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that the critical heat flux for flaming autoignition is 20 kW/m? and for glowing

ignition is 10 kW/m?,
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“glowing ignition”, it means the onset of surface combustion. Criteria for glowing

ignition are developed based on a surface energy balance. A numerical result shows
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Chapter 1

Introduction

1.1 Introduction

Ignition is the initial stage of combustion in fires. Understanding the ignition process is
crucial in fire safety research because this basic knowledge provides ample scientific and
engineering judgment that can be applied to reduce the chance of ignition and ultimately
to minimize fire hazards. Since wood is a common material utilized for building
construction, furniture, and various decorative purposes, understanding the ignition

process of wood is very important.

The ignition phenomenon of wood is complex. It involves chemical reactions, and heat
and mass transfer processes. First, wood must be heated by an external heat source (i.e.
from a radiant heater or a building fire) until it reaches some critical temperature
(pyrolysis temperature); then the wood starts to decompose producing pyrolysis gases.
The pyrolysis gases are then released and mix with fresh air from the surroundings
creating a boundary layer of the combustible mixture. When the combustible mixture
reaches a suitable concentration (i.e. within flammable limit) and the mixture temperature
is sufficient to accelerate the chemical reactions that can cause a gas thermal runaway,

ignition occurs.



Generally, when wood is heated, two types of ignition are possible: (1) piloted (forced)
ignition, where the ignition initiates with help of an external energy source, and (2)
autoignition (spontaneous ignition), where the ignition initiates without any help of an
external energy source. In previous investigations, Boonmee and Quintiere [1, 2]
observed that the autoignition of wood could be further categorized into two regimes
depending on an intensity of the incident heat flux: (1) flaming autoignition and (2)
glowing ignition. Flaming autoignition occurs when the incident heat flux to the wood
surface is high. The gas temperature is high enough to trigger the gas phase thermal
runaway. The flame first appears in the gas phase above the wood surface and then
propagates back to the surface. Glowing ignition is more likely noticed when the incident
heat flux to the wood surface is relatively low. As the wood surface is heated, it becomes
char; then oxygen from the surroundings diffuses to the char layer and reacts resulting in
a char surface combustion or a glowing surface. The exothermic surface combustion adds
energy to the combustible mixture adjacent to the char surface. When the combustible
mixture temperature is sufficiently high, the glowing surface causes a transition to the

flaming autoignition.

In this work, a theoretical and experimental study for ignition of wood is presented. The
investigation mainly focuses on the autoignition regime; however, the theoretical model
developed here can be used in predicting piloted ignition as well. Effects of char surface
combustion, which is an important mechanism leading to glowing ignition and flaming

autoignition, are discussed.



1.2. Literature Review

A number of studies on ignition and subsequent events (i.e. burning and flame spread) of
solid fuels have been carried out, for example the reviews of piloted ignition of wood [3,
4], autoignition of wood [5], and ignition and flame spread over solid fuels [6, 7]. It is not
possible to reference every investigation conducted; however, a review of relevant work

is given here in two groups: (1) experimental studies, and (2) theoretical studies.

1.2.1 Experimental Studies

In order to develop comprehensive theoretical models, accurate experimental data must
be provided as benchmark values. Many aspects of ignition and burning of solid fuels
were studied by varying the experimental setup and conditions for instance the moisture
content in the sample, the heating configuration (heating horizontally or vertically), the
wood grain orientation (heating along or across the wood grain) and the atmosphere

oxygen concentration. A brief summary of these experimental observations is presented.

Simms, one of the pioneer researchers, examined piloted ignition [8] and autoignition [9]
of cellulosic materials. He suggested that the factors such as an intensity of external heat
flux, an external draught and an exhaustion of volatiles appeared to determine whether
the ignition would occur or not. He also reported that at the onset of flaming ignition, the
flame first appeared in the gas phase then it propagated back to the solid surface. Simms
and Law [10] studied the effects of moisture content on both piloted and auto- ignition of

wood. They commented that moisture content in wood affected the ignition delay of



wood by changing the heat transfer and thus the temperature rise in three ways: (1) it
increased the values of wood thermal properties, (2) heat was transferred directly by
molecular diffusion of water, and (3) evaporation cooled the hotter regions and
condensation heated the cooler regions. As a result, the ignition delay time increased with
the moisture content. These moisture effects were experimentally confirmed by Lee and
Diehl [11]. In addition, they also commented that an interaction between the water and
wood decomposition was not significant. For instance, the wood surface regression rate at
steady state burning obtained from wet and dry samples was the same. This was because
the burning rate of wood was primarily controlled by the oxygen supply to the char

surface.

Vyas et al. [12] examined effects of wood grain orientation on piloted ignition. They
found that because of a difference in the wood thermal conductivity, the piloted ignition
time when heating wood along the grain was shorter than when heating across the grain.
Effects of attenuation of radiation on surface temperature of PMMA and wood were
examined by Kashiwagi [13-15] in both piloted ignition and autoignition. It was observed
that attenuation caused by the decomposition products in the gas phase was significant
enough to affect the surface temperature as high attenuation tended to absorb the
radiative heat flux resulting in decreasing the net heat flux to the surface. The ignition
temperature for PMMA seemed to be independent of the radiant heat flux; nevertheless,
the ignition temperature of wood increased with decreasing incident heat flux. Kashiwagi
and Ohlemiller [16] experimentally investigated oxygen effects on non-flaming

gasification process of polymer material (PMMA, and PE). The experiment showed that



the gasification rate of PMMA and PE strongly increased as the oxygen concentration
increased; however, the surface temperature weakly depended on the oxygen
concentration. An increase in oxygen concentration slightly reduced the surface

temperature of PMMA but it increased the surface temperature of PE.

Yoshizawa and Kubota [17] experimental investigated autoignition of cellulosic
materials. The time and space variations of temperature and fuel concentration in the gas
phase were examined by means of a high-speed camera and an interferometer. They
found that the flame first appeared in the gas region where the fuel concentration was
extremely rich. However, they commented that this ignition condition was not universal;
it was experiment dependent. Atreya et al. [18] experimentally examined heating
orientation effects on piloted ignition of wood (heating horizontally and vertically). In
their findings, the piloted ignition results appeared to be orientation independent. They
also observed that before flaming ignition was sustained, flashes indicating an

unsustained flame occurred.

Suuberg et al. [19] extensively investigated burning behavior of charring materials in fire
environments. This work gives an excellent choice of data, which serves as an input to
develop a theoretical model for ignition and burning of wood. Martin [20]
comprehensively studied ignition of cellulosic materials. He commented that the ignition
behavior of cellulose could be categorized into three regions as convection-controlled
when an incident heat flux was low, diffusion-controlled when an incident heat flux was

intermediate, and ablation-controlled when an incident heat flux was very high.



Anthenien and Fernandez-Pello [21] studied the smoldering (glowing) process of
polyurethane foam. They found that to obtain a sustained smoldering process, an igniter
power flux and a time the igniter was powered must be greater than some critical values.
Recently investigation of smoldering combustion of wood was given by Bilbao et al.
[22]. They suggested that the smoldering ignition temperature of wood increased with
incident heat flux and approached a constant value when the incident heat flux was higher

than 40 KW/m?.

Spearpoint and Quintiere [23-25] studied piloted ignition and burning for a variety of
wood species. The effects of heating along and across the wood grain orientation were
examined. Boonmee and Quintiere [1, 2] extended the work [23-25] to the autoignition
regime. They found that at high incident heat fluxes, the wood sample flaming ignited
shortly after exposed to the heater. In contrast, at low heat fluxes, the wood sample first
ignited by glowing. This was followed by a substantial char surface combustion before in
some cases the char surface combustion caused a visible flame in the gas phase.
However, the limit of the wood glowing ignition (i.e. a critical heat flux for glowing

ignition) was not examined.



1.2.2 Theoretical Studies

Theoretical studies of ignition and burning of solid fuels have started several decades ago
with an aim to improve an understanding of the controlling mechanisms of ignition and
burning processes. Generally, the theoretical models fall into two categories. In fist
group, the theoretical models consider the physical and chemical processes involving in
the solid phase only. This simplification greatly reduces complexities of the problem
because the gas phase problem can be omitted; hence an analytical solution is possible.
However, the models in this group need some critical criteria (i.e. critical mass flux or
critical surface temperature) to determine the ignition, which sometimes base on
empirical rules. In second categories, the models consider the processes occurring in both
solid and gas phases; thus the governing equations in both phases must be solved
simultaneously. The coupled conditions between the solid and gas phases can be made
through the solid-gas interface conditions. Because of difficulties in solving the gas phase
conservation equations, a closed form solution generally cannot be obtained; thus a

numerical solution is required.

The first type of the theoretical models considers the solid phase only. Generally a
uniform incident heat flux to the solid surface is assumed allowing that the solid phase
governing equations are formulated as a one-dimensional transient heat conduction
problem. A single-step Arrhenius rate is assumed to describe the solid degradation

process.



Kung [26] proposed a mathematical model for a pyrolysis of a wood slab. He developed
the model based on the processes involving in the solid phase only. A one-dimensional
transient heat conduction was solved numerically. He assumed that the wood
decomposed to volatiles following a single-step Arrhenius rate. As soon as the volatiles
were formed, they instantly left the solid matrix. Variations of the wood and char thermal
properties were included. Kung [27] reformulated his mode for a cylindrical geometry. In
this work the study was focused on the effects of heat of pyrolysis of wood to the burning
rate. Sibulkin [28] developed a model for thermal degradation of charring materials. His
work was focused on the heat of gasification of the pyrolysis process. He commented
that the heat of gasification of charring materials is not a material property which can be
determined from thermodynamic properties alone, but it has to be estimated from
experiment. Parker [29] broke a wood slab into thin slices parallel to the wood heated
surface. The pyrolysis mass flux was the summation of the mass flux from each slice.
Char shrinkage parallel and normal to the surface was also accounted in the model. His

calculated heat release rate correlated well with the measurement values.

Tinney [30] theoretically examined combustion processes of wooden dowels. A simple
transient heat conduction model was utilized. He postulated that in order to obtained good
agreement between the model and experiment, two sets of the wood kinetic parameters
had to be introduced. Weatherford and Sheppard [31] theoretical studied ignition
mechanisms of cellulosic materials. They suggested that in order to adequately describe
the critical condition at ignition, a critical value of the time required for the thermal wave

propagating from the heated surface to the center of the wood sample must be satisfied.



This critical time was found to be approximately constant for both inert and non-inert
solid for constant thermal properties. Roberts [32] theoretical studies a burning process of
wood. His one dimensional heat conduction model was employed to examine the effects

due to variations of the wood thermal properties on the burning process.

To avoid solving the gas phase governing equations, Ritchie et al. [33] used a global
analytical model to determine the net heat flux to the wood surface. For the solid phase
model, a one-dimensional char-forming material with variations of density and thermal
properties as a function of time, local solid temperature, and position was used. The

ignition was determined when the mass flux reached a critical value.

Since the wood pyrolysis process is complex, the virgin wood can decompose to char, tar,
and volatiles in a number of ways depending on heating rate and configuration; thus a
multi-step wood decomposition reaction may be a preferred approach to model wood
pyrolysis. Panton and Rittmann [34] proposed multi-step reaction mechanism in their
wood degradation model. They assumed that the virgin wood would decompose to a
second solid species plus volatiles, which flowed out to the surface. The second solid
species then further decomposed to yield inert solid and another volatile. The total wood
pyrolysis rate was obtained by summation of all the volatiles involving in all the
reactions. The porous effect due to gas leaving the solid matrix was also included in their
model. Di Blasi [35] considered a wood kinetic pyrolysis model including both primary
and secondary reactions. The primary reaction was expressed as the virgin wood

decomposing to char, fuel gases, and tar. Then the secondary reaction of tar further



generated fuel gases. Her study was mainly focused on influences of the thermal

properties on the devolatilization rate of biomass.

An analytical approach to pyrolysis of charring materials was introduced by Wichman
and Atreya [36]. In this approach, the pyrolysis process was divided into four distinct
stages as (1) inert heating, (2) transition regime, (3) thin char, and (4) thick char. Their
numerical calculation suggested that the surface temperature controlled the volatile
production rate in the initial stage (kinetic-controlled regime), while the temperature
gradient controlled the volatile production rate in the thick char stage (diffusion-

controlled regime).

Rhodes and Quintiere [37] introduced an integral model for prediction piloted ignition
and burning of non-charring material (PMMA) in a cone calorimeter. The model was
modified to include charring effects by Spearpoint and Quintiere [23-25]. Boonmee and
Quintiere [2] further demonstrated that the model could also be used in predicting
autoignition of wood. In this integral model, a polynomial temperature profile was
assumed inside the solid phase. The theoretical ignition time based on a critical ignition
temperature was in good agreement with experimental values when reasonable thermal
properties of the solid were employed. Delichatsios et al.