep network by considering a local region in the

input image and tracking its classification scores at score-fr layer (before upsampling

layer) across different values of ε. In the top half of Figure 6.4a, the patch of interest

in the RGB image is marked by a red box and its corresponding region in the score-

fr output is marked by a blue box. Immediately below, the following are shown for

different values of ε: (1) Guided perturbations generated at the input (2) perturbed

RGB patches (3) output of the score-fr layer. Important observations that can be

made from Figure 6.4a are:

• Input perturbations corresponding to positive ε improve the score output over

a vast range of values. This visualization shows how guided perturbations

are able to operate at a local level by leveraging neighborhood contextual

information as can be directly observed from the images of score layer shown
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in the bottom row.

• Even a small negative value of ε results in a large adverse effect on the score

output, without any perceptible change in the perturbed RGB patch. This

shows that a negative ε corresponds to an adversarial setting hence showing

that adversarial perturbations exist for semantic segmentation networks. It

should be noted that the effect is more severe in this case as compared to the

case of image classification since a very small ε and a single step adversarial

attack results in a huge decrease in performance. This can also be seen in

Figure 4.8.

This discussion motivates our choice of using ε > 0 to generate GP. To further

analyze how these input perturbations affect the actual classifier score, we show

in Figure 4.6b, the predictions of the deep network for the 3x3 grid in the score-

fr output from Figure 6.4a, for different values of ε. For clarity, we only show the

predicted scores of the top-5 classes. From the score values of the grid position (2,2),

we can observe that as ε increases, the score of true class (cow) keeps increasing while

the scores of the confusing classes do not vary much. The other plots show that this

trend is observed across the entire neighborhood of the 3x3 grid. Thus, it can be

inferred that perturbations at the input affect the decision of the deep network in

a contextually consistent manner. We again observe that the score of the true class

drops significantly even for a small negative ε which is consistent with our earlier

observations.
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Figure 4.7: Qualitative results on the PASCAL VOC2012 reduced validation set. In the

top two rows, we compare our result with the FCN-8s part of CRFasRNN

that has been trained on MS.COCO dataset [LMB+14a] and publicly released

by [ZJRP+15]. In the bottom row, we compare with the complete CRFasRNN

framework [ZJRP+15]. More results can be found in supplementary material.

4.4 Experiments

In this section, we perform several experiments showing how our approach

could be seamlessly applied on top of several pretrained deep networks. We test

our method on the semantic segmentation task on PASCAL VOC2012 dataset

[EEVG+15], scene labeling task on the PASCAL Context 59-class dataset [MCL+14a]

and classification tasks on the MNIST and CIFAR10 datasets [Kri09]. These results
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support how our approach is able to generalize across different types of problems in

computer vision and highlights the advantage that it can be used with any pretrained

model.

4.4.1 Evaluation Metrics

We evaluate our approach using the mean Intersection over Union (mIoU)

metric commonly used for semantic segmentation as reported in [SLD16]. Let nij

be the number of pixels of class i predicted to belong to class j, Ncl be number of

classes, and ti =
∑

j nij be the total number of pixels of class i. It is then formulated

as mean IoU = 1
Ncl

∑
i

nii
ti+

∑
j nji−nii

. For MNIST and CIFAR-10, we use classification

accuracy as a metric to compare against the baseline.

4.4.2 Semantic Segmentation

We use PASCAL VOC2012 dataset for evaluating our approach for semantic

segmentation task. It consists of 21 classes including background. We use the

following pre-trained models as baselines and show the improvement that can be

obtained using our approach for each of them:(1) FCN-32s and FCN-8s [SLD16]:

these models are trained using the SBD dataset [HAB+11] that consists of 9,600

images. (2) FCN-8s-coco and CRFasRNN [ZJRP+15]: these are trained using the

images from MS COCO [LMB+14b] and the SBD dataset using a total of 77,784

images. (3) Deeplab [CPK+14]: We evaluate on the Deeplab-VGG16 and ResNet101

models which use atrous convolutions and multi scale evaluation. They are also

trained on MS COCO and the SBD datasets.
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Table 4.1: Results on the reduced VOC2012 validation set with 346 images. ’-coco’ de-

notes that the model was trained on MS COCO data in addition to the SBD

dataset. Numbers in brackets show the magnitude of change compared to the

corresponding base models.

Method Base Base+GP

FCN-32s 62.10 64.71 (+2.6)

FCN-8s 63.97 66.97 (+3.0)

MS-COCO data

FCN-8s-coco 69.85 71.99 (+2.1)

CRFasRNN-coco 72.95 73.75 (+0.8)

Deeplab-VGG16 66.9 69.1 (+2.2)

Deeplab-ResNet101 74.1 75.3 (+1.2)

Table 4.2: Results on the PASCAL VOC2012 test set consisting of 1456 images using FCN-

8s as the base network. Use of Guided Perturbations improves the performance

of the base network on 19 out of 21 classes.

Method bkg aero bicycle bird boat bottle bus car cat chair cow table dog horse mbk person plant sheep sofa train tv mean

FCN-8s [SLD16] 92.0 82.4 36.1 75.6 61.4 65.4 83.3 77.2 80.1 27.9 66.8 51.5 73.6 71.9 78.9 77.1 55.3 73.4 44.3 74.0 63.2 67.2

FCN-8s + GP 92.4 84.4 35.9 79.3 62.6 70.5 86.2 80.0 82.8 28.0 71.9 55.2 74.6 75.6 80.2 77.4 56.9 75.6 45.8 77.4 63.18 69.3

For all these methods, we use the publicly available models and apply the pro-

posed approach on them. We use a single NVIDIA TitanX GPU for our experiments

and CAFFE library [JSD+14] for implementation. The pretrained models used in

this section are obtained from the CAFFE Model Zoo [mod] at the time of submis-

67



sion. All the reported results are computed with 1 iteration of our approach unless

mentioned otherwise. Table 4.1 shows the results of applying the proposed approach

to the different pretrained models during prediction time over a reduced validation

set of 346 images as done in [ZJRP+15]. As can be observed, the proposed approach

results in increased performance over all the listed pretrained models. This reiter-

ates the fact that our approach is indeed architecture independent and can be easily

integrated even with complex feedforward architectures like CRFasRNN. Table 4.2

shows the evaluation of our approach on PASCAL VOC2012 test set using FCN-8s

pretrained network as the base model to demonstrate the improvement shown by

our method in an unbiased setting. The ε value used for the test set was tuned on

the validation set.

4.4.3 Scene Labeling

The scene labeling task is a dense pixel labeling task that is evaluated on

the PASCAL Context dataset. While there are more than 400 classes defined, the

challenge entails evaluating on the 59 classes that are specified as most frequent

[MCL+14a]. The labeled classes contain scene elements in addition to objects that

appear in the PASCAL VOC segmentation challenge, making this a much harder

benchmark. To evaluate our approach on this task, we use the FCN-8s model

from [SLD16] as our baseline that was trained on the standard training split of

10,000 images provided with the dataset. The results, which were generated on the

validation set consisting of 5105 images are shown in Table 4.3. We improve the

performance of the FCN-8s network by 1.3% which is significant given the large size
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of the validation set. Please note that the ε value was not tuned to fit this dataset

rather the best performing ε from Table 4.1 was used.

Table 4.3: Results on the PASCAL-Context 59-classes validation set.

Method mean IU

FCN-8s 39.12

FCN-8s + GP 40.44

4.5 Ablative Experiments

For all the experiments in this section, we use FCN-32s network and the vali-

dation set used in section 4.4.2.

Speed-Performance trade-off The GPs generated at the input layer of a deep net-

work improves the performance of the base model. However, there is a computa-

tional overhead due to performing an additional backward and forward pass. As

an alternative, the backward pass could be performed up to an intermediate layer

in the deep network instead of the input layer. In this section, we provide results

addressing the trade off between computational time and resulting performance due

to perturbing layers other than the input. It can be observed from Table 4.4 that

even using the perturbed input from as late as pool4 layer the improvement in per-

formance remains almost constant while computation time drops significantly. This

experiment shows that effect of GP is not only observed at the input but also in the

intermediate layers of the deep network and hence can be leverages for reducing the
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Table 4.4: Trade-off between performance and computation times obtained by truncating

guided perturbations over different layers across the deep network. Original

time taken is 0.12s per image. The baseline performance is 62.1%

layer input pool2 pool3 pool4

Time 0.33s 0.27s 0.24s 0.22s

mIOU 64.71 64.61 64.55 64.3

Table 4.5: Results with and without CRF

Method Base +CRF +GP +CRF+GP

FCN-8s-coco 69.8 71.1 72.0 72.7

Deeplab-ResNet-101 74.1 74.9 75.3 75.8

computational cost.

Comparison with CRF approaches The behavior of GP resembles the contextual

smoothing provided by VRF approaches that have been popularly used in Semantic

Segmentation. In this section, we provide empirical evidence that GP captures addi-

tional dependencies in the data compared to pairwise interactions that are modeled

by CRFs. Table 4.5 shows the mean IoU values for cases with/without CRF applied

on top of the network outputs. These results demonstrate that GP indeed captures

extra dependencies compared to CRF and that GP can even improve upon CRF

outputs.
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Guided Perturbations (vs) other strategies In this section, we perform an ablative

experiment where we perturb the input image in different ways in order to dis-

tinguish them from Guided Perturbations and show that the GP yields the most

improvement in performance. As explained in Section 4.3.1, to generate a guided

perturbation, we replace the softmax output with a one-hot encoded vector for the

class of maximum confidence. We consider different methods to modify the label

distribution that is obtained from the softmax function as follows:

• random-onehot : The class label is chosen in an uniformly random manner and

used as ground truth instead of the maximum probability class.

• Uniform-label : An uniform label distribution is produced by assigning equal

probability to all the classes and used as encoding to generate the error gra-

dient.

• top2-label : Modified label distribution contains equal probability to top two

predicted classes and used as encoding to generate the error gradient.

Figure 4.8 shows the effect of different types of label distribution on the seg-

mentation performance. At the outset, it can be observed that GP gives the best

quantitative performance of 64.7% compared to the second best case, which is the

uniform setting with negative ε which scores 63.8%. We can also observe that when

we perform GP, ε < 0 corresponds to the adversarial setting. Intuitively, this set-

ting is equivalent to maximizing the loss of the softmax classification function during

training. Hence, the backpropagated gradient always moves away from the correct

class. In our approach, GP is always generated by setting ε > 0 as mentioned in
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sections 4.3.1 and 4.5. The setting involving choosing a random label to generate

the one-hot vector at the softmax output results in poor performance across all val-

ues of ε since gradient directions become random and the resulting perturbations

adversely affect the performance of the deep network on the perturbed input image.

The interesting case to analyze from Figure 4.8 is the performance of the

Uniform-label setting for ε < 0. To understand this effect, Figure 4.9 illustrates a

toy example showing the difference between the error gradients generated using GP

and Uniform-label setting for a different possible output score distributions from the

CNN. In this toy example, the CNN is trained to classify among 5 classes. Observe

that, for the unimodal case, the gradient signal generated for a uniform output

label distribution has the same relative magnitude as the gradient signal generated

for GP but the dominant gradient direction is exactly the opposite. However, GP

still gives a better performance compared to the uniform label distribution. In this

case, the score vector is bimodal and hence there are two dominant directions in the

gradient signal. Notice that the top gradient direction in the case of GP still points

towards the correct class and all other directions move away from the correct class,

as expected. But in the case of uniform label distribution, there are two competing

directions and hence there is higher probability for the gradient to move in the wrong

direction.

Effect of Scaling parameter We evaluate the performance of our approach using

FCN-32s and FCN-8s networks over a range of scaling parameter ε on the validation

set. Figure 4.10 shows how the performance varies based on the scaling factor. It
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Figure 4.8: Mean IOU values for several perturbations generated by using different types

of label distributions on the validation set over the range ε = [−1, 1] with

FCN-32s as the base network. Please refer to section 4.5 for details.

0.2 0.6 0.07 0.1 0.03

Softmax probability output

0 1 0 0 0

One-hot encoded label vector

-0.12 0.24 -0.042 -0.06 -0.018

Error gradient

0.2 0.2 0.2 0.2 0.2

Uniform label vector

0.0 -0.08 0.026 0.02 0.034

Label Encoding

0.35 0.1 0.45 0.06 0.04

0 0 1 0 0

One-hot encoded label vector

-0.157 -0.045 0.247 -0.027 -0.018

0.2 0.2 0.2 0.2 0.2

Uniform label vector

-0.03 0.02 -0.05 0.028 0.032

Unimodal score distribution

Bimodal score distribution

Figure 4.9: Difference in the gradient signal generated between Uniform-label setting and

GP for the case of unimodal output score distribution (top) and bimodal

output score distribution (bottom). The dominant gradient direction in both

cases is shown in the colored boxes. The exact derivation for computing these

gradient values is given in the supplementary material.

can be observed that improvement in performance is generally obtained over a wide

range of values of ε. This indicates that network’s behavior is not very sensitive

to the value of ε though there seems to be an optimal value for best performance
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Figure 4.10: Effect of scaling factor ε on performance of FCN-32s (left) and FCN-8s (right)

networks evaluated on the reduced PASCAL VOC2012 validation set. Best

viewed in screen. Please zoom for clarity.

that depends on the deep model. We use ε = 0.55 for FCN-32s, ε = 0.7 for FCN-8s

network and ε = 0.22 for CRFasRNN network for our experiments.

Image Classification The method described in Section 4.3.1 for semantic segmen-

tation cannot be applied directly for classification tasks. Since context for a clas-

sification task is not defined naturally, we extract contextual information from the

learned feature space. Given an input image, we first extract the feature from the

deep network and use it to select top k nearest neighbors from the training set using

euclidean distance metric. We then perturb the test image with the weighted average

of gradients generated using the class of the selected nearest neighbors and perform

a forward pass to predict the final output. Let nni be the class of the ith near-

est neighbor. Following the notation established in Section 4.3.1, the equation for

perturbed image is given as follows: Xper = X + ε
∑k

i=1(wisign(∇XJ(θ,Xi,Ynni))),
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where Xi is the ith nearest neighbor; k is the number of nearest neighbors and wi

is weight associated with each nearest neighbor i and J(.) corresponds to the loss

function. Figure 4.11 shows an example where the network correctly classifies the

perturbed input generated using this procedure.

Input	
   1-­‐NN	
   Gradients	
   Perturbed	
  Input	
  

5 6

Figure 4.11: The input image is classified as ‘5’. By perturbing the input from the gradi-

ents generated using the top nearest neighbor class, the network changes its

prediction to ‘6’

To evaluate the performance of GP on classification, we tested the method

on two standard datasets: MNIST and CIFAR10. MNIST consists of grayscale

images of digits while CIFAR10 consists of more realistic images of object classes.

We follow the standard training/testing split for both the cases. We use 3 nearest

neighbor with equal weights for all our experiments. For MNIST, we use a CNN

with 2 conv. layers and 2 fully-connected layers with a 20-50-500-10 architecture

and for CIFAR10, we use a CNN with 5 conv. and 2 fully-connected layers with a

64-64-128-128-128-128-10 architecture.

Table 4.6: Results on the classification task on MNIST and CIFAR10 datasets.

Dataset Baseline Proposed

MNIST 98.92 99.15

CIFAR10 76.31 76.95

Table 4.6 shows the results of our classification experiments. GP improves
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performance over the baseline on both the datasets. However, the improvement in

performance is not as high as in the segmentation case which could be attributed to

two reasons: (1) the base networks themselves have learned a very strong represen-

tation and (2) the context information in the classification task is relatively weak

compared to the segmentation task.

4.6 Conclusion

In this chapter, we have shown novel self-corrective behavior of CNNs for

segmentation and classification tasks. We showed that Guided Perturbations can

improve the network’s performance without additional training or network modifi-

cation. We have demonstrated this effect on several publicly available datasets and

using different deep network architectures. We have presented several experiments

that try to understand and explain different aspects of guided perturbations. In-

corporating the insight from the perturbation analysis, we showed that the label

requirement can be significantly reduced in an active learning setting for the se-

mantic segmentation task. We believe that this behavior can lead to novel network

designs and better end-to-end training procedures.

4.7 Error gradient computation for Guided Perturbations

Let the score output of the deep network be: z ∈ RNc . To get a probability

distribution over classes, this is passed through a softmax operator whose output is

given as: y =
{

ezi∑
i e
zi

}Nc
i=1

, where Nc is the number of classes. If k ∈ [1, Nc] is the
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correct class, then the error gradient computed at the softmax output with respect

to its input z is given as follows: Let
∑

C denote {
∑Nc

i=1 e
zi}, then

if i = k :
∂yi
∂zi

=

∑
C .e

zi − ezi .ezi∑2
C

=
ezi∑
C

(
1− ezi∑

C

)
= yi(1− yi) = yk(1− yi)

(4.2)

if i 6= k :
∂yi
∂zk

= −0− ezi .ezk∑2
C

= − ezi∑
C

ezk∑
C

= −yiyk = yk(0− yi) (4.3)

(4.3) could be summarized in the following single equation:

∂y

∂z
= yk(`− y) (4.4)

where ` ∈ RNc is the label distribution, which in this case is a one hot vector

with lk = 1 and others zero. For a more general case, where ` defines a distribution

among classes, this formula generalizes in a straight forward manner as follows:

∂y

∂z
= (` · y)(`− y) (4.5)

It can be observed that (4.5) is a general version of (4.4) since the maximum

probability value yk is replaced by the dot product between the label distribution

and the output of softmax operation.

4.8 Additional Results

This section contains additional material and examples to illustrate the claims

made in this chapter. Figures 4.12, 4.13 and 4.14 show additional examples of im-

proved performance when the proposed approach is used with the FCN-8s [SLD16],
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FCN8s-coco [ZJRP+15] and CRFasRNN [ZJRP+15] pretrained models respectively.

Figure 4.15 shows examples that illustrate that the pixels that are predicted cor-

rectly by our approach are more internal to the image whereas the small number

of pixels that are predicted wrongly tend to occur towards the boundaries. These

examples are generated using the FCN-32s deep network [14]. Finally, Figure 4.16

shows additional results of using our approach for the MNIST classification task.
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1

Input Image                      FCN-8s                       FCN-8s with GP               Ground Truth 

DRAFT – USE LAYOUT TO ADD CLASSIFICATION LABEL
GE INTERNAL

Blank

1

Input Image                      FCN-8s                       FCN-8s with GP               Ground Truth 

Figure 4.12: Qualitative results on the PASCAL VOC2012 reduced validation set - Com-

parison with FCN-8s pretrained model. Top half shows the successful out-

puts, Bottom half shows the failure cases.
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Figure 4.13: Qualitative results on the PASCAL VOC2012 reduced validation set - Com-

parison with FCN-8s-coco pretrained model. Top half shows the successful

outputs, Bottom half shows the failure cases.
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Figure 4.14: Qualitative results on the PASCAL VOC2012 reduced validation set - Com-

parison with CRFRNN-coco pretrained model. Top half shows the successful

outputs, Bottom half shows the failure cases.
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Figure 4: (a) Ground truth (b) Output of FCN-32s network (c) Output from the proposed approach (d) Pixels that were
incorrectly classified by FCN-32s corrected by our approach (e) Pixels that were incorrectly classified by our approach that
FCN-32s classified correctly.

5

Figure 4.15: (a) Ground truth (b) Output of FCN-32s network (c) Output from the pro-

posed approach (d) Pixels that were incorrectly classified by FCN-32s cor-

rected by our approach (e) Pixels that were incorrectly classified by our ap-

proach that FCN-32s classified correctly.
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Figure 4.16: Example results of using the proposed approach for MNIST digits classifica-

tion task. Top four rows shows situations where our approach was successful

in correcting the classifier errors while bottom two rows showcase the failures.

The red and green labels show the final deep network output: red indicates

a mistake and green indicates correct prediction.
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Chapter 5. Regularizing Deep Neural Networks by Layerwise

Adversarial Training

5.1 Introduction

1 Deep neural networks (DNNs) have shown tremendous success in several

computer vision tasks in recent years [ [HZRS16a], [SKP15b], [KSH12b]]. However,

seminal works on adversarial examples [ [GSS14b], [SZS+13b]] have shown that

DNNs are susceptible to imperceptible perturbations at input and intermediate layer

activations. From an optimization perspective, they also showed that adversarial

training can be used as a regularization approach while training deep networks. The

focus of adversarial training techniques has been to improve network robustness to

gradient based adversarial perturbations. In this chapter, we propose a novel variant

of adversarial training with a focus to improve regularization performance on test

data.

The proposed approach is efficient and simple to implement. It uses adversarial

perturbations of intermediate layer activations to provide a stronger regularization

compared to traditional techniques like Dropout ( [SHK+14] [SHK+14]). By gen-

1 The material presented in this chapter is part of an externally published work [SJCL18]
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erating the perturbations from a different class compared to the current input, we

ensure that the resulting perturbations in the intermediate layers are directed to-

wards an adversarial class. This forces the network to learn robust representations at

each layer resulting in improved discriminability. Even though these perturbations

are not adversarial at the input layer, we show that they are strongly adversarial

when applied at the intermediate layers.

The proposed regularization approach does not add any significant overhead

during training and thus can be easily extended to very deep neural networks, as

shown in our experiments. Our approach complements dropout and achieves regu-

larization beyond dropout. It avoids over-fitting and generalizes well by achieving

significant improvement in performance on the test set. We show that the trained

network develops robustness against adversarial examples even when it is not ex-

plicitly trained with adversarial inputs. While previous works have focused on gen-

erating adversarial perturbations for standalone images, our work focuses on using

these to efficiently regularize training. We perform several ablative experiments to

highlight the properties of the proposed approach and present results for very deep

networks such as VGG [SZ14b], ResNets [HZRS16a] and state of the art models

such as WideResNets [ZK16] on CIFAR-10, CIFAR-100 and ImageNet datasets.

5.2 Related Work

Many approaches have been proposed to regularize the training procedure of

very deep networks. Early stopping and statistical techniques like weight decay
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are commonly used to prevent overfitting. Specialized techniques such as Drop-

Connect [WZZ+13], Dropout [SHK+14] have been successfully applied with very

deep networks such as ResNets. Faster convergence of such deep architectures was

made possible by Batch Normalization (BN) [IS15]. One of the added benefit of BN

was that the additional regularization provided during training even made dropout

regularization unnecessary in some cases.

The work of Szegedy et al. [SZS+13b] showed the existence of adversarial

perturbations for computer vision tasks by solving a box-constrained optimization

approach to generate these perturbations. They also showed that training the net-

work by feeding back these adversarial examples regularizes the training and makes

network resistant to adversarial examples. Due to a relatively expensive layerwise

training procedure, their analysis was limited to small datasets and shallow net-

works. [GSS14b] proposed the fast gradient sign method to generate such adver-

sarial examples. To perform adversarial training, they proposed a modified loss

function to also account for loss from adversarial examples. They showed signifi-

cant improvements in the network’s response to adversarial examples and obtained

a regularization performance beyond dropout. [MMKI17] proposed a virtual ad-

versarial training framework and show its regularization benefits for relatively deep

models, while taking three times the normal training time. [MDFF16] proposed

an iterative approach to generate much stronger adversarial perturbations and also

presented a score function to measure robustness of classifiers against these exam-

ples. Furthermore, recent approaches such as deep contrastive smoothing [GR14],

distillation [PMW+16] and stability training [ZSLG16] have focused solely on im-
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proving robustness of the deep models to adversarial inputs. In this chapter, we

present an efficient layerwise approach to adversarial training and demonstrate its

ability as a strong regularizer for very deep models beyond the specialized methods

mentioned above, in addition to improving model robustness to adversarial inputs.

Recent theoretical works such as [ [FFF15], [FMF16]] analyze the effect of

random, semi-random and adversarial perturbations on classifier robustness. They

presented fundamental upper bounds on the robustness of classifier which depends

on factors such as curvature of decision boundary and distinguishability between

class cluster centers. Wang et al. [WGQ16] introduced the notion of strong ro-

bustness for classifiers and point out that the differences between generalization

and robustness by characterizing the topology of the learned classification function.

We perform empirical studies that show that the proposed approach improves per-

formance by suppressing those dimensions that are unnecessary for generalization.

In addition, we observe that pure adversarial training techniques suppress most

dimensions resulting in strong robustness against adversarial examples but less im-

provement in generalization. To the best of our knowledge, ours is the first work

to explore this comparison between regularization and adversarial robustness by

providing empirical results on very deep networks.

5.3 Our Approach

In this section, we present the proposed regularization approach and highlight

the differences between related methods that use adversarial training for regulariza-
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tion. In addition, we perform a small scale experiment to study the properties of

the proposed approach by analyzing the singular value spectrum of the Jacobian.

We also visualize the impact of these perturbations on the intermediate layer ac-

tivations and conclude by illustrating the connection to robust optimization-based

approaches.

We begin by defining some notation. Let {Xi}Ni=1 denote the set of images

and {yi}Ni=1 denote the set of labels. Let f : X ∈ Rm 7→ y ∈ L denote the classifier

mapping that maps the image to a discrete label set, L. In this chapter, f is

modeled by a deep CNN unless specified otherwise. We denote the loss function

of the deep network by J(θ,X, y) where θ represents the network parameters and

{X, y} are the input and output respectively. The deep network consists of L layers

and ∇lJ(θt,Xt, yt) denotes the backpropagated gradient of the loss function at the

output of the lth layer at iteration t. In the above expression, l = 0 corresponds to

the input layer and l = L− 1, the loss layer. Let Xt
l be the input activation to the

lth layer and rtl represents the perturbation that is added to Xt
l . For clarity, we drop

the subscript l when talking about the input layer.

5.3.1 Overview of Adversarial training methods

Previous works on adversarial training have observed that training the model

with adversarial examples acts as a regularizer and improves the performance of the

base network on the test data. [SZS+13b] [SZS+13b] define adversarial perturbations

r as a solution of a box-constrained optimization as follows: Given an input X and

target label y, they minimize ||r||2 subject to (1) f(X + r) = y and (2) X + r ∈
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[0, 1]m. Note that, if f(X) = y, then the optimization is trivial (i.e. r = 0), hence

f(X) 6= y. While the exact minimizer is not unique, they approximate it using a

box-constrained L-BFGS. More concretely, the value of c is found using line-search

for which the minimizer of the following problem satisfies f(X+r) = ŷ, where ŷ 6= y:

argmin
r

c||r||2 + J(θ,X + r, y), subject to X + r ∈ [0, 1]m (5.1)

This can be interpreted as finding a perturbed image X+r that is closest to X and is

misclassified by f . The training procedure for the above framework involves optimiz-

ing each layer by using a pool of adversarial examples generated from previous layers.

As a training procedure, this is rather cumbersome even when applied to shallow

networks having 5-10 layers. To overcome the computational overhead due to the

L-BFGS optimization performed at each intermediate layer, [GSS14b] proposed the

Fast Gradient Sign (FGS) method to generate adversarial examples. By linearizing

the cost function around the value of the model parameters at a given iteration, they

obtained a norm constrained perturbation as follows: rfgs = ε.sign(∇J(θ,X, y)).

They show that the perturbed images X + rfgs reliably cause deep models to mis-

classify their inputs. As noted in [SYN15], the above formulation for adversarial

perturbation can be understood by looking at a first order approximation of the loss

function J(·) in the neighborhood of the training sample X:

J̃(θ,X + r, y) = J(θ,X, y) + 〈∇J(θ,X, y), r〉 (5.2)

The FGS solution (rfgs) is the result of maximizing the second term with

respect to r, with a l∞ norm constraint. They trained the network with the following
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objective function with an added adversarial objective:

J̃(θ,X, y) = αJ(θ,X, y) + (1− α)J(θ,X + rfgs, y) (5.3)

By training the model with both original inputs and adversarially perturbed

inputs, the objective function in (5.3) makes the model more robust to adversaries

and provides marginal improvement in performance on the original test data. In-

tuitively, the FGS procedure can be understood as perturbing each training sample

within a L∞ ball of radius ε, in the direction that maximally increases the classifi-

cation loss.

The focus of the adversarial training techniques described above is to improve

a model’s robustness to adversarial examples. As a by-product, they observed that

an adversarial loss term can also marginally regularize the deep network training.

In this chapter, we propose a novel approach which is an extension of the traditional

adversarial training. The focus of our approach is to improve regularization and as

an interesting by-product, we observe improvements in adversarial robustness of the

trained model as well.

5.3.2 Proposed Formulation

The proposed approach differs in the following aspects compared to the formu-

lations discussed above: (1) Generating adversarial perturbations from intermediate

layers rather than just using the input layer (2) Using the gradients from the pre-

vious batch to generate adversarial perturbations for the activations of the current

batch. In order to facilitate the representation of layerwise activations in the loss
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Algorithm 1 Efficient layerwise adversarial training procedure for improved regu-
larization

1: Inputs: Deep network f with loss function J and parameters θ containing C
convolutional blocks. Bt is the batch sampled at iteration t of size k, with
input-output pairs {Xt, yt}. Gradient accumulation layers {Gc}Cc=1, with stored
perturbations Rt = {rtc}Cc=1, initialized with zero. Perturbation parameter, ε.

2: t=0:
3: Sample a batch {Xt, yt} of size k images from the training data
4: Perform regular forward pass - Gc’s are not active for t = 0.
5: Perform backward pass using the classification loss function. Each gradient

accumulation layer Gc stores the gradient signal backpropagated to that layer:

rt+1
c = sign(∇cJ(θt,Xt +Rt, yt)),∀c = [1, C] (5.4)

6: for t in 1:|B| − 1 do
7: Sample a batch {Xt, yt} of size k from the training data
8: Perform forward pass with perturbation: Each gradient accumulation layer

acts as follows. Let X t
c be the input to block c, then:

Gc(X
t
c) = X t

c + ε · rtc (5.5)

9: Perform backward pass updating rtc to rt+1
c for all blocks c as in Eq. 5.4

above.
10: end for
11: Test time usage: During test time, the gradient accumulation layers (Gc) are

removed and f behaves as a standard feed forward deep network.

function, we denote the collection of layerwise responses as X = {xl}L−1l=0 and the

set of layerwise perturbations as R = {rl}L−1l=0 . Then, J(θ,X +R, y) denotes the loss

function where intermediate layer activations are perturbed according to the set R.

The notation used in the previous section is a special case where R = rfgs. Now,

consider the following objective to obtain the perturbation set R:

argmax
R

J(θ,X +R, y)

subject to ||rl||∞ ≤ ε, ∀l, f(X +R) 6= y

(5.6)

Ideally, for each training example x, the solution to the above problem, consists

of generating the perturbation corresponding to the maximally confusing class; in
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other words, by choosing the class ŷ which maximizes the divergence, KL(p(y|xL−1), p(ŷ|xL−1)).

In the absence of any prior knowledge about true class co-occurences, solving this

explicitly for each training sample for every iteration is time consuming. Hence we

propose an approximate solution to this problem: the gradients computed from the

previous sample at each intermediate layer are cached and used to perturb the acti-

vations of the current sample. In a mini-batch setting, this amounts to caching the

gradients of the previous mini-batch. To ensure the class constraint in Eq. (5.6) is

satisfied, the only requirement is that successive batches have little lateral overlap

in terms of class labels. From our experiments, we observed that any random shuffle

of the data satisfies this requirement. For more discussion on this, please refer to

the experiments section. Given this procedure of accumulating gradients, we are

no longer required to perform an extra gradient descent-ascent step as in the FGS

method to generate perturbations for the current batch. Since the gradient accumu-

lation procedure does not add to the computational cost during training, this can

be seamlessly integrated into any existing supervised training procedure including

even very deep networks as shown in the experiments.

The training procedure is summarized in Algorithm 2, where sign(·) denotes

the signum function. We add the gradient accumulation layers after the Batch

Normalization layer in each convolutional block (conv-BN-relu). In case BN layers

are not present, we add gradient accumulation layers after each convolution layer.

A subtle detail that is overlooked in the algorithm is that the value of ε is not

constant over all the layers, rather it is normalized by multiplying with the range

of the gradients generated at the respective layers. During test time, the gradient
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accumulation layers (Gc) are removed from the trained model.

(a) ε = 0, 91.9% (b) ε = 0.02, 69.4% (c) ε = 0.04, 48.2% (d) ε = 0.06, 34.6%

(e) ε = 0, 91.9% (f) ε = 0.02, 91.85% (g) ε = 0.04, 91.9% (h) ε = 0.06, 85.8%

Figure 5.1: t-SNE visualization of the final fc-layer features of dimension 512 of the VGG

network for two randomly chosen classes of the CIFAR-10 data for different

values of the intensity, ε. The top row shows the effect of the perturbations

generated using the proposed approach while the bottom row shows random

perturbations of the same intensity. It is clear that the random perturba-

tions do not affect the linear separability of the data, while the proposed

perturbations are extremely effective in leading the network to misclassify the

perturbed data.

To understand the effect of the the proposed layerwise perturbations described

in the previous section, we compare them with random layerwise perturbations.

Figure 5.1 shows a two dimensional t-SNE [dMH08] visualization of the embeddings

belonging to the penultimate FC-layer for a range of values of ε, the intensity of

the adversarial perturbation. We used a pretrained VGG network that was trained

on the CIFAR-10 dataset to compute the embeddings for two randomly chosen
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classes from the test data. In the bottom row, the effect of random perturbations

with zero mean and unit standard deviation, applied layerwise on the original data

is also shown. From the visualization and the accuracy values, it can clearly be

observed that the proposed perturbations when added to the original data makes

the network misclassify the original data. Hence training using these perturbations

results in good regularization and improved robustness. Notice that even for higher

values of ε, the data perturbed by layerwise random gradient directions remains

clearly linearly separable while the data perturbed by the accumulated gradients is

unable to be distinguished by the base model.

5.3.3 Toy example

In order to acquire a better understanding of the regularizing properties of the

mapping function learned using the proposed approach, we perform a toy experi-

ment using a small neural network consisting of two fully connected layers of sizes

1024 and 512. Each fully connected layer is followed by a hyperbolic tangent acti-

vations. We use the grayscale version of the CIFAR-10 dataset as our testbed and

L2 norm weight decay was applied during training. No data augmentation or other

regularization methods such as dropout were used during training. We train three

networks: a baseline network, a network with the gradient accumulation layers (as

in Algorithm 1) added after each fully connected layer and a network using the FGS

training approach. Cross entropy loss was used to train all the networks. In terms

of classification accuracy, the proposed method improves the baseline performance

from 39.5% to 43.3% on the original data while the accuracy of the FGS network is
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40.5%.

Singular Value Analysis: To gain a deeper understanding of the encoder

mapping learned by each network, we perform an analysis similar to [RVM+11]

by computing the singular values of the Jacobian of the encoder. Since this is a

small architecture, we are able to explicitly compute the Jacobian for each sample

in the test set. The average singular value spectrum of the Jacobian for the test

data is shown in Figure 5.2. We can make the following observations: (a) The

singular value spectrum computed for ours and FGS approach has fewer dominant

singular values and decays at a much faster rate compared to base network (b) The

FGS training suppresses the response of the network strongly in all the dimensions

while our approach achieves a strong suppression only for trailing dimensions. This

implies that our network is able to better capture data variations that are relevant

for classifying original test data hence providing improved performance. On the

other hand, FGS achieves slightly improved robustness against adversarial examples

compared to our approach by suppressing the network’s response strongly even in

leading dimensions, as demonstrated in our ablative experiments in the next section.

5.3.4 Connection to Robust Optimization

Several regularization problems in machine learning such as ridge regression,

lasso or robust SVMs have been shown to be instances of a more general robust

optimization framework [SNW12]. To point out the connection between the pro-

posed approach and robust optimization, we borrow the idea of uncertainty sets

from [SYN15]. To explain briefly, an uncertainty set denoted by U = Bρ(x, ε) rep-
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Figure 5.2: Average singular value (SV) spectrum showing top 50 SVs for the toy exam-

ple presented in the text. A model regularized with the proposed approach is

compared with a FGS regularized model and baseline model with no regular-

ization.

resents an epsilon ball around x under norm ρ. [GSS14b] point out that adversarial

training can be thought of as training with hard examples that strongly resist clas-

sification. Under the setting of uncertainty sets, adversarial training with the FGS

method could be seen as generating the worst case perturbations from the input

space U under the l∞ norm. In this chapter, we extend the idea of uncertainty sets

from input activations to intermediate layer activations. This can be thought of as

sampling perturbations from the feature space learned by the deep network. Let

Ul represent the uncertainty set of the activation xl at layer l. Then, the proposed

adversarial training approach is equivalent to sampling perturbations from the in-

termediate layer uncertainty sets which makes the feature representation learned

at those layers to become more robust during training. Moreover, by generating

perturbations from inputs that do not belong to the same class as the current in-

put, the directions sampled from the uncertainty set tend to move the perturbed
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feature representation towards the direction of an adversarial class. This effect can

be observed from the t-SNE visualization shown in Figure 5.1.

5.4 Experiments

In this section, we provide an experimental analysis of the proposed approach

to show that layerwise adversarial training improves the performance of the model

on the original test data and increases robustness to adversarial inputs.

5.4.1 Classification accuracy on CIFAR-10/100

To demonstrate the generality of our training procedure, we present results on

CIFAR-10 and CIFAR-100 [KH09] using VGG, ResNet-20 and ResNet-56 networks.

For the ResNet networks, we use the publicly available torch implementation [Res17].

For the VGG architecture, we use a publicly available implementation which consists

of Batch Normalization [VGG17]. For all the experiments, we use the SGD solver

with Nesterov momentum of 0.9. The base learning rate is 0.1 and it is dropped by 5

every 60 epochs in case of CIFAR-100 and every 50 epochs in case of CIFAR-10. The

total training duration is 300 epochs. We employ random flipping as a data aug-

mentation procedure and standard mean/std preprocessing was applied conforming

to the original implementations. For the ResNet baseline models, without regular-

ization, we find that they start overfitting if trained longer and hence we perform

early stopping and report their best results. For the perturbed models, we find

that no early stopping is necessary; the learning continues for a longer duration and
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shows good convergence behavior. We refer to the model trained using the proposed

approach described in Algorithm 2 as Perturbed throughout this section. Dropout

was not used in any of the training procedure in this experiment. We explicitly

compare our approach against dropout in the ablative experiments. Figure 5.3 plots

the training and test error rates for the baseline model and the proposed approach.

It can be observed that our method converges faster and achieves better generaliza-

tion error. Note that, we used only random shuffling in all our experiments since we

found that performing a controlled shuffling to improve mini-batch overlap across i.

and hence we use

Table 5.1: Classification accuracy (%) on CIFAR-10 and CIFAR-100 for VGG and Resnet

architectures. Results reported are average of 5 runs.

Type (CIFAR-10) Baseline Perturbed

VGG 92.1 ± 0.3 92.65 ± 0.2

Resnet-20 90.27 ± 0.4 91.1 ± 0.3

Resnet-56 91.53 ± 0.3 94.1 ± 0.2

Type (CIFAR-100) Baseline Perturbed

VGG 69.8 ± 0.5 72.3 ± 0.3

Resnet-20 64.0 ± 0.2 66.9 ± 0.3

Resnet-56 68.2 ± 0.4 71.4 ± 0.5

Imagenet Experiment: To test the applicability of our regularization ap-

proach over a large scale dataset, we conducted an experiment using the ImageNet

dataset (train: 1.2M images, val: 50K images). We used AlexNet as the base

architecture. We used the publicly available implementation from the torch plat-

form [Ale17] and both the baseline and the regularized models were trained from

scratch to 60 epochs. The classification accuracies obtained were: Baseline - 56.1%,

Proposed - 59.2%, an increase of 3.1%. This shows that our approach can signifi-
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(a) CIFAR-10 (b) CIFAR-100

Figure 5.3: Training and test error rates for VGG network trained on CIFAR-10 and

CIFAR-100 datasets. The training errors are computed using perturbed acti-

vations in each epoch. The red color indicates the baseline model and green

indicates the model regularized with the proposed approach, referred as Per-

turbed in the text. Best viewed in color. Please zoom in for clarity.

cantly improve the performance of deep neural networks even on a large and diverse

corpus like Imagenet.

5.4.2 Performance with noisy labels

In this experiment, we show the effect of the proposed regularization approach

when the training labels provided with the data are corrupted. We assume that

the corruption process is bernoulli with probability p ∈ {0, 0.1, 0.25, 0.5, 0.75}, with

higher values of p denoting larger amount of corruption. While conventional machine

learning systems fail to report results for this setting, we would like to point out that

this is a practical and realistic situation. Table 5.2 shows the results on CIFAR-10

comparing the proposed approach with Dropout for varying levels of random label

corruption. It can be seen that for reasonable amount of label noise, the propose
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Table 5.2: Classification accuracy on CIFAR-10 with varying levels of label corruption.

Results reported as average over 5 runs.

p 0.0 0.1 0.25 0.5 0.7

Base 92.1 88.5 83.3 73.4 54.1

Dropout 92.4 89.1 84.6 74.8 55.6

Proposed 92.8 91.7 88.5 81.8 59.3

regularization approach provides a huge improvement in classification performance

as compared to other strategies such as Dropout. This can be attributed to the fact

that during training, the perturbations of the intermediate layers that correspond

to a form of label noise as exhibited in Figure 5.1.

5.5 Ablative Experiments and Discussion

Comparison with Dropout: We perform an experiment where we compare

the regularization performance of the proposed adversarial training approach to

Dropout. We use the VGG architecture used in the previous sections and perform

experiments with and without dropout on CIFAR-10 and CIFAR-100 datasets.

Table 5.3: Comparison of classification accuracy (%) with/without dropout on CIFAR-10

and CIFAR-100 for the VGG model

Type (CIFAR-10) Baseline Perturbed

w/o Dropout 92.1 92.7

with Dropout 92.5 93.2

Type (CIFAR-100) Baseline Perturbed

w/o Dropout 69.8 72.3

with Dropout 70.5 73.1

The following observations could be made from Table 5.3: (1) The perturbed
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model performs better than the baseline model with or without dropout. Thus, the

proposed training improves the performance of even dropout based networks. (2)

On a complex task like CIFAR-100, the proposed adversarial training based regu-

larization gives better performance compared to that provided by dropout (70.5%

(vs) 73.1%). Since the proposed adversarial perturbations are intended to move the

inputs towards directions that strongly resist correct classification, they are able to

create a more discriminative representation for tasks with a larger number of classes.

Table 5.4: Effect of adding gradient accumulation layers incrementally (from shallow to

deeper layers) throughout the deep network. The numbers reported are the

classification accuracy using the VGG network on the CIFAR-10 dataset. Base-

line performance is 89.4%. conv1 to indicates we start adding the gradient

accumulation layers from conv1 upto the mentioned layers such as pool1, pool2

etc.

Layer (conv1 to) pool1 pool2 pool3 pool4 pool5

Accuracy 89.5 89.62 90.24 91.1 91.3

Perturbing deeper layers: In this section, we analyze the effect of ad-

versarial perturbations starting from the lowest convolutional layers which model

edges/shape information to the more deeper layers which model abstract concepts.

For this experiment, we use the VGG network with batch normalization that was

used in the previous section. The experiments were performed on the CIFAR-10

dataset. No data augmentation or dropout is applied. It is clear from the results

in Table 5.4 that the improvement in performance due to the proposed layerwise

perturbations become significant when applied to the deeper layers of the network,

101



Table 5.5: Comparison of the strength of adversarial examples between the FGS approach

applied at the input and using the proposed layerwise perturbations. Reported

numbers are classification accuracies for different values of ε.

Type ε = 0 ε = 0.05 ε = 0.1 ε = 0.15 ε = 0.2

FGS [GSS14b] 92.4 53.28 41.58 36.44 33.85

Ours - all layers 92.4 48.56 21.72 14.76 14.19

which is in line with the observation made by [SZS+13b]. While performing layerwise

alternate training as proposed by [SZS+13b] becomes infeasible for even moderately

deep architectures, our training scheme provides an efficient framework to infuse

adversarial perturbations throughout the structure of very deep models.

Adversarial strength of the proposed perturbations: Traditional ad-

versarial training techniques improve the performance on adversarial examples by

explicitly making the network robust to adversarial gradient directions. Thus, an

important question that needs to be addressed in light of the proposed optimiza-

tion strategy is: Are the gradient directions generated from the previous samples(as

described in Algorithm 1) adversarial ? To answer this question, we perform an

empirical experiment to measure the performance of a deep model (3 convolutional

layers + 1 fc-layer) trained using CIFAR-10 training data, on the CIFAR-10 test

data. No adversarial training was used to train this model. As described earlier, for

each test sample, the intermediate layer activations are perturbed using gradients

accumulated from the previous sample. For comparison, we also show the perfor-

mance of the same model on the adversarial data generated using the FGS method.
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From the metrics in Table 5.5, it can be observed that using accumulated gradi-

ents from the previous batch as adversarial perturbations results in a bigger drop in

performance. This signifies that the aggregated effect of layerwise perturbations is

more adversarial compared to perturbing only the input layer as done in the FGS

approach. We performed an additional experiment where only the input layer was

perturbed using the gradients of the previous sample instead of perturbing all the

intermediate layers. We found that this resulted in negligible drop in the baseline

performance, indicating that these gradients are not adversarial enough when used

to perturb only the input.

Variants of the proposed approach: In the proposed training method

summarized in Algorithm 2 (referred as Ours-orig), each batch of inputs is perturbed

at intermediate layers by the gradients accumulated from the previous batch. In this

section, we present an empirical comparison between the following variants:

• FGS-orig: The original FGS joint loss based adversarial training as proposed

Table 5.6: Comparison of classification accuracy (%) between the different variants of the

proposed approach and FGS method (FGS-orig) for different values of ε

Type 0 0.02 0.04 0.06 0.08 0.1

Baseline 89.4 67.5 49.6 41.2 37.3 34.7

FGS-orig [GSS14b] 88.7 86.4 84.1 81.4 80.5 77.1

FGS-inter 90.9 87.79 83.85 79.65 74.69 69.92

Ours-orig 91.2 87.95 83.84 79.11 73.66 68.37

Ours-joint 91.5 86.07 81.38 75.72 70.25 64.76
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by [GSS14b] and shown in Eq. (5.3). We used a value of α = 0.5; we did not

find other values yield any significant improvements.

• FGS-inter: In this setting, different from [GSS14b], we use the FGS gradients

to perturb the intermediate layer activations and use the joint loss with α =

0.5.

• Ours-joint: This setting is same as Ours-orig with the exception that we use

the joint loss formulation with α = 0.5. Note that, Ours-orig corresponds to

setting where α = 0

All the models are trained on the CIFAR-10 dataset. No data augmentation or

dropout regularization is applied. The training parameters are similar to the ones

used in the previous section. We generate adversarial test data for the CIFAR-10

test dataset using the FGS method, since it has been shown to generate adversarial

examples reliably. We then test the models on the original and adversarial test data

for different values of the adversarial strength ε. Table 5.6 shows the results of the

different training strategies. ε = 0 corresponds to the original test data and other

values of ε indicate the strength of adversarial FGS perturbation added to the input

image. From these results, we make the following observations: (1) Approaches

based on perturbing intermediate layers (FGS-inter,Ours-orig,Ours-joint) improve

the performance on the original data significantly as compared to perturbing only

the input but they marginally decrease the adversarial test performance. (2) On

the other hand, perturbing only the input layer (FGS-orig) yields the best adversar-

ial test performance among the compared approaches while performing marginally
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worse than the baseline on the original test data. These observations indicate the

possibility of a trade-off that exists between adversarial robustness and regular-

ization effect over clean data. Referring to the toy example described earlier, the

singular value analysis performed there also supports our claim that methods which

impart adversarial robustness tend to suppress sensitivity of the model in all the

dominant directions; while the proposed approach provides a nice trade-off by retain-

ing those directions which are essential for modeling the variations in the training

data. This ensures that our approach results in better regularization performance

on clean data while providing comparable robustness on adversarial data.

Results on WideResNet models: Wide Residual Networks are recently

proposed deep architectures that generated state of the art results on CIFAR-10

and CIFAR-100 datasets. In this experiment, we use their publicly available im-

plementation and train them from randomly initialized weights using the proposed

approach using the parameter settings described in the experiments section. Specif-

ically, the Ours-joint approach described in the previous section is used for training.

As data augmentation, we applied flipping and random cropping as done in their

native implementation. The results are shown in Table 5.8. For the compared meth-

ods, we quote their published accuracy values. It can be observed that the proposed

approach results in improved performance compared to both the baseline model and

the model regularized with dropout. This demonstrates the generalization ability

of our approach to state of art deep models.
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Table 5.7: Classification error rates (%) on CIFAR-10 and CIFAR-100 for WideResNet

(WRN) architectures. Our results are reported as average of 5 runs. For

comparison we provide the published WRN baseline results. (∗) denotes the

results obtained by a single run.

Model #params CIFAR-10 CIFAR-100

WRN-28-10 [ZK16] 36.5M 4.00 19.25

WRN-28-10 with dropout [ZK16] 36.5M 3.89 18.85

WRN-40-10 with dropout∗ [ZK16] 51.0M 3.8 18.3

WRN-28-10 - Ours 36.5M 3.62 ± 0.05 17.1 ± 0.1

5.5.1 Results on Wide Residual Networks (WRN)

Wide Residual Networks are recently proposed deep architectures that gen-

erated state of the art results on CIFAR-10 and CIFAR-100 datasets. In this

experiment, we use their publicly available implementation and train them from

scratch using the proposed adversarial training approach using the parameter set-

tings described in the original paper. Specifically, the Ours-joint approach is used

for training. As data augmentation, we applied flipping and random cropping as

done in their native implementation. The results are shown in Table 5.8.

Table 5.8: Classification error rates (%) on CIFAR-10 and CIFAR-100 for WideResNet

(WRN) architectures. Our results are reported as average of 5 runs. For

comparison we provide the published WRN baseline results. (∗) denotes the

results obtained by a single run.
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Model #params CIFAR-10 CIFAR-100

WRN-28-10 36.5M 4.00 19.25

WRN-28-10 with dropout 36.5M 3.89 18.85

WRN-40-10 with dropout∗ 51.0M 3.8 18.3

WRN-28-10 with Ours-joint 36.5M 3.62 ± 0.05 17.1 ± 0.1

5.5.2 Response to local perturbation depends on the Jacobian

Let f : Rm 7→ Rn be a mapping between two metric spaces (euclidean, for

simplicity) . Then, for x ∈ Rm, let Jf (x) ∈ Rn × Rm denote the jacobian of f

evaluated at x. Let δx ∈ Rm be a bounded local perturbation in the neighborhood

of x. A first order truncated expansion of f(x+ δx) is given as:

f(x+ δx) = f(x) + Jf (x)T δx

We can bound the frobenius norm of the second term as follows:

||Jf (x)T r||F
(a)

≤ ||Jf (x)||F ||δx||2 =

√√√√min(m,n)∑
i=1

σ2
i · ||δx||2

=⇒ ||Jf (x)T δx||F ≤

√√√√min(m,n)∑
i=1

σ2
i · ||δx||2

where || · ||F denotes the frobenius norm; for vectors, it is the same as the L2 norm

and σi denotes the ith singular value of the Jacobian; (a) is a direct application of

Cauchy-Schwarz inequality. Applying this result to the singular value spectra plot-

ted earlier in this chapter, we see that the base network without adversarial training

is extremely sensitive to local perturbations compared to adversarially trained net-

works using FGS and the proposed approach.
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5.5.3 Setting ε parameter

Let ∇lJ(θ, x, y) denote the gradient of the loss function backpropagated to

the lth layer. Let M = max(∇lJ(θ, x, y)), m = min(∇lJ(θ, x, y)). Then, the value

of ε for each layer is calculated as: εl = ε · (M − m) ∀l, where ε ∈ {10, 20, 30}.

The exact value is cross-validated using a held out set. In practice, we found our

training approach to not be overly sensitive to ε. We tuned ε only for the VGG

network on CIFAR-10 and used the same value for all the other networks such as

ResNets and WideResNets on both CIFAR-10 and CIFAR-100 datasets. Note that,

for cases where a fixed value of ε is specified, the same value is used for all layers

ignoring the normalizing factor, (M −m).

Generalization to non-image signals: In this chapter, we have considered

adversarial perturbations in the space of natural images. The existence of adversarial

perturbations has been shown to exist in other types of signals that occur in speech

recognition ( [SAB+16], [CMV+16]) and language processing tasks [MDG16]. While

the focus of the this chapter has been image signals, there exists a natural extension

of our framework to the above modalities. Such an extension is trivially possible

since end-to-end learning systems such as deep networks are used in speech and

language tasks as well. As future work, we propose to extend the current approach

to explore robustness aspects of deep networks trained on modalities other than

images.
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5.6 Conclusion

While the behavior of CNNs to adversarial data has generated some intrigue in

computer vision since the work of [SZS+13b], its effects on deeper networks have not

been explored well. We observe that adversarial perturbations for hidden layer acti-

vations generalize across different samples and we leverage this observation to devise

an efficient regularization approach that could be used to train very deep architec-

tures. Through our experiments and analysis we make the following observations:

(1) Contrary to recent methods which are inconclusive about the role of perturb-

ing intermediate layers of a DNN in adversarial training, we have shown that for

very deep networks, they play a significant role in providing a strong regularization

(2) The aggregated adversarial effect of perturbing intermediate layer activations is

much stronger than perturbing only the input (3) Significant improvement in clas-

sification accuracy entails capturing more variations in the data distribution while

adversarial robustness can be improved by suppressing the unnecessary variations

learned by the network 5.3.3. By providing an efficient adversarial training approach

that could be used to regularize very deep models, we hope that this can inspire

more robust network designs in the future.
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Chapter 6. Learning from Synthetic Data: Addressing Domain Shift

for Semantic Segmentation

6.1 Introduction

1

Deep Convolutional Neural Networks (DCNNs) have revolutionized the field

of computer vision, achieving the best performance in a multitude of tasks such as

Image Classification [HZRS16b], Semantic Segmentation [LSD15], Visual Question

Answering [LYBP16], etc. This strong performance can be attributed to the avail-

ability of abundant labeled training data. While annotating data is relatively easier

for certain tasks like image classification, they can be extremely laborious and time-

consuming for others. Semantic segmentation is one such task that requires great

human effort as it involves obtaining dense pixel-level labels. The annotation time

for obtaining pixel-wise labels for a single image from the CITYSCAPES dataset is

about 1 hr., highlighting the level of difficulty ( [COR+16], [RVRK16]). The other

challenge lies in collecting the data: While natural images are easier to obtain, there

are certain domains like medical imaging where collecting data and finding experts

1 The material presented in this chapter is part of an externally published work [SBJ+18]

110



Model Trained on 
Synthetic Data (Fs)

Ex
tr

e
m

e
 D

o
m

ai
n

 S
h

if
t

Supervised Synthetic data and Unsupervised Real Data

P
ro

p
o

se
d

 A
p

p
ro

ac
h

 

Model Trained on 
Real Data (Fr)

Test on Synthetic Data High Accuracy on Synthetic Data

Model Trained on 
Synthetic Data (Fs)

Test on Real Data

, ,

Our trained model (Fours) 

Proposed GAN 
based Training

GAN

Due to 
Domain Shift

Performance on Real Data

Fr Fs

Reduces
Domain Gap

Performance on Real Data

Fr Fs FoursTest on Real Data

Figure 6.1: Characterization of Domain Shift and effect of the proposed approach in re-

ducing the same

to precisely label them can also be very expensive.

One promising approach that addresses the above issues is the utility of syn-

thetically generated data for training. However, models trained on the synthetic

data fail to perform well on real datasets owing to the presence of domain gap be-

tween the datasets. Domain adaptation encompasses the class of techniques that

address this domain shift problem. Hence, the focus of the approach presented in

this chapter is in developing domain adaptation algorithms for semantic segmenta-

tion. Specifically, we focus on the hard case of the problem where no labels from

the target domain are available. This class of techniques is commonly referred to as

unsupervised domain adaptation.

Traditional approaches for domain adaptation involve minimizing some mea-
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sure of distance between the source and the target distributions. Two commonly

used measures are Maximum Mean Discrepancy (MMD) ( [GTX11], [LCWJ15] [LWJ16]),

and learning the distance metric using DCNNs as done in Adversarial approaches

( [GL14], [THSD17]). Both approaches have had good success in the classification

problems; however, as pointed out in [ZDG17], their performance improvement does

not translate well to the semantic segmentation problem. This motivates the need

for developing new domain adaptation techniques tailored to semantic segmentation.

The method we present in this chapter falls in the category of aligning domains

using an adversarial framework. Among the recent techniques that address this

problem, FCN in the wild [HWYD16] is the only approach that uses an adversarial

framework. However, unlike [HWYD16] where a discriminator operates directly on

the feature space, we project the features to the image space using a generator and

the discriminator operates on this projected image space. Adversarial losses are

then derived from the discriminator. We observed that applying adversarial losses

in this projected image space achieved a significant performance improvement as

compared to applying such losses directly in the feature space (ref. Table 6.5).

The main contribution of this chapter is that we propose a technique that em-

ploys generative models to align the source and target distributions in the feature

space. We first project the intermediate feature representations obtained using a

DCNN to the image space by training a reconstruction module using a combination

of L1 and adversarial losses. We then impose the domain alignment constraint by

forcing the network to learn features such that source features produce target-like

images when passed to the reconstruction module and vice versa. This is accom-

112



plished by employing a series of adversarial losses. As training progresses, the gener-

ation quality gradually improves, while at the same time, the features become more

domain invariant.

6.2 Related Work

Semantic segmentation is a well studied problem in computer vision. The Fully

Convolutional Networks (FCN) by Shelhamer et al [LSD15] signified a paradigm

shift in how to fully exploit the representational power of CNNs for the pixel label-

ing task. While performance has been steadily improving for popular benchmarks

such as PASCAL VOC [EGW+10] and MS-COCO [L+14], they do not address the

challenges of domain shift within the context of semantic segmentation.

Domain adaptation has been widely explored in computer vision primarily

for the classification task. Some of the earlier approaches involved using feature

reweighting techniques [DI07], or constructing intermediate representations using

manifolds [GLC11] [GSSG12] or dictionaries [NQC13]. Since the advent of deep

neural networks, emphasis has been shifted to learning domain invariant features in

an end-to-end fashion. A standard framework for deep domain adaptation involves

minimizing a term that measures domain discrepancy along with the task being

solved. Some approaches use Maximum Mean Discrepancy and its kernel variants

for this task [LCWJ15] [LWJ16], while others use adversarial approaches.

We focus on adversarial approaches since they are more related to our work.

Revgrad [GL14] performs domain adaptation by applying adversarial losses in the
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feature space, while PixelDA [BSD+16] and CoGAN [LT16] operate in the pixel

space. While these techniques perform adaptation for the classification task, there

are very few approaches aimed at semantic segmentation. To the best of our knowl-

edge, [HWYD16] and [ZDG17] are the only two approaches that address this

problem. FCN in the wild [HWYD16] proposes two alignment strategies - (1)

global alignment which is an extension to the domain adversarial training proposed

by [GL14] to the segmentation problem and (2) local alignment which aligns class

specific statistics by formulating it as a multiple instance learning problem. Cur-

riculum domain adaptation [ZDG17] on the other hand proposes curriculum-style

learning approach where the easy task of estimating global label distributions over

images and local distributions over landmark super-pixels is learnt first. The seg-

mentation network is then trained so that the target label distribution follow these

inferred label properties.

One possible direction to address the domain adaptation problem is to employ

style transfer or cross domain mapping networks to stylize the source domain images

as target and train the segmentation models in this stylized space. Hence, we discuss

some recent work related to the style transfer and unpaired image translation tasks.

The popular work of Gatys et al. [GEB15] introduced an optimization scheme involv-

ing backpropagation for performing content preserving style transfer, while Johnson

et al. [JAF16] proposed a feed-forward method for the same. CycleGAN [ZPIE17]

performs unpaired image-to-image translation by employing adversarial losses and

cycle consistency losses. In our experiments, we compare our approach to some of

these style-transfer based data augmentation schemes.
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6.3 Method

In this section, we provide a formal treatment of the proposed approach and

explain in detail our iterative optimization procedure. Let X ∈ RM×N×C be an

arbitrary input image (with C channels) and Y ∈ RM×N be the corresponding label

map. Given an input X, we denote the output of a CNN as Ŷ ∈ RM×N×Nc , where

Nc is the number of classes. Ŷij ∈ RNc is a vector representing the class probability

distribution at pixel location (i, j) output by the CNN. The source(s) or target (t)

domains are denoted by a superscript such as Xs or X t. The loss function that is

primarily used is the pixelwise cross-entropy loss denoted by Lce(Ŷ , Y ) is given as

follows:

Lce(Ŷ , Y ) =
M∑
i=1

N∑
j=1

− log

(
exp(Ŷij[Yij])∑Nc
k=1 exp(Ŷij[k])

)
(6.1)

First, we provide an input-output description of the different network blocks

in our pipeline. Next, we describe separately the treatment of source and target

data, followed by a description of the different loss functions and the corresponding

update steps. Finally, we motivate the design choices involved in the discriminator

(D) architecture.

6.3.1 Description of network blocks

Our training procedure involves alternatively optimizing the following network

blocks:

• The base network, whose architecture is similar to a pre-trained model such as

VGG-16, is split into two parts: the embedding denoted by F and the pixel-
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wise classifier denoted by C. The output of C is a label map up-sampled to

the same size as the input of F .

• The generator network (G) takes as input the learned embedding and recon-

structs the RGB image.

• The discriminator network (D) performs two different tasks given an input:

(a) It classifies the input as real or fake in a domain consistent manner (b) It

performs a pixel-wise labeling task similar to the C network. Note that (b) is

active only for source data since target data does not have any labels during

training.
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6.3.2 Treatment of source and target data

Given a source image and label pair {Xs, Y s} as input, we begin by extracting

a feature representation using the F network. The classifier C takes the embed-

ding F (Xs) as input and produces an image-sized label map Ŷ s. The generator G

reconstructs the source input Xs conditioned on the embedding. Following recent

successful works on image generation, we do not explicitly concatenate the generator

input with a random noise vector but instead use dropout layers throughout the G

network. As shown in Figure 6.3, D performs two tasks: (1) Distinguishing the real

source input and generated source image as source-real/source-fake (2) producing a

pixel-wise label map of the generated source image.

Given a target input X t, the generator network G takes the target embedding

from F as input and reconstructs the target image. Similar to the previous case,

D is trained to distinguish between real target data (target-real) and the generated

target images from G (target-fake). However, different from the previous case, D

performs only a single task i.e. it classifies the target input as target-real/target-

fake. Since the target data does not have any labels during training, the classifier

network C is not active when the system is presented with target inputs.
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6.3.3 Iterative optimization

Fig. 6.3 shows various losses used in our method. We begin by describing these

losses, and then describe our iterative optimization approach.

The different adversarial losses used to train our models are shown in Ta-

ble. 6.1. In addition to these adversarial losses, we use the following losses: (1) Lseg

and Laux - pixel-wise cross entropy loss used in standard segmentation networks

such as in FCN and (2) Lrec - L1 loss between input and reconstructed images.

Type Variants Description

Ls
adv,D Classify real source input as src-real ; fake source input as src-fake

Within-domain Ls
adv,G Classify fake source input as src-real

Lt
adv,D Classify real target input as tgt-real ; fake target input as tgt-fake

Lt
adv,G Classify fake target input as tgt-real

Cross-domain Ls
adv,F Classify fake source input as real target (tgt-real)

Lt
adv,F Classify fake target input as real source (src-real)

Table 6.1: Within-domain and Cross-domain adversarial losses that are used to update

our networks during training. G and D networks are updated using only the

within-domain losses while F is updated only using the cross domain loss. All

these adversarial losses originate from the D network. Ladv,X implies that the

gradients from the loss function L are used to update X only, while the other

networks are held fixed.

The directions of flow of information across different network blocks are listed

in Figure 6.2. In each iteration, a randomly sampled triplet (Xs, Y s, X t) is provided

to the system. Then, the network blocks are updated iteratively in the following
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order:

(1) D-update: For source inputs, D is updated using a combination of within-

domain adversarial loss Ls
adv,D and auxiliary classification loss Ls

aux. For target

inputs, it is updated using only the adversarial loss Lt
adv,D. The overall loss LD is

given by LD = Ls
adv,D + Lt

adv,D + Ls
aux. The adversarial loss terms for D takes the

following form:

Ls
adv,D = min

D
Lce(D(Xs), Ysrc−real) + Lce(D(G(F (Xs)), Ysrc−fake)

Lt
adv,D = min

D
Lce(D(X t), Ytgt−real) + Lce(D(G(F (X t)), Ytgt−fake) (6.2)

where Ysrc−real and Ysrc−fake are spatial maps where each pixel is an indicator vari-

able for the classes src-real and src-fake respectively. Similar explanations hold for

the target domain terms. The auxiliary loss is a traditional cross entropy loss ap-

plied pixelwise as explained earlier: Ls
aux = Lce(D(G(F (Xs)), Y ). Note that the

auxiliary loss is applied only for the generated source data and the label Y is same

as the ground truth class label map. Contrary to traditional GAN approaches, the

discriminator output is a spatial map where each pixel is classified as belonging to

several classes. Specific details on the design choice of D is described later.

(2) G-update: In this step, the generator is updated using a combination of an

adversarial loss Ls
adv,G + Lt

adv,G intended to fool D and a reconstruction loss Lrec.

The adversarial loss encourages realistic output from the generator. The pixelwise

L1 loss is crucial to ensure image fidelity between the generator outputs and the

corresponding input images. The overall generator loss is given as: LG = Ls
adv,G +
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Lt
adv,G + Ls

rec + Lt
rec. The adversarial loss encourages the generator to produce

realistic images by obtaining feedback from the discriminator:

Ls
adv,G = min

G
Lce(D(G(F (Xs)), Ysrc−real)

Lt
adv,G = min

G
Lce(D(G(F (X t)), Ytgt−real) (6.3)

Note that the real/fake labels are flipped compared to the discriminator update in

Eq. 6.2 and that D and F networks are held fixed during this step.

(3) F-update: The update to the F network is the critical aspect of our framework

where the notion of domain shift is captured. The parameters of F are updated

using a combination of several loss terms: LF = Lseg +αLs
aux + β (Ls

adv,F +Lt
adv,F ).

As illustrated in Table 6.1, the adversarial loss terms used to update F account for

the domain adaptation. More specifically, the iterative updates described here can

be considered as a min-max game between the F and the G-D networks. During the

D update step discussed earlier, the adversarial loss branch of D learns to classify

the input images as real or fake in a domain consistent manner. To update F , we use

the gradients from D that lead to a reversal in domain classification, i.e. for source

embeddings, we use gradients from D corresponding to classifying those embeddings

as from target domain (Ls
adv,F ) and for target embeddings, we use gradients from D

corresponding to classifying those embeddings as from source domain (Lt
adv,F ). Note

that, this is similar to the min-max game between the G-D pair, except in this case,

the competition is between classifying the generated image as from source/target

domains instead of them being real/fake. The cross domain nature of adversarial
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losses can be clearly observed from their formulations:

Ls
adv,F = min

F
Lce(D(G(F (Xs)), Ytgt−real)

Lt
adv,F = min

F
Lce(D(G(F (X t)), Ysrc−real) (6.4)

Compared to Eq. 6.3, the domain labels are flipped during the F-update. This forces

the embedding to move closer for source and target inputs. But this alone does not

ensure class consistency, i.e. the source and target embeddings can be projected into

a joint space where source classes do not necessarily correspond to the same target

classes. To avoid this, the auxiliary loss term acts as a regularizer ensuring that the

common subspace is learnt in a class consistent manner. Quantitative evidence of

this claim can be found in the section on ablation experiments.

6.3.4 Motivating design choice of D

• In traditional GANs that are derived from the DCGAN [RMC15] implemen-

tations, the output of the discriminator is a single scalar indicating the prob-

ability of the input being fake or drawn from an underlying data distribution.

Recent works on image generation have utilized the idea of Patch discrimina-

tor in which the output is a two dimensional feature map where each pixel

carries a real/fake probability. This results in significant improvement in the

visual quality of their generator reconstructions. We extend this idea to our

setting by using a variant of the Patch discriminator, where each pixel in the

output map indicates real/fake probabilities across source and target domains

hence resulting in four classes per pixel: src-real, src-fake, tgt-real, tgt-fake.
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• In general, GANs are hard to train on tasks which involve realistic images of

a larger scale. One promising approach to training stable generative models

with the GAN framework is the Auxiliary Classifier GAN (AC-GAN) approach

by Odena et al. where they show that by conditioning G during training and

adding an auxiliary classification loss to D, they can realize a more stable

GAN training and even generate large scale images. Inspired by their results

on image classification, we extend their idea to the segmentation problem by

employing an auxiliary pixel-wise labeling loss to the D network.

Both these components prove crucial to our performance. The ablation study per-

formed in Section 6.5.3 shows the effect of the above design choices on the final

performance. Specific details about the architectures of these network blocks can

be found in the supplementary material.

6.4 Experiments and Results

In this section, we provide a quantitative evaluation of our method by per-

forming experiments on benchmark datasets. We consider two challenging syn-

thetic datasets available for semantic segmentation: SYNTHIA and GTA-5. SYN-

THIA [RSM+16] is a large dataset of photo-realistic frames rendered from a vir-

tual city with precise pixel-level semantic annotations. Following previous works

( [HWYD16], [ZDG17]), we use the SYNTHIA-RAND-CITYSCAPES subset that

contains 9400 images with annotations that are compatible with cityscapes. GTA-5

is another large-scale dataset containing 24966 labeled images. The dataset was
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Algorithm 2 Iterative training procedure of our approach

1: training iterations = N
2: for t in 1:N do
3: Sample k images with labels from source domain S: {Si, yi}ki=1

4: Let si = F (Si) be the embeddings computed for the source images.
5: Sample k images from target domain T : {Ti}ki=1

6: Let ti = F (Ti) be the embeddings computed for the target images.
7: Let sgi and tgi be the inputs to the generator.
8: Update discriminator using the following objectives:

LD = Ls
adv,D + Lt

adv,D + Ls
aux (6.5)

9: The generator is updated using a combination of adversarial loss and recon-
struction loss for both source and target inputs.

LG = Ls
adv,G + Lt

adv,G + Ls
rec + Lt

rec (6.6)

10: Update the embedding F using a linear combination of the adversarial loss
and classification loss. Update the classifier C for the source data using the
cross entropy loss function.

LF = Lseg + αLs
aux + β (Ls

adv,F + Lt
adv,F ) (6.7)

11: end for

curated by Richter et al. [RVRK16] and is generated by extracting frames from the

computer game Grand Theft Auto V.

We used CITYSCAPES [COR+16] as our real dataset. This dataset contains

urban street images collected from a moving vehicle captured in 50 cities around

Germany and neighboring countries. The dataset comes with 5000 annotated im-

ages split into three sets - 2975 images in the train set, 500 images in the val set

and 1595 images in the test set. In all our experiments, for training our models

we used labeled SYNTHIA or GTA-5 dataset as our source domain and unlabeled

CITYSCAPES train set as our target domain. We compared the proposed approach

with the only two contemporary methods that address this problem: FCN in the
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wild [HWYD16] and Curriculum Domain adaptation [ZDG17]. Following these ap-

proaches, we designate the 500 images from CITYSCAPES val as our test set.

Architecture In all our experiments, we used FCN-8s as our base network. The

weights of this network were initialized with the weights of the VGG-16 [SZ14a]

model trained on Imagenet [KSH12c]. The architectures we used for D and G net-

works along with the hyper-parameter settings are described in the supplementary

material.

Implementation details In all our experiments, images were resized and cropped to

1024× 512. We trained our model for 100, 000 iterations using Adam solver [KB14]

with a batch size of 1. Learning rate of 10−5 was used for F and C networks, and

2× 10−4 for G and D networks. While evaluating on CITYSCAPES dataset whose

images and ground truth annotations are of size 2048 × 1024, we first produce our

predictions on the 1024× 512 sized image and then upsample our predictions by a

factor of 2 to get the final label map, which is used for evaluation. We will make

our models and code publicly available.

6.4.1 SYNTHIA → CITYSCAPES

In this experiment, we use the SYNTHIA dataset as our source domain, and

CITYSCAPES as our target domain. We randomly pick 100 images from the 9400

labeled images of SYNTHIA dataset and use it for validation purposes, the rest of

the images are used for training. We use the unlabeled images corresponding to

the CITYSCAPES train set for training our model. In order to ensure fairness of
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experimental results, we followed the exact evaluation protocol as specified by the

previous works ( [HWYD16], [ZDG17]): The 16 common classes between SYNTHIA

and CITYSCAPES are chosen used as our labels. The predictions corresponding

to the other classes are treated as belonging to void class, and not backpropagated

during training. The 16 classes are: sky, building, road, sidewalk, fence, vegetation,

pole, car, traffic sign, person, bicycle, motorcycle, traffic light, bus, wall, and rider.

Table 6.7a reports the performance of our method in comparison with [HWYD16]

and [ZDG17]. The source-only model which corresponds to the no adaptation

case i.e. training only using the source domain data achieves a mean IOU of 25.7.

The target-only values denote the performance obtained by a model trained us-

ing CITYSCAPES train set (supervised training), and they serve as a crude upper

bound to the domain adaptation performance. These values were included to put in

perspective the performance gains obtained by the proposed approach. We observe

that our method achieves a mean IOU of 34.8, thereby improving the baseline by

9.1 points, thus resulting in a higher performance improvement compared to other

reported methods.

6.4.2 GTA5 → CITYSCAPES

In this experiment, we adapt from the GTA-5 dataset to the CITYSAPES

dataset. We randomly pick 1000 images from the 24966 labeled images of GTA-5

dataset and use it for validation purpose and use the rest of the images for training.

We use the unlabeled images corresponding to the CITYSCAPES train set for train-

ing our model. In order to ensure fairness of experimental results, we followed the
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exact evaluation protocol as specified by the previous works ( [HWYD16], [ZDG17]):

we use 19 common classes between GTA-5 and CITYSCAPES as our labels. The

results of this experiment are reported in Table. 6.7b. Similar to the previous ex-

periment, our baseline performance (29.6) is higher than the performance reported

in [HWYD16], due to difference in network architecture and experimental settings.

On top of this, the proposed approach yields an improvement of 7.5 points to obtain

a mIOU of 37.1. This performance gain is higher than that achieved by the other

compared approaches.

Note regarding different baselines: The baseline numbers reported by us

do not match with the ones reported in [ZDG17] and [HWYD16] due to different

experimental settings (this mismatch was also reported in [ZDG17]). However,

we would like to point out that we improve over a stronger baseline compared to

the other two methods in both our adaptation experiments. In addition, [ZDG17]

uses additional data from PASCAL-CONTEXT [MCL+14b] dataset to obtain the

superpixel segmentation. In contrast, our approach is a single stage end-to-end

learning framework that does not use any additional data and yet obtains better

performance improvement.

6.5 Discussion

In this section, we perform several exploratory studies to give more insight

into the functionality and effectiveness of the proposed approach. similar to the

previous section, all the evaluation results are reported on the CITYSCAPES val
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set, unless specified otherwise. We denote this set as the test set. We would like to

note that owing to space constraints, we have added example results such as label

predictions and images sampled from generator network etc in the supplementary

material.

6.5.1 Effect of Image Size

The datasets considered in this chapter consists of images of large resolution

which is atleast twice larger than the most commonly used Segmentation bench-

marks for CNNs i.e. PASCAL VOC (500×300) and MSCOCO (640×480). In this

setting, it is instructive to understand the effect of image size on the performance of

our algorithm both from a quantitative and computational perspective. Table 6.3

presents the results of our approach applied over three different image sizes along

with the training and evaluation times. It should be noted that the Curriculum DA

approach [ZDG17] used a resolution of 640×320. By comparing with our main re-

sults in Table 6.7a, we see that our approach provides a higher relative performance

improvement over a similar baseline.

For computational efficiency, the remaining experiments in this section are run

with the image size of 640×320.

6.5.2 Comparison with direct style transfer

Generative methods for style transfer have achieved a great amount of suc-

cess in the recent past. A simple approach to performing domain adaptation is

to use such approaches as a data augmentation method: transfer the images from
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Table 6.3: Mean IoU values and computation times across different image size on the

SYNTHIA → CITYSCAPES setting. The numbers in bold indicate the abso-

lute improvement in performance over the Source-only baseline. The reported

training and evaluation times are for the proposed approach and are averaged

over training and evaluation runs.

Image size 512× 256 640× 320 1024× 512

mIOU-Source-only 20.5 22.2 25.7

mIOU-Ours 29.3 (+8.8) 32.1 (+9.9) 34.8 (+9.1)

Train time (per image) 1.5s 2.1s 2.9s

Eval time (per image) 0.16s 0.19s 0.3s

the source domain to target domain and use the provided source ground truth to

train a classifier on the combined source and target data. In order to compare

the proposed approach with this direct data augmentation procedure, we used a

state of the art generative approach (CycleGAN [ZPIE17]) to transfer images from

source domain to target domain. As can be observed from the results, using gener-

ative approaches solely as a data augmentation method provides a relatively small

improvement over the source-only baseline and clearly suboptimal compared to the

proposed approach. By augmenting the feature learning process with gradients from

the G-D pair, our method achieves superior performance and is more reliable in cases

where approaches based on pure generation may fail to improve. This experiment

highlights the difficulty in achieving domain adaptation by performing a direct style

transfer.
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Table 6.4: Comparison of semantic segmentation performance on SYNTHIA →

CITYSCAPES setting when using a GAN based approach as data augmen-

tation. We use CycleGAN [ZPIE17] as the cross domain generation procedure.

Method mean IoU

Source-only 22.2

Source + CycleGAN-augmented 25.6

Ours 32.1

6.5.3 Component-wise ablation

In this experiment, we show how each component in our loss function affects

the final performance. We consider the following cases: (a) Ours(full): the full

implementation of our approach (b) Ours w/o auxiliary pixel-wise loss: Here, the

output of the D network is a single branch classifying the input as real/fake. This

corresponds to α = 0 in the F -update step. Note that, setting both α and β as zero

corresponds to the source-only setting in our experiments. Setting only β = 0 does

not improve over the source-only baseline as there is no cross domain adversarial

loss. (c) Ours w/o Patch discriminator: Instead of using the D network as a Patch

discriminator, we used a regular GAN-like discriminator where the output is a 4-D

probability vector that the input image belongs to one of the four classes - src-real,

src-fake, tgt-real and tgt-fake. (d) Feature space based D: In this setting, we remove

the G-D networks and apply an adversarial loss directly on the embedding. This is

similar to the global alignment setting in the FCN-in-the-wild approach [HWYD16].
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The mean IoU results on the test set are shown in Table. 6.5. It can be

observed that each component is very important to obtain the full improvement in

performance.

Table 6.5: Ablation study showing the effect of each component on the final performance

of our approach on the SYNTHIA → CITYSCAPES setting

Method mean IoU

Source-only 22.2

Feature space based D 25.3

Ours w/o Patch Discriminator 28.3

Ours w/o auxiliary loss (α = 0) 29.2

Ours 32.1

6.5.4 Cross Domain Retrieval

A crucial aspect of domain adaptation is in finding good measures of domain

discrepancy that provide a good illustration of the domain shift. While there exist

several classical measures such as A-distance [BDBCP07] and MMD [GTX11] for

the case of image classification, the extension of such measures for a pixel-wise

problem such as semantic segmentation is non-trivial. In this section, we devise a

simple experiment in order to illustrate how the proposed approach brings source

and target distributions closer in the learnt embedding space. We start with the

last layer of the F network, which we label as the embedding layer, whose output

is a spatial feature map. We perform an average pooling to reduce this spatial map
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(a) Target → Source, |Bk| (vs) k (b) Source → Target, |Ak| (vs) k

Figure 6.4: Illustration of Domain Adaptation achieved by the proposed approach. The

plot compares the average number of retrieved sampled for the cross domain

retrieval task described in Section 6.5.4 between the source-only model and the

model adapted using the proposed approach. Target → Source implies that

the query set used belongs to target domain (QT ) and items queried for from

the set X belong to the source domain and vice-versa for Source→ Target. In

general, the values plotted on the y-axis corresponds to the number of samples

retrieved from the set X that belong to the opposite domain as to that of the

query set.

to a 4096 dimensional feature descriptor for each input image.

We begin the cross domain retrieval task by choosing a pool of N = Nsrc+Ntgt

images from the combined source and target training set. Let X denote these set of

images and FX denote the set of the feature descriptors computed for X. Then, we

choose two query sets, one consisting of source images (S) and the other consisting

of target images (T ), each disjoint with X. Let the corresponding feature sets be

denoted as QS and QT . We retrieve k-NN lists for each item in the query set from the
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combined feature set FX . For each query point in QS, we count the number of target

samples retrieved in the corresponding k-NN list. |Ak| indicates the average number

of target samples retrieved over the entire source query set QS. For each query point

in QT , we count the number of source samples retrieved in the corresponding k-NN

list. |Bk| indicates the average number of source samples retrieved over the entire

target query set QT . We used cosine similarity as a metric to compute the k-NN

lists. If more target samples are retrieved for a source query point (and vice-versa),

it suggests that source and target distributions are aligned well in the feature space.

For this experiment, the sizes of query sets and the feature set FX are as

follows: Nsrc = Ntgt = 1000, |QS| = 1000, |QT | = 1000. The mean average precision

(mAP) was computed across the entire query sets for the respective cross domain

tasks. Figure 6.4 shows the plot of the quantities |Ak| (Fig.6.4b) and |Bk| (Fig.6.4a)

for a range of values of k. It can be observed from the plots in both the tasks that

for any given rank k, the number of cross domain samples retrieved by the adapted

model is higher than the source-only model. This effect becomes more clear as k

increases. This observation is supported by better mAP values for the adapted

model as shown in Figure 6.4. While this by itself is not a sufficient condition for

better segmentation performance, however this along with the results from Table

6.7 imply that the proposed approach performs domain adaptation in a meaningful

manner. Owing to the difficulty in visualizing the mapping learned for segmentation

tasks, a cross domain retrieval experiment can be seen as a reasonable measure of

how domain gap is reduced in the feature space.
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6.5.5 Generalization to unseen domains

Table 6.6: Mean IoU segmentation performance measured on a third unseen do-

main (CamVid dataset) for the models corresponding to the SYNTHIA →

CITYSCAPES setting

Method mean IoU

Source-only 36.1

Ours 44.4

A desirable characteristic of any domain adaptation algorithm is domain gen-

eralization i.e. improving performance over domains that are not seen during train-

ing. To test the generalization capability of the proposed approach, we test the

model trained for the SYNTHIA → CITYSCAPES setting on the CamVid dataset

[BFC09]. We choose to evaluate our models on the 10 common classes among the

CamVid, SYNTHIA and CITYSCAPES datasets. To begin with, we would like to

note that for the results presented in Table 6.7 for the SYNTHIA→ CITYSCAPES

setting, 16 common classes among the two datasets were chosen following previous

works. Now, for the CamVid experiment, we choose 10 among these 16 classes which

are common with the CamVid dataset. They are the following: building, vegetation,

t sign, sky, car, road, person, fence, pole, sidewalk.

Table 6.6 shows the mean IoU values computed for the source-only baseline

and the adapted model. The proposed approach yields a raw improvement of 8.3

points in performance which is a significant improvement considering the fact that
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CamVid images are not seen by the adapted model during training. This exper-

iment showcases the ability of the proposed approach to learn domain invariant

representations in a generalized manner.

6.6 Results using DeepLab-ResNet-101 as base model
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Ours - Adapted Deeplab-Resnet-101 81.3 29.3 79.2 5.1 0.3 25.1 8.7 13.4 78.4 84.4 45.3 9.5 68.9 17.4 7.6 21.0 35.9 11.8

(a) SYNTHIA → CITYSCAPES
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Ours - Source only Deeplab-Resnet-101 72.1 4.5 65.1 2.1 17.4 21.2 27.7 10.6 69.5 11.7 66.8 48.2 12.6 51.0 24.9 9.1 0.0 10.8 0.9 27.7

Ours - Adapted Deeplab-Resnet-101 85.4 26.6 79.0 22.0 25.5 29.3 35.1 17.9 76.5 19.9 73.8 55.7 17.9 66.7 24.7 25.3 2.2 20.5 1.1 37.1 9.4

(b) GTA5 → CITYSCAPES

Table 6.7: Results of Semantic Segmentation performance for the Deeplab-Resnet-101

base model by adapting from (a) SYTNHIA to CITYSCAPES and (b) GTA-5

to CITYSCAPES. Similar to the FCN-8s results presented in the main paper,

the results in (a) are reported over the 16 common classes while the results in

(b) are reported over all the 19 classes.

In the previous section, for fair comparison with previous works, we used

FCN-8s as our base model. In this section, we present results of our approach using

Deeplab Resnet-101 network as the base model. We used the single-scale version of

the model that was pre-trained on the MS-COCO dataset.
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6.7 Generator Visualizations

Original Image Iteration 10000 Iteration 25000 Iteration 50000

Figure 6.5: Querying the generator space for source images - Progress across iterations

Original Image Iteration 10000 Iteration 25000 Iteration 50000

Figure 6.6: Querying the generator space for target images - Progress across iterations

In figures 6.5 and 6.6, we present examples of the generator reconstructions

of source and target images during the course of the training procedure. This pro-

vides a visual representation of the convergence of the algorithm. As the iterations

progress, the generator quality increases thereby resulting in better knowledge trans-

fer between source and target distributions.
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6.8 Qualitative Comparison of Label predictions

The label map visualization of the segmentation results obtained by the base-

line model and our adapted model are shown in the Figure. 6.7. We observed that

our adapted model improves the quality of the label map predictions significantly

compared to the source-only model. This improvement is predominant for classes

that occupy the major portion of the image like road and car.

Input image (Cityscapes) Source only model Adapted model Ground truth

Figure 6.7: Visualization of label map predictions for SYNTHIA→ CITYSCAPES exper-

iment. In each row, the first column corresponds to the input image sampled

from the target domain (Cityscapes). The second and the third column corre-

sponds to the segmentation results of the baseline model (source-only model)

and our adapted model respectively. The last column corresponds to the

ground truth
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6.9 Architecture and Hyperparameters

The details of the architectures used in our experiments are shown in the

Figure. 6.8. As described in Section 3 of the main paper, the entire pipeline of our

approach consists of 4 networks - F , C, G and D networks. We perform experiments

with two architectures for F −C pair: FCN-8s and Deeplab-Resnet-101. For FCN-

8s, we denote the network till fc7 layer as F network, and the final classification

layers are treated as C network. For Deeplab-Resnet-101, the network till res5c

layer is denoted as F network, the rest of the layers are treated as C network.

The architectures of G and D networks are described in Figure. 6.8. The G

network is a multi-stage network - it accepts inputs from intermediate layers of the F

network to generate the reconstructed image. We observed that fusing information

from the earlier layers of F network produced good quality generations compared

to using only the response of the final layer. For both G and D networks, we use

residual blocks inspired by the recent success of several generative models [32]

There are two hyper-parameters in our approach: α - the weight of auxiliary

classification loss and β - the weight of adversarial component (Refer to Section 3

in the main paper). We observed that the network is not very sensitive to these

parameters. We found that the parameter setting α = 0.1 and β = 0.1 worked well

across all settings, and used it for all our experiments.
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Figure 6.8: Details of the network architectures used in our experiments. Conv - Convolu-

tion layer, ConvT - Transposed convolution layer, S - stride, P - padding. For

each Conv/ConvT layer, the numbers in the parenthesis denote the number

of filters.

6.10 Conclusions

In this chapter, we have addressed the problem of performing semantic segmen-

tation across different domains. In particular, we have considered a very hard case

where abundant supervisory information is available for synthetic data (source) but

no such information is available for real data (target). We proposed a joint adversar-

ial approach that transfers the information of the target distribution to the learned

embedding using a generator-discriminator pair. We have shown the superiority of

our approach over existing methods that address this problem using experiments
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on two large scale datasets thus demonstrating the generality and scalability of our

training procedure. Furthermore, our approach has no extra computational over-

head during evaluation, which is a critical aspect when deploying such methods in

practice. As future work, we can extend this approach to explicitly incorporate geo-

metric constraints accounting for perspective variations and to adapt over temporal

inputs such as videos across different domains.
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Chapter 7. Conclusions and Directions for Future Work

7.1 Summary

In this dissertation, we addressed the properties of deep neural networks, which

have recently become the workhorses for several machine learning and computer

vision tasks. We highlighted their limitations from two broad perspectives: (1)

Robustness to perturbations of the input (2) Inability to generalize across domain

shift. In the first part, we studied robustness as both an external (as presented by

naturally occurring data distortions) and internal(adversarial perturbations of the

feature space and thereby the input) artifacts. We extended the concept of adversar-

ial perturbations to a larger class of computer vision problems and showed examples

of how they could be used to aid existing systems for semantic segmentation. In

the second part, we addressed the problem of domain adaptation in a large scale

setting.

In chapter 3, we presented a novel approach using convolutional neural net-

works to address the problem of face verification under unconstrained environments.

o approach consists to two components: a simple deep network architecture and a

training scheme which has faster convergence over a relatively diverse dataset, a

fast embedding approach that projects the deep features to a more discriminative
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low dimensional space in order to improve face verification performance. We pre-

sented experimental results on challenging face datasets such as IJB-A and CFP

and demonstrated the robustness of the deep features to challenges including age,

pose, blur and clutter by performing simple subject specific clustering experiments

on LFW and IJB-A datasets. This highlighted the fact that even a deep neural net-

work trained on a large enough dataset learns a lot of redundant information that

are detrimental for good generalization performance. By reducing the sensitivity of

the deep features on the dimensions as dictated by our triplet embedding approach,

we showed that we could achieve better results on challenging unseen data.

In chapter 4, we addressed the perturbation analysis of segmentation networks.

A class of perturbations were shown to exist for deep networks that were used for

classification tasks. Previous works showed how to obtain these perturbations and

demonstrated that they are largely adversarial. In our approach, we showed that

for networks that perform explicit contextual modeling at the output, the effect

of perturbations need not be always adversarial. Furthermore, we showed how

to generated these guided perturbations in a reliable manner and experimentally

showed that these are transferable across neural network architectures.

In chapter 5, we studied the effect of adversarial training as regularizer with

a focus on very deep state of the art models. We proposed a novel regularization

approach derived from a novel variant of traditional adversarial training. Sample

gradients corresponding to images belonging to different classes compared to a given

input can act as adversarial gradients when perturbed layerwise. We showed a faster

way to realize this for the case of batch training. We compared the proposed ap-
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proach with popular regularizers such as dropout and showed superior performance

for both clean and adversarial data. We demonstrated that the proposed regularizer

improves the clean data performance of even state of the art deep models.

Finally in chapter 6, we addressed the problem of domain shift in computer

vision applications. We considered the case of the semantic segmentation tasks

and a harder case of domain shift involving synthetic to real images. To adapt

the learned representation to generalize across the labeled source and unlabeled

target distributions, we formulated a minimax game between a generative adversarial

network and a base feature network. We demonstrated significant improvement

on the large scale task of semantic segmentation over existing approaches on this

very hard problem. Our ablative experiments showed that as training progresses,

the proposed training procedure results in a good mixing of the source and target

distributions in the local neighborhood of the feature network, hence resulting in

good domain adaptation performance.

7.2 Directions for Future Work

In this section, we describe some promising future directions that can stem

from the different problems considered in this thesis. We provide a very brief outline

of directions and preliminary results where applicable.
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7.2.1 Embedding Videos using Triplet Constraints

The triplet probabilistic embedding approach discussed in chapter 3 was ap-

plied to facial datasets which consisted of static images. In the case of videos, the

feature representation was pooled over successive frames such that the entire video

was represented as a single feature. A more interesting direction would be to learn

an attention mechanism in order to weight the different frames of the video in addi-

tion to learning the projection matrix. This can be done with the use of recurrent

neural network models such as Lone Short Term Memory (LSTM) blocks in order

to unroll videos of variable lengths.

7.2.2 Predictive Influence Estimation

Chapter 4 provided some key observations regarding the effect of simple gra-

dient based perturbations on deep networks used for semantic segmentation tasks.

From the perspective of robust statistics, a small perturbation resulting in a non-

negligible change in a black box system indicates the unstable nature (topologi-

cally speaking, this relates to multiple sharp peaks) of the learned decision surface.

Within the context of a pixelwise segmentation task, the effect of such perturbations

on any given pixel can be considered as a notion of inertia for the feature represen-

tation of that pixel. This is illustrated in Figure 7.1. Pixels which are closer to the

decision boundary are the ones whose class distribution will be greatly affected by

the perturbations.

The effect of these perturbations on a given set of pixels can be quantified by
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Figure 7.1: Illustration of the effect of the ε perturbations for a simple linear case. The

feature representations of the pixels close to the decision boundary would

change more than the pixels in the interior regions.

the divergence between the predicted probability distributions as a results of the

perturbations. This can be concretely described as follows: Let P (X, ε) denote the

perturbation process applied to input image X in the direction ε. The perturbation

process described in Chapter 4 is the linear additive perturbation: P (X, ε) = X +

ε∇XJ(X, Y, θ). Let Fθ(P (X, ε)) denote the predictive distribution of the network F

with parameters θ. Then, a measure of the influence for the pixels of the image X is

the divergence between the two sided perturbations: D [Fθ(P (X,−ε)), Fθ(P (X, ε))],

where D is an appropriate measure such as KL of the JSD divergence.

This can provide a metric to sample fewer pixels during training time as op-

posed to choosing the entire image for the purpose of label annotation, hence poten-

tially resulting in a significant reduction in annotation time and effort. This repre-

sents uncertainty modeling and confidence intervals in the Bayesian sense. Relating
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the effect of these perturbations to Bayesian inference is an interesting direction in

its own right.

7.2.3 Adversarial regularization for non-image data

The regularization approach proposed in chapter 5 is a very general method,

in that there is no assumption made about the type of data it is applied to. Deep

networks that perform differentiable end to end training for non-image modalities

such as speech and language are widely used in the machine learning community.

A potential future avenue would be to apply the proposed layerwise adversarial

regularization approach to networks that are used to train such non-image datasets.

7.2.4 Domain Adaptation with Temporal Sequences

In chapter 6, we described the problem of domain adaptation and proposed

an approach based on generative adversarial networks to learn a common feature

space where the distance between source and target distributions are minimized.

The datasets that were used for the experiments contained static frames as images

and video data was not available. A potential future direction would be to generate

synthetic data in the form of videos and utilize it to perform domain adaptation.

Figure 7.2 shows one way to utilize the temporal information in source data. The

main difference here compared to the original approach is the use of a recurrent neu-

ral network which can aggregate information across different frames of the video.

The task loss and the adversarial loss can then be applied on the aggregated infor-

mation resulting in improved disambiguation of smaller objects such as pedestrians,
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Figure 7.2: Training pipeline for Domain Adaptation over Video data

bicyclists etc. Motion features such as the estimated optical flow between successive

frames can be provided as auxiliary input to the feature network.

7.2.5 Domain Generalization

The domain adaptation problem considered in chapter 6 assumes that the

target data is available for the learning algorithm during training. In a real world

setting, this is rarely the case. A more practical setting is shown in Figure 7.3 where

labeled training data from multiple domains is available for the learning algorithm

and the task is to learn a generalizable feature representation that should work

on unseen data. The unseen data could be drawn from a similar representation

compared to the source domains or from a completely novel distribution. This

is a natural generalization of the domain adaptation problem to a more realistic

yet significantly harder setting. A potential approach developed for this problem

should teach the learner to generalize rather than to fit a given distribution. In other

words, the network should be designed to fit novel and unseen data. One promising
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Figure 7.3: Illustration of the Domain Generalization problem where multiple labeled

source domains are given during training and the objective is to find the most

generalizable representation that works well on novel data.

direction to address this problem is to use recently proposed meta learning based

approaches that involves hierarchical levels of learning, reminiscent of the concept

of hyperpriors in Bayesian statistics.
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