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The upcoming NASA’s Global Ecosystem Dynamics Investigation (GEDI) 

mission presents an unprecedented opportunity to advance current global biomass 

estimates. However, gaps are expected between GEDI’s ground tracks, requiring the 

development of fusion-based methodologies to contiguously map forest biomass at 

satisfactory resolutions and accuracies. This dissertation is built on the 

complementary advantages of observations from GEDI and DLR’s TerraSAR-

X/TanDEM-X (TDX)) Interferometric Synthetic Aperture Radar (InSAR) mission. 

To meet the goal of mapping forest structure and biomass contiguously and 

accurately, three types of fusion strategies have been investigated. 

First, a simulated GEDI-derived digital terrain model (DTM) was utilized to 

improve height estimation from TDX. Forest heights were initially derived from TDX 

coherence alone as a baseline using the widely used Random Volume over Ground 

(RVoG) scattering model. Here, assumptions about RVoG parameters – extinction 

coefficient (σ) and ground-to-volume amplitude ratio (µ) – were made. Using an 



 

 

external DTM derived from simulated GEDI lidar data, RVoG model was used to 

calculate spatially varied σ values and derived forest heights with better accuracy. 

TDX forest height estimation was further improved with the aid of simulated GEDI-

derived DTM and canopy heights. The additional use of simulated GEDI canopy 

heights as RVoG input not just refined σ but also enabled the estimation of µ. Based 

on these parameters, forest heights were improved across three different forest types; 

biases were reduced from 1.7–3.8 m using only simulated GEDI DTMs to -0.9–1.1 m 

by using both simulated GEDI DTMs and canopy heights. Finally, wall-to-wall TDX 

heights were used to improve biomass estimates from simulated GEDI data over three 

contrasting forest types. When using simulated GEDI sampled observations alone, 

uncertainties were estimated statistically to be 9.0–19.9% at 1 km. These were 

improved to 5.2–11.7% at the same resolution by upscaling simulated GEDI footprint 

biomass with TDX heights. The GEDI/TDX data fusion also enabled the generation 

of biomass maps at a fine spatial resolution of 100 m, with uncertainties estimated to 

be 6.0–14.0%. 

Through the exploration of these fusion strategies, it has been demonstrated 

that a fusion-based mapping method could realize the generation of forest biomass 

products from GEDI with unprecedented resolutions and accuracies, while taking 

advantage of global seamless observations from TDX.  
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Chapter 1: Forest Structure and Biomass Estimation Using 

Fused Spaceborne Lidar and InSAR Data 

1.1 Motivation 

Accurate estimation of global forest structure and above ground biomass are 

critical to advancing our understanding of terrestrial carbon dynamics and their 

implications for climate, habitat and biodiversity (Goetz and Dubayah 2011). 

Numerous studies have demonstrated the particular strength and efficacy of the lidar 

remote sensing technique in estimating biomass via accurate measurements of forest 

structure. However, given the limited and inconsistent distribution of worldwide lidar 

data, it is still a challenging issue to provide global forest biomass maps at the spatial 

resolutions (100 m–1 km) and accuracies (≤50 Mg/ha, or better than 20%, whichever 

is lower) (Houghton et al. 2009) needed to reduce the large uncertainties in the global 

carbon budget and projections of future climate from surface-atmosphere carbon 

exchange analysis (Hall et al. 2011). 

Much more complete and consistent lidar coverage will become available with 

the launch of Global Ecosystem Dynamics Investigation (GEDI) – the National 

Aeronautics and Space Administration (NASA)’s spaceborne lidar mission. The 

billions of lidar observations that will be collected by GEDI will revolutionize our 

understanding and quantification of forest vertical structure and biomass globally 

between 51.5° north and south latitude (Stysley et al. 2015). Although gaps will 
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remain between the adjacent 25-m footprints of GEDI, in both the along- and across-

track directions, observations from this mission alone will allow the creation of 

moderate-resolution global biomass maps at approximately 1 km using statistical 

methods. These GEDI-based products, if provided with appropriate characterization 

of uncertainties and sufficient accuracy, will present superior forest structure and 

biomass information compared to current global estimates. Nevertheless, there is still 

a pressing need to integrate GEDI observations with ancillary data from other satellite 

missions, since GEDI cannot directly provide a wall-to-wall map with individual 

footprints, to provide biomass estimates at finer resolutions and accuracies and 

minimize uncertainties in the terrestrial carbon budget (Pardini et al. 2016; Qi and 

Dubayah 2016). 

Driven by this need, this dissertation explores the efficacy of fusing simulated 

GEDI lidar data and data from the German Aerospace Center (DLR)’s TerraSAR-X 

(2007 launch)/TanDEM-X (2010 launch) (a combined mission abbreviated simply as 

TDX) Interferometric Synthetic Aperture Radar (InSAR) mission to improve forest 

structure and biomass mapping. TDX single-pol InSAR data have a resolution of 

approximately 3 m and contiguous global coverage, and have been successfully 

applied to provide forest structure and biomass maps at regional scales, using external 

bare ground topography or other a priori forest parameters to constrain the inversion 

model (Askne et al. 2017; Kugler et al. 2014). Yet accuracies of the estimated forest 

attributes are subject to the availability and accuracy of such prerequisite information. 
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While there are multiple data sources available, GEDI would certainly provide one of 

the most accurate estimates of ground topography and forest vertical structure at its 

footprint level globally. Therefore, it forms the fundamental basis for a 

complementary observation of forest structure between GEDI lidar and TDX InSAR 

— GEDI data are more accurate but spatially limited, whereas TDX InSAR data are 

spatially contiguous but require certain regional calibrations. There is a timely 

opportunity for exploiting the two advanced datasets in a synergistic way to map 

forest structure and biomass at a finer spatial resolution and higher accuracy than 

either mission can achieve alone. 

1.2 Background 

1.2.1 Significance of forest biomass estimation to global carbon cycle study 

Carbon dioxide has been increasingly emitted into the atmosphere through 

human activities for the past decades, contributing to global warming that potentially 

leads to environmental changes such as rising sea levels, melting Arctic sea ice, 

increasing ocean temperature, severe weather and warmer winters (IPCC 2013). 

Fossil fuel use, forest deforestation and land-use change have been identified to be the 

largest contribution of carbon dioxide emission (Quéré et al. 2018), and each of these 

sources has different levels of uncertainties (Figure 1-1), leading to an imbalanced 

global carbon cycle known as “missing carbon”(Houghton et al. 2012). Significant 

efforts have been made to address this issue and to reduce the uncertainties in the 
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global carbon cycle. For example, a recent study indicates an accelerated growth in 

forests that may have a major effect on the global carbon and that the world's trees 

may have sequestered enough carbon during the period from 1990 to 2007 to account 

for the entire “missing sink” (Pan et al. 2011). However, uncertainties in these 

estimates are large, particularly in tropical forests, because of the sparse sampling of 

field data at local scales and the widely-varied quality (Popkin 2015). Reducing the 

high uncertainty levels in the quantification of terrestrial carbon budget will 

significantly help to better understand global carbon cycle and its implication for 

climate change (Hall et al. 2011). 

As one of the major carbon sinks and sources in the global ecosystem, forest 

stores ~45% of terrestrial carbon and contributes to ~50% of terrestrial net primary 

production (Canadell et al. 2007; Houghton and Goetz 2008). Carbon stocks in forests 

are usually stored in the form of biomass (including both living and dead 

aboveground biomass (AGB, which includes stems, stumps, branches, bark, seeds 

and foliage) and belowground biomass (BGB, which includes live roots)). One way to 

reduce uncertainties in the terrestrial carbon budget is to improve the measures of 

amount and distribution of global forest AGB (hereafter just “biomass”) (Malhi et al. 

1999). Spatially explicit measurements of biomass also support the definition of 

policies in the context of climate change mitigation strategies which are part of 

Reducing Emissions from Deforestation and forest Degradation in developing 

countries (REDD+) program under the United Nations Framework Convention on 



 

 

 

 

 

 

5 

 

Climate Change (UNFCCC) (Langner et al. 2014; Naesset et al. 2013). Therefore, 

large-scale forest biomass monitoring has been a key mission and measurement 

objective for NASA (Dubayah et al. 2014; Joshi et al. 2017; Rosen et al. 2006). 

 

 

Figure 1-1. (Data: CDIAC/NOAA-ESRL/GCP) Perturbation of the global carbon 

cycle caused by anthropogenic activities, averaged globally for the decade 2007-2016 

(Gt CO2/yr) (Quéré et al. 2018). How terrestrial processes are absorbing the “missing 
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carbon” and how long they can continue is one of the critical and challenging 

questions for understanding future climate change (Hall et al. 2011). 

1.2.2 Significance of forest biomass estimation to terrestrial ecosystem and 

biodiversity studies 

Recent studies show that important terrestrial ecosystem and biodiversity are 

under increasing pressure from human-induced land-use change and global climate 

change (Bergen et al. 2009; Millennium Ecosystem Assessment 2005). In the past 

decades, biodiversity has been lost at an alarming rate, with a 1,000-fold increase in 

species extinction in the last century alone and a continuous loss of about 50,000 

species annually (Millennium Ecosystem Assessment 2005). The losses greatly 

reduce Earth’s biological heterogeneity and ecological complexity, and ultimately 

jeopardize the function and stability of the terrestrial ecosystem and the sustainable 

development of human society. Therefore, there is an urgent need to monitor the 

biodiversity of wild species and to protect important habitat which are often carbon 

sinks (Whitehead 2011). 

Biodiversity is often distributed in a way that some areas with biodiversity far 

richer than others. Identification and mapping of these areas are imperative in 

biodiversity and conservation studies. Forest biomass monitoring system, particularly 

those using remote sensing data that give important biophysical variables and 

biomass information, are highly suitable for recognizing these areas given their high 

spatial and temporal mapping capabilities. These data can be used to support the 
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mapping of certain individual species, making predictions based on their habitat 

requirements and exploring patterns by fusing with field observations (Nagendra 

2001). Some key biophysical variables are also important parameters in terrestrial 

ecosystem and help to improve our understanding of global carbon, water and energy 

fluxes between biosphere and atmosphere (Mu et al. 2007; Myneni et al. 2002; Zhao 

and Zhou 2005). 

1.2.3 Relevance of forest structure to biomass estimation and limits of field data 

Biomass is a developing outcome of many complex processes that act at 

different temporal and spatial scales. It is determined by the balance between inputs, 

i.e. growth, and outputs, i.e. mortality, which are influenced by many limiting factors 

such as water supply, temperature and nutrient, etc. An environment that favors high 

growth rates will thus tend to correlate with high biomass and vice versa. These 

factors affect carbon stocks principally by determining stand structure, such as basal 

area (Álvarez-Dávila et al. 2017). 

Direct measurements of biomass are typically conducted through the 

destructive sampling method, which requires harvesting sample trees that are then 

dried and weighed (Nunery and Keeton 2010). This method is expensive and time- 

and labor-intensive. To avoid this process, empirical relationships have been 

developed to estimate biomass indirectly through field measurements of tree heights, 

diameter at breast height (dbh), basal area, crown volume, and other parameters that 

are highly correlated with biomass (Jenkins et al. 2003; Li et al. 2015; Yang et al. 
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2013). These relationships have been used to accurately estimate biomass through 

properly-conducted field inventories of forest structural properties. 

Many national-scale field inventories have been carried out in the past few 

decades (Blackard et al. 2008; Pollard et al. 2006; Wilson et al. 2013). These field 

data have been successfully combined with land use and land cover change maps to 

track changes in biomass for carbon stock and flux analysis. Nevertheless, field 

measurements of biomass are inefficient; they are not practical ways to produce 

spatial biomass maps over a landscape (Blackard et al. 2008; Treuhaft et al. 2009). 

Therefore, forest maps based on remote sensing data are often combined with field-

measured biomass to provide large-scale estimates of forest biomass. 

Various remote sensing methods have been developed to complement field 

measurements and produce spatial biomass maps efficiently (Benson et al. 2010; 

Chen et al. 2009; Hyde et al. 2006). While biomass maps have been generated using 

passive optical data, these maps tend to have large uncertainties at scales less than a 

few kilometers due to the limited sensitivity of sensors to forest vertical structure, 

particularly after canopy closure (Adam et al. 2010; Anderson et al. 2008; Fassnacht 

et al. 2014). On the other hand, active remote sensing data, in particular those 

acquired by Light Detection and Ranging (lidar) and Radio Detection and Ranging 

(radar) sensors, are more sensitive to forest structural attributes and have been widely 

explored for biomass estimation (Hall et al. 2011).  
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1.2.4 Lidar observations of forest structure and biomass 

The efficacy of lidar remote sensing in biomass estimation has been widely 

acknowledged due to its capability to provide accurate three-dimensional (3D) 

estimates of forest structure that are highly correlated with forest biomass (Drake et 

al. 2002; Goetz and Dubayah 2011; Lefsky et al. 2002). Lidar measures ground 

elevation and canopy structure by recording the time that elapses between the 

emission of a short-duration laser pulse (usually in the infrared of the electromagnetic 

spectrum) and the arrival of the reflection from ground and canopy to the receiver. 

The size of a footprint (the area illuminated by the laser beam) varies in different lidar 

systems and can be classified as small- (< 2 m), medium- (10–30 m) and large- (> 50 

m) footprint. The way lidar instruments record the returned signal may also differ, 

either in discrete returns or fully-digitized waveforms. Lidar remote sensing of forests 

is currently dominated by the deployment of airborne platforms, including 

commercial small-footprint sensors, both discrete return and waveform, as well as 

research sensors, such as the medium-footprint waveform Land, Vegetation and Ice 

Sensor (LVIS) (Anderson et al. 2006; Dubayah et al. 2010; Huang et al. 2013). 

Most airborne lidar data are samples at the stand level or densely cover small 

areas due to the high costs of flight time, the limit of scanning to near nadir to prevent 

ranging errors, and gaps caused by the pitch and roll of the aircraft. To obtain stable 

and consistent estimates of forest structure and biomass, there is an increasing interest 

in exploring data acquired by spaceborne lidar missions (Frolking et al. 2009; 
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Hayashi et al. 2015a; Hayashi et al. 2015b). The Geoscience Laser Altimeter System 

(GLAS)  aboard NASA’s Ice, Cloud, and land Elevation satellite (ICESat) has been 

used successfully to obtain various forest structural properties, such as canopy height, 

LAI and canopy cover, as well as biomass (Lefsky et al. 2005). However, since this 

mission was optimized for ice sheets, GLAS provided low sampling density over 

mid-latitude and tropical forests (Dolan et al. 2011; Dolan et al. 2009; Fatoyinbo and 

Simard 2013; Hall et al. 2011). The lack of comprehensive ecosystem structure 

observations has been a major obstacle for reducing uncertainties in the terrestrial 

carbon budget and for understanding the role of forests as carbon sinks and sources. 

GEDI has been scheduled for launch by NASA in 2018 to solve this problem. 

During its nominal two-year mission, GEDI will provide unprecedented 

measurements of forest height and structure at a medium-footprint size (around 25 

m). Although gaps will remain between GEDI’s ground-tracks, this mission alone 

will enable the generation of forest structure and biomass products at resolutions of 1 

km. Higher resolution products can also be created by combining accurate GEDI lidar 

measurements with data from other spaceborne missions that provide more complete 

coverage but require calibration and validation from lidar (Qi and Dubayah 2016). 

1.2.5 SAR observations of forest structure and biomass 

Synthetic Aperture Radar (SAR) is a method that synthesizes a very long 

radar aperture by integrating the magnitude and phase of the echoes returned from a 

feature over the entire time it is viewed, thus providing high-resolution images of the 
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feature. The amplitude of the returned radar signal for a given ground resolution cell, 

the so-called backscatter coefficient, is determined by the signal wavelength, the 

characteristics of the target, and the acquisition geometry (Askne and Santoro 2005; 

Brown and Sarabandi 2001; Cloude and Papathanassiou 2003). In a forest setting, the 

SAR wavelength determines which components of the forest the SAR signal will 

interact with most. For example, shorter microwave wavelengths (e.g. ~3 cm for the 

X-band) interact mainly with the surface of the forest canopy and are backscattered 

by foliage and small branches, whereas longer wavelengths (e.g. ~23 cm for the L-

band or ~74 cm for the P-band) often penetrate into the canopy, with reflections 

coming from large branches, stems, and the surface of the terrain (Englhart et al. 

2011; Neumann et al. 2012; Praks et al. 2007). SAR backscatter from forests also 

depends on a variety of forest characteristics including structure, canopy roughness, 

and water content. 

SAR systems often polarize the radar signal in different ways (often 

horizontally or vertically) to yield valuable information regarding the vegetation type 

and structure, by independently recording the reflection of like-polarized energy (e.g. 

vertical send–vertical receive (VV) or horizontal send–horizontal receive (HH)) and 

cross-polarized energy (e.g. vertical send–horizontal receive (VH) or horizontal send–

vertical receive (HV)) (Carver 1988; Jensen et al. 2000). Some previous studies have 

used P- to C-band and L- to C-band ratios at HV polarizations (PHV/CHV and 

LHV/CHV) to successfully predict biomass in boreal forests (Ranson et al. 1995; 
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Ranson and Sun 2000; Ranson and Sun 1994). Other studies have also found it 

possible to accurately estimate biomass from SAR backscatters in plantations or very 

simple types of forest. However, in general, SAR backscatters tend to produce 

biomass maps with large uncertainties unless they are integrated to large scales, and 

are often not responsive to biomass levels above ~100 Mg/ha, depending on the 

signal wavelength (Englhart et al. 2011; Mitchard et al. 2012; Montesano et al. 2013; 

Saatchi et al. 2011; Tsui et al. 2013). This is mainly because the two-dimensional 

(2D) format of SAR images only allows for an indirect estimation of the 3D structural 

attributes of forests. 

1.2.6 InSAR observations of forest structure and biomass 

InSAR and Polarimetric InSAR (PolInSAR) technologies have been 

developed recently to enable direct measurement of forest vertical structure (Garestier 

et al. 2008; Hajnsek et al. 2009; Kugler et al. 2014; Praks et al. 2007). The key 

observation in InSAR/PolInSAR measurements is the complex interferometric 

coherence that includes the interferometric correlation coefficient (magnitude) and 

the interferometric phase (interferogram). When the two SAR images forming the 

coherence are acquired at different times, changes in the observed forests (for 

example from wind and soil moisture) cause temporal decorrelation and reduce the 

quality of coherence for the forest structure estimations (Brolly et al. 2016; 

Chowdhury et al. 2014). In 2000, the Shuttle Radar Topography Mission (SRTM) 

collected the first simultaneous spaceborne InSAR data that produced global 
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scattering phase vertical location (the elevation at which the scattering is focused) 

(Kellndorfer et al. 2004). Using the SRTM elevation data, studies have derived 

scattering phase heights and biomass by subtracting from existing topographic data 

(Fatoyinbo and Simard 2013; Files 2012; Kellndorfer et al. 2010; Kellndorfer et al. 

2004; Kenyi et al. 2009). 

DLR recently launched a dual platform mission, TDX (still operational), as 

the first long-term, simultaneous, spaceborne InSAR mission that could potentially 

provide a means for retrieving data on forest structure at a high spatial resolution 

(Askne et al. 2013; Kugler et al. 2014; Soja and Ulander 2013; Solberg et al. 2013). 

Previous studies have estimated scattering phase height from TDX interferograms 

using external lidar Digital Terrain Models (DTMs) (Kugler et al. 2014; Soja and 

Ulander 2013). Forest parameters, including height, have also been derived from 

(Pol)InSAR TDX data, based on the widely used Random Volume over Ground 

(RVoG) scattering model (Askne et al. 2013; Kugler et al. 2014; Lee and Fatoyinbo 

2015; Solberg et al. 2013). However, using single-polarized TDX data in this model 

posed an underdetermined problem, requiring input from ancillary DTMs or other 

forest parameters that were usually provided by airborne lidar data (Kugler et al. 

2014; Soja and Ulander 2013). Dual-polarized acquisitions do not require a priori 

conditions, but are only available in some experimental areas and generally provide 

limited height diversity in the X-band, especially over high-cover tropical forests 

(Cloude et al. 2013; Kugler et al. 2014). 
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The upcoming GEDI mission will provide consistent worldwide topographic 

and forest structural data, thus providing the a priori information required by single-

polarized TDX InSAR data to drive the SAR scattering models for wall-to-wall forest 

height mapping over large areas (Coyle et al. 2015; Pardini et al. 2016; Stysley et al. 

2015). There is a potential to provide experimental height and biomass products at 

unprecedented resolutions and accuracies by combining these GEDI and TDX 

observations. 

1.3 Research Objectives 

This research investigates approaches to fuse GEDI lidar and TDX InSAR 

data to improve forest height and biomass mapping by addressing the following 

objectives. 

1) Investigate the relationships between lidar canopy height and TDX 

interferometric coherence and examine the improvement on TDX height retrieval 

using GEDI-derived DTM. 

2) Evaluate the effectiveness of using GEDI canopy height, additional to the 

GEDI-derived DTM, to improve forest height estimation from TDX. 

3) Explore the feasibility of improving GEDI-based biomass estimation by using 

wall-to-wall TDX InSAR heights. 

Since data from the GEDI mission are not available yet, this research 

simulated GEDI lidar observations based on Land, Vegetation, and Ice Sensor (LVIS) 
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and airborne laser scanning (ALS) data to investigate GEDI/TDX fusion over three 

different types of forest. 

1.4 Dissertation Outline 

This dissertation is subdivided into five chapters. The three primary chapters 

are structured in the format of journal articles and are self-contained yet closely 

related to each other (Figure 1-2). Chapters 2 and 3 focus mainly on improving TDX 

height estimation using GEDI-derived variables, whereas Chapter 4 primarily 

investigates the utility of GEDI-aided TDX height variables on GEDI-based biomass 

estimates. 

Chapter 2 establishes the relationship between canopy height and TDX 

coherence observations using the physically-based SAR scattering model – RVoG. 

The established relationship is subsequently applied to derive canopy height from 

TDX coherence and then improved with the use of simulated GEDI-derived 

topography. This chapter also examines the inversion performance under distinct 

forest structure conditions, using TDX data acquired in leaf-on and leaf-off seasons. 

Chapter 3 further improves the parameterization of TDX RVoG inversion using 

simulated GEDI DTM and canopy heights. The utility of each GEDI-constrained 

RVoG parameter in height estimation is assessed over diverse forest types. In 

addition, this chapter examines the impact of cloud cover and foliage conditions on 

the fusion results. Chapter 4 examines the capability of fused GEDI/TDX data to 

estimate biomass at resolutions of both 100 m and 1 km, compared to when this is 
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done using GEDI data alone, and characterizes uncertainties associated with these 

products. Chapter 5 summarizes this dissertation, and discusses the implications of its 

major findings and their potential linkage to current and future spaceborne missions. 

 

Figure 1-2. Framework of the primary three chapters in this dissertation. 
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Chapter 2: Improved TanDEM-X InSAR Height Estimates 

Using GEDI-derived DTM 

2.1 Introduction 

Forests play an important role in the terrestrial carbon cycle through their 

functioning as potential sources and sinks of carbon. Consequently, improved 

quantification of their carbon content in the form of above-ground biomass (AGB) at 

high spatial resolution and accuracy has been identified as a priority to reduce 

uncertainties on the net impact of deforestation and regrowth on atmospheric CO2 

concentrations (CEOS 2014; Drake et al. 2003; Lu and Liu 2014). Biomass is usually 

estimated from various elements of forest structural properties, particularly tree 

diameter and height, using allometric equations (Clark and Kellner 2012; Duncanson 

et al. 2015a; Duncanson et al. 2015b; Keller et al. 2001; Zhao et al. 2012). Though 

traditional inventory methods provide accurate biomass information at field scales, 

remote sensing technologies have demonstrated great advantages in estimating forest 

biomass at larger scales by measurement of biomass-related structural properties, 

such as canopy height and other vertical structure indices (Goetz and Dubayah 2011; 

Lu and Liu 2014). 

Lidar has emerged as the one of the most effective remote sensing techniques 

for observing canopy vertical structure (Goetz and Dubayah 2011). Lidar remote 

sensing is currently dominated by deployment via airborne platforms. These include 
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commercial, small-footprint sensors, both discrete return and waveform, as well as 

research sensors, such as the medium-footprint waveform Land Vegetation and Ice 

Sensor (LVIS) (Anderson et al. 2006; Dubayah et al. 2010; Huang et al. 2013). 

Spaceborne deployment of lidar enables global coverage and potentially provides a 

means for obtaining stable and consistent estimates of biomass. The Geoscience Laser 

Altimeter System (GLAS) onboard ICESat has been used successfully to obtain forest 

structure measurements, but because it was optimized for ice sheets, had low 

sampling density over mid-latitude and tropical biomes (Dolan et al. 2011; Dolan et 

al. 2009; Fatoyinbo and Simard 2013; Hall et al. 2011). Obtaining a much more 

comprehensive set of ecosystem structure observations is thus a priority for 

advancing our understanding of the role of forests and reducing uncertainties in the 

global carbon cycle. 

A new mission designed specifically to provide needed ecosystem structure 

measurements is now under development in the form of NASA’s Global Ecosystem 

Dynamics Investigation (GEDI). Scheduled for deployment on the International 

Space Station (ISS) in 2018, GEDI will consist of three laser transmitters to produce 

billions of full waveform observations per year (Stysley et al. 2015). The GEDI 

baseline mission concept is comprised of a swath of 14 ground tracks of 25m 

diameter footprints separated by 60 m along-track and 500 m across-track. The 

measurements will produce a fine mesh of transect observations between 50° north 

and south latitude providing the most complete set of measurements of canopy 
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structure and bare earth (under canopy) topography yet achieved. However, GEDI is 

not a continuously imaging instrument, and gaps among its ground tracks and 

between adjacent swaths will remain. These gaps between swaths decrease as a 

function of latitude, mission length, and at orbital cross-over points. In the worst case, 

some persistently cloudy areas may never be observed. 

One approach to providing continuous (that is wall-to-wall) mapping of 

structure and biomass is through the fusion of lidar data with data acquired from other 

spaceborne sensors. For example, large-scale height and biomass maps have been 

derived by fusing lidar observations from GLAS, with other spatially contiguous 

multispectral and SAR backscatter datasets, such as Landsat, MODIS and PALSAR 

(Mitchard et al. 2012; Saatchi et al. 2011). However, fusion based on multispectral or 

backscatter data tend to produce maps with large uncertainties at scales less than a 

few kilometers. This is primarily because neither passive optical nor backscatter data 

are sensitive to the full range of vertical structure and biomass. Leaf area index 

saturates early in successional state and SAR backscatter is often not responsive to 

biomass levels above about 100 Mg/ha, depending on the signal wavelength (Englhart 

et al. 2011; Mitchard et al. 2012; Montesano et al. 2013; Saatchi et al. 2011; Tsui et 

al. 2013).  

Interferometric SAR (InSAR) and Polarimetric InSAR (Pol-InSAR) recently 

have been explored for providing better estimates of vertical structure (Garestier et al. 

2008; Hajnsek et al. 2009; Kugler et al. 2014; Praks et al. 2007). InSAR methods are 
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based on obtaining at least two images from different vantage points at different times 

or simultaneous acquisitions from which interferograms may be constructed (Cloude 

and Papathanassiou 1998; Hajnsek et al. 2009; Papathanassiou and Cloude 2001). 

When images are acquired at different times, changes in the observed forests, for 

example from wind, soil moisture, etc., cause temporal decorrelation between the 

images and reduce the quality of the interferograms for forest structure estimation. 

The Shuttle Radar Topography Mission (SRTM) in 2000 collected the first 

spaceborne simultaneous InSAR data of global scattering phase vertical location, the 

elevation at which the scattering is focused (Kellndorfer et al. 2004). One common 

approach to estimating canopy height is to use InSAR scattering phase elevation 

(relative to the geoid) and subtract the elevation of the underlying topography -- 

provided it is known from some external source -- to produce what is called the 

scattering phase height (Fatoyinbo and Simard 2013; Kellndorfer et al. 2004; Kenyi et 

al. 2009). For example, heights and biomass have been derived based on this 

approach using the SRTM data over the United States (Files 2012; Kellndorfer et al. 

2010), exploiting the existing topographic data available from the U.S. Geological 

Survey. The German Aerospace Center, DLR, recently launched a dual platform 

InSAR mission, TerraSAR-X (2007 launch) and TanDEM-X (2010 launch) (with the 

joint mission abbreviated as TDX). These instruments are capable of viewing the 

same portion of the Earth simultaneously at various spacecraft separation distances 

(baselines) to produce interferometric images. TDX is the first long-term SAR 
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interferometry mission in space and potentially provides a means for retrieving forest 

structural information at high spatial resolution (Askne et al. 2013; Kugler et al. 2014; 

Soja and Ulander 2013; Solberg et al. 2013). 

Previous studies have estimated scattering phase height using TDX 

interferograms over forests where lidar Digital Terrain Models (DTMs) were 

available (Kugler et al. 2014; Soja and Ulander 2013). The feasibility of using TDX 

data to derive forest height has also been demonstrated by a widely used SAR 

scattering model – the Random Volume over Ground (RVoG) model (Askne et al. 

2013; Kugler et al. 2014; Lee and Fatoyinbo 2015; Solberg et al. 2013). However, its 

efficacy is still unclear under varying landscape and terrain conditions, for example, 

high levels of canopy cover, forests composed of different tree species, and terrains 

with a wide range of slopes. Also, TDX acquires data in different seasons during 

which forests, especially deciduous forests, have varying environmental conditions. It 

is thus of interest to examine whether TDX retrievals of forest height are consistent as 

conditions vary seasonally (Abdullahi et al. 2016; Kugler et al. 2014; Olesk et al. 

2015). Additionally, past studies deriving forest height estimates from single-

polarized TDX data have relied heavily on high-resolution ancillary DTM datasets 

from airborne lidar measurements (Kugler et al. 2014; Soja and Ulander 2013). When 

suitable pre-existing topographic data do not exist, they require dual-polarized 

acquisitions which are only available in selected locations and which generally 
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provide limited height diversity at X-band, especially over forests with taller trees and 

higher densities (Cloude et al. 2013; Kugler et al. 2014). 

One alternate approach for fusion is to examine the potential of using GEDI 

observations of topography with TDX for forest structure recovery. GEDI will 

provide billions of high quality but spatially limited samples over its global sampling 

grid, which when used to create a DTM may significantly improve TDX estimates of 

canopy height. These height estimates, if sufficiently accurate, could then be used as 

the basis for some type of blended height product from GEDI that combines laser-

derived canopy structure with that derived from TDX, the latter being less accurate 

but spatially contiguous. The goal of this study is to take the first step towards such 

fusion by examining the efficacy of GEDI-derived topographic data for canopy height 

estimation from TDX. 

This study investigates the performance of lidar/InSAR fusion using GEDI 

data simulated from airborne lidar data and TDX satellite data over a mountainous 

temperate forest – Hubbard Brook Experimental Forest (HBEF). HBEF provides a 

challenging experimental location given its mixture of broadleaf deciduous and 

conifer forests, moderate canopy heights and biomass, high canopy cover, rugged 

terrain, and large seasonal variation of environmental conditions. The investigation 

addresses the following questions regarding the estimation of canopy height and 

vertical structure from TDX: (1) Are TDX coherences responsive to height variations 

of HBEF and to what degree? (2) What accuracies are achievable using TDX with no 



 

 

 

 

 

 

23 

 

external DTM to correct the ground phase? (3) What accuracies are achievable using 

TDX when a high-resolution, spatially continuous DTM derived from airborne lidar 

is available? (4) What accuracies are achievable using TDX when a coarser-

resolution DTM derived from simulated GEDI footprints is available? This study also 

examines the consistency of RVoG model height estimates under different 

environmental and canopy conditions: leaf-on vs. leaf-off and fall vs. winter. 

 The remainder of this study is organized as follows. 2.2 describes the overall 

experimental design to address the aforementioned questions. In 2.3, we briefly 

describe our study area, Hubbard Brook Experimental Forest, and the data sets used. 

We then outline the models, methods and processing approaches used for analyses of 

both TDX and GEDI/LVIS in 2.4. Our results with the full and GEDI-like DTM for 

deriving scattering phase heights and RVoG heights are presented in 2.5, where we 

also examine the relationship of these heights to common lidar relative height 

metrics. Finally, we discuss our results in more detail, focusing on both the potential 

and limitations of the methods presented for fusion of TDX and GEDI in 2.6. 

2.2 Study Area and Dataset 

2.2.1 Study area 

Hubbard Brook Experimental Forest (HBEF) (43°56’ N, 71°45’ W) is located 

in the White Mountain National Forest in New Hampshire. It covers an area of 3,317 

hectares and is characterized by a bowl-shaped valley with elevations ranging from 
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150-1050 m. HBEF is a temperate forest consisting of 80-90% deciduous northern 

hardwoods and 10-20% spruce-fir. Forest height in this study site varies between 5 m 

and 48 m, with a mean of 24 m. Average aboveground biomass of HBEF in 2001 is 

about 216 Mg/ha (Siccama et al. 2007). The remote sensing datasets used in this 

study include LVIS data, single-polarization acquisitions from TDX and auxiliary 

disturbance data products derived from Landsat. 

2.2.2 Lidar data 

LVIS is an airborne, medium-resolution (selectable 5- to 50-meter diameter) 

full-waveform footprint laser altimeter system developed by NASA Goddard Space 

Flight Center (GSFC) (Blair et al. 1999). By digitally recording the returned full 

waveform, LVIS provides accurate vertical structure of both the canopy-top and 

underlying topography within the illuminated area. LVIS data were collected in 

August 2009 at a footprint diameter of between 20 and 25 m, and used to derive 

ground elevation and height metrics at 25%, 50%, 75% and 100% (RH25, RH50, 

RH75 and RH100) of the cumulative waveform energy relative to the ground. LVIS 

ground elevations were used to create a 30 m resolution, wall-to-wall DTM for 

correcting the topographic phase component in the TDX interferogram. LVIS sub-

canopy ground elevations are generally accurate to within tens of centimeters. The 

RH100 metric is assumed to be the canopy top (generally accurate to about 1 m) and 

the map is used for validation of the TDX-derived canopy height. The other RH 
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metric maps are used to help understand the physical significance of derived 

scattering phase heights (e.g. which RH metric is most similar to the phase heights). 

2.2.3 TDX data 

Both TDX acquisitions used in the study (Table 2-1; see an example in Figure 

2-1) were collected in bistatic mode, where TerraSAR-X was transmitting the signal 

and both satellites were simultaneously receiving the returned signal. The images 

were acquired in Stripmap imaging mode with ground range resolution of 2.99 m and 

azimuth resolution of 3.30 m, and a scene size of ~35 km in width and ~56 km in 

length. The data were acquired at single-polarization (HH) at ~36° look angle from 

ascending orbits respectively on 10/21/2011and 01/28/2012. We used the data 

provided as Co-registered Single look Slant range Complex (CoSSC) format for the 

interferometric processing. 

Between 10/14/2011 and 10/21/2011, the precipitation over our study site 

occurred only as rain or melted snow (with 42.4 mm in total within that week, 2.5 

mm one day before the acquisition, and no rain during the acquisition date); whereas 

between 01/21/2012 and 01/28/2012, it was mostly snow, ice pellets or hail (with 

109.7 mm in total within that week, 71.6 mm one day before the acquisition date and 

5.1 mm during the acquisition date) due to the very low temperature (<-9°C in 

average) (NOAA 2011-2012). Therefore, we expect a higher frozen-state water 

content for the 2012 acquisition whereas a possibly higher fluid-state water content 
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for the 2011 acquisition. A frozen-state vegetation leads to a decreased vegetation 

dielectric constant (Anderson et al. 2006). 

Table 2-1. Summary of acquisition parameters for both TDX images. 

Date 10/21/2011 01/28/2012 

  [ο] 36.2 36.1 

Effective Baseline [m] 121.42 85.37 

Height of Ambiguity [m] -47.43 -68.12 

Z  [rad/m] -0.132 -0.092 

Pol. HH HH 

Mode Ascending, Stripmap, Bistatic Ascending, Stripmap, Bistatic 

 

 

Figure 2-1. Hubbard Brook Experimental Forest (HBEF) (a) Study Site. Blue box 

shows the area of the used TDX data (for both 2011 and 2012 acquisitions); green 

box represents the area of the cropped TDX images shown in (b) (c) and (d); the 
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boundary of HBEF is delineated in red. (b) TDX magnitude in dB (black to white: 10 

– 40 dB). (c) TDX interferometric coherence (magnitude) (black to white: 0 - 1). (d) 

The associated TDX DEM (green to light yellow: 100 m – 1200 m) from which the 

steepness of the area can be observed. To avoid confusion, InSAR DEM refers to the 

scattering phase elevation whereas the DTM in this manuscript refers to the bare 

ground elevation. Their difference is the so-called scattering phase height. Figures 

(b), (c) and (d) were all generated using TDX 2011 acquisition. 

2.3 Methods 

2.3.1 Overall Experimental Design 

The logic of our experimental approach first dictates that we examine whether 

coherences respond to some aspect of height variations in the watershed. If they do 

not, or do so only weakly, it would be unlikely that height may be derived from TDX 

in our setting with an acceptable error. This is accomplished through testing the 

correlation between the observed TDX coherence and the reference canopy height. 

However, InSAR coherence is not only influenced by canopy height, but also by 

acquisition geometry, including the incidence angle, the spatial baseline and the local 

terrain slope, among others, which vary by acquisition and by pixel in a particular 

image (Hajnsek et al. 2009; Kugler et al. 2015; Kugler et al. 2014; Lee and Fatoyinbo 

2015). For example, a lower TDX coherence for a certain acquisition is not 

necessarily related to a higher canopy height; it might come from a same or even 
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lower canopy height over a positively-slope terrain surface (i.e. a slope facing 

towards the radar line of sight) (Kugler et al. 2015). Therefore, we need a controlled 

experimental design that enables examining the response of coherence to canopy 

height variation under the same imaging geometry. In this study, we use an inverted 

RVoG model to generate synthetic coherence data under the controlled geometries. 

To be more specific, for a certain acquisition, we simulate an interferometric 

coherence image using airborne lidar canopy height in the inverted RVoG model and 

compare the simulation with the observed TDX coherence image acquired at that 

geometry. In this way, the responsiveness of TDX coherence to canopy height is 

examined independent of varying imaging geometrical parameters.  

In addition, real TDX data are affected by the environmental conditions of 

forests (Olesk et al. 2015). In this study, we choose two TDX images acquired 

respectively during leaf-on and leaf-off seasons (see Section 2.2.3). The precipitation 

and temperature between the two acquisitions were also different. Since we do not 

incorporate these environmental factors in our inverted RVoG model, correlation 

between the observed coherence under actual conditions, and the simulated 

coherence, which is not affected by these conditions, enables us to evaluate the 

robustness of the sensitivity of TDX data to forest height over the study site under 

varying environments. 

Secondly, given that both TDX acquisitions are responsive from above, we 

next want to test if these TDX coherences alone (without using external DTM 
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information) are sufficient to derive canopy heights at acceptable accuracies. When 

there is no external DTM, the ground phase is unknown and assumptions on certain 

parameters, in particular a fixed extinction coefficient value (for the entire study 

area), must be made in the RVoG model to establish a well-posed inversion problem 

(Hajnsek et al. 2009). The extinction coefficient represents the attenuation rate of 

microwave inside the forest volume. It is a function of the density of scatters in forest 

as well as their dielectric constant and also reflects the environmental conditions of 

forest (Cloude and Papathanassiou 2003; Hajnsek et al. 2009; Lee and Fatoyinbo 

2015). Therefore, we would expect that the RVoG model would not perform as well 

with a fixed extinction, as opposed to a spatially and temporally varying extinction 

that are used when an external DTM is available to the model. Also, others have 

found better model performance with leaf-off vs. leaf-on conditions when there is no 

DTM (Olesk et al. 2015). 

Third, the best possible derivations from TDX should occur when a high-

resolution, spatially continuous DTM is available, say from airborne lidar, and thus 

serve as a kind of baseline from which retrievals using coarser DTMs from missions 

such as GEDI may be evaluated. Such a DTM allows the ground phase component in 

the TDX interferogram to be properly compensated in the RVoG inversion and allows 

the model to determine the spatially varying extinction coefficient (Hajnsek et al. 

2009; Kugler et al. 2015; Kugler et al. 2014). The derived extinction coefficient 

image varies acquisition by acquisition depending on actual forest conditions at the 
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acquisition time, leading to (in an ideal inversion) a robust derivation of canopy 

height independent of environmental conditions. In contrast to the case with no DTM, 

better performance is expected during leaf-on conditions (Abdullahi et al. 2016; 

Kugler et al. 2014). 

Related to our third question, if an external DTM is available, we can avoid 

the RVoG model entirely and estimate canopy height by subtracting the scattering 

phase height from the DTM elevation for each pixel. This method has been applied 

widely (Kellndorfer et al. 2004; Kenyi et al. 2009), and is methodologically and 

conceptually far simpler than the RVoG model. We include this analysis mainly 

because of its previous use, but also to assess whether improvements seen with the 

RVoG method justify the increased modeling complexity. 

Our final question is the central thrust of our work, which is to explore how 

DTM data created from spaceborne lidar may help improve canopy retrievals using 

TDX. Wall-to-wall lidar coverage is rare, especially over tropical forests, and 

therefore quantifying the impact on accuracy from using elevation data derived from 

GEDI is of considerable interest. We apply the same procedures as those using the 

airborne lidar DTM to estimate scattering phase height and RVoG-height but with a 

coarser DTM. This DTM is created by simulating the orbital coverage patterns we 

expect from the ISS during a nominal one-year period and subsampling the 

continuous LVIS data appropriately. 
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2.3.2 Lidar data processing 

We used LVIS waveform data to find the ground elevation and relative height 

metrics RH25, RH50, RH75 and RH100. The nominal spacing of LVIS footprints 

was ~20 m both along and cross track, but the density of footprints varied across the 

landscape. LVIS elevation and RH metric maps were created at 30 m resolution so 

that there were at least one LVIS footprint in every grid cell of each map and that the 

cell size was comparable to that of TDX coherence images, which were estimated 

using a 9 × 9 window, to facilitate subsequent fusion. 

GEDI data were simulated from the LVIS full-waveform data. The LVIS data 

are similar in terms of radiometric characteristics, sensitivity, and footprint size to 

GEDI footprints. In addition, the expected elevation and height accuracies from 

GEDI are similar to those achievable from LVIS. GEDI is expected to obtain canopy 

heights to about 1 m (in leaf-on conditions) and sub-canopy elevations (again leaf-on) 

to about 70 cm resolution. GEDI geolocation accuracy, however, is expected to be 

within 7 - 10 m (1 sigma), in contrast to LVIS which has a sub-meter geolocation 

accuracy. 

GEDI consists of 14 parallel beams of data (see Figure 2-2) with 

approximately 500 m between tracks, and will acquire data day and night in leaf-on 

and leaf-off conditions. Three lasers are used to create 14 tracks through a 

combination of beam dithering and beam splitting. Two coverage lasers are split into 

3 beams each, with 1/3rd the power of the strong beam (which is not split). These 7 
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beams are dithered across track every other line to produce 14 ground tracks of data. 

Note that other configurations of the mission are possible. For example, an alternate 

but equivalent baseline mission has a two-year mission length with 5 beams and 10 

tracks while a threshold mission may consists of two lasers, 4 beams and 8 tracks. 

Additionally the spacing along track can be selectively chosen along orbital segments 

to provide up to n contiguous footprints, so that the dithering is done in groups of 

between 1 to n footprints. The coverage beams are designed to penetrate in conditions 

of up to 95% canopy cover and the strong beam up to 98% cover during daylight 

conditions. At night, the beams penetrate even higher canopy cover because of the 

absence of solar background noise. Canopy cover at HBEF is almost always less than 

95% so there was no need to simulate the strong and coverage beams using LVIS (all 

were assumed to be strong enough to penetrate the canopy). 

 

Figure 2-2. (a) Multi-beam lidar coverage of GEDI. GEDI’s three lasers, including 

one full power laser and two coverage lasers, generate 14 ground tracks (Dubayah et 

al. 2014). (b) Different tracks (colored differently) at the latitude of HBEF in nominal 

one-year period. The irregular spacing between tracks is because some are obtained 
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during different passes (that are from a different set of 14 tracks). This spacing occurs 

because the ISS is in a non-repeating orbit. 

 

Figure 2-3. Simulated GEDI tracks over HBEF (watershed shown in green) in 

nominal 1 operation year. Blue solid lines: full power laser tracks; red dashed lines: 

coverage laser tracks. 

ISS orbital simulations were performed to give ground track distributions for 

the 14 beams over nominal one-year period (Figure 2-2). The GEDI across track 

ground swath width is approximately 6.5 km (that is the distance from the first beam 

to the 14th beam) and the inclination of the beams relative to north is determined by 

the inclination of the ISS orbit. The ISS only operates between ~50° north and south 

latitude, and is in an approximate 4 day revisit cycle. However, the orbit drifts so that 

subsequent ISS ground tracks can become clustered or spaced farther apart (that is, it 

is not in a regularly repeating orbit with a fixed overpass time). The GEDI parallel 

track pattern can be laid down either in ascending or descending mode leading to the 
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crossing pattern shown in Figure 2-3. All of these effects were realistically modeled 

in the full-orbit simulations. For the latitude of HBEF, the most likely number of 

times the 14 beam pattern would cross HBEF in one year period was about 4 times 

total in ascending and descending mode, providing the pattern shown in Figure 2-3. 

This pattern was then used as a template for extraction of LVIS footprints over 

HBEF. 

A grid of simulated GEDI elevations and canopy RH metrics over HBEF were 

created respectively using this track pattern (Figure 2-4). The scattered GEDI ground 

elevation data were kriged using the spherical semivariogram model to provide a 

continuous 30 m-DTM for removing the topographic phase in the TDX interferogram 

(Oliver and Webster 1990). An RMSE of ~5.3 m was observed for the simulated 

GEDI DTM against the LVIS DTM at 30 m. 

 

Figure 2-4. Simulated GEDI elevation and canopy top height (RH100) coverages over 

HBEF. 
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2.3.3 TDX data processing 

Because dual-polarization TDX data are only available over a limited number 

of sites, our study focuses on forest parameter estimation using single-polarization 

data, which are available globally from TDX (Kugler et al. 2014).  

A. Interferometric coherence and RVoG model 

The most commonly used observable from InSAR for forest structure 

estimation is the complex interferometric coherence, which contains the coherence 

magnitude, i.e. the correlation coefficient, and the interferogram. If pre-existing 

topographic data are available, the TDX interferogram is often used to provide 

volume scattering phase by subtracting the ground phase simulated from the 

topographic data to derive the so-called scattering phase height (Fatoyinbo and 

Simard 2013; Lee and Fatoyinbo 2015; Soja and Ulander 2013). The interferometric 

coherence, once appropriately corrected for non-volumetric decorrelations, i.e. the 

decorrelation components that are not related to forest vertical structure, leads to the 

so-called volume coherence (Cloude and Papathanassiou 2003; Lee et al. 2013). The 

volume coherence can be established as a function of InSAR acquisition geometry, 

including the incidence angle 0  and effective vertical wavenumber z , and 

parameterized forest structural properties via a suitable forest scattering model, 

discussed in the following paragraph of this section (Cloude and Papathanassiou 

2003; Kugler et al. 2015). z  can be expressed as a function of the effective spatial 

baseline, the slant range distance and the local incidence angle. It is an important 
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InSAR parameter that translates/scales between forest height and the interferometric 

coherence, and is the key for InSAR data to provide consistent forest height 

measurements under varying acquisition geometries (Kugler et al. 2015). 

The Random Volume over Ground (RVoG) model is a widely used forest 

scattering model for InSAR/Pol-InSAR data to estimate forest parameters using 

complex coherence. The efficacy of the model has been explored under various forest 

types and conditions (Askne et al. 2013; Garestier et al. 2008; Kugler et al. 2014). In 

general, the model simplifies forest environment as two layers -- a volume layer and a 

ground layer, and considers the forest canopy as a layer of thickness Vh  containing a 

volume with randomly oriented particles and scattering amplitude per unit volume 

Vm  and the ground as a scatterer with scattering amplitude Gm . The ratio of Gm  and 

Vm  accounting for the attenuation through the volume is called the effective ground-

to-volume amplitude ratio m (Cloude and Papathanassiou 2003). The vertical volume 

scattering distribution is often represented as an exponential function of the 

attenuation rate (also named as the extinction coefficient  ), which is a function of 

the density of scatterers in the volume and their dielectric constant (Cloude and 

Papathanassiou 2003). Once appropriate assumption is made about m, and an 

additional assumption about   or with topography known a priori, forest height Vh  

is derivable from the RVoG model using single-polarized InSAR data (Hajnsek et al. 

2009; Kugler et al. 2014; Lee and Fatoyinbo 2015). 

B. Model parameterization for single-polarized InSAR inversion 
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Since we use single polarization data (Figure 2-5), if the ground topography is 

already known from an external source, volume decorrelation and volume scattering 

phase are calculated to derive forest height Vh  and extinction coefficient   

assuming a zero ground-to-volume amplitude ratio m for HBEF (Kugler et al. 2014; 

Lee and Fatoyinbo 2015). In this case, the extinction coefficient  , instead of being 

set with a fixed value, is automatically determined by the TDX data depending on the 

attenuation rate of the microwave signal which is affected by the environmental 

conditions during the acquisition time. 

 

Figure 2-5. RVoG parameterization for inversion of forest height from single-

polarized InSAR data. 

However, if topography is not known, only volume decorrelation will be used 

to derive forest height Vh  assuming a constant extinction coefficient   and a zero 

ground-to-volume amplitude ratio m for HBEF (Hajnsek et al. 2009). In some boreal 

forests where tree density is very low, ground scattering Gm  cannot be neglected (so 
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m cannot be assumed 0), and assumptions must be made about the extinction and/or 

the ground-to-volume ratio even if topography is known (Caicoya et al. 2016). 

2.3.4 Overall processing strategies 

As previously discussed, volume coherence can be established as a function of 

TDX acquisition geometry, forest height Vh  and extinction coefficient   based on 

the RVoG model. Figure 2-6 shows how the absolute value of volume coherence 

(volume decorrelation) varies with the increase of forest height assuming a series of 

extinction coefficient values for TDX data. 

 

Figure 2-6. Variation of simulated volume decorrelation ( vol ) corresponding to an 

increase of forest height at extinction coefficient   values of 0.001, 0.01, 0.02, 0.05, 

0.1 and 0.2 dB/m at the incidence angle ( 0 ) of ~36° without considering the effect 

of terrain slopes. 
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Figure 2-7. A framework for estimating height variables from TDX. Three different 

strategies were performed in the study: (1) Derive RVoG forest height without using 

a DTM to correct ground phase; (2) Derive RVoG forest height using ground phase 

simulated from LVIS/GEDI DTMs; (3) Derive scattering phase height using 

simulated ground phase from LVIS/GEDI DTMs. 

These plots demonstrate that at certain acquisition geometries, the volume 

decorrelation is expected to decrease with the increase of forest height and saturate at 

the height of ambiguity given an extinction coefficient value. Therefore, it is 

necessary to test first if, in a real case, our TDX volume decorrelation is responsive to 

changes in canopy height by comparison with anticipated decorrelation giving lidar 

forest height. If strong agreement can be found between the observed and the 

simulated data, the TDX observation is expected to be closely related to lidar 

measurements of height enabling fusion between GEDI and TDX. 

After testing correlation between the observed and simulated volume 

decorrelations, two procedures were performed to apply the single-pol inversion to 

the TDX data for forest height estimation (Figure 2-7). If a lidar DTM was not 

available for ground phase correction, forest height was retrieved from volume 
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decorrelation by fixing the extinction coefficient in the RVoG model, whereas if a 

DTM (from LVIS or simulated GEDI data) was available, forest height was estimated 

from the complex volume coherence by simulating the ground phase from the DTM 

and applying it to the model. Using either the LVIS or interpolated GEDI DTM, 

scattering phase height was also estimated. All the TDX height maps were resampled 

at 30 m resolution, and were compared against LVIS RH100 (for validation) as well 

as against other RH metrics (for understanding their relationships) at 90 m resolution 

(by averaging the 30-m maps using a 3 × 3 window). Auxiliary disturbance data 

products derived from Landsat were used to exclude forest disturbance that occurred 

after 2009 (the date of the LVIS acquisition) for more accurate validation of TDX 

height results. 

2.4 Results 

2.4.1 Simulating TDX volume decorrelation from lidar forest height 

Following the methodology in 2.3.4, we first simulated TDX volume 

coherence (see Figure 2-8) using lidar forest height (RH100) based on the relationship 

between volume coherence and volume height in the RVoG model (Cloude and 

Papathanassiou 2003). To compare variation of the observed volume coherence with 

that of lidar simulation in more detail, we extracted two co-located transects from the 

simulated and observed volume coherence maps and plotted their absolute values 

(volume decorrelation) along each transect (Figure 2-9). Both variations of the 
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simulated and observed volume decorrelations are mainly driven by changes of forest 

height, with a lower decorrelation value corresponding to taller trees and vice versa. 

Their variations are also affected by the acquisition geometry which varies pixel by 

pixel for each acquisition. For example, a positive terrain slope (terrain surface facing 

towards the radar line of sight) generally leads to a larger z  and thus a lower 

decorrelation value for the same forest height, and vice versa (Hajnsek et al. 2009; 

Kugler et al. 2015). However, since our simulation is performed under the same 

imaging geometry as its associated observation, the variation of imaging geometry is 

not an issue for a reasonable comparison between the two to determine the height 

responsiveness of TDX data. The observed volume decorrelation is also slightly 

influenced by the environment; for example, less leaves and lower forest water 

content may generate relatively lower values of volume decorrelation under the same 

imaging geometry, and vice versa. 

The calculation of the complex interferometric coherence from TDX 

acquisitions is affected by the number of looks, i.e. the number of pixels averaged in a 

certain window assumed as a homogeneous region (Seymour and Cumming 1994). In 

this study, a window size of 9 × 9 was used so that the coherence estimation bias 

(Cloude and Papathanassiou 2003) is assumed negligible and that its resolution 

approximates the resolution of LVIS simulation. A constant extinction of 0.02 dB/m 

was used so that the simulation in general has the closest relationship to the 

observation.  
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Figure 2-8. Panels (a) and (b) are the observed volume coherence for the two TDX 

acquisitions; Panels (c) and (d) are the corresponding simulated volume coherence 

using LVIS canopy top height and assuming a fixed extinction coefficient. Two 

transect lines shown in (a) are for detailed comparisons between the observation and 

simulation in Figure 2-9. 
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Figure 2-9. Comparisons between the observed and simulated volume decorrelations 

at 90 m resolution over the two HBEF transect lines shown in Figure 2-8 (a). Figures 

(a) and (b) correspond to the upper transect line; figures (c) and (d) correspond to the 

lower transect line.  

Both our observed volume decorrelations show similar variability as the 

associated simulated ones (see Figure 2-8 and Figure 2-9), indicating that TDX 

should observe similar variations of forest height as those from lidar data. At a spatial 

resolution of 90 m, the observed and simulated volume decorrelations are highly 

correlated (Figure 2-10) with an average r2 of about 0.74 (p-value < 0.0001). The high 

correlations for both acquisitions suggest that simulated volume decorrelations that 
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are driven by forest height (in the inverted RVoG model) show the same pattern of 

volume coherences observed from TDX under the two environmental conditions. We 

therefore conclude that TDX data is responsive to forest height for the two 

acquisitions. 

 

Figure 2-10. Observed vs. simulated volume coherences at 90 m resolution. P-value < 

0.0001 for both r2.  

However, observed volume decorrelations are in general biased slightly low 

for both acquisitions. This may be because the non-volumetric decorrelation 

components, which are the spectral decorrelation and SNR (signal-to-noise ratio) 

decorrelation in this study, are undercompensated, leaving a residual decorrelation 

contribution (Kugler et al. 2015). The differences might also come from inappropriate 

assumption of mean extinction (0.02 dB/m) and inaccurate terrain slope estimation 
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when simulating the volume coherence, and real forest height changes between the 

TDX and LVIS observations. 

2.4.2 Canopy structure retrievals without an ancillary DTM to correct ground phase 

Using canopy height measurements from GEDI, the closest relationship 

between simulated and observed coherence was found using a mean extinction of 

close to 0.02 dB/m, similar as that in 2.4.1. Using this extinction value, forest height 

was derived based on the relationships between forest height and volume coherence 

in the RVoG model. The derived forest height from both acquisitions were compared 

against LVIS RH100 (Figure 2-11) as well as against other RH metrics (see Table 

2-2). A low-resolution slope image was required to correct for the effective vertical 

wavenumber z  (Hajnsek et al. 2009; Kugler et al. 2014). We used the TDX DEM to 

estimate the slope images after applying a low-pass filtering method to the DEM 

(Kugler et al. 2015) since an external DTM was not available for this case. Coherence 

values lower than 0.3 were excluded from the inversion (same in the following 

sections) since low-coherence areas usually have an expectation of inferior height 

estimation performance (Kugler et al. 2015). 

An r2 of about 0.55 and 0.59 (p-value < 0.0001 for both) was respectively 

found for the 2011 and 2012 acquisitions at 90 m resolution (Figure 2-11). Model 

estimates of height were biased high in both acquisitions. This is likely because of 

low-biased observed volume decorrelations, as shown in 2.4.1. Our finding of 

marginally better performance from leaf-off TDX acquisition is consistent with 
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results found by Olesk et al. (2015) and may be the result of greater variability in the 

real extinction coefficient when leaves are present, relative to the fixed value used. 

 

Figure 2-11. Forest height from RVoG model without using an external DTM to 

correct the ground phase vs. LVIS RH100 at 90 m resolution. 

2.4.3 Canopy structure retrievals using LVIS and GEDI DTM 

We next present our results for canopy retrievals when two types of external 

DTMs are available: a wall-to-wall, reference data set from LVIS and one made from 

GEDI transects of elevation.  

A.  Scattering phase height 

The scattering phase height (SPH) (Figure 2-12) was estimated first by using 

the LVIS DTM and then using the DTM interpolated from simulated GEDI tracks to 

correct the ground phase from the TDX interferogram. SPH depends not just on forest 
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height but also on canopy vertical density and total canopy cover as well as the 

dielectric properties of the forest layer. Therefore, our SPH results vary spatially over 

HBEF for each acquisition as well as seasonally between acquisitions as the forest 

had very different phenology and forest water content during the acquisition dates. In 

most cases, the SPH (see Figure 2-13) is located quite close to RH50, the height of 

median energy in the lidar waveform. However, it sometimes migrates towards the 

canopy top and is located closer to RH75, or towards the ground and is located closer 

to RH25 probably due to the different effects of canopy cover, forest density and 

water content on the penetration capability X-band radar signals.  

 

Figure 2-12. 2011 and 2012 scattering phase height derived by using different DTMs 

to correct the topographic phase. (e) is the reference canopy top height from LVIS 

RH100. 
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Figure 2-13. Scattering phase height of TDX compared against RH100, RH75, RH50 

and RH25 from LVIS at 90 m resolution over the two transect lines in Figure 2-8 (a). 

Figures (a) and (b) correspond to the upper transect line; figures (c) and (d) 

correspond to the lower transect line. Migration of scattering phase height away from 

RH50 to RH75 or RH25 can be observed in the black dotted boxes.  

We observed an r2 of 0.54-0.71 (p-value < 0.0001 for both) and RMSE of 

10.85-12.19 m at 90 m resolution for SPH and LVIS RH100 using the LVIS DTM 

(Figure 2-14 and Table 2-2). The 10/21/2011 acquisition in general has a higher 

scattering phase center and higher correlation to the reference canopy height than the 

01/28/2012 acquisition. This is mainly due to the higher canopy cover and density in 
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HBEF during the leaf-on season. The possibly higher fluid-state forest water content 

for the 2011 acquisition may contribute towards its higher scattering phase center. 

Recent studies have demonstrated similar patterns of seasonal changes in scattering 

phase height over temperate broadleaf forests, with the largest influence contributed 

by forest phenology variation (Abdullahi et al. 2016; Kugler et al. 2014; Praks et al. 

2012). 

When using the GEDI DTM, an r2 of 0.38 and RMSE of 11.33 m was found 

for the 2011 acquisition and an r2 of 0.28 and RMSE of 12.59 m was found for the 

2012 acquisition (p-value < 0.0001 for both r2) (see Figure 2-14 and Table 2-2). The 

correlation of scattering phase height to canopy height decreased as DTM accuracy 

decreased and as leaf-off condition prevailed. These results suggest that SPH may be 

related to canopy height in leaf-on condition and for where an accurate DTM is 

available. However, the relationships are empirical and must be calibrated using 

actual canopy height data (so that a regression/calibration equation may be created). 



 

 

 

 

 

 

50 

 

 

Figure 2-14. 2011 and 2012 scattering phase height using different DTMs vs. LVIS 

RH100 at 90 m resolution. 

B. Forest height from RVoG model 

Single-pol RVoG inversion using lidar DTM was applied in the study to 

derive forest height in 2011 and 2012 (see Figure 2-15). 
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Figure 2-15. Forest height derived from the RVoG model respectively using LVIS 

and GEDI DTMs. Reference canopy top height from LVIS RH100 is given in (e). 

We found an r2 of 0.71 (p-value < 0.0001) and RMSE of 3.61 m from the 

2011 acquisition and an r2 of 0.66 (p-value < 0.0001) and RMSE of 3.53 m from the 

2012 acquisition between TDX-derived forest height and LVIS RH100 using the 

LVIS DTM to correct the topographic phase. Using the coarser GEDI DTM, an r2 of 

0.48 (p-value < 0.0001) and RMSE of 4.59 m was observed from the 2011 

acquisition, and an r2 of 0.39 (p-value < 0.0001) and RMSE of 5.36 m was found 

from the 2012 acquisition (Figure 2-16 and Table 2-2). The performance of inversion 

was degraded as DTM accuracy decreased and as the leaf-off condition prevailed, but 

less so than observed on the scattering phase height. We found better results using 

leaf-on data, consistent with other studies using the RVoG model (Abdullahi et al. 

2016; Kugler et al. 2014). This improvement may be the result of leaf-on data better 

matching assumptions of exponential distribution of scatters. Another reason cited in 
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the above studies is leaf-on better suits the assumption of no ground scattering in the 

RVoG model. 

 

Figure 2-16. Forest height derived from the RVoG model using different DTMs to 

estimate the ground phase vs. LVIS RH100 at 90 m resolution. 
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Table 2-2. Relationships of TDX scattering phase height and RVoG-derived forest 

height with LVIS relative heights. 

Forest height from 

TDX vs. LVIS quartile 

heights (90m) 

RH100 RH75 RH50 RH25 

2011 2012 2011 2012 2011 2012 2011 2012 

RVoG Forest 

Height by 

fixing the 

extinction 

r2 0.55 0.59 0.61 0.56 0.60 0.53 0.54 0.47 

bias 2.53 2.47 9.96 9.90 13.93 13.88 19.79 19.73 

RMSE 4.77 4.34 10.62 10.54 14.41 14.35 20.17 20.07 

Scattering 

Phase Height 

using LVIS 

DTM 

r2 0.71 0.54 0.71 0.51 0.70 0.49 0.68 0.47 

bias 
-

10.46 

-

11.60 
-3.02 -4.16 0.95 -0.19 6.80 5.66 

RMSE 10.85 12.19 4.12 5.60 2.91 3.73 7.30 6.65 

Scattering 

Phase Height 

using GEDI 

DTM 

r2 0.38 0.28 0.39 0.27 0.38 0.26 0.37 0.26 

bias 
-

10.36 

-

11.52 
-2.92 -4.08 1.05 -0.11 6.90 5.75 

RMSE 11.33 12.59 5.3 6.45 4.47 4.92 8.03 7.37 

RVoG Forest 

Height using 

LVIS DTM 

r2 0.71 0.66 0.73 0.62 0.72 0.59 0.67 0.55 

bias 1.67 1.29 9.10 8.72 13.07 12.70 18.93 18.55 

RMSE 3.61 3.53 9.58 9.37 13.41 13.17 19.17 18.88 

RVoG Forest 

Height using 

GEDI DTM 

r2 0.48 0.39 0.52 0.38 0.51 0.37 0.48 0.35 

bias 1.82 2.33 9.25 9.77 13.22 13.74 19.08 19.59 

RMSE 4.59 5.36 10.06 10.87 13.78 14.54 19.46 20.14 

 

Note that even though the other RH metrics (25, 50 and 75) are highly 

correlated with the outputs from RVoG, the RMSE values become increasingly larger 

and are comprised almost entirely of bias. This is consistent because the RH metrics 

are usually correlated with each other (that is they are almost never independent). So 

the RVoG results for top height (RH100) will be correlated with the other metrics, but 
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these metrics must be biased given that the RH metrics occur at increasingly large 

distances below the canopy. This last point explains why the SPH results for RH100 

using the full LVIS DTM had an equally high r2 to the results from RVoG but a much 

larger RMSE, again because of bias. SPH is most closely approximating RH50 and 

will therefore be biased low relative to the canopy top. 

There is a seemingly inconsistent result of achieving better results (a larger r2 

and smaller RMSE) using RVoG to predict height without an ancillary DTM to 

correct the ground phase vs. using a GEDI-derived DTM. This occurs because of 

DTM inaccuracies in the spaces between points where GEDI heights are available 

during the gridding process. But even though the RMSE may be lower, the bias is 

improved when a GEDI DTM exists, discussed further below. 

2.5 Discussion 

The underlying assumption of our research was that the inclusion of external 

topographic data should improve estimates of canopy height from TDX. Such data 

are a requirement if an approach using scattering phase height is used, as there is no 

way to translate the height above the ellipsoid (that is an elevation) into a canopy 

height otherwise. However, given that the RVoG model does not explicitly require 

external topographic data, but can instead uses an assumption about the extinction 

coefficient, there is considerable interest to understand the accuracies achievable as 

we move from no external topographic data to a high-resolution external DTM. In 

between the two are coarser DTM data that will be available globally from GEDI. 
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Our first objective in this process was to examine the responsiveness of TDX 

coherence to variations in canopy height using two acquisitions from different 

environmental conditions. We accomplished this by simulating coherence using lidar 

canopy heights in the inverted RVoG model and found strong agreement with actual 

coherences for both acquisitions, indicating the robustness of sensitivity of TDX 

coherence to canopy height variation under the two distinct forest conditions. We 

then explored the use of the RVoG model with and without ancillary DTM data to 

correct the ground phase. Using TDX acquisitions our best results were found using 

the full-resolution DTM from LVIS. While it is true that such data are not available 

globally, airborne lidar data are continually being collected and it is likely that 

coverage will expand rapidly. For example in the United States it is estimated that 

over 50% of the land surface has lidar coverage (NOAA 2015). In developing 

countries, the focus on carbon markets and treaty compliances, such as REDD 

(Agrawal et al. 2011) will also provide more coverage. However, complete wall-to-

wall data is likely decades away while data from space-based sensors such as GEDI 

should appear within a few years, which while globally extensive, will be lower 

resolution given likely sampling patterns. 

Summarizing our results using the RVoG model, we generated canopy heights 

with the best accuracy and highest correlation to the reference heights for both 

acquisitions using the full LVIS DTM, with (in the best case of the two) an r2 of 

around 0.7 and 3.5 m RMSE with a bias of about 1.3 m at 90 m resolution. Similar 
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correlations between lidar canopy height and TDX-derived heights were reported 

using a high-resolution lidar DTM over a temperate test site, with an r2 of 0.80-0.86 at 

stand level over homogeneous areas with a mean size of 3-5 ha (Kugler et al. 2014). 

Using the simulated GEDI DTM resulted in an r2 of around 0.5 and 4.6 m RMSE with 

a bias of about 1.8 m at 90 m resolution during leaf-on condition. Thus, the 

improvement in accuracy was not large when the full DTM was available, but was 

significant, reducing RMSE and bias relative to the GEDI DTM. In both cases, 

however, a positive bias remained; that is, TDX was always higher than the LVIS 

canopy height. The bias can possibly be corrected or reduced once transects of GEDI 

relative height metrics are explored for the fusion. 

Somewhat surprisingly, the RVoG model performed almost as well when no 

external DTM data were available for ground phase correction, showing strong 

correlations with LVIS-derived heights and an RMSE of about 4.3 m and bias of 

about 2.5 m. However, an important caveat is that the inversion accuracy relies on 

choosing the fixed extinction value (σ) within an appropriate range (0 - 0.04 dB/m in 

this study) which in general is representative for the overall forest condition. We 

chose ours based on our simulations from GEDI canopy height. It may not be 

unreasonable that in future applications, GEDI or limited airborne lidar data could be 

used from similar forests to help determine an appropriate extinction when study 

areas do not have GEDI measurements due to clouds or other issues. 
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Are the improvements seen in going from no DTM data to a full-resolution 

DTM significant enough to warrant the development of a coherent strategy based on 

using TDX and a mission such as GEDI? To answer this question requires knowledge 

of the scientific uses and requirements for canopy height data. One of the main 

application of height data is for biomass estimation (Goetz and Dubayah 2011; Hall et 

al. 2011; Sun et al. 2011). Studies done as part of the DESDynI mission (Hall et al. 

2011) as well as for carbon modeling using ecosystem models (Hurtt et al. 2010) have 

argued that a height accuracy of about 1 – 2 m at spatial scales of between 100 m – 

1000 m (with finer resolution more desirable) is required to keep biomass errors 

sufficiently small. The TDX data by themselves did not meet this requirement at 

HBEF at 90 m resolution (the RMSE was about 4.3 m). Averaging to a coarser 

resolution may reduce this RMSE but cannot reduce the bias, which is too large (~2.5 

m). The bias was reduced to < 2 m by using the GEDI DTM. Averaging to a coarser 

resolution brings the RMSE estimates even lower. For example, at 500 m, the best 

GEDI RMSE estimate was ~ 2.7 m with a bias of ~ 1.7 m while the TDX data by 

themselves was ~ 3.3 m with a bias of ~ 2.5 m. In future studies, introducing forest 

height measurements from GEDI data to reduce the coherence estimation bias and to 

provide a low-resolution spatial map of the mean extinction may help achieve 

required accuracies. 

There is also the question of how generalizable our results are. HBEF has a 

diverse topography with steep slopes and mix of broad leaf and conifer forests. 
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Results are likely to be improved for less topographically diverse regions. However, 

HBEF does not have particularly high canopy cover, with a mean cover of about 

80%, and the X-band SAR signal in general had a good penetration into the HBEF 

canopy (as illustrated by its scattering phase height negative biases). Though lower 

penetration will occur in tropical forests, similar relationships can be expected 

because unlike dual-pol inversion methods, DTM-aided single-pol inversion does not 

rely on penetration of the signal through the canopy to the ground to derive forest 

height (as it does not require the estimation of ground phase from the TDX data). A 

recent study has reported that in tropical forests, correlations as high as 0.97 – 0.98 

with RMSE of 1.8 m – 3.2 m can be established using the single-pol inversion at 

stand level over homogeneous forest areas with a mean size of ~ 3-5 ha, though much 

lower correlations of 0.54 – 0.69 with RMSE of 5.7 – 6.3 m were found using the 

dual-pol inversion method (Kugler et al. 2014). 

We did not model any of the expected errors from the GEDI data themselves. 

GEDI data are similar to LVIS waveform data but will differ mainly in terms of 

signal to noise ratio (which will impact the ability to detect the ground), with GEDI 

having lower SNR. GEDI is designed to reliably detect the ground through canopy 

covers between 95% and 98%, for the coverage and strong beams, respectively, and 

to provide canopy height to better than 1 m accuracy. Secondly, GEDI geolocation 

errors are larger than LVIS, being about 7 – 10 m, while LVIS data are geolocated to 

tens of centimeters. This may increase the error of the underlying gridded DTM. 
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Lastly, there are issues of spatial coverage and clouds. The ISS is in a non-repeating 

orbit and the exact placement of tracks cannot be predicted a priori. Furthermore, 

some areas may get less tracks than anticipated due to clouds, resulting in different 

numbers and distribution of GEDI footprints. All of these factors may decrease the 

accuracy and grid resolution of the final DTM made from GEDI. 

Our results improved as the lidar shot density increased. In areas with less 

rugged terrain, the coverage needed to reduce bias may be reduced. For flat areas, e.g. 

mangrove forests (Lee and Fatoyinbo 2015), it may be that even a severely reduced 

density of observations from space, sparse but spatially extensive, may provide 

enough data to improve RVoG model predictions. 

Lastly, as noted above, we did not make full use of the actual canopy height 

observations from GEDI in our estimation process using the RVoG model. GEDI is 

expected to provide close to 15 billion observations of canopy height per year. Future 

work should consider how to explicitly fuse these high quality canopy observations in 

the estimation process. 

2.6 Conclusion 

This study has investigated forest structure mapping from TDX InSAR data 

over a mountainous temperate forest - Hubbard Brook Experimental Forest (HBEF). 

Our results have demonstrated that an approach which uses Tandem-X observations 

with ancillary topographic data produced from a spaceborne lidar such as GEDI can 

potentially achieve higher accuracy or more complete spatial coverage than using 
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either alone. The ability of the RVoG model to recover canopy structure was 

impressive, even without ancillary topographic data for ground phase correction. 

However, reducing biases and other errors to a sufficient level for applications such 

as biomass modeling should be facilitated through the use of GEDI data. 

As currently implemented, GEDI will produce gridded data sets of canopy 

height and biomass at 1 km resolution. However, GEDI will also produce 

experimental products at much higher resolutions using both topographic and canopy 

observations in fusion with Tandem-X. The contours of such fusion algorithms are 

being developed as part of a collaboration between the German Aerospace Center 

(DLR) and the GEDI mission. Work such as presented here heralds a trend towards a 

new era of active remote sensing, where diverse missions such as Tandem-X, GEDI, 

NASA’s ICESat-2 and NISAR, ESA BIOMASS and others are used in concert to 

derive key aspects of ecosystem structure. 
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Chapter 3: Improved Forest Height Estimation by Fusion of 

Simulated GEDI Lidar Data and TanDEM-X InSAR Data 

3.1 Introduction 

Forest Above-Ground Biomass (AGB) has been identified as a key parameter 

for assessing the role of forests in the global carbon cycle and for analyzing 

ecosystem productivity. However, current quantification of forest AGB worldwide 

and associated biomass changes remain uncertain (CEOS 2014; Pan et al. 2011). 

Forest inventory methods have been widely used to estimate AGB at field scales, 

either through destructive sampling or by measurement of various biomass-related 

forest structural properties and a subsequent employment of allometric equations. 

However, these methods are often labor-intensive and time-consuming, and do not 

yield continuous AGB maps over the landscape (Clark and Kellner 2012; Duncanson 

et al. 2015a; Duncanson et al. 2015b; Keller et al. 2001). Therefore, there is an 

interest to capitalize on field-scale biomass and remotely measured forest parameters 

(particularly height) to provide more cost-effective AGB mappings at large areas 

(Goetz and Dubayah 2011; Huang et al. 2012). 

 Lidar and Interferometric Synthetic Aperture Radar (InSAR) remote sensing 

techniques are playing increasingly important roles in forest structure estimation 

(Anderson et al. 2006; Dubayah and Drake 2000; Dubayah et al. 2010; Garestier et al. 

2008; Hajnsek et al. 2009; Papathanassiou and Cloude 2001). However, taken 
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individually, each technique has particular limitations and difficulties to deliver large-

area forest structure dataset for reducing the uncertainty of forest AGB quantification 

(Goetz and Dubayah 2011; Hall et al. 2011). Lidar observations of forest structure are 

mainly restricted to local regions where airborne lidar campaigns were conducted 

(Anderson et al. 2006; Drake et al. 2002; Dubayah et al. 2010). The sole spaceborne 

Earth observation lidar instrument, Geoscience Laser Altimeter System (GLAS) 

onboard ICESat, has enabled global coverage and produced consistent forest structure 

measurements. However, it had low sampling density over mid-latitude and tropical 

forests (Dolan et al. 2011; Dolan et al. 2009; Fatoyinbo and Simard 2013). 

InSAR has been widely used to generate wall-to-wall forest structure maps 

(Askne et al. 2013; Schlund et al. 2015; Soja et al. 2014; Solberg et al. 2013). 

However, accuracies of InSAR products are often reduced by temporal decorrelation 

effect which occurs when the SAR images forming the interferometric coherence are 

acquired at different times. This temporal decorrelation limits the accuracy of repeat-

pass interformetry (Lavalle and Hensley 2015; Lee et al. 2013; Papathanassiou and 

Cloude 2003). To address this problem, the German Aerospace Center (DLR) 

launched the first dual-satellite (bistatic) SAR spaceborne mission – TanDEM-X 

(TDX). There is no temporal decorrelation using TDX because the data from each 

satellite are obtained at the same time, allowing more accurate estimation of forest 

height (Caicoya et al. 2016; Kugler et al. 2014; Treuhaft et al. 2015). A simple forest 

scattering model, the Random Volume over Ground (RVoG) model, has been widely 
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used to produce forest height maps from TDX coherence under a variety of terrain 

conditions and forest types. However, because TDX images are generally acquired at 

a single polarization, determination of forest height using the RVoG model must 

assume known canopy extinction and topographic parameters (Hajnsek et al. 2009; 

Kugler et al. 2014; Qi and Dubayah 2016).  

The aforementioned issues of lidar and InSAR can be potentially addressed by 

combining their complementary observations, where lidar data may be used to 

constrain the forest scattering model and to validate InSAR height inversion while 

InSAR images are exploited to extend lidar observations (Bergen et al. 2009; Goetz 

and Dubayah 2011; Hall et al. 2011; Qi and Dubayah 2016; Sun et al. 2011). For 

example, previous studies have used airborne lidar elevation data to provide the 

needed external DTM to estimate forest height from TDX single-polarization (single-

pol) coherence (Cloude et al. 2013; Kugler et al. 2014; Schlund et al. 2015; Soja and 

Ulander 2013; Solberg et al. 2013). Accurate airborne lidar observations of forest 

vertical structure have also been used to enhance parameterization of the forest 

scattering models for improved forest height estimation (Brolly et al. 2016). The 

elevation data derived from the first spaceborne InSAR mission - Shuttle Radar 

Topography Mission (SRTM) - has been calibrated and validated with local height 

measurements from GLAS to produce continuous canopy height and AGB maps over 

Mangrove forests (Fatoyinbo and Simard 2013). These studies have demonstrated the 
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potential advantages in combining lidar and InSAR to map forest structure at better 

accuracy and coverage. 

An unprecedented opportunity of global forest structure and biomass mapping 

from lidar/InSAR fusion has emerged with the upcoming launch of the Global 

Ecosystem Dynamics Investigation (GEDI) mission (Qi and Dubayah 2016). GEDI is 

a full-waveform lidar system to be deployed on the International Space Station (ISS) 

by NASA in 2018 (Stysley et al. 2015). During its nominal two-year mission, GEDI 

will provide about 15 billion accurate ground elevation and forest vertical structure 

measurements at a footprint size of ~25 m in diameter. Aided by these GEDI 

observations, TDX data can potentially provide wall-to-wall forest height maps, 

which in turn can be used to extend GEDI observations for forest structure and 

biomass estimation at finer resolution, accuracy and coverage (Qi and Dubayah 

2016). However, the effects of using different elements of forest vertical structure 

observed by GEDI on TDX height inversion are still unclear and largely unexplored. 

Also, the performance of GEDI/TDX fusion needs to be investigated for different 

forest structural types and environmental conditions. 

The goal of this study is to develop lidar/InSAR fusion methods for improved 

TDX height estimates using simulated GEDI observations. GEDI data are simulated 

using airborne laser scanning (ALS) data and combined with single-pol TDX InSAR 

data. Our test sites include three contrasting forest types: Hubbard Brook 

Experimental Forest (HBEF), a temperate mixed broadleaf deciduous and conifer 
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forest; Teakettle Experimental Forest (TEF), a mountainous conifer forest; and La 

Selva Biological Station (LSBS), a tropical broadleaf rainforest. Specifically we 

perform three sets of analyses to explore the impact on height derivations using 

fusion. First, we establish a baseline accuracy for our study sites by using only TDX 

data and simple assumptions of RVoG parameters. Next, we utilize an external DTM 

derived from simulated GEDI-derived DTM in the RVoG model. Lastly, we 

investigate the impact of using both a simulated GEDI DTM and GEDI-derived 

canopy heights within the RVoG model. In each case, we also examine the impact of 

environmental conditions on the fusion results by comparison of GEDI tracks under 

cloud-free vs. 50%-cloud (which is the mean of global cloud coverage) conditions, 

and comparison of leaf-on vs. leaf-off TDX acquisitions. Results from this study will 

help to broaden the application scale of both lidar and InSAR remote sensing on 

forest height and biomass mapping. 

3.2 Test Sites and Data 

3.2.1 Test sites 

Three sites were chosen, representing a range of forest characteristics (Figure 

3-1). Hubbard Brook Experimental Forest (HBEF) (43°56′12″N, 71°45′01″W) is a 

closed-canopy broadleaf-dominated forest located in the White Mountain National 

Forest, New Hampshire, USA, and is typical of temperate forest conditions. Covering 

an area of 3,100 ha the topography is rugged, with steep slopes occuring within a 
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bowl-shaped watershed. Elevations range from about 150 m to 1000 m. It is a 

managed forest consisting of mostly deciduous northern hardwoods and a small 

percentage (10-20%) of spruce-fir. Measured forest heights mainly range from ~2 to 

~42 m, with a mean of ~24 m and a standard deviation of ~5 m (Campbell and Bailey 

2014; Qi and Dubayah 2016; Schwarz et al. 2001; Siccama et al. 2007; Swatantran et 

al. 2012; Thomas et al. 2008; Whitehurst et al. 2013). HBEF has a moderate amount 

of above ground biomass, with a mean of 216 Mg/ha in 2001 (Siccama et al. 2007). 

Teakettle Experimental Forest (TEF) (36°57′60″N, 119°01′0″W) is a conifer-

dominated forest located along the western slopes of Sierra Nevada Mountain Range, 

USA. The study site is a mountainous region covering an area of around 1,300 ha, 

with elevations ranging from about 1,800 m to 2,500 m. It is an old-growth forest 

with mature and complex structure. Tree heights mainly range from ~3 m to ~68 m, 

with a mean height of ~39 m and a standard deviation of ~11 m. Major tree types 

include White fir (Abies concolor), Ponderosa pine (Pinus ponderosa), Red fir (Abies 

magnifica) and California black oak (Quercus kellogi) (Pierce et al. 2002). The 

averaged aboveground biomass is about 200 Mg/ha with individual tree values up to 

20 Mg per tree (Duncanson et al. 2015a; Smith et al. 2005; Swatantran et al. 2011). 
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Figure 3-1. Simulated two-year GEDI tracks over HBEF, TEF and LSBS test sites 

respectively based on cloud free and 50% cloud cover conditions. 

La Selva Biological Station (LSBS) (10°25′44″N, 84°00′29″W) is a low-land 

(elevation <150 m) tropical rain forest in northeastern Costa Rica. The site is a 

protected region covering about 1,600 ha, and contains a mixture of old-growth, 

secondary and selectively logged forests as well as agroforestry plantations, 

developed areas, and abandoned pastures. Tree height ranges from ~3 to ~59 m, with 

a mean of ~28 m and a standard deviation of ~11 m. Estimate of aboveground 

biomass spans from 0 to 279 Mg/ha, and averaged biomass of old-growth forest, 

which is the major components of total LSBS biomass, is around 169 Mg/ha (Clark et 

al. 2011). Detailed site characteristics can be found in (Clark et al. 2008; Dubayah et 

al. 2010; Tang et al. 2014; Tang et al. 2012). 
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3.2.2 Datasets 

A.  Airborne Lidar data and simulation of GEDI 

Airborne Lidar Scanning (ALS) data were collected in 09/2009, 09/2008 and 

09-10/2009 over HBEF, TEF and LSBS, respectively. The data were processed to 

simulate GEDI full-waveform data following the method of  Blair and Hofton (1999) 

with measurement noise added following Hancock et al. (2011). In the simulation 

process, discrete ALS returns were weighted by the laser footprint shape (Gaussian 

with σ (standard deviation) = 5.5m), binned into vertical histograms at GEDI’s 

resolution (15 cm) and convolved with the laser pulse shape (Gaussian with FWHM 

(full width at half maximum) = 15 ns). White Gaussian noise was added to give the 

expected signal-to-noise ratio (Davidson and Sun 1988; Hancock et al. 2011). The 

ground was identified from the high-resolution ALS data (Isenberg 2011) and canopy 

height was calculated relative to that ground surface as the 98th percentile (RH98) 

(Drake et al. 2002), after denoising the waveform by subtracting the mean noise and 

smoothing by a Gaussian of FWHM 11ns (Hancock et al. 2017). 

We then simulated the expected ISS ground track distribution to extract GEDI 

footprints from the ALS-derived pseudo-waveforms. GEDI comprises three identical 

lasers (Coyle et al. 2015; Stysley et al. 2015). One laser is not split, whereas each of 

the other two lasers is split into two beams (coverage beams), with power reduced to 

slightly less than half that of the strong beam. These five beams are dithered across-

track on every other line to produce 10 parallel ground tracks with approximately 600 
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m spacing across track and 60 m spacing along track. The GEDI across-track ground 

swath width (the distance from beams 1 to 10) is therefore approximately 5.4 km. The 

inclination of tracks relative to north, determined by the inclination of the ISS orbit 

(Qi and Dubayah 2016), is latitude-dependent and thus different for each site (see 

Figure 3-1). After simulating the likely number of times the 10-beam pattern of GEDI 

would cross each site after the full two-year period, we obtained the track patterns 

under cloud-free condition as shown in the top row of Figure 3-1. 

Since future local cloud conditions for each GEDI orbital pass are unknown, 

an estimate of ~50% for the mean global cloud cover (Downs and Day 2005) was 

applied to obtain the track patterns under cloudy condition for all sites (see lower row 

in Figure 3-1). Specifically, the impact of data losses due to cloud cover was 

simulated by removing complete GEDI tracks. For each track, a random number (0-1) 

was selected and if that number was greater than the cloud over (0.5), it was used. If it 

was less, all GEDI footprints in that track were rejected. This assumes that the cloud 

length scale was large enough to remove a complete track, but not so large that 

adjacent tracks were affected. Both track patterns under cloud-free and 50%-cloud 

conditions were then used as templates for the extraction of ALS-derived waveforms 

to simulate GEDI observations (see Figure 3-2). 
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Figure 3-2. Simulated GEDI observations of elevation and canopy height over 

nominal two-year period based on cloud-free and 50%-cloud cover conditions. 

B. TDX data 

The simulated GEDI data were based on ALS data acquired pre-TDX-launch. 

We therefore used TDX acquisitions closest in time, to minimize temporal 

discrepancies. Specifically, TDX acquisitions in 2011 were used for TEF and LSBS 

test sites; for HBEF, both 2011 (leaf-on) and 2012 (leaf-off) acquisitions were used 

(Table 3-1). Selection of TDX data within the desired temporal windows was further 

refined based on their Height of Ambiguity (HoA) values. HoA can be calculated as 

2π/κz (see Section 3.3.1 for the definition of κz and its use in RVoG model) and 
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defines the maximum height retrieval allowed by a specific acquisition geometry 

(Kugler et al. 2015). In terms of polarization state, we only explored HH data because 

of its availability at the global scale (Krieger et al. 2007; Kugler et al. 2014). All data 

were acquired in bistatic mode, where one satellite was transmitting and both 

satellites were simultaneously receiving the returned signal, and thus had no temporal 

decorrelation effect (Abdullahi et al. 2016; Kugler et al. 2014; Lee and Fatoyinbo 

2015).  

The time difference between the ALS and TDX acquisitions was 2-3 years for 

HBEF, 3 years for TEF and 2 years for LSBS. The magnitude of forest change was 

minor over most undisturbed places within these time intervals (Dubayah et al. 2010; 

Duncanson et al. 2015a; North et al. 2010; Siccama et al. 2007; Smith et al. 2005; 

Van Doorn et al. 2011; Whitehurst et al. 2013). All areas disturbed between the 

acquisition dates of ALS and TDX data were removed using ancillary disturbance 

product from Landsat images (Huang et al. 2010).  

Table 3-1. Summary of TDX acquisitions over the study areas. 

 Date Eff. Bsl. (m) 
HoA 

(m) 

Rg. Res. 

(m) 

Az. Res. 

(m) 
Pol. 

HBEF 

(temperate 

mixed 

forest) 

2011/10/21 

(Leaf-on) 
121.42 -47.43 2.99 3.30 HH 

2012/01/28 

(Leaf-off) 
85.37 -68.12 2.99 3.30 HH 
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TEF 

(mountainous 

conifer 

forest) 

2011/12/10 103.59 -64.47 2.71 3.30 HH 

LSBS 

(tropical 

broadleaf 

forest) 

2011/12/05 89.43 67.79 1.93 6.60 HH, VV 

 

*Dates are listed in Year/Month/Date format. Eff. Bsl. - Effective Baseline; HoA - Height of 

ambiguity; Rg. Res. - Range Resolution; Az. Res. - Azimuth Resolution; Pol – Polarization. 

3.3 Single-polarization RVoG Inversion and Combination with GEDI Data 

3.3.1 RVoG model and height inversion from single-pol InSAR data 

 

Figure 3-3. The basis of the RVoG model. Forest structure in (a) is modeled using the 

two-layer scattering model in (b) with ground elevation z0 and volume height (hV). 

Scatterers are randomly distributed and oriented inside the forest volume (Cloude and 

Papathanassiou 2003). F(z), radar reflectivity of forest scatterers at different height z, 

decays as a function of extinction coefficient (σ) as shown in (c). The term φ0 denotes 
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the ground phase ( 0 0zi i z
e e
 
 ) and µ is the ground-to-volume amplitude ratio 

(Cloude and Papathanassiou 2003). 

Random Volume over Ground (RVoG) model is a widely used two-layer 

scattering model (see Figure 3-3) that enables the inversion of physical forest 

parameters from InSAR coherences. Based on the RVoG model, the complex 

interferometric coherence ( )   at a polarization ( ), after compensating system 

and geometry induced decorrelation effects (Kugler et al. 2015), can be simply 

represented by equation (2-1), 

 0
( )

( )
1 ( )

i Ve
   

 
 





  (2-1) 

where φ0 is the phase corresponding to the ground elevation z0; and ( )   denotes the 

(polarization-dependent) ratio of powers echoed from ground and forest volume 

(Hajnsek et al. 2009; Kugler et al. 2014; Papathanassiou and Cloude 2001) (Figure 

3-3). Since this study only works with HH TDX data ( HH  ), ( )  will be written 

as   and ( )  as µ hereafter. V  represents volume coherence and can be described 

by a Fourier relationship of the vertical profile of the radar reflectivity F(z) and the 

volume height hV, 
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where κz is the effective vertical wavenumber. Therefore, when the ground-to-volume 

amplitude ratio (µ) was zero, the correlation coefficient V  . The estimation of 
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hV requires the parameterization of F(z). A widely and successfully employed 

approach is to assume that the distribution of scatterers decreases exponentially from 

the volume top downward, i.e., 

2

cos(z)
z

F e



 where θ describes the incidence angle 

and σ, the mean extinction coefficient, represents the attenuation rate of the wave 

within the volume (see Figure 3-3) (Cloude and Papathanassiou 2003; Papathanassiou 

and Cloude 2001). 

Single-pol InSAR inversion is an underdetermined problem, meaning that the 

number of observables from the interferometric coherence is smaller than the number 

of the unknown parameters. Previous studies solved this problem with two 

constraints: 1) using an external digital terrain model (DTM) to estimate ground 

phase (φ0) or using a fixed mean extinction coefficient (σ) for the entire study site; 

and 2) assuming a zero ground-to-volume amplitude ratio (μ=0) at the polarization 

state of the acquisition. However, external DTMs are often unavailable over large 

areas, and the accuracy of height inversion may be compromised when a fixed σ (as 

opposed to one that varies spatially from using an external DTM) is used (Hajnsek et 

al. 2009; Kugler et al. 2014). Also, ground scattering may be present (i.e. μ≠0) in 

areas with low forest density or low vegetation water content (Kugler et al. 2014). To 

overcome these issues, we assess the efficacy of using GEDI-derived DTM and 

canopy heights to provide the needed prerequisite information for TDX single-pol 

inversion. 
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3.3.2 Combining RVoG single-pol inversion with GEDI data 

We perform a set of three analyses (Figure 3-4) where DTM and tree height 

variables derived from simulated GEDI lidar data were added progressively as inputs 

to improve the parameterization of single-pol RVoG inversion, enabling an 

examination of the respective performance gain on height estimation. 

 

 

 

Figure 3-4. Main procedures for the four different fusion approaches – cases A, B, C1 

and C2. 
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Table 3-2. RVoG parameter summary for different cases performed in this study. 

 

Cases 

Used TDX 

observables 
Known parameters for RVoG 

A 

Only TDX 

Magnitude of 

coherence 

σ = constant; 

assuming µ = 0 

B 

Using GEDI DTM 
Complex coherence 

Ground phase φ0 from GEDI DTM; 

assuming µ = 0 

C1 & C2 

Using GEDI height 

and DTM 

Complex coherence 

C1) Ground phase φ0 from GEDI DTM; 

σ values over GEDI footprints; 

assuming µ = 0 

C2) Ground phase φ0 from GEDI DTM; 

Both σ and µ values over GEDI footprints 

 

Case A - Only TDX. This case served as a baseline to assess what 

improvements in canopy height accuracy, if any, would be achieved from the addition 

of data derived from GEDI. Here, forest height was derived solely from the 

magnitude of TDX interferometric coherence   (i.e. interferometric correlation 

coefficient) by using a constant value of extinction coefficient (σ) and a zero ground-

to-volume amplitude ratio (µ=0) assumption (see Table 3-2 case A). A key step of 

this method is to determine an appropriate σ value that in general represents forest 

density and dielectric constant for the entire study site. For a particular acquisition 
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with HoA larger than forest height, a σ value higher than optimum often leads to an 

overestimation of hV whereas a σ value lower than optimum may result in an 

underestimation of hV (see Figure 3-5) (Caicoya et al. 2012; Hajnsek et al. 2009). The 

presence of ground scattering that violates the µ=0 assumption may also lead to 

increased errors in tree height estimation (Kugler et al. 2014). Previous studies found 

a variation of 0.3 dB/m – 1 dB/m for σ values in temperate leaf-on broadleaf forest 

(Kugler et al. 2010), 0 – 0.4 dB/m in conifer forest (Caicoya et al. 2012) and 0.1 dB – 

0.9 dB/m in tropical broadleaf forest (Hajnsek et al. 2009). Forest heights had been 

retrieved using a constant σ value of 0.3 dB/m for a tropical forest and a leaf-on 

temperate forest (Hajnsek et al. 2009; Kugler et al. 2010), and a value of 0.2 dB/m for 

a conifer forest (Caicoya et al. 2012). In this study, we applied similar σ values of 0.3 

dB/m for leaf-on HBEF and LSBS, and 0.2 dB/m for TEF. The relatively smaller 

extinction of 0.2 dB/m was applied for leaf-off HBEF as better penetration capability 

of TDX was usually observed for leaf-off deciduous forest due to the relatively lower 

canopy cover and forest density (Abdullahi et al. 2016; Olesk et al. 2015). 
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Figure 3-5. An increase of hV up to HoA corresponds to the decrease of V  for a 

fixed σ. For the same V  value, a higher σ’ value derived a larger forest height hV’.  

Case B – Using a simulated GEDI DTM. This case was designed to examine 

the impact of adding a GEDI-derived DTM on the TDX RVoG inversion. The DTM 

was created at 30 m resolution using simulated GEDI elevation data and a kriging-

interpolation method based on a spherical semivariogram model. Ground phase (φ0) 

was estimated from this DTM and subsequently used to derive forest scattering phase 

(φ); φ equals TDX interferogram (φ_interf) subtracted by flat-earth-phase (φ_flat) and 

ground phase φ0; both φ_interf and φ_flat can be calculated from TDX acquisitions. The 

scattering phase (φ), combined with the interferometric correlation coefficient (  ), 

allowed the establishment of a balanced single-pol RVoG inversion after using the 

µ=0 assumption to derive hV and σ (see Table 3-2 case B). Compared to the fixed σ 

value employed in case A, data-driven σ values may reflect better the variation of 
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forest environment, such as volume density and vegetation water content, and thus 

enhanced the hV inversion. However, because the accuracy of scattering phase (φ) 

estimation is sensitive to the accuracy of the GEDI-derived DTM that derived φ0, 

efficacy of this method is impacted by the available lidar shot density and the local 

topography variation, i.e. if the DTM is created from sparse data and the topography 

has large variation at local scales, the kriged DTM may not capture this variation 

accurately. 

Case C1 and C2 – Using a simulated GEDI DTM and GEDI canopy 

heights.  In these two cases, we assessed the effect of using both DTM and canopy 

height from simulated GEDI data on RVoG height inversion. The auxiliary 

information from lidar enabled the determination of two RVoG parameters over 

GEDI tracks (σ and µ), to constrain the inversion. To quantify the performance gain, 

we designed cases C1 and C2 to parameterize these variables progressively with the 

added lidar inputs. First, for case C1, we calculated only σ values (kriging was then 

used to estimate σ for the entire study area), assuming µ=0 as in previous cases, and 

tested the improvement of hV estimation (see Table 3-2 case C1). By constraining σ 

with the additional input of simulated GEDI canopy height, case C1 was expected to 

be less sensitive to errors of DTM estimation than case B. Second, to further evaluate 

the effect of using GEDI-based RVoG parameterization, we calculated both σ and μ 

values and applied their interpolated maps (based on kriging) to derive hV (see Table 

3-2 case C2). Over areas where ground scattering is present, we hypothesize that case 
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C2 can reflect better forest structure variation and thus should outperform case C1, 

which assumed no scattering from ground (i.e. µ=0). For all cases, the derived forest 

height maps were resampled at 30 m resolution and subsequently averaged to 90 m 

(using a 3 × 3 window) to compare against reference lidar canopy heights. 

3.4 Results 

3.4.1 Case A – Only TDX 

 
(a) 

 
(b) 

Figure 3-6. (Case A) (a) Forest heights derived using fixed extinction (σ) values of 

0.3 dB/m (for leaf-off, 0.2 dB/m was used for leaf-on condition), 0.2 dB/m, and 0.3 

dB/m respectively for HBEF, TEF, and LSBS. (b) Comparisons of the derived 

heights and reference lidar heights at 90 m resolution. 
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Following the method described in Section 3.3.2 (Case A), we derived forest 

heights directly from TDX correlation coefficient (  ) using fixed σ values of 0.3 

dB/m (for leaf-off, 0.2 dB/m was used for leaf-on condition), 0.2 dB/m, and 0.3 dB/m 

respectively for HBEF, TEF, and LSBS (Figure 3-6). As mentioned earlier, for a 

particular acquisition with HoA larger than forest height, the use of a σ value that is 

too high may result in an overestimation of hV, and vice versa. Biases of 6.4 m (leaf-

on)/11.9 m (leaf-off), 4.2 m and 4.9 m were respectively found for HBEF, TEF and 

LSBS. These results indicated that optimum σ values may be smaller than those were 

used here. The particularly large bias at HBEF during leaf-off season may also be 

caused by the violation of the µ=0 assumption as there are areas of low canopy cover 

that could lead to ground scattering. 

Despite the large biases over HBEF, good correlations were observed between 

the derived heights and reference heights with r2 of 0.61 for leaf-on and 0.57 for leaf-

off conditions, indicating an overall homogeneous forest structure (because only one 

σ was given) and good explanatory power of TDX   at this site. In contrast, lower 

correlations were found at TEF (r2=0.37) and LSBS (r2=0.22), probably resulting 

from the lower explanatory power of the used TDX coherences, given that TDX 

signal is expected to have less penetration capability over areas with taller trees and 

higher forest density. In addition, these sites have a somewhat heterogeneous forest 

structures, and therefore an expectation that σ may have a larger spatial variation and 

thus is less suitable for using the fixed value assumption. 
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3.4.2 Case B – Using simulated GEDI DTM 

 
(a) 

 
(b) 

Figure 3-7. (Case B) (a) Forest heights derived from complex TDX coherence using 

simulated GEDI DTM, based on cloud-free and 50%-cloud cover conditions. (b) 

Comparisons of the derived heights and reference lidar heights at 90 m resolution. 

We estimated a scattering phase (φ) map for each site using the external DTM 

derived from simulated GEDI elevation data. Forest height (hV) as well as extinction 
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(σ) were then derived from the RVoG model using φ and correlation coefficient (  ) 

as inputs. Moderate agreement was found between the heights derived using cloud-

free GEDI vs. lidar canopy heights, with r2 of 0.40 (leaf-on) / 0.32 (leaf-off), 0.54 and 

0.38 respectively at HBEF, TEF and LSBS (see Figure 3-7 and Table 3-3). Biases 

were reduced to 2.0 m (leaf-on) / 2.4 m (leaf-off) for HBEF, 1.7 m for TEF and 3.8 m 

for LSBS. Relatively lower agreement was found when using GEDI under 50% cloud 

cover, with r2 of 0.18 (leaf-on) / 0.13 (leaf-off), 0.44 and 0.33, and biases of 2.5 m 

(leaf-on) / 2.3 m (leaf-off), 2.4 m and 3.5 m respectively for HBEF, TEF and LSBS. 

As mentioned earlier, σ represents the attenuation rate of the microwave signal inside 

the forest volume and reflects the variation of forest scatterer density and dielectric 

constant. Therefore, compared to case A which used a fixed σ, case B provided 

improved height estimates by exploiting a spatially varying σ, providing a better fit to 

the environmental condition at the time of acquisition. 

Table 3-3. Validation results of RVoG heights from all cases at 90 m resolution. 

Cases 
Validation 

Parameters 

HBEF TEF LSBS 

Leaf-on Leaf-off - - 

Cloud-

free 

50%-

cloud 

Cloud-

free 

50%-

cloud 

Cloud-

free 

50%-

cloud 

Cloud-

free 

50%-

cloud 

Case 

A 

r2 0.61 0.57 0.37 0.22 

Bias (m) 6.41 11.89 4.24 4.89 

RMSE (m) 7.87 12.70 8.49 7.88 
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RMSE (%) 32.3 52.0 22.0 23.9 

Case 

B 

r2 0.40 0.18 0.32 0.13 0.54 0.44 0.38 0.33 

Bias (m) 2.03 2.54 2.43 2.32 1.70 2.36 3.82 3.49 

RMSE (m) 4.80 6.56 6.21 8.31 6.69 7.65 6.28 6.32 

RMSE (%) 19.9 27.1 25.7 34.4 17.0 19.6 19.0 19.2 

Case 

C1 

r2 0.53 0.27 0.50 0.22 0.60 0.50 0.44 0.38 

Bias (m) 0.68 0.93 -0.66 -0.80 -0.84 -0.47 0.59 0.10 

RMSE (m) 3.83 5.51 4.16 6.49 5.95 6.77 4.65 4.94 

RMSE (%) 15.9 22.8 17.3 26.9 15.2 17.3 14.1 15.0 

Case 

C2 

r2 0.71 0.38 0.69 0.32 0.58 0.43 0.45 0.40 

Bias (m) -0.33 0.27 0.29 1.14 -0.62 -0.50 0.35 0.02 

RMSE (m) 2.58 4.02 2.66 4.90 5.99 7.07 4.27 4.51 

RMSE (%) 10.7 16.7 11.0 20.3 15.3 18.1 12.9 13.7 

 

3.4.3 Cases C1 and C2 – Using simulated GEDI DTM and canopy heights 

As described in 3.3.2, simulated GEDI observations of DTM and canopy 

height were combined to assist the parameterization of RVoG based on two 

approaches, either refining σ alone (case C1) or σ and μ combined (case C2). 
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(a)

 
(b) 

Figure 3-8. (Case C1) (a) Forest heights derived from complex TDX coherence using 

DTM and canopy height derived from simulated GEDI observations, respectively 

based on cloud-free and 50%-cloud conditions, to constrain σ. (b) Comparisons of the 

derived heights and reference lidar heights at 90 m resolution. 

For case C1, simulated GEDI-derived extinction coefficient (σ) values were 

employed. Compared to case B which just used the external GEDI-derived DTM, the 



 

 

 

 

 

 

86 

 

constraining of σ from additional GEDI height information enhanced the single-pol 

inversion as expected. When using cloud-free GEDI observations, improved 

correlation between estimated height and lidar reference was obtained, with r2 of 0.53 

(leaf-on) / 0.50 (leaf-off), 0.60 and 0.44 respectively at HBEF, TEF and LSBS. Biases 

were reduced to 0.7 m (leaf-on) / -0.7 m (leaf-off) for HBEF, -0.8 m for TEF and 0.6 

m for LSBS. The RMSEs were 3.8 m (relative error of 16% for leaf-on) / 4.2 m (17% 

for leaf-off), 6.0 m (15%), and 4.7 m (14%) respectively (see Figure 3-8, Table 3-3). 

When using GEDI under 50% cloud cover, height estimates were also improved 

compared to case B under the same GEDI coverage, with r2 of 0.27 (leaf-on) / 0.22 

(leaf-off), 0.50 and 0.38 respectively at HBEF, TEF and LSBS. Biases of 0.9 m (leaf-

on) / -0.8 m (leaf-off), -0.5 m and 0.1 m, and RMSEs of 5.5 m (relative error of 23% 

for leaf-on) / 6.5 m (27% for leaf-off), 6.8 m (17%) and 4.9 m (15%) were found for 

the three sites (see Figure 3-8, Table 3-3). These results showed that by constraining σ 

estimation alone using local tree height information from GEDI, single-pol RVoG 

height inversion is significantly improved under a μ=0 assumption.  
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(a) 

 

 
(b) 

Figure 3-9. (Case C2) (a) Forest heights derived from complex TDX coherence using 

DTM and canopy height derived from simulated GEDI observations, respectively 

based on cloud-free and 50%-cloud cover conditions, to constrain σ and μ. (b) 

Comparisons of the derived heights and reference lidar heights at 90 m resolution. 

The second method (case C2) was the only approach that derived both 

extinction coefficient (σ) and ground-to-volume amplitude ratio (μ) values to improve 
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the height inversion. This was made possible by adding both simulated GEDI canopy 

height and GEDI-derived DTM as inputs. These σ and μ values were interpolated and 

used jointly to calculate forest height from the complex coherence ( ). The estimated 

heights were improved at HBEF relative to all other cases. When using cloud-free 

GEDI data, we found r2 values of 0.71 (leaf-on) / 0.69 (leaf-off), biases of -0.3 m 

(leaf-on) / 0.3 m (leaf-off) and RMSEs of 2.6 m (11% for leaf-on)/ 2.7 m (11% for 

leaf-off). When using 50% cloud-cover GEDI data, r2 of 0.38 (leaf-on) / 0.32 (leaf-

off), biases of 0.3 m (leaf-on) / 1.1 m (leaf-off), and RMSEs of 4.0 m (17% for leaf-

on)/ 4.9 m (20% for leaf-off) were observed. For each specific case, leaf-on TDX-

derived heights had stronger agreement with reference lidar heights than leaf-off 

TDX-heights. Somewhat paradoxically, greater improvements were observed from 

case A to case C2 using leaf-off data at HBEF. This is mainly because leaf-off forests 

have relatively lower volume scattering and higher ground scattering, and are more 

likely to violate the μ=0 assumption; therefore, the RVoG model using leaf-off data 

had greater reliance on GEDI inputs (particularly canopy height) for constraining the 

σ and μ parameters to accurately invert forest heights. 

At TEF and LSBS, case C2 derived heights with r2 values of 0.45-0.58 (cloud-

free)/0.40-0.43 (50%-cloud), biases of -0.6 to 0.4 m (cloud-free)/-0.5 to -0.02 m 

(50%-cloud), and RMSEs of 4.3-6.0 m (13%-15%, cloud-free)/4.5-7.1 m (14%-18%, 

50%-cloud). The overall improvements from case C1 to case C2 were not seen (at 

TEF) or only marginal (at LSBS). This indicated a lower utility of constraining the μ 
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values in improving height estimation over areas where taller trees, higher canopy 

cover or heterogeneous forest structure prevailed (Figure 3-9 and Figure 3-10; Table 

3-3). 

3.5 Discussion 

There is the potential to combine the sparse, footprint level estimates of GEDI 

with wall-to-wall SAR measurements from TDX to provide continuous estimates of 

canopy height at much finer spatial resolution than what can be obtained by GEDI 

alone. Indeed, as currently planned, GEDI will grid its height observations to a 

resolution of between 500 m – 1000 m. Our work presented here provides a realistic 

pathway towards the goal of improved height mapping at these finer resolutions. 

Our study explored the efficacy of using simulated GEDI observations in 

improving TDX estimate of canopy heights. The utility of two GEDI-aided RVoG 

parameters – extinction coefficient (σ) and ground-to-volume amplitude ratio (μ) – in 

improving forest height estimation was assessed. These two parameters are related to 

forest height, density, canopy cover, as well as the dielectric constant of scatterers in 

a forest, and vary across the landscape in different forest environments. In previous 

studies, these were mainly derived using full-polarimetric InSAR data at longer-

wavelength (such as L-band), which are currently unavailable at the global scale 

(Hajnsek et al. 2009; Kugler et al. 2015; Neumann et al. 2012). Our study 

demonstrated that these RVoG parameters can be effectively derived from single-pol 

TDX data by adding simulated GEDI observations of terrain elevation and canopy 



 

 

 

 

 

 

90 

 

height as model inputs, and can be applied to improve forest height estimation over a 

wide range of forest types and terrain conditions. 

 

Figure 3-10. Different model performance corresponding to the four different cases 

over HBEF, TEF and LSBS under both cloud-free and 50%-cloud cover conditions. 

In general, height estimates improved as more information was used from 

GEDI to parameterize the RVoG model (Figure 3-10 and Table 3-3). Our results also 

demonstrated that height estimation using TDX data acquired in leaf-off conditions 

could be significantly improved through inclusion of GEDI data, opening up the 
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possibility of using a much broader range of TDX acquisitions in temperate 

deciduous forests. We did not, however, evaluate the impact of using leaf-off GEDI 

data, which is the focus of a future study. 

The fidelity of the GEDI-derived DTM had a significant impact on the 

efficacy of GEDI/TDX fusion. A key step to providing more accurate height products 

may be to enhance the GEDI DTM (below canopy topography) using, for example, 

DEM (surface elevation) products from TDX (Bräutigam et al. 2014), SRTM 

(Rodriguez et al. 2006), ASTER (Abrams et al. 2010), or from future missions such 

as ICESat-2 (Abdalati et al. 2010) and NISAR (Hoffman et al. 2016). In particular, 

the combination of the transect sampling lidar observations from ICESat-2 and GEDI, 

when combined with continuous, but less accurate below canopy elevation 

measurements from other missions, within an improved spatial interpolation/kriging 

framework is a promising avenue for future research. 

Related to this, is the fact that GEDI is limited by cloud-cover and the 

vagaries of the ISS precessing orbit, which may limit the number of observations 

available for a given region (and thus lead to an inaccurate DTM, for example, in 

those areas). When there are insufficient GEDI observations for a given study site, 

parameters derived over limited GEDI footprints may fail to cover the whole 

spectrum of forest structure and topographic conditions and may smooth through 

spatial discontinuities in forest structure (see results in Case C2 at TEF and LSBS). 

GEDI tries to overcome some of this issue by pointing to acquire a more uniform 
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track coverage. Since σ and μ are related to forest structural characteristics, an 

alternative approach may be to input σ and μ derived from the same TDX acquisition 

or those with similar geometries (particularly baselines) over similar forest types and 

environmental conditions, based on TDX coherence and other continuous fields (e.g. 

canopy cover maps from Landsat). This can be done using segmentation and 

clustering algorithms to group segments with similar expected σ and μ values 

(Clewley et al. 2014). Such fusion approaches are being developed as part of a 

collaboration between the German Aerospace Center (DLR) and the GEDI mission. 

Extrapolation of our results to real data derived from GEDI should be done 

carefully. Our simulated GEDI data is based on using ALS data, along with the 

expected ISS track patterns under cloud-free and 50%-cloud cover conditions within 

an end-end simulator (Hancock et al. 2016). While the simulator has been validated, 

the on-orbit data from the GEDI instrument may differ from our simulations. 

Likewise, the location of the orbital tracks, and their density, while based on realistic 

scenarios using real orbital data from ISS may differ. Another source of potential 

error is geo-location uncertainty. The geolocation accuracy of GEDI footprints is 

estimated to be around 7 m at 1-sigma level. This geolocation uncertainty was not 

modeled in our experiments. Such error may lead to a less-accurate DTM generation 

for scattering phase (φ) estimation over sloping surfaces and or less-representative 

RVoG parameters of σ (and μ) over heterogeneous forest structure, and thereby lower 

the inversion accuracy. Minimizing geolocation uncertainty for GEDI has been a 
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priority during mission development precisely so we may preserve our ability to do 

fusion at fine spatial scales with other data. 

One major application of height estimates (and the main driver behind the 

GEDI mission) is forest AGB estimation. Previous studies have identified a height 

accuracy requirement of about 1 m to 2 m at 100 m to 1000 m resolution (with finer 

resolution more favorable) for effective biomass estimates (Hall et al. 2011; Hurtt et 

al. 2010; Qi and Dubayah 2016). Our fusion results at 90 m resolution do not quite 

meet that requirement. However, one of the most important results is that fusion 

greatly reduces bias. This is key because if bias can be get low, the fused heights can 

be aggregated to a coarser resolution until the desired height accuracies are achieved. 

For example, starting from the 30 m resolution at which the GEDI/TDX fusion was 

conducted, our height products from case C2 agreed with reference lidar heights at 

RMSEs of 2.8 m (leaf-on) / 3.0 m (leaf-off) at HBEF, 7.5 m at TEF and 5.5 m at 

LSBS under cloud-free condition, and 4.1 m (leaf-on) / 5.0 (leaf-off) m at HBEF, 8.8 

m at TEF, 5.8 m at LSBS under 50%-cloud condition; after averaging to 200 m, 

RMSEs were improved to 1.9 m (leaf-on) / 2.1 m (leaf-off) m at HBEF, 3.7 m at TEF 

and 3.3 m at LSBS under cloud-free condition and 3.0 m (leaf-on) / 3.9 m (leaf-off) at 

HBEF, 4.6 m at TEF and 3.7 m at LSBS under 50%-cloud condition; at 1000 m 

resolution, RMSEs were further improved to 1.0 m (leaf-on) / 1.1 m (leaf-off) m at 

HBEF, 2.1 m at TEF and 1.7 m at LSBS under cloud-free condition, and 1.5 m (leaf-

on) / 2.0 m (leaf-off) at HBEF, 2.4 m at TEF and 1.8 m at LSBS under 50%-cloud 
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cover. These results demonstrated that aided by GEDI observations, TDX single-pol 

InSAR data has the potential for large-scale forest biomass estimation. 

3.6 Conclusions 

We investigated the fusion of Global Ecosystem Dynamics Investigation 

(GEDI) lidar data and TanDEM-X (TDX) InSAR data to improve forest structure 

mapping over three contrasting forest types covering a wide range of heights, canopy 

covers and topographies. Our results showed that forest height retrievals from TDX 

single-polarization InSAR acquisitions based on the widely Random Volume over 

Ground (RVoG) were significantly improved using GEDI observations of bare-

ground topography and canopy top height as inputs to constrain the model 

parameterization. Improving TDX height estimates with the aid of GEDI 

measurements is a meaningful step towards deriving blended height products from 

the two missions with better accuracy and coverage than using either data source 

alone. These height products, if sufficiently accurate, should improve the potential 

use of these data for applications such as biomass modeling and biodiversity. 
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Chapter 4: Forest Biomass Estimation over Three Distinct 

Forest Types Using Tandem-X InSAR Data and GEDI Lidar 

Data 

4.1 Introduction 

Improving estimates of forest above-ground biomass (hereafter, biomass) is 

critical for reducing the great uncertainties associated with the quantification of 

terrestrial carbon dynamics and the implications of such results to changes in climate, 

habitat and biodiversity (Goetz and Dubayah 2011; Hall et al. 2011; Le Toan et al. 

2011). The ecosystem community has suggested a desired mapping scale of 1 ha (i.e., 

a resolution of 100 m) that matches important scales of vegetation dynamics to 

minimize the biomass and flux estimation errors. However, given the large 

uncertainties in the existing coarse-resolution global estimates, biomass maps created 

at resolutions of close to or finer than 1 km, with properly characterized uncertainties 

and sufficient accuracy, would provide superior information in comparison to current 

knowledge (Hall et al. 2011). 

 A promising contributor to solving the biomass mapping challenge is lidar 

remote sensing technology (Goetz and Dubayah 2011). Lidar data have been 

collected to retrieve important forest structural attributes including heights, canopy 

cover, and crown volume that can be closely related to forest biomass. However, 

lidar-derived biomass maps have been mainly restricted to regional scales where 
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airborne lidar campaigns were conducted. Global lidar coverage has been enabled by 

the Geoscience Laser Altimeter System (GLAS) onboard the Ice, Cloud and land 

Elevation Satellite (ICESat) (2003-2009); however, the mission had low sampling 

density over low- and mid-latitude areas (Lefsky et al. 2005; Simard et al. 2011). The 

acquisition of a consistent and comprehensive set of lidar measurements on forest 

structure is thus a pressing need for improving the current estimates of forest biomass 

and terrestrial carbon (Hall et al. 2011). 

NASA’s Global Ecosystem Dynamics Investigation (GEDI) mission has been 

specifically designed to provide the required lidar observations and is scheduled to be 

onboard the International Space Station (ISS) in late 2018. After the completion of its 

nominal 2-year mission, GEDI will have obtained unprecedented lidar observations 

between the latitudes of 51.5° north and south (Coyle et al. 2015). The footprints (~25 

m in diameter) will be separated with an along-track distance of 60 m and an across-

track spacing of 600 m. These GEDI observations by themselves will be used to 

create gridded data sets of forest structure and biomass at 1 km resolution using 

statistical methods (Healey and Patterson 2018). However, due to gaps between 

expected GEDI samples and possible impacts from cloud cover, it is of interest to 

develop algorithms that appropriately fuse GEDI lidar data with ancillary satellite 

data of forest structural properties to produce contiguous forest biomass maps at finer 

resolution and accuracy. 
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One source of such ancillary data can be from spaceborne Interferometric 

Synthetic Aperture Radar (InSAR) missions. InSAR technology was developed to 

retrieve the Earth’s surface structure following the acquisition of two or more images 

at slightly different viewing angles, from either multiple or single orbital passes. To 

estimate forest attributes with higher accuracy, simultaneous InSAR acquisitions are 

preferred to construct coherences without the temporal decorrelation effect (Cloude 

and Papathanassiou 2003; Lavalle and Hensley 2015; Lee et al. 2013). With an aim of 

obtaining such acquisitions globally, the German Aerospace Center (DLR) launched 

the first dual-platform (bistatic) InSAR mission–TerraSAR-X in 2007 and TanDEM-

X in 2010 respectively (with the joint mission abbreviated as TDX). Forest structural 

properties, in particular height, have been successfully derived from TDX data over a 

variety of terrain and environmental conditions using the well-acknowledged Random 

Volume over Ground (RVoG) model (Cloude and Papathanassiou 2003; Kugler et al. 

2014; Lee and Fatoyinbo 2015) or other SAR scattering models (Soja et al. 2017). 

Yet accuracies of these estimated parameters are subject to the availability and 

accuracy of a priori information on forest structure and ground elevation, particularly 

when single-polarization (the mode at which TDX data were collected at the global 

scale) data were used (Kugler et al. 2014). 

While multiple data sources may be available to provide the a priori 

information for TDX, GEDI would certainly yield one of the most accurate estimates 

of ground topography and forest structure at its footprint level globally. Recent 
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studies have demonstrated the improvement of height estimation from TDX using 

simulated GEDI sampled observations to enhance the RVoG parameterizations (Qi 

and Dubayah 2016; Qi et al. Submitted). Since TDX data are available wall-to-wall 

(i.e. spatially complete), the GEDI-aided TDX height estimates in turn can be used as 

ancillary data for GEDI to potentially provide biomass maps at finer resolutions and 

accuracies. If characterized with appropriate uncertainties, these biomass products 

(particularly when produced at a fine resolution of within a few hundred meters) may 

help improve our understanding of the terrestrial carbon budget and to assess its 

impact on biodiversity and habitat at both regional and global scales. 

This study investigates the effectiveness of using TDX InSAR heights to 

improve biomass estimations from GEDI lidar observations. We estimate biomass at 

two mapping scales (100 m and 1 km) by integrating GEDI and TDX data, in contrast 

to the use of GEDI data alone. Statistical uncertainty analyses are conducted for both 

the products at the two spatial scales, with the aim of addressing the following two 

objectives: 1) Evaluate the improvement in the accuracy of biomass estimation at 1 

km by fusing GEDI data with TDX data; 2) Assess the capability of GEDI/TDX 

fusion to produce biomass products at 100 m. 

Experiments are conducted at three major forest types: mixed temperate 

(conifer and broadleaf), mountainous conifer, and tropical rainforest. We first 

simulate pseudo-GEDI waveform data using airborne laser scanning (ALS) data and 

develop regression models linking the biomass response to lidar height metrics, i.e. 



 

 

 

 

 

 

100 

 

biomass–lidar models, at ground plots. Based on these models, GEDI footprint-level 

biomass are estimated over the expected track patterns for a full mission period of 2 

years under an assumption of 50% cloud cover. These GEDI-based biomass estimates 

are then averaged to provide biomass products at 100 m (with a large proportion of 

gaps) and 1 km. We characterize uncertainty by accounting for both the model 

parameter- and sampling-induced errors according to the hybrid inference method 

described in Saarela et al. (2016). The TDX heights co-located with GEDI footprints 

are subsequently extracted to ultimately develop regression models linking the 

biomass response to TDX observations as predictors, i.e. GEDI–TDX models, for 

final biomass product generation at both mapping scales. Uncertainties are assessed 

by propagating errors induced by the biomass–lidar model parameters to the errors 

estimated for the GEDI–TDX models, following the hierarchical model-based 

inference described in Saarela et al. (2016). The study is the first attempt to produce 

improved forest biomass maps based on GEDI and TDX data fusion. 

4.2 Study Sites and Datasets 

4.2.1 Study sites and field data 

Our study sites included the Hubbard Brook Experimental Forest (HBEF) in 

the White Mountain National Forest in New Hampshire, Teakettle Experimental 

Forest (TEF) in the Western Sierra Nevada Mountain Range, and La Selva Biological 

Station (LSBS) in the Atlantic lowlands of Costa Rica (Figure 4-1). HBEF is a typical 
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mixed temperate forest that mainly consists of deciduous northern hardwoods and a 

small percentage (10–20%) of spruce-fir, TEF is a high-biomass conifer-dominated 

forest with dominant species of white fir, ponderosa pine, red fir, and California black 

oak, and LSBS is largely comprised of a mixture of old growth and secondary 

lowland tropical rainforests, with mostly evergreen canopy and a small number of 

deciduous trees.  

 

Figure 4-1. TDX coherence maps overlaid by in situ plots (red) and simulated GEDI 

tracks (blue) for the nominal 2-year period after cloud decimation based on 50% 

cloud cover over (a) Hubbard Brook, (b) Teakettle and (c) La Selva test sites. 

Table 4-1. Summary of acquisition time for the used field, lidar, and InSAR data. 

Sites In situ data ALS data InSAR data 

HBEF 2009 2009 2011 

TEF 2008 2008 2011 

LSBS 2009 2009 2011 
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At HBEF, forest height primarily ranges from 5–48 m and has a mean value 

of ~24 m. Mean above-ground biomass was estimated to be around 216 Mg/ha in 

2001 (Siccama et al. 2007). Eighteen field plots were surveyed in New England (nine 

at HBEF and nine at BF (Bartlett Forest, which shares similar forest types as HBEF)) 

by investigators from federal and university laboratories during the NASA DESDynI 

(Freeman et al. 2009; Hall et al. 2011) field campaigns in 2009 (Table 4-1). This 

campaign was carried out to obtain estimates of useful forest biophysical attributes. 

These inventories were conducted in field plots of either 1 ha (200 m × 50 m, n=17), 

each of which consisted of sixteen 25 m × 25 m subplots (Table 4-2), or 0.5 ha (100 

m × 50 m, n=1), which was comprised of eight 25 m × 25 m subplots. Various forest 

structural elements, including the diameters, heights, and species information, were 

recorded for trees with diameter at breast height (dbh, at 1.37 m) of 10 cm and larger. 

Biomass was then estimated for each tree following the method described in Jenkins 

et al. (2003), which includes 10 different equations depending on the tree species. 

These estimates were then aggregated to calculate the total above-ground biomass for 

each subplot and plot, and divided by the area of the subplot/plot to obtain biomass 

density. 

TEF has a mature and complex structure with mean biomass values of around 

200 Mg/ha, which may reach up to around 1000 Mg/ha in Giant Sequoia 

(Sequoiadendron giganteum) stands (Duncanson et al. 2015a; Smith et al. 2005; 

Swatantran et al. 2011). Field data were acquired in July 2008 (Table 4-1). The 
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sampled areas covered 25 square plots (12 overlapped the study site) with a size of 

100 m × 100 m (1 ha), and each was divided into nine subplots of 33 m × 33 m (Table 

4-2). The sample layout was oriented in azimuth so that plot sides followed the 

primary directions downslope and across slope. Characteristics including dbh, crown 

form, height, species, and location of each tree were all measured for trees with a dbh 

of 10 cm and larger, and these data were used for biomass estimations (Jenkins et al. 

2003). Subplot- and plot-level total above-ground biomass and above-ground biomass 

density were subsequently calculated using these tree biomass data. 

Table 4-2. Summary of scales of field data used for each forest type. 

Forest Types Subplot-size Plot-size Number of plots 

Temperate 

mixed 

(HBEF and 

BF) 

25 m × 25 m 

(0.0625 ha) 

200 m × 50 m (1.0 ha); 

100 m × 50 m (0.5 ha) 

9 plots (8 at 1.0 ha, 1 at 

0.5 ha) at HBEF and 9 

plots at BF 

Mountainous 

conifer (TEF) 

33 m × 33 m 

(0.11 ha) 
100 m × 100 m (1.0 ha) 

12 plots overlapped 

TEF 

Tropical rain 

(LSBS) 

25 m × 25 m 

(0.0625 ha) 

100 m × 50 m (0.5 ha); 

100 m × 100 m (1.0 ha) 

20 plots at 0.5 ha; 1 plot 

at 1.0 ha 

 

LSBS consists of a mixture of lowland primary and secondary tropical rain 

forest, abandoned pasture, current and abandoned plantations, and agroforestry plots 

(Clark et al. 2008; Dubayah et al. 2010; Tang et al. 2014; Tang et al. 2012). As part of 

a landscape-scale carbon storage and flux study, the primary tropical forest data were 
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collected during 1997–2009 in eighteen 100 m × 50 m (0.5 ha) plots (Table 4-1), each 

of which was divided into eight 25 m × 25 m (0.0625 ha) subplots (Table 4-2) (Clark 

and Clark 2000). The plots were stratified over three edaphic conditions, namely, six 

plots on flat inceptisols, six on flat ultisols, and six on steep ultisol slopes. The 

secondary forest data were collected in three different areas that were approximately 

25, 33, and 42 years old as of 2009. The two younger secondary forest plots were 100 

m × 50 m each (0.5 ha; same as those in the primary forest), while the oldest one was 

100 m × 100 m (1.0 ha; including 16 subplots). In each plot, all stems with dbh (at 

1.37 m) or diameter above buttressing greater than 10 cm (in primary and 42-year-old 

secondary forests) or 5 cm (in 25- and 33-year-old secondary forests) were labelled 

and measured (Clark and Clark 2000). Biomass reference data were then generated 

based on stem diameter measurements using allometric equations for tropical wet 

forests (Rejou-Mechain et al. 2017). 

4.2.2 Lidar data 

Airborne laser scanning (ALS) data were collected at HBEF, TEF, and LSBS 

in September 2009, September 2008, and September to October 2009, respectively. 

These data were first reprocessed to medium-footprint (around 25 m diameter) 

pseudo-waveforms with signal to noise ratio (SNR), footprint shape and vertical 

resolution equivalent to those expected from GEDI data (Hancock et al. 2011). RH 

metrics, i.e., height at which a percentage of laser energy is returned, were then 

derived at 2% intervals from these pseudo-waveforms. Among the metrics, RH100 is 
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a noisy metric because it is associated with the first return and dependent on the SNR 

setup in the measurements; RH98 has been found to be more robust and is therefore 

used to represent canopy top height in this study; RH50–the height of median energy 

(HOME)–has been demonstrated to be sensitive to changes in the vertical 

arrangement of canopy elements and tree density (Huang et al. 2013). Ground 

elevation (Zg) has been calculated as the center of the lowest mode in the pseudo-

waveform greater than mean signal noise (Drake et al. 2002). Other forest properties, 

such as canopy cover, can also be retrieved from the pseudo-waveforms. However, 

we used only RH metrics for estimating biomass in this study. 

After simulating the number of times the International Space Station (ISS) 

was expected to pass each study site within a 2-year period, we obtained the GEDI 

ground-track patterns as shown in Figure 4-1, after applying a mean cloud cover of 

50% to randomly decimate whole tracks. By using such track patterns as templates, 

simulated GEDI RH metrics were extracted to derive the GEDI-based biomass 

products as well as to fuse with TDX for improved biomass mapping. 

4.2.3 TDX data 

Because ALS data were collected in 2008–2009, we used only TDX data 

acquired in 2011 to minimize their temporal differences. The TDX acquisitions used 

for each site were further selected so that their HoAs (defined as one full phase cycle 

2π divided by the effective vertical wavenumber κZ) exceed maximum tree height to 

ensure the height of all trees are within measurable range. However, because 
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increasing HoA leads to higher levels of noise sensitivity (Kugler et al. 2015), 

acquisitions with HoAs slightly larger than the maximum tree height were preferred 

(see Table 4-3). These TDX data were obtained in bistatic mode, where one satellite 

was transmitting and both were simultaneously receiving the backscattered signal, so 

that coherences can be generated without temporal decorrelation effects. Also, the 

selected images were acquired in strip-map imaging mode (Abdullahi et al. 2016; 

Kugler et al. 2014; Lee and Fatoyinbo 2015), which enabled high resolutions of 1.93–

2.99 m at ground range and 3.30–6.60 m at azimuth over the three study sites (see 

Table 4-3). Although both HH- (horizontal transmit and horizontal receive) and VV- 

(vertical transmit and vertical receive) polarization data were available at LSBS, only 

HH data were used for all sites because of their availability at the global scale. 

Table 4-3. Summary of TDX acquisitions over the study areas. 

Study Sites Date Eff. Bsl. (m) 
HoA 

(m) 

Rg. Res. 

(m) 

Az. Res. 

(m) 
Pol. 

HBEF 

(temperate 

mixed) 

2011/10/21 121.42 -47.43 2.99 3.30 HH 

TEF 

(mountainous 

conifer) 

2011/12/10 103.59 -64.47 2.71 3.30 HH 

LSBS 

(tropical 

rainforest) 

2011/12/05 89.43 67.79 1.93 6.60 HH, VV 
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Field inventory data and lidar data were collected in the same years over all 

sites (Table 4-1). However, both datasets were collected two (at HBEF and LSBS) or 

three (at TEF) years earlier than the TDX acquisitions. We removed places that were 

disturbed (0–7.8% of total area for each site) between the dates of field/lidar data 

collection and TDX acquisitions for more effective fusion based on ancillary Landsat 

disturbance products (Huang et al. 2010). Although biomass changes were small over 

most undisturbed forests within the time span of analysis, such changes may still have 

produced minor impacts on the TDX biomass estimates as compared to those from 

lidar, discussed later in sections 4.5 and 4.6 (Dubayah et al. 2010; Siccama et al. 

2007; Smith et al. 2005; Van Doorn et al. 2011).  

4.3 Methods 

With the use of forest inventory data and co-located simulated GEDI RH 

metrics, biomass–lidar relationship models were developed and subsequently applied 

to estimate biomass respectively using wall-to-wall lidar data (as a reference) and 

simulated GEDI lidar data. Their means within each 100 m or 1 km grid cell were 

calculated to provide the respective biomass products (section 4.3.1). The GEDI track 

estimates, combined with co-located TDX heights, were applied to derive the GEDI 

biomass–TDX height relationship models for mapping TDX biomass at 25 m wall-to-

wall. These estimates were then aggregated to provide contiguous biomass products 

at 100 m and 1 km, and the results were compared against those from wall-to-wall 



 

 

 

 

 

 

108 

 

lidar observations (section 4.3.2). Lastly, we characterized and analyzed uncertainties 

for all products statistically (section 4.3.3; see flow chart in Figure 4-2). 

 

Figure 4-2. Methods designed to estimate biomass and uncertainty maps respectively 

using wall-to-wall (reference) and GEDI-track lidar data, and fused GEDI/TDX data. 

4.3.1 Establishment of relationships between field biomass and lidar data 

Site-specific biomass–lidar relationships were first established using the 

subplot field biomass (see Table 4-2 for the size and number of subplot field data) 

and co-located simulated GEDI metrics. Multiple linear regression was applied to 

relate the biomass (response) and lidar (independent) variables. Because relationships 

between biomass and each single lidar metric term may be non-linear (Giannico et al. 

2016; Hudak et al. 2006; Zhao et al. 2013), we included RH metrics, squared RH 

metrics and products of canopy height (RH98) with other RH metrics as inputs, from 

which the best combination of these variables for biomass prediction were chosen for 

each site.  
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To select the best subsets, we conducted an exhaustive search among the 

inputs by measuring how good each subset is using information criterion such as AIC 

(Akaike Information Criterion) (see “regsubsets” function in the R package “leaps” 

(R Core Team 2014)). At each subset size, one model with the best correlation with 

field biomass was selected. Equivalent correlations may be achieved with different 

subset sizes (i.e. using a different number of variables); here we selected the model 

with the smallest amount of predictors to increase the degree of freedom in the 

regressions and to avoid the overfitting issues as discussed in previous studies 

(Valbuena et al. 2017). Linear equations were then developed for each site using the 

selected variables (Table 4-4), to facilitate uncertainty estimation following the 

methods described in Saarela et al. (2016). The selected variables and established 

models were then applied to the pseudo-waveform-derived metrics both wall-to-wall 

and along simulated GEDI tracks for biomass estimation. These estimates were 

subsequently averaged to 100 m and 1 km to generate reference-lidar and GEDI-lidar-

biomass products. Note that gaps will present in the GEDI products, particularly in 

the 100 m estimates, because of the spacing between adjacent tracks. 

4.3.2 Establishment of relationships between GEDI biomass and TDX heights 

The TDX InSAR heights were then related to GEDI-derived biomass to fill 

the gaps between adjacent GEDI tracks and extend the estimates wall-to-wall. Unlike 

biomass–lidar models that were developed for each entire site, GEDI biomass–TDX 

height relationship models were established for every 1 km grid cell (which contains 
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1600 pixel cells with 25 m resolution), since biomass samples available from GEDI 

data were more widely distributed and had larger quantity than that from inventory 

plots, i.e. each 1 km grid cell had its own equation.  

To be more specific, depending on the availability of GEDI observations in 

each 1 km grid cell, we applied two different methods to derive TDX heights for 

GEDI–TDX relationship establishment and biomass prediction. The first method was 

applied for grid cells containing GEDI observations; here TDX heights were 

estimated with the aid of GEDI observations of elevation and canopy height (Qi et al. 

Submitted).  The second method was designed for grid cells without GEDI 

observations; here TDX heights were estimated solely from coherence data by 

making assumptions about certain parameters of the height inversion model (Qi and 

Dubayah 2016; Qi et al. Submitted). 

Since in the second method, GEDI data were unavailable to train GEDI 

biomass–TDX height relationship, we enlarged the 1 km area to 2 km (or further to 3 

km if necessary) to include GEDI observations for model establishment (see Figure 

4-3). For each grid cell, we subsequently examined the correlations and RMSDs 

between GEDI-biomass and biomass derived from TDX height (ht) or ht
2, and chose 

the variable with better performance as model inputs. We still applied linear 

regression, using ht or ht
2 as input variables, to facilitate the uncertainty analysis 

following methods described in Saarela et al. (2016). Based on the established models 

(multiple models (one model for each grid cell) have been used for TDX heights), 
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TDX biomass maps were estimated at 25 m resolution. We then aggregated these 

estimates to 100 m and 1 km, with uncertainties characterized in a statistical manner 

as described below. 

 

Figure 4-3. Area selection for establishing regression models for Grid cell #1 (each 

grid has a size of 1 km × 1 km). (a) When Grid cell #1 contained GEDI tracks, co-

located GEDI biomass and TDX height (derived with the aid of GEDI observations) 

in Grid #1 were used to train the regression model. (b) When Grid cell #1 did not 

contain GEDI observations, co-located GEDI biomass and TDX height (derived using 

TDX coherence alone) in an enlarged area around Grid #1 (2 km × 2 km) were used 

to develop the regression model. (c) When the enlarged area in (b) did not contain 

enough GEDI observations, the area was enlarged to 3 km × 3 km for establishing the 

GEDI biomass–TDX height model. 
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4.3.3 Uncertainty analysis for the biomass products at mapping scales of 100 m and 

1 km 

Statistical uncertainty analyses were then performed for the derived biomass 

products at the two mapping scales (100 m and 1 km). Following the methods used in 

Saarela et al. (2016), uncertainties associated with the GEDI-based biomass products 

were estimated by considering both the sampling error and biomass–lidar model 

parameter error (see section 4.3.3 A), whereas uncertainties associated with 

GEDI/TDX fusion biomass products were estimated by propagating the modeling 

errors from the biomass–lidar relationship to the GEDI biomass–TDX height 

relationship (see section 4.3.3 B). Since both ALS and TDX data are spatially 

complete, they were assumed to have no sampling error. Residual error (also refers to 

residual prediction error) was currently not considered for all products. For large 

scale, this error has a minor contribution to the total uncertainty and is often ignored 

due to the residual (spatial) autocorrelation, discussed later in 4.5. 

A. Estimation of wall-to-wall- and GEDI-lidar biomass uncertainty 

Using the co-located biomass data and lidar predictors, a linear model was 

fitted for each study site with the following relationship: 

                                         ,S S S S y X α e                                              (4-1) 

where S describes the field samples of size m at the subplot level, which has an 

equivalent scale to the GEDI footprints, Sy  is a column vector of the field-based 



 

 

 

 

 

 

113 

 

biomass, XS is a matrix formed by the lidar predictors (RH metrics and variables 

derived from these metrics) over the subplot samples, Sα  is the column vector of the 

linear model parameters, and Se  is the column vector of random errors with zero 

expectation. We applied the ordinary least squares (OLS) estimator to estimate model 

parameters, i.e. 1ˆ ( )
T T

S S S S S


α X X X y  (Davidson and MacKinnon 1993). 

The variance of the biomass estimator for each 100 m or 1 km grid cell can 

then be described as follows (Saarela et al. 2016): 

                                          

 

 21
ˆ(1 / ) ,

a a a a

I IILidar

T T
M S S S s S

V E V V

M N Cov
M





   
 

   ι X α X ι

             (4-2) 

where VI and VII respectively account for the variances related to the sampling error 

and modeling error. Specifically, for VI, aS  represents the available lidar samples of 

size M in each grid and N is the 25 m-cell population size within that grid, i.e., N 

equals 16 for each 100 m grid and 1600 for each 1 km grid. 2

M
 corresponds to the 

sample-based population variance from the M-length column vector of ˆ ˆ
Sa Sa S
y X α  

values. Therefore, the sampling error decreases with the increase of the ratio of 

available lidar samples to the total population size (M/N), which leads to its minimum 

value of zero when lidar data are available wall-to-wall (M=N). For VII, 
aSι  denotes 

the M-length column vector of entities 1/M and XSa represents an M × (p+1) matrix 

formed by the lidar predictors, where p is the number of the used input lidar variables. 
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The covariance matrix of the estimated model parameters ˆ
Sα  is estimated in a 

heteroscedasticity-consistent manner, because of the violation of the ordinary least 

squares assumptions by using predictors correlated to each other (Saarela et al. 2016), 

and can be calculated as: 

   
1 1

2

1

ˆ ˆ( ) [ ] ,
m

T T T
S S S i i i S S

i

e
 



 Cov α X X x x X X                        (4-3) 

where ˆ
ie  is the residual and xi the (p+1)-length row vector of lidar predictors for the 

ith observation from sample S. To overcome the issue of the squared residual 2

î
e  

yielding biased estimators of the squared errors 2

i
e , a correction of 2ˆ

1
i

m
e

m p 
 was 

applied. 

B. Estimation of GEDI/TDX-fusion biomass uncertainty 

After estimating the GEDI-lidar biomass based on the biomass–lidar 

relationship, GEDI biomass was used as the response variable for estimating model 

parameters linking biomass and TDX height (or variables derived from the height) 

over the lidar sample Sa assuming the following: 

 ˆ ,
a a a a aS S S S S X α Z β ω   (4-4) 

where ˆ
Sa SaX α  is an M-length column vector of GEDI biomass estimates, SaZ  is the 

TDX height (variables derived from the height) co-located with GEDI tracks, and Saβ

is the column vector of model parameters linking the estimated GEDI biomass values 
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and TDX predictors; 
Saω  denotes the M-length column vector of random errors with 

zero expectation. 

 The variance of the biomass estimator can then be represented by: 

                                
 

21 ˆ(1 / ) ( ) .
a

I IITDX

T T
N U U S U U

V E V V

N N Cov
N





   
 

   ι Z β Z ι

                           (4-5) 

Similar to 4.3.3 A, VI and VII are variances of the mean biomass associated 

with sampling error and modeling error, respectively. Here VI, the sampling error, is 

assumed to be zero as the TDX observations are available wall-to-wall. In VII, ιU is 

the N-length column vector of entities 1/N (as mentioned earlier, N equals 16 for each 

100 m grid and 1600 for each 1 km grid). ZU is the N × (q + 1) matrix formed by 

TDX height input variables, where q is the number of TDX predictors. ˆ( )
aSCov  is 

the covariance matrix of ˆ
asβ  and can be estimated with the following equation: 
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  (4-6) 

where ZSa is a M × (q + 1) matrix of TDX predictors over sample Sa (i.e., the GEDI 

samples within each grid where the grid-specific GEDI biomass–TDX relationship 

was established); 2ˆ
i

  is a squared residual for the ith observation in sample Sa, and the 

correction 2ˆ
1

i

M

M q


 
 was applied, as done in earlier studies. 
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After estimating V for the biomass products at both 100 m and 1 km, the 

prediction interval (PI) can be estimated as PI E t V  , where E is the mean 

biomass in each grid at the respective mapping scale and t is the Student’s distribution 

critical value for a given level of confidence and degree of freedom. For a large 

number of observations, the Student’s and normal distributions give almost identical 

critical values. Here, we used the normal distribution since estimating the degrees of 

freedom for the Student’s distribution with a two-phase sampling design is complex. 

Therefore, the following formula was used to estimate the prediction interval: 

PI E Z V   (e.g., Z = 1.96 at 95% confidence), where Z V  is the estimated 

uncertainty for each grid. 

4.4 Results 

4.4.1 Biomass estimation 

A. Wall-to-wall- and GEDI-lidar biomass 

Biomass–lidar relationships were developed respectively for HBEF, TEF and 

LSBS based on the method described in section 4.3 (see Table 4-4 for the selected 

metrics and the established equations). Moderately good performances were found for 

these models, with r2 values of respectively 0.59, 0.52 and 0.37, and RMSEs of 

respectively 66.45 (31.6%) Mg/ha, 185.45 (43.4%) Mg/ha and 80.76 (34.9%) Mg/ha) 

between the field biomass and lidar estimates (Figure 4-4). Note that these 

relationships were established at the smaller subplot level (25×25 m at HBEF and 



 

 

 

 

 

 

117 

 

LSBS, and 33×33 m at TEF) at which crown geometry effects and random 

geolocation errors may lead to higher model uncertainties compared to those 

developed at larger plot levels. 

Table 4-4. Relationship between field biomass and lidar RH metrics for each site. 

Sites Equations R2 RMSE (Mg/ha) 

HBEF -19.22 + 8.50×RH80 + 0.18×RH98×RH80 0.59 66.45 (31.6%) 

TEF 97.04 + 12.42×RH60 + 0.25×RH98×RH80 0.52 185.45 (43.4%) 

LSBS 53.13 + 0.22×RH40×RH40 + 0.14×RH98×RH40 0.37 80.76 (34.9%) 

 

 

 

Figure 4-4. Lidar-predicted biomass vs. in situ biomass at the subplot level (25 m 

over HBEF and LSBS, or 33 m over TEF). 

The established biomass–lidar models were then applied to predict reference-

lidar biomass and GEDI-lidar biomass at 25 m using wall-to-wall- and GEDI track-

height metrics derived from the simulated pseudo-waveforms. These estimates were 
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then averaged at 100 m and 1 km, and characterized with uncertainties for their 

means at the respective mapping scale. At least two independent tracks were required 

in each mapping grid to calculate the cross-track variance for estimating the 

uncertainties (Ståhl et al. 2010). Therefore, we removed grid cells that contained less 

than two tracks and derived variance of the biomass mean only in the remaining grid 

cells (Figure 4-5). Estimates over the invalid grid cells can be provided once the 

contiguous TDX forest heights are fused with GEDI, as illustrated in the next section. 

 

 
(a) HBEF 

 



 

 

 

 

 

 

119 

 

 

(b) TEF 

 
(c) LSBS 
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Figure 4-5. Biomass maps predicted from the wall-to-wall- (left) and GEDI- (middle) 

lidar data, and TDX heights (right) respectively at 25 m, 100 m and 1 km over (a) 

HBEF, (b) TEF and (c) LSBS. 

B. GEDI/TDX-fusion biomass 

 

Figure 4-6. GEDI biomass vs. co-located TDX biomass at 25 m respectively over (a) 

HBEF, (b) TEF, and (c) LSBS.  

Based on the method described in section 4.3, we extracted the 25 m GEDI 

biomass estimates within each 1 km grid (or enlarged areas; see 4.3.2) and related 

these estimates to the co-located TDX heights to develop grid-specific linear models. 

Each 1 km grid corresponded to a linear model to be used for the TDX biomass 

prediction at 25 m. Note that for each grid containing no GEDI tracks, we applied the 

TDX heights derived using only coherence to develop equation for biomass 

prediction. After applying TDX heights to the respective relationship model of each 

grid cell, we obtained r2 values of 0.87, 0.57 and 0.49, and RMSDs of 24.61 (11.8%) 

Mg/ha, 150.15 (34.5%) Mg/ha and 57.08 (27.6%) Mg/ha at 25 m between the co-
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located TDX biomass and GEDI biomass, respectively over HBEF, TEF, and LSBS 

(Figure 4-6). 

The estimated TDX biomass maps were then averaged to 100 m and 1 km 

(Figure 4-5), with uncertainties described in 4.4.2. To increase the accuracy of the 

predicted biomass from the TDX height, pixels with coherence values lower than 0.3 

and effective vertical wavenumbers (which vary as a function of terrain slopes and 

interferometric baseline) out of the range 0.04 – 0.35 (Kugler et al. 2015; Qi and 

Dubayah 2016) were all removed (less than 3% of the total pixels). Just to clarify, in 

this study TDX biomass also means GEDI/TDX-fusion biomass as it was derived by 

fusing GEDI and TDX data instead of using TDX data alone. 

 



 

 

 

 

 

 

122 

 

Figure 4-7. GEDI vs. Reference (wall-to-wall-lidar) biomass (top row), and TDX vs. 

Reference biomass (bottom row) at 1 km. 

Using the wall-to-wall TDX heights, we derived contiguous biomass maps, 

including in places where no GEDI observations were acquired (Figure 4-5). At 1 km, 

the biases of the predicted TDX biomass against the reference-lidar biomass were 

estimated to be 12.5 Mg/ha, 16.4 Mg/ha and 12.6 Mg/ha respectively for HBEF, TEF 

and LSBS, which may be related to real biomass changes due to the temporal 

discrepancy of between the field/lidar data and TDX data. RMSDs between TDX and 

reference-lidar biomass were 22.6 (11.5%) Mg/ha, 46.2 (11.5%) Mg/ha and 28.4 

(15.0%) Mg/ha respectively for the three sites, compared to RMSDs of 19.2 (9.7%) 

Mg/ha, 72.9 (17.3%) Mg/ha and 32.0 (16.8%) Mg/ha between GEDI-lidar and 

reference-lidar biomass (Figure 4-7). Since reference (wall-to-wall)-lidar biomass are 

not truth data, we subsequently performed uncertainty analysis for these mean 

estimates in a statistical manner at both 100 m and 1 km mapping scales, as discussed 

below. 

4.4.2 Uncertainty estimation 

A. Wall-to-wall- and GEDI-lidar biomass uncertainty 

As discussed in section 4.3.3, we derived only VII (variance associated with 

the modeling error) and ignored VI (variance associated with the sampling error) for 

the wall-to-wall-(reference) lidar biomass, and estimated both VI and VII for the GEDI 
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sampling-based biomass. Uncertainties (Mg/ha) at a 95% confidence level were 

subsequently calculated from these variance estimates (see left two columns of Figure 

4-8).  

Among the three sites, uncertainties were the largest over TEF and the 

smallest over HBEF, perhaps related to the increased structural complexity observed 

by TDX data at TEF (LSBS may be more structurally complex than TEF but the 

complex understory of LSBS might be less seen by X-band signal due to the higher 

canopy cover at this site) and the opposite condition at HBEF. We observed reduced 

uncertainty levels for all sites from 100 m to 1 km. Note the large voids at 100 m 

resolution using GEDI lidar data (and a small proportion at 1 km) (Figure 4-8). 

Again, this arises when a cell has less than two tracks for cross-track variance 

calculation so that we cannot provide uncertainties over the cell (see 4.3.3). 

 

 
 

(a) HBEF 
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(b) TEF 
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Figure 4-8. Uncertainties (Mg/ha) for biomass mean estimates at 100 m and 1 km 

scales respectively using the wall-to-wall- (left) and GEDI- (middle) lidar data, and 

TDX heights (right) over (a) HBEF, (b) TEF, and (c) LSBS. 

B. GEDI/TDX-fusion biomass uncertainty 

For all sites, uncertainties were reduced as resolution coarsened; for both 

mapping scales of 100 m and 1 km, we observed uncertainty levels of wall-to-wall-

lidar biomass < GEDI/TDX-fusion biomass < GEDI-lidar biomass (Figure 4-8 and 

Figure 4-9). The results demonstrated that fusing GEDI data with wall-to-wall TDX 

data reduced uncertainties of GEDI biomass estimation at 1 km over the three forest 

sites. The fusion also showed the potential of GEDI/TDX fusion to provide 

contiguous biomass maps at a fine resolution of 100 m. 

 

Figure 4-9. Uncertainty (%) of wall-to-wall- and GEDI-lidar biomass, and 

GEDI/TDX-fusion biomass at 100 m (top row) and 1 km (bottom row). Uncertainty 
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(%) was calculated as uncertainty (Mg/ha) divided by mean biomass (Mg/ha) of each 

grid cell. For consistency, uncertainties at 100 m were only compared over grid cells 

with valid GEDI estimates. 

4.5 Discussion 

With the launch of GEDI mission, more than 10 billion lidar observations of 

forest vertical structure and ground topography will be collected. These data will be 

used by themselves to provide biomass maps globally at a moderate resolution of 1 

km using appropriate empirical models (Dubayah et al. 2014). However, since gaps 

are expected between adjacent GEDI ground tracks, it is of significant interest to 

utilize ancillary remote sensing datasets for fusing with GEDI so that biomass could 

be mapped contiguously at a finer resolution or with better accuracy at a moderate 

resolution especially for areas without GEDI coverage. 

Previous studies have used passive optical and polarimetric radar observations 

for biomass prediction by correlating the spectral reflectance or radar backscatter 

signals to lidar-derived biomass, or directly to field-based data. However, passive 

optical and radar observations often fail to capture the whole spectrum of forest 

structure and saturate at the successional state (Mitchard et al. 2012; Saatchi et al. 

2011). InSAR technology, on the other hand, has the capability to retrieve biomass-

related structural properties, particularly height, to predict biomass beyond the 

saturation threshold of passive optical and traditional radar sensors, as demonstrated 
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in recent studies (Askne et al. 2017; Caicoya et al. 2016; Soja et al. 2014). Using 

forest height derived from TDX InSAR data, we have filled in gaps of GEDI biomass 

products at 100 m and at 1 km where GEDI observations were not available. Even 

when there were no gaps at 1 km, uncertainties were significantly reduced by using 

the wall-to-wall TDX data. 

At 1 km, the mean uncertainties of wall-to-wall-lidar biomass products were 

estimated to be 4.8% at HBEF, 9.7% at TEF and 7.8% at LSBS, compared to 

uncertainties of 9.0% at HBEF, 19.9% at TEF and 16.1% at LSBS for biomass 

derived using GEDI sampled observations. The increased uncertainty was related to 

the sampling errors induced by using unrepresentative lidar samples from GEDI to 

estimate the mean biomass. Using the far larger sample size of GEDI shots compared 

to field plots, we were able to establish grid cell-specific GEDI biomass–TDX height 

relationships for predicting TDX biomass. Lower uncertainty levels of TDX-derived 

biomass were found compared to GEDI-based biomass, with uncertainties of 5.2% at 

HBEF, 11.7% at TEF and 9.3% at LSBS characterized at 1 km. At both 100 m and 1 

km, estimated uncertainties were ranked as GEDI-lidar > TDX/GEDI fusion > wall-

to-wall-lidar for all sites. These results demonstrated that the InSAR observations 

from TDX can be of great use to GEDI for providing contiguous biomass products at 

finer-resolutions and reducing the sampling-induced uncertainties. 

We did not include the residual error (see 4.3.3) (Peters 2001) analysis in this 

study. Such error may be minor at 1 km but could be significant at smaller spatial 
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scales. Methods to estimate residual errors at smaller scales, such as 100 m, are 

currently under development. Furthermore, we did not consider uncertainties of the 

field biomass derived from the allometric equations and assumed the inventory data 

as truth. Ignoring this error should not affect the comparison of uncertainties 

characterized for our wall-to-wall-lidar, GEDI-lidar and GEDI/TDX fusion biomass 

products, but clearly will impact the absolute uncertainties. 

Here, we developed our fusion algorithms over three contrasting forest types 

for improved forest biomass estimation. These methods used GEDI data with a 

variety of sampling density across each study site (i.e. the number of tracks varied 

widely from 0 to 7 for different 1 km grid cells) and were implemented with 

consideration of larger-scale applications. Areas with sufficient GEDI coverage can 

be provided with biomass estimates from GEDI alone and improved through fusion 

with TDX data; whereas for areas with few GEDI observations, biomass can be 

predicted from TDX height derived using coherence alone (Qi and Dubayah 2016; Qi 

et al. Submitted) based on GEDI biomass–TDX height relationships developed over 

places with similar forest types and conditions. 

4.6 Conclusions 

Our study used wall-to-wall forest heights estimated from TerraSAR-

X/TanDEM-X (TDX) acquisitions to improve biomass derived from Global 

Ecosystem Dynamics Investigation (GEDI) lidar observations. It was demonstrated 

that TDX heights were useful to fill gaps of GEDI biomass products at 100 m and at 1 
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km where GEDI observations were not available. Better accuracy was also achieved 

through fusion with TDX heights when there were GEDI observations, with 

uncertainties of 5.2-11.7% from the fusion across the three sites, as compared to 9.0-

19.9% achieved from the use of GEDI data alone. There is a great potential to fuse 

GEDI and TDX data to generate high-quality forest biomass maps over large spatial 

scales. 
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Chapter 5: Conclusions and Future Research 

5.1 Summary of the Research 

Large-scale mapping of forest biomass at fine spatial resolutions (100–1000 

m) is challenging, yet it is a critical step in improving quantifications of the terrestrial 

carbon budget and reducing the large uncertainties in predictions of future climate. 

One major obstacle to achieving this goal is the lack of a sufficiently accurate and 

spatially comprehensive global dataset of forest vertical structure. Important estimates 

of forest structure and biomass have been carried out using lidar remote sensing 

technology; however, there are limitations (e.g. restricted spatial coverage) in 

mapping biomass using lidar data alone. The launch of NASA’s GEDI mission in 

2018 will provide the most complete set of global-scale lidar observations of forest 

structure and ground elevation to date. Nevertheless, the nature of lidar sampling and 

possible impacts from cloud cover indicate that there will be gaps between adjacent 

ground tracks, which will limit GEDI’s capability to provide biomass data at the 

desired resolution and accuracy. This study is a first effort at investigating the 

potential of fusing GEDI lidar data with ancillary data acquired by the TDX satellite 

mission to provide forest structure and biomass maps at the needed resolution and 

accuracy. 

The research mainly focused on improving estimates of forest height and 

biomass by fusing GEDI and TDX observations. As the first long-term single-pass 
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InSAR mission in space, TDX generates coherence images for height estimations 

without any temporal decorrelation effects. The data also possess a high spatial 

resolution, complete global coverage and multiple spatial baselines. The results of 

this study demonstrated that GEDI and TDX observations are complementary, and 

that fusing them can potentially provide large-scale forest height and biomass data at 

a finer resolution and with higher accuracy than is currently possible. Adding GEDI 

lidar data to TDX InSAR acquisitions substantially reduced biases and errors of 

height estimation from the latter, whereas the wall-to-wall TDX heights have helped 

to significantly reduce uncertainties in GEDI’s sampling-based biomass estimates. 

The fusion algorithms developed in this study are innovative and could potentially be 

applied to provide global biomass products at resolutions of 100–1000 m. 

5.1.1 Evaluating the effectiveness of GEDI elevation data to improve forest height 

estimations from TDX 

The investigation in Chapter 2 focused on combining the simulated GEDI 

elevation data and TDX data to improve height estimation under different foliage 

conditions and achieved the following results. The responsiveness of TDX coherence 

to the variation of lidar-derived canopy height was evaluated; this was important as 

their relationship formed the basis for the GEDI/TDX fusion – if there was no or little 

correlation between them, it would be unlikely that heights can be derived from TDX 

with an acceptable accuracy for an effective fusion. The chosen study area, Hubbard 

Brook Experimental Forest, is a temperate mixed deciduous and conifer forest with a 
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large gradient of forest height, canopy density and topography. Results demonstrated 

that there were consistently strong and robust correlations between lidar-derived 

forest height and TDX coherence at varied TDX spatial baselines and environment 

(leaf on vs. leaf off) conditions, providing meaningful evidence for the efficacy of 

fusing GEDI/TDX data on a large scale.  

This study also verified the utility of using GEDI elevation data in TDX 

height inversions. Previous studies using single-pol TDX InSAR acquisitions often 

required external DTMs derived from airborne lidar elevation data to estimate height, 

because otherwise height accuracies would be compromised by using assumptions 

(e.g. a fixed extinction coefficient (σ) and a zero ground-to-volume amplitude ratio 

(µ=0)) for model parameters. The results of this study indicated that using GEDI 

elevation data effectively improved TDX height estimation compared to results using 

TDX data alone. There were good correlations between TDX-derived height and lidar 

canopy height (RH100) as well as other lidar height metrics commonly used for 

biomass estimation (e.g. RH75, RH50, and RH25). This demonstrated the great 

potential of using TDX height, particularly when derived with aid from GEDI lidar 

observations of bare ground elevation, to map large-scale forest biomass.  

5.1.2 Improving the parameterization of TDX inversion model to enhance forest 

height estimation using GEDI canopy height and elevation data 

Chapter 3, with its focus on fusing GEDI/TDX data for height estimation, was 

somewhat similar to Chapter 2. However, Chapter 3 also investigated the utility of 
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GEDI-derived canopy height, in addition to the DTM, to enhance RVoG model 

parameterizations for improved height estimations. 

Previous studies had mainly explored external DTMs derived from airborne 

lidar observations for TDX height inversion. As mentioned in Chapter 2, the input of 

external DTMs allowed the RVoG to use a spatially varied extinction coefficient (σ) 

for estimating height; however, the ground-to-volume-amplitude ratio (µ) was still 

assumed zero in the inversion process. Exploring full-polarimetric InSAR data at 

longer-wavelength (L- or P-band) would allow the derivation of both σ and µ for 

better height estimation, but these data were still restricted to areas where airborne (in 

many cases multiple-baseline) PolInSAR campaigns were conducted. This study 

developed an approach to incorporate GEDI lidar observations into the RVoG model 

to estimate both parameters. Results demonstrated performance gain from calculating 

µ for height estimations in certain environmental conditions (for instance, over leaf-

off forested areas). 

Chapter 3 also evaluated the utility of each refined RVoG parameter over 

different forest conditions. Three major representative forest types – mixed temperate 

deciduous and conifer, mountainous conifer, and tropical rainforest – were 

investigated. For all places, the estimated heights improved from using no GEDI data 

(only TDX) to using GEDI elevation, and further to using GEDI elevation and canopy 

height combined. Including both GEDI elevation and canopy height as RVoG inputs 

allowed the derivation of both σ and µ parameters; µ was found to be less useful over 
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areas with high canopy covers and more useful over areas where more ground 

scattering was present. 

Furthermore, this study assessed the impact of cloud cover on the 

effectiveness of GEDI/TDX fusion for height estimation. Results derived under the 

cloud-free condition (i.e. with no GEDI tracks lost due to clouds) were compared 

with those derived under the 50% cloud cover condition (i.e. with 50% GEDI 

observations lost due to clouds). For each fusion method, forest heights derived using 

the simulated GEDI data under cloud-cover condition were less accurate because of 

the sparser data available for local calibrations performed on RVoG parameters. 

Nevertheless, GEDI/TDX data fusion was effective under both conditions to improve 

forest height, particularly when both simulated GEDI canopy height and elevation 

data were used. 

5.1.3 Assessing the efficacy of TDX and GEDI data fusion to improve estimations 

of forest biomass 

While Chapters 2 and 3 focused on enhancing forest height estimation from 

TDX using GEDI lidar data as inputs to the InSAR inversion model, Chapter 4 

focused on improving GEDI-based biomass estimations through the use of wall-to-

wall TDX height maps. The following major issues were addressed in this study. 

Simulated GEDI data were used to demonstrate the creation of biomass 

products at a map scale of 1 km over the three representative forest types. My 

research also showed that we can create biomass products at finer resolutions from 
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GEDI/TDX fusion. TDX has the potential to provide the information for GEDI with 

its global coverage, high spatial resolution, and simultaneous interferometric 

acquisitions (i.e. without temporal decorrelation effect). This study provided detailed 

procedures on how to fuse the complementary GEDI and TDX data to improve height 

estimations and use them to upscale GEDI-derived biomass data. Contiguous biomass 

maps were produced not only at a moderate resolution of 1 km, but also at a finer 

resolution of 100 m. At 1 km, the fused biomass values were found to have equivalent 

(at HBEF and LSBS) or better (at TEF) correlations with reference (i.e. wall-to-wall)-

lidar biomass, when compared to correlations between GEDI- and reference-lidar 

biomass at this scale, further manifesting the advantages of the GEDI/TDX fusion. 

This study also implemented new methods to characterize the uncertainties of 

the GEDI-based and GEDI/TDX fusion-based biomass products at varied mapping 

scales. Estimating uncertainty has been difficult for mapping forest biomass from 

remote sensing data, especially at scales (e.g. 1 km) not sufficiently covered by field 

inventories. Uncertainties associated with GEDI biomass at its native footprints could 

be easily estimated by comparing subplot field biomass and co-located GEDI-derived 

biomass. However, when GEDI biomass is aggregated to larger grids or related to 

TDX observations to provide spatially contiguous biomass, there were questions 

regarding the propagation of errors from the native footprint to larger grids as well as 

from GEDI biomass to TDX-derived biomass. Based on previous work on estimating 

variances for hybrid and hierarchical-modeling inferences, this study addressed 
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uncertainties for both the GEDI-based (by considering both the modeling and 

sampling errors) and GEDI/TDX fusion-based (by properly propagating the modeling 

errors from the biomass–lidar relationship to the GEDI biomass–TDX height 

relationship) products. The fusion products had lower uncertainties at both 100 m and 

1 km resolutions, showcasing the effectiveness of fusing the data to map forest 

biomass at better resolutions and accuracies. 

This research has added insights into approaches to fuse lidar and InSAR data, 

and has also demonstrated the potential of fusing GEDI data with complementary 

satellite images such as those from TDX in order to produce large-scale biomass 

maps at resolutions and accuracies desired to reduce high uncertainties regarding the 

global carbon budget. 

5.2 Future Research 

The findings in this study indicate several avenues for future research. The 

first is to explore approaches to improve the accuracy of the GEDI-derived DTM for 

fusion, as results shown in Chapters 2 and 3 suggest an impact of the DTM on the 

fusion efficacy. Factors contributing to a less-accurate GEDI DTM may include a 

lower lidar shot density (e.g. due to higher cloud covers or fewer orbital passes over a 

certain site), less accurate ground detection (e.g. because of signal saturation over 

areas with higher canopy cover), or geolocation errors over topographically complex 

terrain. Based on a less accurate GEDI DTM, a less accurate ground phase would be 
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simulated to estimate the scattering phase and retrieve less accurate forest height from 

the fusion. To address these issues, future work will focus on the generation of more-

accurate DTMs by integrating bare-ground GEDI elevation data with surface DEMs 

derived from, for example, TDX (12 m), SRTM (30 m) and the Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (30 m), or from future 

missions such as ICESat-2 and NISAR, with an aim to produce reliable ground DTMs 

at a fine resolution over sloped surfaces and other areas with less GEDI coverage. 

Preliminary studies are being conducted on merging GEDI DTMs with TDX DEMs 

using wavelet transformations (Lee et al. 2018), demonstrating the effectiveness of 

developing fusion algorithms to produce a bare-ground DTM at better resolution and 

accuracy than from either mission alone. 

Results in Chapter 3 also suggested the importance of developing alternate 

methods to provide improved maps of RVoG parameters (e.g. extinction coefficient σ 

and ground-to-volume amplitude ratio µ). In this study, RVoG parameters were 

derived at native simulated GEDI footprints and interpolated into spatial maps for 

height estimation. These maps were used to greatly improve height estimations 

compared to those derived from TDX coherence alone or a joint use with GEDI-

derived DTM. However, such results were based on the use of GEDI observations 

with sufficient coverage – the estimated RVoG parameters were representative 

enough of the structural characteristics across the three forest sites, as indicated by the 

fusion results. As noted, GEDI lidar density would vary from site to site due to the 



 

 

 

 

 

 

138 

 

influence of cloud cover, variable orbital passes, and topography variations. This 

requires the development of approaches that reliably estimate RVoG parameters, 

which is particularly necessary for areas with less GEDI coverage, and greater 

structural and topographical complexity. Future studies may explore alternate ways 

that input RVoG parameters derived from areas with similar expected parameter 

values. This might be done by using segmentation and clustering algorithms to group 

segments from similar forest types and environmental conditions based on ancillary 

maps of, for example, TDX coherence or Landsat canopy cover (Clewley et al. 2014). 

Furthermore, the waveforms (or pseudo-waveforms) from lidar were not fully 

exploited and related to TDX observations. This was mainly because X-band radar 

signals often have limited penetration capabilities over dense forests and does not 

represent the full range of forest vertical structure, particularly over the understories. 

This is the primary reason why the underlying topography from GEDI is essential for 

TDX InSAR studies – for more reliable ground detection and height inversion. To 

overcome this limitation, DLR has planned another spaceborne full-polarimetric 

tandem SAR mission–TanDEM-L–for launch in 2023. This mission will work at L-

band and have a better canopy penetration capability, which will allow the retrieval of 

more detailed structural properties and the establishment of better relationships with 

GEDI-derived profiles. It would be of great significance to explore the fusion of 

GEDI and TanDEM-L datasets, when those become available, for improved biomass 

estimations. 
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A key element of mapping biomass with GEDI/TDX fusion is the accuracy of 

biomass estimation at the native GEDI footprints, a step depending on the quality of 

the empirical biomass–lidar relationship models (Duncanson et al. 2015b). Here 

multiple linear regression equations were established for simplicity and efficiency as 

it was not the primary focus of this study. It is possible to further reduce the total 

biomass estimation uncertainty by exploring the establishment of non-linear or other 

complex relationships based on machine learning algorithms. However, the 

propagation of modeling errors based on these complex relationships remains a 

challenging issue to be addressed. Attempts in this study formed only a prototype for 

characterizing this process at varied mapping scales under a rigorous statistical 

framework. 

To conclude, the forthcoming GEDI mission–among other spaceborne Earth-

observation lidar missions–can be a game changer for large scale biomass estimation 

and terrestrial carbon stock quantification in the next few years. This study is among 

the pioneering efforts to develop an algorithm for generating contiguous biomass 

maps from GEDI and TDX missions. Its efficacy has been largely demonstrated over 

representative biomes, and are expected to be globally applicable given sufficient 

GEDI coverage and availability of appropriate TDX acquisitions. Among many other 

similar studies, this research presents a trend towards a new era of active remote 

sensing, where data from missions as diverse as the TDX, GEDI, DLR’s TanDEM-L, 

NASA’s ICESat-2 and NISAR, and ESA’s BIOMASS, among others, are used jointly 
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to deepen our understanding of ecosystem structures and improve the quantification 

of terrestrial carbon stocks and fluxes.  
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