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the critical composition of the binary liquids.  During the fractionation, the polymer 

distributes itself in the lower and upper phases as a function of molecular weight.  The 
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FFFRRRAAACCCTTTIIIOOONNNAAATTTIIIOOONNN OOOFFF PPPOOOLLLYYY(((EEETTTHHHYYYLLLEEENNNEEE
GGGLLLYYYCCCOOOLLL))) BBBEEETTTWWWEEEEEENNN LLLIIIQQQUUUIIIDDD PPPHHHAAASSSEEESSS

II -- IINNTTRROODDUUCCTTIIOONN

1 - Poly(ethylene oxide)

       Since Albertsson confirmed their use in bioseparation in the late 50s,1  poly(ethylene 

oxide) (PEO) and poly(ethylene glycol) (PEG) have attracted the wide attention of the 

scientific world.  Showing interesting and peculiar characteristics in organic and aqueous 

solutions, PEO has been extensively studied.  Poly(ethylene oxide) with smaller 

molecular weight (200-20000 g/mol) is often referred as PEG.  In addition, any PEO that 

has hydroxyl groups at each extremity of the molecule is also called PEG.  The 

appellation of PEO is generally used for higher molecular weights or molecules with 

methyl oxide groups at each end.

       PEO and PEG are linear polymers with interesting properties.  The polymer is built 

up with repeating monomer units of  -(CH2-CH2 O)-.  The monomer possesses 

hydrophobic ethylene groups and hydrophilic oxygen atoms.   The hydrophobic elements 

(-CH2-CH2-) allow the polymer to be soluble in many organic solvents.  Meanwhile, the 

presence of the oxygen atom in every third position of the polymer favors the formation 

of hydrogen bonds, making the polymer soluble in water.  This important feature has 

generated its use in numerous pharmaceutical applications.   Hydrogen bonding and 

hydrophobic interactions play vital roles in protein folding and stability.2   Those two 
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characteristics found in proteins and other biomaterials have made the PEO useful to 

study biomolecular interactions.

       PEO or PEG has been extensively used in pharmaceutical industries because of its 

ability to adsorb on surfaces and at interfaces.  Considered as a biomaterial, PEO has 

been an important tool for drug purification, drug delivery and contact lenses.  PEO can 

be attached to drugs and vitamins to impart water solubility.  

2 - Fractionation

a.) Theoretical fractionation

       When a polydisperse polymer is dissolved in a binary solution of two liquid phases, 

we expect the polymer to distribute itself as a function of molecular weight between the 

upper phase and the lower phase at equilibrium.  The Flory-Huggins (FH) theory, which 

pioneered the understanding of this effect, cannot quantitatively describe such polymer 

fractionation because, like Van der Waals, FH ignores all non-mean field effects.3

Several refined theories have helped deal with the thermodynamics of the 

polymer/solvent systems.  Stockmayer and co-workers4 have proposed a “bridging” 

expression that considers all the interactions. That expression resulted in the addition of 

nonlinear terms in the Flory equation.  Evans5 and coworkers presented a theory of a 

polydisperse system based on the perturbation of a monodisperse system.   This theory 

predicted the ratio of the moments of the parent and daughter in homogeneous solutions 

or coexisting phases.  In fact, they showed that the difference in number average 

molecular weight, Mn of the daughter phases should be proportional to the skewness of 
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the parent distribution. This theory was later contradicted by Xu and Baus6, “but 

supported by measurements7 on colloidal particles.8”

       In 1995, Ten Brinke and Szleifer9 constructed a new theory that takes into account 

the non-mean field intramolecular and mean-field intermolecular interactions.  Using 

Monte Carlo calculations, this theory predicts the full molecular weight distribution and 

the distribution coefficient of the polymer.

b.) Experimental fractionation

       None of the latest theories have been experimentally tested.  Long before the coming 

of size exclusion chromatography (SEC), Okamoto10 et al. tried to measure the 

distribution coefficient and the molecular weight by viscometry.  One experiment using 

the SEC was done by Kleintjens11 et al. in which they studied polystyrene in cyclohexane 

and polyethylene in diphenyl ether at one temperature.    

       In 2002, Shresth12 et al. studied the fractionation of higher molecular weight PEO 

(Mw = 25700) in isobutyric acid and water at different temperatures below the critical 

point of the mixtures using the SEC.   The experiment showed the distribution of the 

molecular weight and the behavior of parent and daughter distributions in lower and 

upper phases. 

   3 - Coexistence Curve of Isobutyric Acid + Water

   Binary liquids that mix partially at constant pressure have coexistence curves with 

critical points similar to any critical point.13   The discrete points forming the coexistence 

curve are called transition temperatures, Tt.    Tt is the temperature at which a sample of a 

specific composition changes from a one-phase liquid to a two-phase liquids upon either 
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cooling or heating.  Tc becomes the maximum (upper critical solution temperature, 

(UCST) or minimum (lower critical solution temperature, LCST) value of Tt when Tt is 

measured as a function of composition.  Tc equals Tt only if the sample is at critical 

composition.

       The coexistence curve of isobutyric acid and water shows a UCST, which yields a 

maximum at the critical point (see figure 1).  Points in regions I and II on either side of 

the curve correspond to homogeneous lower and upper phases.  Inside the curve, two 

phases are in equilibrium with specific compositions.  The critical composition is 0.39 

mass fraction of isobutyric acid (IBA).  The critical temperature determined by Shresth et 

al.8 was 299.4 K ± 0.1 K; that is within 0.3 K of the values in the literature.  Once the 

minimal amount of polymer is added to the binary solution, a decrease of transition 

temperature was observed and the separation of the two phases appeared at 298.7 K.12
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Figure 1:  Coexistence Curve of Isobutyric Acid + Water: Coexisting Mole Fractions14
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4 - New Analysis and Data

       This work will focus on low molecular weight PEO.  A statistical analysis will be 

performed on Shresth’s data and on the new data in order (1) to calculate the mass of the 

polymer in each phase for which Dr. G. Smith, at Utah University, developed the 

calculations (see Appendix A), and (2) to seek the functional forms of the parent and 

daughter molecular weight distributions.

IIII -- TTHHEEOORREETTIICCAALL BBAACCKKGGRROOUUNNDD

1 - Flory Theory

       The common discussion of polymer fractionation between binary fluid phases is 

based on the Flory-Huggins prediction.  According to Flory- Huggins, the distribution of a 

polymer with size n over the two phases should fit the following equation:15

φn”/ φn’ = exp(-σn )                                                                                      (1)

where φn” and  φn’ represent the volume fraction of the polymer component of size n in 

the diluted and concentrated phases of volumes V” and V’ respectively.  σ is a constant 

which depends on temperature and pressure but is independent of the polymer size.  If the 

volumes are converted into masses of component n in each phase, then equation (1) 

becomes 

         ln (w”n/w’n) = ln r - σn                                                                                  (2)

where r is related to the ratio of the volumes of the coexisting phases and wn denotes the 

mass of the polymer species n.  The above equation (2) governs the fractionation of the 
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polymer between the two equilibrium phases, which predicts a linear chain length 

dependence of the logarithm of the distribution coefficient with ln r as intercept.  

 2 - Ten Brinke and Szleifer Theory

       Ten Brinke and Szleifer9 constructed a new theory in 1995.  The theory is based on 

one single chain to which they added non-mean field intramolecular interactions.  This 

theory predicts not only the full molecular weight distribution (MWD) of the polymer in 

each phase, but also the distribution coefficient for either an UCST or a LCST.    

       The core idea of this approach is the probability distribution function (pdf) of the 

chain conformations Pn(αn), where the subscript n indicates the size of the polymer, and 

αn the conformation of the polymer chain.  The theory clearly explains the relationship 

between the conformational degree of freedom and the thermodynamic behavior.    

       This theory uses the Helmholtz free energy function for a mixture of polymer 

molecules.  The mixture is composed of Nn polymers of length n.  The lattice consists of 

points M where M = ∑{n} nNn + Ns  and {n} denotes the different sizes of polymer and Ns

the number of solvent molecules.  The volume fraction of species φn  is given by nNn/M, 

and due to the lattice condition, the solvent volume fraction is given by φs = 1- ∑φn.  The 

Helmholtz free energy written in terms of pdf then becomes the following function:

βF = ∑ Nn ln φn +∑Pn (αn) ln P(αn)+ χ Nn <nn> φs ]+ Ns ln φs,                           (3)

where the first term and the second term, respectively, represent the translational entropy 
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and the conformational entropy of the polymers.  The third term denotes the interaction 

between the polymer molecule of size n and the solvent molecules, and the last term is 

the translational entropy of the solvent molecules.  Since the polymer solution contains 

only two types of molecules, solvent and monomers of polymer, the interaction parameter

χ =   εps – 1 (εp - pεss)     is their interaction, where εij is the interaction between                                                                            
                        2 KBT

monomer type i and monomer type j, T is the absolute temperature, and KB is the 

Boltzmann constant. 

       By minimizing the Helmholtz equation with respect to the pdf, the following 

equation is obtained:

        Pn(αn) = 1 exp[-χnn (αn)φs],                                                                         (4)
                       qn

“where qn is the single chain partition function that ensures the normalization of the pdf 

for each molecular weight.”9   By substituting Pn(αn) in equation (3), the Helmholtz free 

energy equation then becomes: 

βF = ∑[ Nn ln φn - Nn ln qn ]+ Ns ln φs.                                                            (5)
                 n

Once the polymer solution has reached its equilibrium, the distribution coefficient and the 

phase diagram can be calculated by finding the chemical potential of each phase.  To do 

so, the derivative of equation (5) is taken with respect to n, the size of polymer segment.     

µn = ln φn- ln qn - ∑φn χ <nn’>φs + (1-n) φs,                                                        (6)
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and for the solvent the chemical potential

µs = ln φs + (1- φs ) - ∑φn - ∑φn χ <nn’> (1- φs).                                                     (7)
                                              n       n

By equating both chemical potentials, the distribution coefficient that governs the 

fractionation of the polymer is given as follows:

        ln(φ’’n / φ’n) = - ln qn(φ’n) + (1-n)( φs’-φs”)-χ∑[ φn’<nn’>’ φs’-φn” <nn’>”φs”].     (8)

       This equation clearly does not show a linear dependence of the distribution 

coefficient on n, as predicted by FH theory.  

IIIIII -- PPRRIIOORR EEXXPPEERRIIMMEENNTTAALL WWOORRKK

1 - Kinetics

           All Shresth’s plots8, 12 suggested that equilibrium is attained after two to four days.  

The weight average molecular weight (Mw) and the number average molecular weight 

(Mn) appear to attain equilibrium at the same time.  The most important observation is 

that the kinetics and polydispersity indexes related to those polymers are independent of 

the temperature, which also appears to have little effect on the fractionation into the two 

daughter phases.  Figures 2 and 3 below show that the lower phase of the mixture 

contains the higher molecular weight polymer, while the upper phase has lower 

molecular weight polymers. 
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Figure 2:  Poly(ethylene oxide) in Isobutyric Acid + Water, Mn and Mw for the 
Upper and Lower Phases as a Function of Time at Tc -T = 0.1 K8
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2 - Molecular Weight Distribution

       One of the most exciting and interesting observations from Shresth ‘s experiment on 

PEO in IBA + H2O is the powerful fractionation of the poly(ethylene oxide).   The lower 

water rich-phase contains a higher average of molecular weight of polymer with smaller 

polydispersity index (PI).  The majority of polymer mass is in the upper phase, and the 

upper phase has lower molecular weights.  The ratio of the average molecular weight in 

the lower phase to that in upper phase is approximately 2.  The following table 

summarizes the fractionation at different temperatures and also the polydispersity index 

in each phase.

       The plot of molecular weight distribution (see figure 4) also confirms the fact that 

higher molecular weights of polymer are in the lower phase.  

Tc – T (K) Mw upper Mw lower Mn upper Mn lower PI upper PI lower

0.1 18000 36700 13100 34200 1.37 1.07

1 18000 36900 14200 35000 1.26 1.05

2 18800 40500 13900 37400 1.35 1.08

4 20300 35800 16800 33600 1.20 1.06

Table 1:  Coexisting Phases of Poly(ethylene oxide) in Isobutyric Acid and Water12
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Figure 4:  Poly(ethylene oxide) in Isobutyric Acid and Water:  Molecular Weight 
Distribution at Tc-T = 0.1 K8
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The following table summarizes all the findings of Shresth8, 12 in the fractionation of the 
PEO in IBA+ H2O

Properties PEO/IBA+H2O

Phase with more total polymer Upper, IBA-rich (80-90%)

Phase with higher molecular weight polymer Lower, water-rich

Reduction in PI with separation 23%

[Mw in higher Mw phase]/Mw in lower Mw phase 1.8

Table 2:  Summary of the Distribution of PEO in Isobutyric Acid and Water8

3 - Flory Theory

       All data on PEO from Shresth et al.8 came to the same conclusion that the plot of 

ln (wn
”/wn

’) versus molecular weight taken at different temperatures has a negative slope 

and downwardly concave curvature.(see figure 5 and 6 below).



15

T  = 298.6 K

-10

-8

-6

-4

-2

0

2

4

6

8

10

10 15 20 25 30 35 40

M olecular W eight * 10^3

ln
(w

(M
)"

/w
(M

)')

T = 297.7 K

-30

-20

-10

0

10

20

30

10 15 20 25 30 35 40

Molecular Weight

ln
(w

(M
)"

/w
(M

)')

Figure 5:  Poly(ethylene oxide) in Water + Isobutyric Acid.  Plots of ln(w(M)”/w(M)’

at  T = 298.6 K and T = 297.7 K where w(M)” = Mass Fraction of Polymer in 
Concentrated  Phase and w(M)’ = Mass Fraction in the Diluted Phase8



16

T = 296.7 K

-10

-8

-6

-4

-2

0

2

4

6

8

10

15 25 35

Molecular Weight *10^3

ln
 (

w
(M

)"
/w

(M
)')

T  = 294.7 K

-15

-10

-5

0

5

10

15

10 20 30 40

Molecular W eight *(10^3)

ln
(w

(M
)"

/w
(M

)')

Figure 6:  Poly(ethylene oxide) in Water + Isobutyric Acid.  Plots of ln(w(M)”/w(M)’ 
at T = 296.7 K and T = 294.7 K, where w(M)”=Mass Fraction of Polymer in the 

Concentrated Phase and w(M)’ =Mass Fraction in Diluted Phase8
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IIVV -- NNEEWW AANNAALLYYSSIISS OOFF PPRRIIOORR EEXXPPEERRIIMMEENNTTSS

 1 - Functional Form of Molecular Weight Distribution

A Matlab software program created by Matt Retzer and revised by Dr. S.  Greer and 

Michael L. Alessi (See Appendix B) was used to fit proposed functions to the data.  A 

good fit must fulfill the following requirements: (1) the reduced chi-squared is minimized 

(2) the residual plot must not show any major trends, and (3) the uncertainty on each 

parameter is smaller than the parameters.  The program requires inputs for initial values, 

a confidence level, and the weighted parameters.  The software will produce the errors 

associated with the calculated values of free parameters, the reduced chi-squared, and the 

residual plot.  If the value of the reduced chi-square is around 1 and the residual plot is 

random, then we can conclude that there is a good fit.  All errors are reported at 99% 

confidence interval, based on the errors associated with the molecular weights of 10%. 

       Two distributions are considered.  The first distribution is the Gaussian distribution 

because of the symmetry observed in the plot of the lower phase data.  The second 

distribution is the lognormal distribution, because all the data plots showed a positively 

skewed tail.  The data sets were abridged because of the larger scatter at higher molecular 

weights.  

       The Gaussian16 equation to be used is the normal distribution.

               n(M) =  exp(-(M-µ)2/  2 σ2 )  ,      (Gaussian)                                            (9)
σ (2 π)0.5

where n(M) is the number fraction as a function of molecular weight.  The values µ and σ
are the parameters that the nonlinear fitting algorithm determined in order to have the 

best fit.  This equation is applied only to the lower phase data points.
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The parameter µ is 34.2816
The parameter σ is 8.3543
The confidence level is 99%.
The uncertainties in parameter µ is 0.74769
The uncertainties in parameter σ is 0.272
The reduced chi squared is 14.647

Figure 7:  Lower Phase:  Fitting and Residual Plots for Gaussian Function  
(Equation 9) at Tc - T = 0.1 K for Shresth’s data on PEO in Isobutyric Acid and 

Water8, 12
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The parameter µ is 34.2816
The parameter σ is 8.3543
The confidence level is 99%.
The uncertainties in parameter µ is 0.74769
The uncertainties in parameter σ is 0.272
The reduced chi squared is 14.647

Figure 8:  Lower Phase:  Fitting and Residual Plots for Gaussian Function  
(Equation 9) at Tc - T = 1 K for Shresth’s data on PEO in Isobutyric Acid 

and Water8, 12



20

The parameter µ is 38.5284
The parameter σ is 8.1861
The confidence level is 99%.
The uncertainties in parameter µ is 1.0511
The uncertainties in parameter σ is 0.39867
The reduced chi squared is 18.3612

Figure 9:  Lower Phase:  Fitting and Residual Plots for Gaussian Function  
(Equation 9) at Tc - T = 2 K for Shresth’s data on PEO in Isobutyric Acid

and Water8, 12
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The parameter µ is 34.1473
The parameter is σ 7.1325
The confidence level is 99%.
The uncertainties in parameter µ is 0.85587
The uncertainties in parameter σ is 0.3094
The reduced chi squared is 20.2162

Figure 10:  Lower Phase:  Fitting and Residual Plots for Gaussian Function  (Equation 9) at 
Tc -T = 4 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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       The Gaussian distribution (equation 9) did not provide a random residual plot for the 

lower phase (see figures 7-10).  Therefore, a slightly modified Gaussian distribution 

(equation 10) was considered.  One new constant a1 has been added to the equation.  The 

purpose of the modification was to scale down the Gaussian function in order to amend 

the fit.  The values µ, σ, and a1 are the parameters needed for the nonlinear fitting 

algorithm in order to have the best fit. 

        n(M) =  a1exp(-(M-µ)2/  2 σ2 )  ,      (Gaussian1)                         (10)
σ (2 π)0.5

The above function (equation 10) was used to fit only the lower phase data.  The residual 

plots (see figures 11-14) look fairly random.  
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The parameter a1 is 0.32209
The parameter σ is 14.1055
The parameter µ is 31.8339
The confidence level is 99%.
The uncertainties in parameter a1 is 0.0066962
The uncertainties in parameter σ is 0.28462
The uncertainties in parameter µ is 0.1008
The reduced chi squared is 2.448

Figure 11:  Lower Phase:  Fitting and Residual Plots for Gaussian1 Function  (equation 10) 
at T-Tc= 0.1 K for Shrest’s data on PEO in Isobutyric Acid and Water8, 12
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The parameter a1 is 0.14701
The parameter σ is 13.1778
The parameter µ is 33.065
The confidence level is 99%.
The uncertainties in parameter a1 is 0.0043283
The uncertainties in parameter σ is 0.38656
The uncertainties in parameter µ is 0.13685
The reduced chi squared is 2.243

Figure 12:  Lower Phase:  Fitting and Residual Plots for Gaussian1 Function (equation 10) 
at T-Tc= 1 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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The parameter a1 is 0.28289
The parameter σ is 15.6352
The parameter µ is 35.5143
The confidence level is 99%
The uncertainties in parameter a1 is 0.0070458
The uncertainties in parameter σ is 0.33039
The uncertainties in parameter µ is 0.1061
The reduced chi squared is 1.687

Figure 13:  Lower Phase:  Fitting and Residual Plots for Gaussian1 Function (equation 10) 
at T-Tc= 2 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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The parameter a1 is 0.27284
The parameter σ is 13.9667
The parameter µ is 32.1043
The confidence level is 99%.
The uncertainties in parameter a1 is 0.0064705
The uncertainties in parameter σ is 0.30595
The uncertainties in parameter µ is 0.10635
The reduced chi squared is 2.097

Figure 14: Lower Phase:  Fitting and Residual Plots for Gaussian1 Function (equation 10) 
at Tc-T = 4 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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       The next functions tested were lognormal functions.  The choice of the lognormal 

functions was based on the fact that the plots describing the number fraction are 

positively skewed.  The first function, equation 11 is a standard lognormal distribution.16

        n(M)  =   exp – (ln(M)- µ)2 / (2σ2)  ,                (lognormal)                          (11) 
                                   (2π)0.5 σM       

       None of the residual plots from the lognormal (equation 11) fits were random (see 

figures 15-23).  
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The parameter µ is 4.4982
The parameter σ is 0.01106
The confidence level is 99%.
The uncertainties in parameter µ is 0.25447
The uncertainties in parameter σ is 0.00343
The reduced chi squared is 9.68441

Figure 15:  One-Phase:  Fitting and Residual Plots for Lognormal Function (Equation 11) 
at T = 300 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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The parameter σ is 0.23499
The parameter µ is 32.5641
The confidence level is 99%.
The uncertainties in parameter σ is 0.0096589
The uncertainties in parameter µ is 0.77379
The reduced chi squared is 13.8423

Figure 16:  Lower Phase:  Fitting and Residual Plots for Lognormal Function (Equation 11) 
at Tc-T = 0.1 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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The parameter µ is 5.8704
The parameter σ is 0.00032913
The confidence level is 99%.
The uncertainties in parameter µ is 0.28941
The uncertainties in parameter σ is 0.00011673
The reduced chi squared is 18.4935

Figure 17:  Upper Phase:  Fitting and Residual Plots for Lognormal Function (Equation 11) 
at Tc-T = 0.1 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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The parameter σ is 0.22247
The parameter µ is 33.8092
The confidence level is 99%.
The uncertainties in parameter σ is 0.0083333
The uncertainties in parameter µ is 0.8083
The reduced chi squared is 38.2645

Figure 18:  Lower Phase:  Fitting and Residual Plots for Lognormal Function (Equation 11) 
at Tc-T = 1 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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The parameter µ is 5.0699
The parameter σ is 0.0019114
The confidence level is 99%.
The uncertainties in parameter µ is 0.21156
The uncertainties in parameter σ is 0.00028811
The reduced chi squared is 25.0744

Figure 19:  Upper Phase:  Fitting and Residual Plots for Lognormal Function (Equation 11) 
at Tc-T = 1 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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The parameter σ is 0.19149
The parameter µ is 35.4707
The confidence level is 99%.
The uncertainties in parameter σ is 0.010122
The uncertainties in parameter µ is 1.063
The reduced chi squared is 18.7533

Figure 20:  Lower Phase:  Fitting and Residual Plots for Lognormal Function (Equation 11) 
at Tc-T = 2 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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The parameter µ is 5.1937
The parameter σ is 0.0003762
The confidence level is 99%.
The uncertainties in parameter µ is 0.20563
The uncertainties in parameter σ is 0.00011265
The reduced chi squared is 11.6106

Figure 21:  Upper Phase:  Fitting and Residual Plots for Lognormal Function (Equation 11) 
at Tc-T = 2 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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The parameter µ is 3.7308
The parameter σ is 0.0094349
The confidence level is 99%.
The uncertainties in parameter µ is 0.18306
The uncertainties in parameter σ is 0.002603
The reduced chi squared is 11.9585

Figure 22:  Upper Phase:  Fitting and Residual Plots for Lognormal Function (Equation 11) 
at Tc-T = 4 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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The parameter σ is 0.20137
The parameter µ is 33.0594
The confidence level is 99%.
The uncertainties in parameter σ is 0.0095973
The uncertainties in parameter µ is 0.89275
The reduced chi squared is 17.5371

Figure 23:  Lower Phase:  Fitting and Residual Plots for Lognormal Function (Equation 11) 
at Tc-T = 4 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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       The lognormal distribution did not provide random residual plots.  Equation 12, a 

lognormal function16 with new constant parameter c1, was applied to all the data.  The 

purpose of the addition was to scale down the lognormal distribution in order to fit the 

data points.

        n(M)  =    c1 exp – (ln(M)- µ)2 / (2σ2)  ,    (lognormal1)                         (12)    
                                           (2π)0.5 σM       
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The parameter c1 is 4.6974
The parameter σ is 1.9284
The parameter is µ 3.8285
The confidence level is 99%.
The uncertainties in parameter c1 is 6.7757
The uncertainties in parameter σ is 0.43076
The uncertainties in parameter µ is 3.7108
The reduced chi squared is 17.212

Figure 24:One-Phase:  Fitting and Residual Plots for Lognormal1 Function (Equation 12) 
at T = 300 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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The parameter c1 is 0.32267
The parameter σ is 0.23224
The parameter µ is 32.3507
The confidence level is 99%.
The uncertainties in parameter c1 is 0.0064888
The uncertainties in parameter σ is 0.0030538
The uncertainties in parameter µ is 0.13397
The reduced chi squared is 2.449

Figure 25:  Lower Phase:  Fitting and Residual Plots for Lognormal1 Function 
(Equation 12) at Tc-T = 0.1 K for Shresth’s data on PEO in Isobutyric Acid and 

Water8, 12
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The parameter c1 is 0.048307
The parameter σ is 0.63012
The parameter µ is 8.0238
The confidence level is 99%.
The uncertainties in parameter c1 is 0.00077456
The uncertainties in parameter σ is 0.0055445
The uncertainties in parameter µ is 0.07107
The reduced chi squared is 20.041

Figure 26:  Upper Phase:  Fitting and Residual Plots for Lognormal1 Function (Equation 
12) at Tc-T = 0.1 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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The parameter c1 is 0.15391
The parameter σ is 0.93934
The parameter µ is 18.4104
The confidence level is 99%.
The uncertainties in parameter c1 is 0.005849
The uncertainties in parameter σ is 0.013532
The uncertainties in parameter µ is 0.49265
The reduced chi squared is 20.0879

Figure 27:  Upper Phase:  Fitting and Residual Plots for Lognormal1 Function (Equation 
12) at Tc-T = 1 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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The parameter c1 is 0.14115
The parameter σ is 0.19873
The parameter µ is 33.3372
The confidence level is 99%.
The uncertainties in parameter c1 is 0.0035649
The uncertainties in parameter σ is 0.004485
The uncertainties in parameter µ is 0.16442
The reduced chi squared is 2.241

Figure 28:  Lower Phase:  Fitting and Residual Plots for Lognormal1 Function (Equation 
12) at Tc - T = 1 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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The parameter c1 is 0.029946
The parameter σ is 0.56767
The parameter µ is 6.3054
The confidence level is 99%.
The uncertainties in parameter c1 is 0.00035774
The uncertainties in parameter σ is 0.0040577
The uncertainties in parameter µ is 0.040603
The reduced chi squared is 20.8621

Figure 29:  Upper Phase:  Fitting and Residual Plots for Lognormal1 Function (Equation 
12) at Tc-T = 2 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12



44

The parameter c1 is 0.28793
The parameter σ is 0.2292
The parameter is µ 36.0985
The confidence level is 99%.
The uncertainties in parameter c1 is 0.0079052
The uncertainties in parameter σ is 0.0038922
The uncertainties in parameter µ is 0.15563
The reduced chi squared is 1.677

Figure 30:  Lower Phase:  Fitting and Residual Plots for Lognormal1 Function 
(Equation 12) at T - Tc = 2 K for Shresth’s data on PEO in Isobutyric Acid and 

Water8, 12
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The parameter c1 is 0.27649
The parameter σ is 0.22726
The parameter is µ 32.585
The confidence level is 99%.
The uncertainties in parameter c1 is 0.0069873
The uncertainties in parameter σ is 0.003656
The uncertainties in parameter µ is 0.14348
The reduced chi squared is 2.063

Figure 31:  Lower Phase:  Fitting and Residual Plots for Lognormal1 Function (Equation 
12) at Tc- T= 4 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12 
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The parameter c1 is 0.13972
The parameter σ is 0.80468
The parameter µ is 16.3393
The confidence level is 99%.
The uncertainties in parameter c1 is 0.0026756
The uncertainties in parameter σ is 0.0068373
The uncertainties in parameter µ is 0.19525
The reduced chi squared is 19.349

Figure 32:  Upper Phase:  Fitting and Residual Plots for Lognormal1 Function (Equation 
12) at Tc- T= 4 K for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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       Like the Gaussian distribution (equation 9), the lognormal distribution (equation 11) 

did not yield random residuals in any phases.  However, when equation 10 (Gaussian1) 

and equation 12 (lognormal1) are compared, they both provided reasonably random 

residuals for the lower phase.  Thus, those two equations yielded a better fit for the lower 

phase.

2 - Mass in Coexisting Phases

       In order to determine the mass of polymer in each phase and confirm the fact that 

most of the polymer is in the upper phase, the following equation from Dr. Grant Smith, 

University of Utah, is used.17   The derivation (see Appendix A) is based on the fact that 

the mass of each molecular weight is conserved.  The total mass of polymer in each phase 

is:  

         WT
A =   w(M) - wB(M)       WT                                                                       (13)

                      wA(M) - wB(M)

        WT
B=   w(M) – wA(M)       WT                                (14)

                     wB(M) – wA(M)

where WT denotes the initial weight of polymer, WT
A , W

T
B    respectively represent the 

total mass of polymer in upper and lower phases, and w(M) is the weight fraction in one 

phase while wA(M) and wB(M) are the weight fractions in the upper and lower phases 

respectively.

       The mass in each phase was determined from each data point and then the average 

mass in that phase was calculated by summing all the masses and divided by the total 

number of data points. The standard error was determined by finding the standard 
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deviation of the mean and divided by the square-root of the total number of data points; 

errors are reported as one standard deviation.  Several outliers were deleted.

The results are shown in table 3 and figure 33, which indicate that most of the PEO 

migrate into the upper phase.  The mass fraction in the upper phase is roughly five times 

the mass fraction in the lower phase.  

Temperature Mass and Mass Fraction in 
Upper Phase

Mass and Mass Fraction in 
Lower Phase

0.1 K (0.067 ± 0.042) gram

(0.817 ± 0.512)

(0.015 ± 0.042) gram

(0.183 ± 0.512)

1 K (0.046 ± 0.002) gram

(0.719 ± 0.031)

(0.018 ± 0.002) gram

(0.281 ± 0.031)

2 K (0.0541 ± 0.0016) gram

(0.845 ± 0.025

(0.0099 ± 0.0016) gram

(0.154 ± 0.025)

4 K (0.0627 ± 0.0250) gram

(0.979 ± 0.390)

(0.0013 ± 0.0250) gram

(0.021 ± 0.390)

Table 3:  Mass and Mass Fraction of Polymer in Lower and Upper Phases at 
Different Temperatures for Shresth’s data on PEO in Isobutyric Acid and Water8, 12
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Mass fraction
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Upper phase mass fraction at Tc-T = 0.1 K
Lower phase mass fraction at Tc-T = 0.1 K
Upper phase mass fraction at Tc-T = 1 K
Lower phase mass fraction at Tc- T= 1 K
Upper mass fraction at Tc - T =2 K
Lower mass fraction atTc - T = 2 K
Upper mass fraction at Tc-T = 4 K
Lower mass fraction at Tc-T = 4 K

Figure 33:  Plot (Tc-T) vs Mass Fraction for the Upper and Lower Phases:

From Shresth’s Data on PEO (Mw = 25700) in Isobutyric Acid and Water8, 12
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VV -- NNEEWW EEXXPPEERRIIMMEENNTTSS

1 - Experimental methods

     a.) Temperature Control

       In order to achieve control of the temperature, the sample cell is completely 

submerged in a water bath.  The bath, a large glass container surrounded by Styrofoam,

allows different components to be inserted.  A precision temperature controller (Tronac 

PTC-41), which is connected to a 60-watt light bulb, controls the temperature of the bath.  

The light bulb serves as a control heater.  Cold diethylene glycol is circulated through a 

copper tube to provide cooling.  Since most of the heat exchange is through the top, the 

bath is covered with polypropylene balls as insulator.  A 9540 digital platinum resistance 

thermometer (Guildline) measures the temperature of the bath to ± 0.001 K.

b.) Sampling Manifold

       Shresth12 designed the sampling manifold based on the following requirements.

1- The polymer-solvent systems have to be free of any impurities. 

2- The temperature control should be provided by a water bath; therefore the polymer 

solution should be immersed.18

3- The apparatus should allow the simultaneous withdrawal of the polymer solution from 

both phases without disturbing the equilibrium.

 The sampling process should follow this procedure:

1- Attach the vacuum pump to the sample cell.



51

2- Close the auxiliary and vent valves and start the vacuum pump.

3- Open the auxiliary valves.

4- Move the main valve in such a way that the polymer solution is withdrawn into the 

glass vials.

5- Once the sampling process is done, close the main to cut off the main valve from the 

vacuum line valve and then the auxiliary valves.  

6- Remove the vials.

c.) Size Exclusion Chromatography

       The principle of size-exclusion chromatography (SEC) or gel permeation 

chromatography (GPC) is the separation of polymer at different molecular weights 

throughout a column packed with porous beads.  In the beginning, a sample of polymer 

solution is injected into the column.  As the solvent goes through the column, the larger 

molecules elute first (smaller volume of solvent) leaving the smaller molecules diffusing 

through the porous beads to elute last (larger volume of solvent).  The main factor related 

to the size exclusion chromatography is the hydrodynamic volume, not the molecular 

weight.19   The relative abundances of the different polymer fractions are given by the 

plots are called chromatograms.         

       The GPC analyses were performed using a Waters GPC system equipped with a 

column oven and differential refractometer, both maintained at 40°C, and four columns 

consisting of a Waters Ultrastyragel 500 angstroms, Waters Styragel HR3, Styragel HR4, 
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and Shodex K-806M, also maintained at 40°C.  THF is used as eluant at the flowrate of 

1.1 ml/min.        

       To obtain the molecular weight of the different polymer fractions, the chromatograph 

is calibrated with known sample molecular weights.  Calibration involves the 

determination of the elution volume for a series of narrow molecular weight polymers.  

The SEC was calibrated with four PEO standards at Mn = 2375,10125, 13200, 15400, 

48600.  

         “GPC for Windows” Version 1.23, published by Chemware, Mount Waverly, 

Victoria, Australia,20  was  used to find the molecular weight distribution, the average 

molecular weight, the average number molecular weight, and the polydispersity index 

from each chromatogram.
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Figure 34: A Schematic Diagram of the SEC Process: 

From www.impactanalytical.com
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2 - Polymer samples

 The polymers studied have average molecular weights ranging from 2000 to 20000.  

We choose two polymers with two different end groups, hydroxyl (OH) or (OCH3), but 

different molecular weights.    

       The different polymers obtained are the following

Sample Source Catalog # / Lot  #/ Sample # MW End Group

1 Fluka Chemical 425182/1 12401 20900 OH

2 Polymer Source PEG-2OCH3-2K 4530 OCH3

Table 4:  Polymer Samples

3 - Procedures

       The purpose of the experiments was to study samples from the coexisting phases of 

the PEO and PEG at different temperatures below the critical point. The critical 

temperature of isobutyric acid and water is 298.7 K and the critical mass fraction is 

0.39.12   The different temperatures chosen were Tc - T = 0.1 K, 1 K, 2 K, and 4 K below 

the critical point.  For each temperature, a fresh sample was prepared by the following 

procedures. 

a.) Sample 1: Preparation of Poly(ethylene oxide): Mw = 20900; Termination = -OH

       For sample 1 only two temperatures were considered, to confirm the findings made 

previously by Shresth.12
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       Isobutyric acid and poly(ethylene oxide)were respectively purchased from Fluka 

Chemical and Aldrich Chemical Co.  The isobutyric acid (lot # 14103 CL) came with 

99.9 % of purity while the poly(ethylene oxide) (Mw = 20000, lot and filling code 

425182/1 12401) had to be recrystallized in methanol to increase its purity.  This was the 

very same PEO used by Shresth.8,12   The distilled, de-ionized water came from a 

Barnstead Nanopure purification system located in the laboratory.  

       In a clean and dry sample cell, a polymer solution was made by mixing together 50.4 

g of fresh distilled de-ionized water, 32.2 g isobutyric acid, and 0.0877 grams of 

poly(ethylene oxide).  A glass stir bar was added to mix the solution.  The polymer 

solution was placed on the manifold in a stirred water bath at 319 K for three days.  On 

the third day, the solution was cooled down at 300 K and roughly 2 ml of polymer 

solution was extracted from the one-phase solution into a pre-weighed vial.  This step 

was done to confirm the molecular weight given by the manufacturer using the SEC 

apparatus described above.  The solution was then cooled down to 298.6 K and held 

constant for five days.  Approximately 2 ml from each phase were extracted at various 

times over five days into pre-weighed vials.  Any liquid left in the capillaries was 

removed by discarding the first few drops for each sample collection.  All the vials from 

the above experiments were placed under vacuum for a couple of days to dry and remove 

any trace of water and isobutyric acid.  The vials were weighed and the mass of polymer 

was determined.  The polymer was then dissolved in THF at roughly 2 mg/ml.  All the 

samples were then analyzed by the SEC as described above. 
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       A fresh sample of polymer and isobutyric acid and water was made by mixing 87 mg 

of polymer, 50.38 g of water, and 32.3 g of isobutyric acid.  The above experiment was 

repeated at  294.7 K.  

b.) Sample 2: Preparation of Poly (ethylene glycol): Mw = 4530; Termination = OCH3

       The poly(ethylene glycol) (Sample # PEG2OCH3-2K) (Manufacturer’s analysis Mw

= 2200, Mn = 2000, PI = 1.10) used in this experiment was obtained from Polymer 

Source Inc. Dorval, Canada.  The polymer was used as received from Polymer Source.  

The isobutyric acid with 99.9% of purity was obtained from Aldrich Chemical 

Corporation (Lot # 062K3482).  Distilled and de-ionized fresh samples of water were 

obtained from a Barnstead Nanopure system.  

       The first sample was made by mixing 87 milligrams of poly(ethylene glycol) with 

50.34 grams of water and 32.3 grams of isobutyric acid in a cell.  To that polymer 

solution was added a glass stir bar.  The sample cell was then placed in a mixed water 

bath for three days at 319 K.  The solution was then cooled down to 300 K and after five 

hours the stirrer was stopped and a one-phase sample was extracted into a pre-weighed 

vial in order to verify the accuracy of the information provided by the company.  The 

solution was then cooled down at 297.7 K and held at constant temperature for five days. 

Prior to each sample extraction, any liquid left in the capillaries was discarded.  Each day, 

samples from both phases were extracted into a pre-weighed vial.  

       The second, and the third experiments were made by mixing fresh samples of  32.3 

grams of isobutyric acid, 50.34 grams of water, and 87 milligrams of poly(ethylene 
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glycol) in a cell.  Each time the polymer solutions were mixed with a glass stir bar and 

the above experiment was repeated at 296.7 K and 294.7 K. 

VVII -- RREESSUULLTTSS OOFF NNEEWW EEXXPPEERRIIMMEENNTTSS

1 - Sample 1: Mw = 20900; Termination = -OH

a.) Kinetics

       The results shown in Figure 15-16 are similar to the previous experiments done by 

Shresth.27   The parent phase (day 0) gives Mw = 20900, Mn = 15900, and PI = 1.31.  The 

only information provided by the manufacturer was Mw = 20000.  The lower phase yields 

higher molecular weight with a very narrow polydispersity when compared to the upper 

phase.  The equilibrium is reached between day 2 and day 4 for the upper and the lower 

phases.  In addition, Mn and Mw reach the equilibrium at the same time.
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Figure 35:  Mn and Mw for the Upper and the Lower Phases as a Function of Time 
at T = 298.6 K for Sample 1:  Mw = 20900; Termination = -OH
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Figure 36: Mn and Mw for the Upper and the Lower Phases as a Function of Time 
at T = 294.7 K for Sample 1:  Mw = 20900; Termination = -OH
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b.) Molecular Weight Distribution

       The trends analyzed here show that higher molecular weight PEO migrates to the 

lower phase, while shorter chains with higher polydispersity move to the upper phase.  

Table 5 summarizes all the results.

T- Tc (K) Mn upper Mw upper Mn lower Mw lower PI upper PI lower
0.1 K 12.7 16.7 34.6 36.3 1.32 1.07
4 K 14.6 19.9 34.9 38.2 1.36 1.09

     Table 5:  Mass of Polymer in Lower and Upper Phase at Different Temperatures 
for Sample 1: Mw = 20900; Termination = -OH

       The following plots (figures 38-39) show extensive noise due to the fact that the 

lower phase has a very weak signal because of the lower concentration of polymer.  

To make the plots readable, data at larger and smaller molecular weights that showed 

scatter have been left out.  The normalization process included all the data in the fits.

The following figures demonstrate the fact that the lower phase has higher average 

molecular weight as compared to the upper phase.  
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Figure 37: Comparison of Molecular Weight Distributions in the Upper and Lower 
Phases at 298.6 K for Sample 1:  Mw = 20900; Termination = -OH
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Figure 38: Comparison of the Molecular Weight Distributions in the Upper and 
Lower phases at 294.7 K for Sample 1:  Mw = 20900; Termination = -OH
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c.) Flory - Huggins Theory

       The plot generated from FH theory (see figure 19) is a concave downward, 

disagreeing with FH.
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Figure 39:  Ln (w(M)”/ w(M)’) vs. Molecular Weight  at 298.6 K for Sample 1: 
Mw = 20900; Termination = -OH
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Figure 40:  Ln (w(M)”/ w(M)’) vs. Molecular Weight at 294.7 K for Sample 1: 
Mw = 20900; Termination = -OH
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d.) Statistical Analysis

       The different equations in section IV- 1 were used to test the different data sets.  The 

first equation (equation 9), which is a Gaussian distribution16 was applied to the lower 

phase of the samples with Mw = 20900.  Like Shresth’s12 data, the residual plots are not 

random.  They all seem to have a pattern (see figures 41-42).  
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The parameter µ is 53.2794
The parameter σ is 12.1364
The confidence level is 99%.
The uncertainties in parameter µ is 1.0734
The uncertainties in parameter σ is 0.37163
The reduced chi squared is 7.7672

Figure 41:  Lower Phase:  Fitting and Residual Plots for Gaussian Function (Equation 9) at 
Tc-T = 0.1 K for Mw = 20900; Termination-OH
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The parameter µ is 63.4491
The parameter σ is 15.9432
The confidence level is 99%.
The uncertainties in parameter µ is 1.1033
The uncertainties in parameter σ is 0.40502
The reduced chi squared is 17.7705

Figure 42:  Lower Phase:  Fitting and Residual Plots for Gaussian Function (equation 9) at 
Tc-T = 4 K for Mw = 20900; Termination-OH
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       Because the residual plots from the Gaussian distribution (equation 9) did not show 

any randomness, we decided to use the slightly modified Gaussian (equation 10) that has 

provided fairly random residuals for Shresth’s lower phase.    Again, equation 10 yielded 

quite random residual plots (see figures 43-44).
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The parameter a1 is 0.43158
The parameter σ is 18.8017
The parameter µ is 48.0294
The confidence level is 99%.
The uncertainties in parameter a1 is 0.0016273
The uncertainties in parameter σ is 0.092502
The uncertainties in parameter µ is 0.039496
The reduced chi squared is 4.7423

Figure 43:  Lower Phase:  Fitting and Residual Plots for Gaussian1 Function (equation 10) 
at Tc-T = 0.1 K for Mw = 20900; Termination-OH
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The parameter a1 is 0.26674
The parameter σ is 17.6148
The parameter µ is 52.5295
The confidence level is 99%.
The uncertainties in parameter a1 is 0.002889
The uncertainties in parameter σ is 0.22434
The uncertainties in parameter µ is 0.090266
The reduced chi squared is 4.1407

Figure 44:  Lower Phase:  Fitting and Residual Plots for Gaussian1 Function (equation 10) 
at Tc-T = 4 K for Mw = 20900; Termination-OH
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       Like previous plots from Shresth’s data12, the lognormal distribution (equation 

11) and the modified lognormal (equation 12) were considered.  The two equations 

were applied to all the phases.  Equation 11 did not provide random residual, (see 

figures 45-49), therefore, we decided to consider equation 12, which is a slightly 

modified lognormal distribution.    Equation 12 gave fairly random residual plots (see 

figures 50-54) for the lower phase only.
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The parameter σ is 0.40304
The parameter µ is 7.0478
The confidence level is 99%.
The uncertainties in parameter σ is 0.019601
The uncertainties in parameter µ is 0.39048
The reduced chi squared is 4.6391

Figure 45:  One-Phase:  Fitting and Residual Plots for Lognormal Function (Equation 11) 
at T = 300 K for Sample 1:  Mw = 20900; Termination = -OH
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The parameter σ is 0.37176
The parameter µ is 54.35
The confidence level is 99%.
The uncertainties in parameter σ is 0.0082238
The uncertainties in parameter µ is 1.1842
The reduced chi squared is 4.1224

Figure 46:  Lower Phase: Fitting and Residual Plots for Lognormal Function (Equation 11) 
at Tc- T = 0.1 K from Sample 1:  Mw = 20900; Termination = -OH
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The parameter σ is 0.34782
The parameter µ is 8.8109
The confidence level is 99%.
The uncertainties in parameter σ is 0.026803
The uncertainties in parameter µ is 0.5594
The reduced chi squared is 3.2964

Figure 47:  Upper Phase:  Fitting and Residual Plots for Lognormal Function (Equation 11) 
at T-Tc- T = 0.1 K for Sample 1:  Mw = 20900; Termination = -OH
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The parameter σ is 0.37262
The parameter µ is 58.0076
The confidence level is 99%.
The uncertainties in parameter σ is 0.010965
The uncertainties in parameter µ is 1.082
The reduced chi squared is 12.0413

Figure 48:  Lower Phase:  Fitting and Residual Plots for Lognormal Function (Equation 11) 
at Tc- T = 4 K from Sample 1:  Mw = 20900; Termination = -OH



76

The parameter σ is 0.13489
The parameter µ is 18.9411
The confidence level is 99%.
The uncertainties in parameter σ is 0.0063316
The uncertainties in parameter µ is 0.47826
The reduced chi squared is 42.5819

Figure 49:  Upper Phase:  Fitting and Residual Plots for Lognormal Function (Equation 11) 
at  T-Tc- T = 4 K for Sample 1:  Mw = 20900; Termination = -OH
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The parameter c1 is 0.011126
The parameter σ is 0.053668
The parameter µ is 21.8725
The confidence level is 99%.
The uncertainties in parameter c1 is 0.00012566
The uncertainties in parameter σ is 0.0008272
The uncertainties in parameter µ is 0.017345
The reduced chi squared is 19.408

Figure 50:  One-Phase: Fitting and Residual Plots for Lognormal1 Function 
(Equation 12) at T = 300 K for Sample 1:  Mw = 20900; Termination = -OH
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The parameter c1 is 0.63515
The parameter σ is 0.33551
The parameter µ is 49.4527
The confidence level is 99%.
The uncertainties in parameter c1 is 0.040842
The uncertainties in parameter σ is 0.012604
The uncertainties in parameter µ is 1.7702
The reduced chi squared is 8.617

Figure 51:  Lower Phase: Fitting and Residual Plots for Lognormal1 Function
(Equation 12) at Tc- T = 0.1 K from Sample 1:  Mw = 20900; Termination = -OH
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The parameter c1 is 0.030369
The parameter σ is 0.11443
The parameter µ is 19.624
The confidence level is 99%.
The uncertainties in parameter c1 is 0.00068082
The uncertainties in parameter σ is 0.0031172
The uncertainties in parameter µ is 0.056286
The reduced chi squared is 19.508

Figure 52:  Upper Phase: Fitting and Residual Plots for Lognormal1 Function    
(Equation 12) at T-Tc- T = 0.1 K for Sample 1:  Mw = 20900; Termination = -OH
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The parameter c1 is 0.0029527
The parameter σ is 0.15596
The parameter µ is 20.5337
The confidence level is 99%.
The uncertainties in parameter c1 is 3.9378e-005
The uncertainties in parameter σ is 0.0025669
The uncertainties in parameter µ is 0.054877
The reduced chi squared is 16.495

Figure 53:  Upper Phase: Fitting and Residual Plots for Lognormal1 Function 
(Equation 12) at Tc- T = 4 K for Sample 1:  Mw = 20900; Termination = -OH
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The parameter c1 is 0.33257
The parameter σ is 0.2102
The parameter µ is 51.4059
The confidence level is 99%.
The uncertainties in parameter c1 is 0.034735
The uncertainties in parameter σ is 0.014607
The uncertainties in parameter µ is 1.6194
The reduced chi squared is 3.058

Figure 54:  Lower Phase: Fitting and Residual Plots for Lognormal1 Function 
(Equation 12) at Tc- T = 4 K for Sample 1:  Mw = 20900; Termination = -OH
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e.) Mass in Coexisting Phases

       The mass of the polymer in each phase was then calculated as described in section 

IV-2.  Data considered as outliers were removed.  To be removed, the mass point in the 

lower or upper had to be greater than the initial mass.  As Table 6 and figure 56 show, 

most of the polymer migrates to the upper phase, leaving little in the lower phase.  The 

statistical analysis done on the data shows the error (one standard deviation) to be greater 

than the mass of the polymer in the lower phase at Tc-T = 4 K.  This finding suggests that 

the PEO prefers the organic solvent, which is the isobutyric acid.

Temperature Mass and mass fraction in 
lower phase

Mass and mass fraction in 
upper phase

0.1 K (0.216 ± 0.126) 
(0.019 ± 0.011) gram

(0.783 ± 0.126) 
(0.068 ± 0.011) gram

4 K (0.057 ± 0.103) 
(0.005 ± 0.009) gram

(0.943 ± 0.103) 
(0.082 ± 0.009) gram

Table 6:  Mass of Polymer in Lower and Upper Phases at Different Temperatures
for Sample 1:  Mw = 20900; Termination = -OH
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Figure 55:  Mass Fraction of Polymer in Lower and Upper Phase at Different 
Temperatures for Sample 1:  Mw = 20900; Termination = -OH
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       Table 7 summarizes the coexisting mass fraction for PEO (Mw = 20000) as 

calculated from Shresth’s data12 and from the new data reported above.

Temperature Mass and mass 
fraction in lower 
phase from Shresth

Mass and mass 
fraction in lower 
phase from 
Niamke

Mass and mass 
fraction in upper 
phase from 
Shresth

Mass and mass 
fraction in upper 
phase from 
Niamke

0.1 K (0.015 ± 0.042) gram
(0.183 ± 0.512)

(0.019 ± 0.011) 
gram
(0.216 ± 0.126)

(0.067 ± 0.042) 
gram
(0.817 ± 0.512)

(0.068 ± 0.011) 
gram
(0.783 ± 0.126)

1 K (0.018 ± 0.002) 
gram
(0.281 ± 0.031)

(0.046 ± 0.002) 
gram
(0.718 ± 0.031)

2 K (0.0099 ± 0.0016) 
gram
(0.154 ± 0.025)

(0.0541 ±
0.0016) gram
(0.845 ± 0.025)

4 K (0.0013 ± 0.0250) 
gram
(0.021 ± 0.390)

(0.005 ± 0.009) 
gram
(0.057 ± 0.103)

(0.0627 ±
0.0250) gram
(0.979 ± 0.390)

(0.082 ± 0.009) 
gram
(0.943 ± 0.103)

Table 7:  Comparison of Coexisting Mass and Mass Fractions of PEO (Mw = 20000) 
from Shresth and Niamke

       Table 7 confirms that most of the polymer migrates into the upper phase.  The mass 

fraction in the upper phase is roughly five times greater than the mass fraction in the 

lower phase.  When we compared the different results, we found that previous and 

current data behave in the same way.  The mass fractions are close to each other (see 

figure 56).
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Figure 56:  Comparison of the Coexisting Mass Fractions as Calculated from 
Shresth’s data12 and from New Data Reported Here



86

2 - Sample 2- PEG-OCH3: Molecular Weight of 4530

a.) Kinetics

    The day 0 data correspond to the polymer in the one-phase solution. This step was 

performed in order to verify the information provided by the manufacturer.  The GPC at 

day 0 gives Mn = 4080, Mw = 4530 and PI = 1.11, which is different from the 

manufacturer’s information (Mn = 2000, Mw = 2200 and PI = 1.1).  

       Figures 57-59 show that the equilibrium molecular weight is attained after 3-4 days 

in both phases.  In addition, Mn and Mw reach equilibrium at the same time either in the 

lower or upper phase.  The lower phase contains the higher molecular weight, while the 

upper phase contains smaller polymer segments. 

Time (days)

0 1 2 3 4 5 6

M
n,

 M
w

 (
10

3 )

2

3

4

5

6

7

8

Mn upper
Mw upper
Mn lower
Mw lower

              Figure 57:  PEG-OCH3, Mw = 4530:  Mn and Mw for the Upper and 
Lower Phase as a Function of Time, Tc -T= 1 K
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Figure 58: PEG-OCH3, Mw = 4530:  Mn and Mw for the Upper and Lower Phase as 
a Function of Time, Tc –T = 2 K
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Figure 59:  PEG-OCH3, Mw = 4530:  Mn and Mw for the Upper and Lower Phases as 
a Function of Time, Tc -T = 4 K
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b.) Molecular Weight Distribution

       Again, the plots (figures 60-62) indicate that the water-rich phase contains the higher 

molecular weight and the isobutyric-rich phase contains smaller molecular weight.  

       At all the temperatures, the average molecular weight in the upper phase is roughly 

twice the average molecular weight in the lower phase. The following table summarizes 

the different moments and the polydispersity of the PEG-OCH3 at different temperatures

Temperature Mn upper Mn lower Mw upper Mw lower PI upper PI lower

1 K 2826 6208 3286 6404 1.16 1.03

2 K 4104 9574 4646 10076 1.13 1.05

4 K 4964 7664 5580 8124 1.12 1.06

Table 8:  PEG-OCH3, Mw = 4530:  Mn and Mw for the Lower and Upper Phases at 
Different Temperatures
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Figure 60:  PEG-OCH3, Mw = 4530:  Comparison of the Molecular Weight 
Distributions in the Upper and Lower Phases at T = 297.7 K
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Figure 61: PEG-OCH3, Mw = 4530:  Comparison of the Molecular Weight 
Distributions in the Upper and Lower phases at T = 296.7 K
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Figure 62:  PEG-OCH3, Mw = 4530:  Comparison of the Molecular Weight 
Distributions in the Upper and Lower Phases at T = 294.7 K
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c.) Flory - Huggins Plot

    The different data (figures 63-65) obtained do not fit a straight line as suggested by the 

theory.  Therefore, we can conclude that Flory-Huggins theory does satisfy our 

observations.
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Figure 63:  PEG-OCH3, Mw = 4530:  Ln(w(M)”/w(M)’) versus Molecular Weight 

at T = 297.7 K
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Figure 64:  PEG-OCH3, Mw = 4530:  Ln(w(M)”/w(M)’) versus Molecular Weight 

at T = 296.7 K
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Figure 65:  PEG-OCH3, Mw = 4530:  Ln(w(M)”/w(M)’) versus Molecular Weight at 

T = 294.7 K
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d.) Analysis 

       Because of the similarities in the shape, we decided to apply the Gaussian 

distribution (equation 9) and also the slightly modified Gaussian distribution (equation 

10) from section IV-1.  Only the lower phase will be considered because the shapes of the 

parent and upper phases indicate that they are not even pseudo-gaussian.

       Equation 9 gave residuals that are not random (see figures 66-68).  The second 

distribution (equation 10) provided reasonable random residuals (see figures 69- 71).
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The parameter µ is 14.2662
The parameter σ is 2.5451
The confidence level is 99%.
The uncertainties in parameter µ is 0.27836
The uncertainties in parameter σ is 0.064432
The reduced chi squared is 42.2913

Figure 66:  Lower Phase:  Fitting and Residual Plots for Gaussian Function (Equation 9) at 
Tc-T = 1 K for Mw = 4530; Termination-OCH3
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The parameter µ is 13.3998
The parameter σ is 1.8164
The confidence level is 99%.
The uncertainties in parameter µ is 0.3009
The uncertainties in parameter σ is 0.05975
The reduced chi squared is 22.9757

Figure 67:  Lower Phase:  Fitting and Residual Plots for Gaussian Function (Equation 9) at 
Tc-T = 2 K for Mw = 4530; Termination-OCH3
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The parameter µ is 12.0794
The parameter σ is 2.5156
The confidence level is 99%.
The uncertainties in parameter µ is 0.23658
The uncertainties in parameter σ is 0.079096
The reduced chi squared is 29.3081

Figure 68:  Lower Phase:  Fitting and Residual Plots for Gaussian Function (Equation 9) at 
Tc-T = 4 K for Mw = 4530; Termination-OCH3
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The following plots are from equation 10:

The parameter a1 is 0.11357
The parameter σ is 4.1232
The parameter µ is 14.3407
The confidence level is 99%.
The uncertainties in parameter a1 is 0.00052929
The uncertainties in parameter σ is 0.025707
The uncertainties in parameter µ is 0.011784
The reduced chi squared is 8.2319

Figure 69:  Lower Phase:  Fitting and Residual Plots for Gaussian1 Function (Equation 10) 
at Tc-T = 1 K for Mw = 4530; Termination-OCH3
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The parameter a1 is 0.10701
The parameter σ is 5.6677
The parameter µ is 11.7959
The confidence level is 99%.
The uncertainties in parameter a1 is 0.00068114
The uncertainties in parameter σ is 0.040731
The uncertainties in parameter µ is 0.015963
The reduced chi squared is 7.5783

Figure 70:  Lower Phase:  Fitting and Residual Plots for Gaussian1 Function (Equation 10) 
at Tc-T = 2 K for Mw = 4530; Termination-OCH3
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The parameter a1 is 0.00031864
The parameter σ is 1.222
The parameter µ is 12.1359
The confidence level is 99%.
The uncertainties in parameter a1 is 3.2308e-006
The uncertainties in parameter σ is 0.0072885
The uncertainties in parameter µ is 0.0035456
The reduced chi squared is 19.8583

Figure 71:  Lower Phase:  Fitting and Residual Plots for Gaussian1 Function (Equation 10) 
at Tc-T = 4 K for Mw = 4530; Termination-OCH3
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As previously, the Gaussian distribution (equation 9) did not yield random residuals for 

any phases.  However, the modified Gaussian distribution (equation 10) provided some 

fairly random residuals.

       The next equations considered were the different lognormal distributions (equation 

11 and equation 12).  The lognormal distribution (equation 11) like the Gaussian  

(equation 9) did not show randomness in residual plots (see figures 72-75).  However, the 

lower phase residual plots from equation 12 are quite random except for Tc – T = 4 K 

(see figures 76-82).
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The parameter σ is 0.28161
The parameter µ is 14.6826
The confidence level is 99%.
The uncertainties in parameter σ is 0.006732
The uncertainties in parameter µ is 0.25105
The reduced chi squared is 34.3455

Figure 72:  Lower Phase:  Fitting and Residual Plots for Lognormal Function (Equation 11) 
at Tc – T = 1 K for Sample 2:  Mw = 4530; Termination = -OCH3
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The parameter σ is 0.21188
The parameter µ is 12.182
The confidence level is 99%.
The uncertainties in parameter σ is 0.0041673
The uncertainties in parameter µ is 0.18692
The reduced chi squared is 43.4462

Figure 73:  Lower Phase:  Fitting and Residual Plots for Lognormal Function 
(Equation 11) at Tc – T = 2 K for Sample 2:  Mw = 4530; Termination = -OCH3
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The parameter σ is 0.15438
The parameter µ is 9.4152
The confidence level is 99%.
The uncertainties in parameter σ is 0.0045557
The uncertainties in parameter µ is 0.17824
The reduced chi squared is 51.1661

Figure 74:  Upper Phase:  Fitting and Residual Plots for Lognormal Function (Equation 11) 
at Tc – T = 2 K for Sample 2:  Mw = 4530; Termination = -OCH3
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The parameter σ is 0.28951
The parameter µ is 13.1896
The confidence level is 99%.
The uncertainties in parameter σ is 0.0069021
The uncertainties in parameter µ is 0.22598
The reduced chi squared is 9.764

Figure 75:  Lower Phase:  Fitting and Residual Plots for Lognormal Function 
(Equation 11) at Tc – T = 4 K for Sample 2:  Mw = 4530; Termination = -OCH3
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The parameter c1 is 0.0093738
The parameter σ is 0.066513
The parameter µ is 4.9885
The confidence level is 99%.
The uncertainties in parameter c1 is 9.3155e-005
The uncertainties in parameter σ is 0.00084948
The uncertainties in parameter µ is 0.0037589
The reduced chi squared is 18.782

Figure 76: One-Phase: Fitting and Residual Plots for Lognormal1 Function 
(Equation 12) at T= 300 K for Sample 2: Mw = 4530; Termination = -OCH3
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The parameter c1 is 0.11545
The parameter σ is 0.14829
The parameter µ is 14.4206
The confidence level is 99%.
The uncertainties in parameter c1 is 0.00032211
The uncertainties in parameter σ is 0.00047892
The uncertainties in parameter µ is 0.0075575
The reduced chi squared is 8.231

Figure 77:  Lower Phase:  Fitting and Residual Plots for Lognormal1 Function 
(Equation 12) at Tc – T = 1 K for Sample 2: Mw = 4530; Termination = -OCH3
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The parameter c1 is 0.010931
The parameter σ is 0.069935
The parameter c2 is 5.3055
The confidence level is 99%.
The uncertainties in parameter c1 is 9.3083e-005
The uncertainties in parameter σ is 0.00079325
The uncertainties in parameter µ is 0.0039791
The reduced chi squared is 19.304

Figure 78:  Upper Phase:  Fitting and Residual Plots for Lognormal1 Function 
(Equation 12) at Tc – T = 1 K for Sample 2: Mw = 4530; Termination = -OCH3
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The parameter c1 is 0.11546
The parameter σ is 0.26958
The parameter µ is 12.1003
The confidence level is 99%.
The uncertainties in parameter c1 is 0.00046264
The uncertainties in parameter σ is 0.0012028
The uncertainties in parameter µ is 0.018545
The reduced chi squared is 7.592

Figure 79:  Lower Phase: Fitting and Residual Plots for Lognormal1 Function 
(Equation 12) at Tc – T= 2 K for Sample 2: Mw = 4530; Termination = -OCH3
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The parameter c1 is 0.0077707
The parameter σ is 0.042193
The parameter µ is 5.1317
The confidence level is 99%.
The uncertainties in parameter c1 is 0.00021403
The uncertainties in parameter σ is 0.001126
The uncertainties in parameter µ is 0.0041901
The reduced chi squared is 20.849

Figure 80:  Upper Phase:  Fitting and Residual Plots for Lognormal1 Function 
(Equation 12) at Tc – T = 2 K for Sample 2: Mw = 4530; Termination = -OCH3
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The parameter c1 is 0.00075388
The parameter σ is 0.050864
The parameter µ is 12.147
The confidence level is 99%.
The uncertainties in parameter c1 is 2.9761e-006
The uncertainties in parameter σ is 0.00027587
The uncertainties in parameter µ is 0.0033042
The reduced chi squared is 19.874

Figure 81:  Lower Phase: Fitting and Residual Plots for Lognormal1 Function (Equation 
12) at Tc – T= 4 K for Sample 2: Mw = 4530; Termination = -OCH3
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The parameter c1 is 0.011603
The parameter σ is 0.073085
The parameter µ is 5.3011
The confidence level is 99%.
The uncertainties in parameter c1 is 7.5717e-005
The uncertainties in parameter σ is 0.0006376
The uncertainties in parameter µ is 0.0032822
The reduced chi squared is 12.6065

Figure 82:  Upper Phase:  Fitting and Residual Plots for Lognormal1 Function (Equation 
12) at Tc – T = 4 K for Sample 2: Mw = 4530; Termination = -OCH3
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e.) Mass in Coexisting Phases

       The same calculations described previously in section IV-2 were used to determine 

the mass of polymer in each phase.  To do so, several outliers were eliminated.  Any mass 

value that was greater than the initial mass of polymer was considered as an outlier.  

       The following table summarizes all the results related to PEG-OCH3 –2 K (Sample 

2).

Temperature Average mass and mass 
fraction in lower phase

Average mass and mass 
fraction in upper phase

1 K (0.0180 ± 0.0017) gram
(0.207 ± 0.0195)

(0.0689 ± 0.0017) gram
(0.793 ± 0.0195) 

2 K (0.021 ± 0.003) gram
(0.241 +/- 0.034) 

(0.065 ± 0.003) gram
(0.748 +/- 0.034) 

4 K (0.025 ± 0.005) gram
(0.288 +/- 0.057) 

(0.062 ± 0.005) gram
(0.712 +/- 0.057) 

Table 9:  PEG-OCH3, Mw = 4530:  Mass Fraction of Polymer in Lower and Upper Phases at 
Different Temperatures
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Figure 83:  PEG-OCH3, Mw = 4530:  Plot of Tc – T vs Mass Fraction for the Upper 
and Lower Phases
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       Figure 85 summarizes all data on coexisting mass fractions.  All data fit the same 

graph within error.
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Figure 84:  Summary of Mass Fractions at Different Temperatures
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VVIIII -- DDIISSCCUUSSSSIIOONN AANNDD CCOONNCCLLUUSSIIOONNSS

       The results obtained here confirmed the previous experiments done by Shresth in 

2002 and also refuted the Flory-Huggins theory.  As shown before, ln(w”(M)/w’(M)) 

versus molecular weight did not yield a straight line, but a downward concave curve for 

all the samples studied.

       The upper phase contains most of the smaller molecular weights of polymer, while 

the polymer in the lower phase contains the larger molecular weights.  The migration of 

the polymer seems to be completely independent of the end group and molecular weight.  

In fact, higher molecular weight (Mw = 20000) with termination –OH and lower 

molecular weight (Mw = 4530) with end group OCH3 yield the same results.                                                                                                             

       Because no theory was able to explain all the molecular weight distributions, two 

empirical distribution equations were used to fit to the data.  The first experiments done 

by Shresth gave a pseudo-Gaussian distribution in the lower phase.  All the plots show a 

positively skewed tail; therefore a pseudo-lognormal function was fitted to all the phases.  
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AAPPPPEENNDDIIXX AA:: MMaassss FFrraaccttiioonn iinn CCooeexxiissttiinngg PPhhaasseess1177

WT w(M) =   WT
AwA(M) + WT

BwB(M)                                          

where 

WT  = the initial weight of polymer

w(M) = molecular weight distribution in one phase

WT
A = total weight of polymer in phase A

wA(M) = molecular weight distribution in phase A 

 WT
B  = total weight of polymer in phase B

wB(M) = molecular weight distribution in phase B

The total polymer mass:

WT =  WT
A + WT

B.

Solving for WT
A

WT
A wA(M) = WT w(M) – (WT -  WT

A ) wB(M)                       

WT
A (wA(M) - wB(M)) =  WT [w(M) - wB(M)]                            

The mass fractions in both phases 

WT
A =   w(M) - wB(M)      

WT       wA(M) - wB(M)

WT
B =   w(M) – wA(M)      

WT       wB(M) – wA(M)



120

AAPPPPEENNDDIIXX BB:: MMaattllaabb NNoonnlliinneeaarr LLeeaasstt SSqquuaarreess FFiittttiinngg
PPrrooggrraamm

This function returns the error squared between the guessed function and the data.  The 

data are input from the global variables x, y, sigma_y, and sigma_x

function err = errorfun(a)

global x y newy sigma_y F Lx weightedx sigma_x sigma_y_sqr

newy = feval(F,x,a);  %evaluates the fitting function with new a

if 'y' == weightedx   %if there is uncertainty in x

   dy_dx = (feval(F,(x+0.000001 .* x),a)-feval(F,(x-.000001 .* x),a))./(.000002 .* x);  

%simple numerical derivative

   sigma_y_sqr = sigma_y.^2+(sigma_x).^2 .*(dy_dx).^2;  %evaluates the new 

uncertainty in y by propagating uncertainty in x

else

   sigma_y_sqr = sigma_y.^2;

end

err = sum(((newy-y).^2)./sigma_y_sqr);
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Matt Retzer  10/13/98

revised by S. Greer 3/23/01, error analysis revised by Mike Alessi 5/16/01

run labeling added 7/03/01

y       the data height, the dependent variable

x       the independent variable

a_0     the initial parameters

a       the final parameters, fitted to minimum chi squared

newy    the fitted y value from the a values

sigma_y the uncertainty in the y value, either supplied or derived

sigma_x the uncertainty in the x value, supplied

z       plotting color and symbol

F       the objective function

tol     the tolerance for the fmins function

trace   determines the outputs from the fmins function

The data file must be a .txt file.  If it isn't, change line 7 to eval(['load ' s '.yourchoice]).  

The model equation has to be a function of one array from the data, like x, and the fitting 

parameters like y = a(1)*x.^2 + a(2).  The first column of the data file should 

be x, the second the uncertainty in x, the third y, and fourth the uncertainty in y.  

The fifth column is a run number (1, 2, 3, or 4) used in the residual plot.

The current incarnation only allows 68.3% and 99% confidence for functions with a 

maximum of SIX coefficients.  This will be remedied in a later version.
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clear all

global x y z newy sigma_y F Lx weightedx sigma_x sigma_y_sqr V D pprime error p 

%defines global variables which will be used in errorfun

s = input('Enter .txt data file name without extension: ','s');  %collects input from the user

F = input('Enter the model equation: ','s');

conf = input('Enter 1 for 68 percent level or 2 for 99 percent ');  %gets the desired 

confidence interval

weightedy = input('Are the y data weighted? (y/n): ','s');

weightedx = input('Are the x data weighted? (y/n): ','s');

st = input('Enter the number of runs included in the file (1-4)  ');

a_0 = input('Enter initial guess array: ');

eval(['load ' s '.txt']);    %load the user specified data file

X = eval(s);

x = X(:,1);      %splits the data file into x and y coordinates

y = X(:,3);

%z = X(:,5);

Lx = length(x);

La = length(a_0);

newy = zeros(Lx,La);

Chi square table-this table was copied from Numerical Recipes in C, 

delchi = [[1 2.3 3.53 4.72 5.89 7.04];[6.63 9.21 11.3 13.3 15.1 16.8]];

nu = La;
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if 'y' == weightedy

   sigma_y = X(:,4);    %loads the uncertainty in y from the user

else

   sigma_y = ones(Lx,1);

end

if 'y' == weightedx

   sigma_x = X(:,2);

else

   sigma_x = zeros(Lx,1);

end

options = optimset('TolFun',1e-8,'TolX',1e-8,'MaxIter',10000);

disp('Minimizing the error function...')

a = fminsearch('errorfun',a_0);    %minimizes the objective function (finds "a" so that the 

error is minimized)

disp('Finding error...')

if 'n' == weightedy

   sigma_y = sqrt(sum(((newy-y).^2)))./(Lx-La);   %makes new uncertainty if it is not 

specified

   sigma_y_sqr = sigma_y.^2;

end

red_chi_sqr = sum((y - newy).^2 ./sigma_y_sqr)./(Lx - La);

da = .000001*a;

for i = 1:La;   %takes the numerical derivative so that the error in the 
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b = a;         %parameters can be found 

b(i) = b(i) + da(i);

forward = feval(F,x,b);

b(i) = b(i) - 2*da(i);

backward = feval(F,x,b);

dy_da(:,i) = (forward-backward)/(2*da(i));

end

disp('Calculating the error matrix...')

for j = 1:La;      %the alpha matrix is found as is defined in Numerical Recipes in c pg. 

683

for k = 1:La;

   alpha(j,k) = sum((1./(sigma_y_sqr)).*(dy_da(:,k).*dy_da(:,j)));

end

end

delta = delchi(conf,nu); %Reads the value from the delta chi table

[V,D]=eig(alpha);  %Finds the eigenvalues and eigenvectors of the error matrix

p=delta*inv(D);  

pprime = p.^.5;     %Takes the square root of the elements in p

error = V*pprime;

error = error.';

sigma_a = max(abs(error));  %Takes the maximum value of each row

xmin = min(x);    %setting limits for plots
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xmax = max(x);

xnew = xmin:(xmax-xmin)/100:xmax;

disp('Plotting function and residuals...')

figure(1)

handle = plot(x,y,'ro',xnew,feval(F,xnew,a));   %plotting the fitted function

title('Fitted Function')

figure(2)

if st == 1

    res = (y-feval(F,x,a))./(sigma_y_sqr).^.5;

    handle2 = plot(x,res,'x');   %plotting the residuals

    set(handle2,'markersize',12)

    grid

    title('Residual Plot')

end

if st==2

    z = 0;

    for i = 1:Lx-1 

        if X(i,5)~=X(i+1,5)

            z = i;

        end

    end

    set1x = x(1:z);
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    set2x = x(z+1:Lx);

    set1y = y(1:z);

    set2y = y(z+1:Lx);

    sigma_y_sqr1 = sigma_y_sqr(1:z);

    sigma_y_sqr2 = sigma_y_sqr(z+1:Lx);

    res1 = (set1y-feval(F,set1x,a))./(sigma_y_sqr1).^.5;

    res2 = (set2y-feval(F,set2x,a))./(sigma_y_sqr2).^.5;

    handle2 = plot(set1x,res1,'x',set2x,res2,'o');   %plotting the residuals

    set(handle2,'markersize',12)

    grid

    title('Residual Plot')

    figure(3)

    handle3 = plot(set1x,set1y,'x',set2x,set2y,'o',xnew,feval(F,xnew,a));   %plotting the 

fitted function

    title('Fitted Function')

end

if st==3

    z1 = 0;

    z2 = 0;

    z3 = 0;

    sos = 0;

    for i = 1:Lx-1 
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        if X(i,5)~=X(i+1,5)

            z1 = i;

            set1x = x(1:z1);

            set1y = y(1:z1);

            sigma_y_sqr1 = sigma_y_sqr(1:z1);

            for j = i+1:Lx-1 

                if X(j,5)~=X(j+1,5)

                    z2 = j;

                    set2x = x(z1+1:z2);

                    set2y = y(z1+1:z2);

                    sigma_y_sqr2 = sigma_y_sqr(z1+1:z2);

                    set3x = x(z2+1:Lx);

                    set3y = y(z2+1:Lx);

                    sigma_y_sqr3 = sigma_y_sqr(z2+1:Lx);

                    sos = 1;

                    break

                end

            end    

      end

        if sos == 1

            break

        end

    end
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end

if st == 3    
    res1 = (set1y-feval(F,set1x,a))./(sigma_y_sqr1).^.5;

    res2 = (set2y-feval(F,set2x,a))./(sigma_y_sqr2).^.5;

    res3 = (set3y-feval(F,set3x,a))./(sigma_y_sqr3).^.5;

    handle2 = plot(set1x,res1,'x',set2x,res2,'o',set3x,res3,'+');   %plotting the residuals

    set(handle2,'markersize',12)

    grid

    title('Residual Plot')

    figure(3)

    handle3 = plot(set1x,set1y,'x',set2x,set2y,'o',set3x,set3y,'+',xnew,feval(F,xnew,a));   

%plotting the fitted function

    title('Fitted Function')

end

if st ==4

    z1 = 0;

    z2 = 0;

    z3 = 0;

    sos = 0;

    for i = 1:Lx-1 

        if X(i,5)~=X(i+1,5)

            z1 = i;

            set1x = x(1:z1);
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            set1y = y(1:z1);

            sigma_y_sqr1 = sigma_y_sqr(1:z1);

            for j = i+1:Lx-1 

                if X(j,5)~=X(j+1,5)

                    z2 = j;

                    set2x = x(z1+1:z2);

                    set2y = y(z1+1:z2);

                    sigma_y_sqr2 = sigma_y_sqr(z1+1:z2);

                    for ii = j+1:Lx-1 

                        if X(ii,5)~=X(ii+1,5)

                            z3 = ii;

                            set3x = x(z2+1:z3);

                            set3y = y(z2+1:z3);

                            sigma_y_sqr3 = sigma_y_sqr(z2+1:z3);

                            set4x = x(z3+1:Lx);

                            set4y = y(z3+1:Lx);

                            sigma_y_sqr4 = sigma_y_sqr(z3+1:Lx);

                sos = 1;

                            break

                        end   

                    end
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                end

                if sos == 1

                   break

                end

            end    

end

        if sos == 1

            break

        end

    end

end

if st == 4

    res1 = (set1y-feval(F,set1x,a))./(sigma_y_sqr1);

    res2 = (set2y-feval(F,set2x,a))./(sigma_y_sqr2);

    res3 = (set3y-feval(F,set3x,a))./(sigma_y_sqr3);

    res4 = (set4y-feval(F,set4x,a))./(sigma_y_sqr4);

    handle2 = plot(set1x,res1,'x',set2x,res2,'o',set3x,res3,'+',set4x,res4,'*');   %plotting the 

residuals

    set(handle2,'markersize',12)

    grid

    title('Residual Plot') 

    figure(3)
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    handle3 = 

plot(set1x,set1y,'x',set2x,set2y,'o',set3x,set3y,'+',set4x,set4y,'*',xnew,feval(F,xnew,a));   

%plotting the fitted function

    title('Fitted Function')

end

for i = 1:La;

disp(['The parameter a(' num2str(i) ') is ' num2str(a(i))])

end

if '1' == conf

   disp(['The confidence level is 68%.'])

else

   disp(['The confidence level is 99%.'])

end

for i = 1:La

   disp(['The uncertainties in parameter a(' num2str(i) ') is ' num2str(sigma_a(i))])

end

for i = 1:length(sigma_y)

disp(['The uncertainty in y(' num2str(i) ') is ' num2str(sqrt(sigma_y_sqr(i)))])

 end

disp(['The reduced chi squared is ' num2str(red_chi_sqr)]);
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