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Microgreens are new emerging food products, which are young seedlings of 

vegetables and herbs, having two fully developed cotyledons with the first pair of true 

leaves emerging or partially expanded. They have gained popularity in upscale 

restaurants and grocery stores in recent years.  However, little relevant scientific data 

is currently available on microgreens. The present research project was dedicated to 

explore the nutritional value, sensory attributes, consumer acceptance, postharvest 

quality and microbiological safety of microgreens.  

In the first part of this project, phytonutrients were determined in 25 

commercially available microgreens. Results showed that different microgreens 

provided extremely varying amounts of phytonutrients. Among the 25 microgreens 

assayed, red cabbage (Brassica oleracea L.), cilantro (Coriandrum sativum L.), 

garnet amaranth (Amaranthus hypochondriacus L.) and green daikon radish 

(Raphanus sativus L.) had the highest concentrations of ascorbic acids, carotenoids, 

phylloquinone, and tocopherols, respectively. Compared with the nutrient 

concentrations in mature leaves recorded in USDA National Nutrient Database, 

microgreens possessed higher nutrient density.  



 

 

Although microgrees are nutrient-dense, there is little information and data on the 

consumer acceptability of microgreens; therefore, consumer acceptance test were 

carried out. Six microgreens were first selected out of 25 varieties of microgreens in 

the preliminary test and subsequently evaluated by 80 consumer panelists for sensory 

attributes. Chemical compositions and nutritional values of the taste-panel tested 

microgreens were also investigated for correlations with sensory attributes. All 

microgreens evaluated demonstrated “good” to “excellent” consumer acceptance and 

nutritional profile and overall acceptability of microgreens was significantly 

correlated with flavor acceptability.  

Generally, microgreens are very tender, and thus have a short shelf life. To 

optimize the postharvest handling conditions, the effects of temperature, modified 

atmosphere packaging (MAP) and chlorine wash on postharvest quality and shelf life 

of daikon radish microgreens (Raphanus sativus L. var. longipinnatus) were studied. 

The impacts of light exposure during storage on sensorial quality and bioactive 

compounds were also investigated. Results showed that 1) one degree Celsius was the 

optimal temperature for radish microgreens storage; 2) MAP did not significantly 

affect quality attributes during 28 days of storage at 1°C; 3) chlorine wash treatment 

reduced microbial populations initially, however, it rebounded to pre-washed levels 

within 7 days; and 4) light exposure accelerated quality deterioration and increased 

the amount of ascorbic acid, while dark storage may be profound for quality and 

carotenoid retention.  

The final part of this project was a comparative microbiological study between 

radish sprouts and radish microgreens produced from artificially contaminated radish 



 

 

seeds. Starting from seeds with same contamination levels, E. coli O157: H7 and E. 

coli O104: H4 populations on harvested radish microgreens were 3-5 logs lower than 

that on radish sprouts. These results demonstrated that the microbial growth on 

sprouts were much faster than that on microgreens, which poses great risk of 

microbiological hazard to sprout-consumers. In contrast, microgreens seem to bear a 

relatively low food safety risk.  
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Chapter 1: Literature Review 

1.1 Introduction of Microgreens 

Microgreens are an exotic genre of edible greens appearing in upscale markets 

and restaurants which have gained popularity as a new culinary trend over the past 

few years. They are tender immature greens produced from the seeds of vegetables 

and herbs, having two fully developed cotyledon leaves with or without the 

emergence of a rudimentary pair of first true leaves. They are older than sprouts and 

much younger than baby greens. Microgreens became popular in the middle of 1990s 

in California and the first use of the word “microgreens” was documented in 1998. 

Microgreens are usually 1-3 inches in height, harvested at 7-14 days after germination, 

depending on the species, and sold with the stem and attached cotyledons (seed 

leaves). Although small in size, microgreens can provide a large array of intense 

flavors, vivid colors and tender textures. Therefore, microgreens can be served as a 

new ingredient in salad, soups and sandwiches enhancing their color, texture, and/or 

flavor, and also can be used as edible garnish to brighten up a wide variety of main 

dishes (Murphy et al., 2010; Treadwell et al., 2010.; Lee et al., 2009). Although 

microgreens have been claimed as nutritionally beneficial, to the best of our 

knowledge, little scientific data are available on microgreens.  

1.2 Health Benefits of Fruits and Vegetables 

Epidemiological studies have shown that consumption fruit and vegetable is 

strongly associated with reduced risk in the development of chronic disease, such as 

cancer, heart disease, diabetes, hypertension and metabolic syndrome (Bergquist et al., 

2006; Hung et al., 2004). Diets rich in fruit and vegetables provides an abundance of 
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human bioactive compounds, such as ascorbic acid, carotenoids, tocopherols, 

anthocyanins, and isoflavones, which are known to have protective benefits against 

cancers and cardiovascular disease (Craig, 1997; Rice-Evans  et al., 1995). The foods 

and herbs with the highest anticancer activity include garlic, soybeans, cabbage, 

ginger, licorice, and the umbelliferous vegetables. Citrus, in addition to providing an 

ample supply of vitamin C, folic acid, potassium, and pectin, contains a host of active 

phytochemicals (Craig & Beck, 1999).The new Dietary Guidelines for 

Americans (2010) released by the U.S. Department of Agriculture (USDA) and the 

Department of Health and Human Services (DHHS) specifically recommends 

Americans to fill half of their plate with fruits and vegetables because they possess 

benefits for human health. 

1.3 Phytonutrients in Fruits and Vegetables 

Phytonutrients play an important role in human growth, development and health 

maintenance. They are being intensively studied to evaluate their effects on health. 

These compounds vary widely in chemical structure and function and are grouped 

accordingly (Kris-Etherton et al., 2002). 

 1.3.1 Ascorbic Acid  

Ascorbic acid (vitamin C) is an essential nutrient for the human body, acting as 

the most effective water-soluble antioxidant. There are two available forms of vitamin 

C in plants: reduced form (L-ascorbic acid) and oxidized form (dehydroascorbic 

acid). When plants are subject to physical or physiological stresses (chilling, 

irradiation, harvesting injury, etc.), L-ascorbic acid can be oxidized into 

dehydroascorbic acid (Hodges et al., 2001). In the dietary source, ascorbic acid is also 

http://www.fruitsandveggiesmorematters.org/?page_id=58
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unstable and easily oxidized under oxygen, alkali and high temperature.  It is 

previously reported that the utilization of dehydroascorbic acid is equivalent to that of 

free ascorbic acid, although the metabolic turnover time is different (Tsujimura et al., 

2008).  It is abundantly found in citrus fruits (Citrus L.), peppers (Capsicum annuum 

L.), strawberries (Fragaria × ananassa D.), tomatoes (Solanum lycopersicum L.), 

broccoli (Brassica oleracea L. var. italica), Brussels sprouts (Brassica oleracea L. 

var. gemmifera), turnips (Brassica rapa L.var. rapa) and other leafy vegetables. 

Numbers of studies have provided strong evidence to link dietary vitamin C with 

protective effects against various oxidative stress-related diseases such as cancers, 

cardiovascular disease, aging and cataract formation (Steinmetz & Potter, 1996; Iqbal 

et al., 2004) 

1.3.2 Carotenoids 

Carotenoids are one of the most widespread groups of naturally occurring 

pigments. Within the carotenoids are carotenes and xanthophylls and the difference of 

their structures is that xanthophylls contain one or more oxygen atoms on the basis of 

carotenes, which are purely hydrocarbons. These compounds are largely responsible 

for the red, yellow, and orange color of fruits and vegetables, and are also found in 

many dark green vegetables (Rao & Rao, 2007). The most abundant carotenoids in 

the North American diet are β-carotene, α-carotene, γ-carotene, lycopene, lutein, 

zeaxanthin and β-cryptoxanthin. Several carotenoids are known to exhibit antioxidant 

activity and some of them such as β-carotene, α-carotene, and cryptoxanthin are 

recognized as provitamin A, which are turned into vitamin A in the body and, 

therefore, perform the same functions in the body as vitamin A (Stahl & Sies, 2003). 
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Food sources of carotenoids include carrots (Daucus carota L.), sweet potatoes 

(Ipomoea batatas (L.) Lam.), spinach (Spinacia oleracea L.), kale (Brassica oleracea 

L. var. acephala), collard greens (Brassica oleracea L. var. acephala), bell peppers 

(Capsicum annuum L.), tomatoes (Solanum lycopersicum L.) and papayas (Carica 

papaya L.). Numerous observational studies have found that people who include 

more carotenoids in their diets have a reduced risk of several chronic diseases, 

including cancer, cardiovascular diseases, cataracts, age-related macular degeneration 

and other diseases (Mayne, 1996). Some studies have shown that smokers with diets 

high in carotenoids have a lower rate of lung cancer development than their 

counterparts whose carotenoid intake is relatively low. Other research efforts have 

suggested that diets high in carotenoids may also be associated with a decreased risk 

of breast cancer (Kaur & Kapoor, 2001).  

1.3.3 Tocopherols 

Tocopherols and tocotrienols are together summarized as “Vitamin E”, known as 

the main dietary fat soluble antioxidants. Each group has four isomers (α-, β-, γ- and 

δ-), all of which are naturally occurred and synthesized by plants (Papas, 1999). All 

chlorophyll-containing tissues contain tocopherols, primarily in the chloroplasts. The 

most abundant sources of tocopherols are oil seeds, leaves, and other green parts of 

higher plants.  Tocotrienols have been identified in a number of plant tissues, ranging 

from kale and broccoli to cereal grains and nuts (Piironen et al., 1986). The vitamin E 

compounds are well recognized for their effective inhibition of lipid oxidation in 

foods and biological systems. Among these compounds, α-tocopherol has the highest 
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biological activity, followed by β-, γ-, and δ-tocopherols (Kamal-Eldin & Appelqvist, 

1996).  

Tocopherols scavenge free radicals by its intermediate a tocopheroxyl radical 

coupling with lipid peroxyl radicals (Yamauchi, 2007). Evidence exists that 

tocopherols can prevent atherosclerosis by interfering with the oxidation of LDL, a 

factor associated with increased risk of heart diseases (Stampfer et al., 1993). It 

provides vital antioxidant protection for cell membranes, where it works together with 

both vitamin C and coenzyme Q10. Although vitamin E does not show anticancer 

activity in animals, a recent clinical chemoprevention study suggests that 

supplemental vitamin E might decrease risk of prostate cancer, and epidemiological 

studies support its protective role against colon cancer (Kaur & Kapoor, 2001).  

1.3.4 Polyphenols 

Polyphenols, including their subcategory, flavonoids, are ubiquitous in all plants. 

Polyphenols traditionally have been considered antinutrients by animal nutritionists, 

because of the adverse effect of tannins, one type of polyphenol, on protein 

digestibility (Bravo, 1998). However, recent interest in food phenolics has increased 

greatly, owing to their antioxidant capacity (free radical scavenging and metal 

chelating activities) and their possible beneficial implications in human health. 

Laboratory studies have shown that specific flavonoids suppress tumor growth, 

interfere with sexual hormones, prevent blood clots, and have anti-inflammatory 

properties.  Among the important flavonoids are resveratrol, quercetin, and catechin. 

Evidence suggests that resveratrol (found in red wine, grapes, olive oil) may be 

extremely potent. In laboratory studies, it increases cell survival and has been shown 
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to increase the life span of worms and fruit flies. Catechins are the primary flavonoids 

in tea and may be responsible for its possible beneficial effects. Flavonoids in dark 

chocolate may also be health protective (Kris-Etherton et al., 2002). 

1.3.5 Phytoestrogens  

Phytoestrogens, commonly known as isoflavones, have actions that are similar to 

the female hormone estrogen. A high consumption of soy, which is primarily 

composed of isoflavones, may reduce symptoms resulting from estrogen depletion 

during menopause. Various phytoestrogens are present in soy, but also in flaxseed oil, 

whole grains, fruits, and vegetables. They have antioxidant properties, and some 

studies demonstrated favorable effects on other CVD risk factors, and in animal and 

cell culture models of cancer (Kris-Etherton et al., 2002). Lignan is another 

phytoestrogen and is found in the fiber layers of whole-grains, berries, some seeds, 

some vegetables, and a few fruits. In laboratory studies, it seems to have anti-cancer 

properties. 

1.3.6 Sulphur-containing Compounds 

Organosulfurs are part of the allium family of phytochemicals. Compounds such 

as allicin may have benefits on the immune system, assist the liver in rendering 

carcinogens harmless, and reduce production of cholesterol in the liver. These 

compounds are found in garlic, leeks, onions, chives, scallions, and shallots (Kris-

Etherton et al., 2002). Isothiocyanates and related substances, indoles, are also known 

as mustard oils and are responsible for the sharp taste in cruciferous vegetables. Such 

vegetables include broccoli, cabbage, Brussels sprouts, cauliflower (Brassica 

oleracea L. var. botrytis), collard greens, kale, kohlrabi (Brassica oleracea L. var. 

http://en.wikipedia.org/wiki/Brassica_oleracea
http://en.wikipedia.org/wiki/Brassica_oleracea
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gongylodes), mustard greens (Brassica juncea L.), rutabaga (Brassica napobrassica 

(L.) Mill.), turnips, and bok choy (Brassica rapa L. var. chinensis). Isothiocyanates 

stimulate enzymes that convert estrogen to a more benign form and may block steroid 

hormones that promote breast and prostate cancers.  

1.4 Sensory Evaluation and Consumer Acceptance 

New product development is the driving force and stimulus in the growth of food 

industry. In this process, new technologies play an important role in sustainable 

innovation of new product development.  However, the advantages that a new 

processing technology has to offer are not enough to ensure acceptance of these 

technologies in the market place, because consumer acceptance is a critical factor 

which considerably affect the marketability of a new food product (Lyndhurst, 2009). 

Some technologies like organic production are warmly welcomed by many 

consumers, whereas others like genetic modification and irradiation have been firmly 

rejected. Thus, we can see that consumers‟ perception and acceptance to a new 

product can prevent the application of a technology and delay the marketing 

promotion of a new product, like in the case of irradiation and genetic modification. 

“On this background it is very important to know how much consumers will like the 

new products developed by new technology” (Olsena et al., 2010).  

The quality control of food has a significant role in assuming a high quality, safe 

and nutritious food supply for the public, for their good health and for the economic 

benefits derived from trade of safe and high quality food. Quality control is applicable 

throughout the entire processing of food production, continuously involved from raw 

materials to end products. There are many analytical and instrumental evaluation 
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methods in quality control, such as electronic nose to discriminate red wines, gas 

chromatography-mass spectrometry (GC-MS) to analyze volatiles, colorimeter to 

estimate color evolution and texture analyzer to evaluate firmness of many kinds of 

food products (Hansen et al., 2005). Even so, there are still different kinds of 

limitations resulting from the instruments inevitably. The most reliable way to 

evaluate the potential human perception is to conduct the human sensory tests. 

Human sensation is received from an organoleptic system, which can deliver the 

comprehensive information on the given sensory attributes of the food product, 

including appearance, color, texture, taste and flavor and overall liking. Therefore, in 

the modern food industry, human sensory evaluation is becoming more and more 

important in establishing consumer acceptability, quality controls and new product 

development.  

1.5 Postharvest Storage and Quality Control 

1.5.1 Low Temperature Storage 

Storage temperature is one of the most important factors affecting the postharvest 

physiology and storage behavior of produce. In general, low temperature storage can 

reduce quality loss and extend shelf life by depressing rates of respiration, 

senescence, and growth of spoilage microorganisms (Spinardi & Ferrante, 2012; 

Paull, 1999). Optimum storage temperature varies depending on the fruit or 

vegetable. For some chilling sensitive fruits and vegetables, the use of low 

temperature storage adversely affects quality attributes and causes deterioration more 

rapidly (Galvez et al., 2010; Sandhya, 2010). Even though an optimal low 

temperature is maintained through the storage, transportation and retail, the fruits and 
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vegetables can still spoil, as evidenced by fungal attacks and detrimental quality 

changes. Therefore, low temperature storage should be combined with other 

postharvest handling methods, like modified atmosphere packaging or UV irradiation.  

1.5.2 Modified Atmosphere Packaging 

Modified atmosphere packaging is an effective technology for maintaining 

freshness and prolonging shelf life of produce, which can be created by altering the 

gas composition in the package, thus to provide an optimum atmosphere for 

prolonging storage length and maintaining the quality of food. The modified 

atmosphere can be achieved by using controlled atmosphere (CA) and /or active or 

passive modified atmosphere packaging (MAP) (Farber et al., 2003). To data, CA and 

MAP have been successfully applied in fresh and minimally processed produce to 

increase the quality, such as apple (Malus × domestica Borkh.), pear (Pyrus 

communis L.), lettuce (Lactuca sativa L.), broccoli, spinach (Spinacia oleracea L.), 

and mushrooms (Sandhya, 2010). In addition, modification of the atmosphere can 

help restrict the growth of microorganisms surrounding the product by provide the 

„hurdle‟ of microbial growth. Another „hurdle‟ can be provided by storage at low 

temperatures (< 4 °C). The combination of chill temperatures and MAP generally 

results in a more effective and safer storage regime and longer shelf-life. There are 

many factors influencing package atmosphere of products, including product 

respiration rate, packaging film oxygen transmission rate (OTR), product weight, 

package surface area, storage temperature and relative humidity (Sandhya, 2010). In 

food supply chains, package size and product weight are often pre-determined, 
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therefore, selecting a packaging film with suitable OTR to match the product 

respiration rate is the best way to maintain quality and extend shelf life of produce.  

1.5.3 Edible Coating 

Edible coatings, a new strategy to extend shelf-life and improve food quality of 

whole fresh-cut fruits and vegetables, have been applied to many products. On one 

hand, edible coatings provide a selective barrier to moisture, oxygen and carbon 

dioxide, which retards gas transfer, slows ripening, reduces moisture loss and helps to 

maintain fresh aroma and flavor (Olivas & Barbosa-Canovas, 2005). On the other 

hand, edible coatings are used as carriers of active ingredients, such as antibrownings, 

antimicrobials, texture enhancers, flavors, and nutrients, to improve the quality, 

safety, and nutritional value of fresh-cut fruits (Rojas-Graü et al., 2009). Several types 

of edible coatings, such as alginate, pectin, gellan, methylcellulose, have been used 

for extending shelf life of fresh and fresh-cut commodities like apples, pears, melons, 

papayas and pineapples (Ananas comosus (L.) Merr.) (Oms-Oliu et al., 2010). 

Numerous studies have shown that the use of edible coatings is a promising approach 

for maintaining “fresh” quality of produce and thus contributing to greater consumer 

acceptance. 

1.6 Microbial Risks and Safety Ensurance 

1.6.1 Foodborne Outbreaks Associated with Produce 

From the Center of Disease Control and Prevention (CDC) database, it can be 

seen that foodborne illness outbreak associated with fresh fruits and vegetables 

happened almost every year and most of them were multistate outbreaks. In 2006, the 

United States Food and Drug Administration (US FDA) announced a large E. coli 
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O157:H7 outbreak of illness associated with bagged spinach. By the time the 

outbreak was over, 204 people were reported to have become ill across 26 States and 

Canada, 104 had been hospitalized, 31 had developed serious complications, and 3 

had died. From November of 2010 through February of 2011, the Salmonella 

outbreak linked to eating alfalfa sprouts or spicy sprouts at Jimmy John‟s restaurants 

caused 140 individuals to have become infected in 26 states including the District of 

Columbia. Statistical data showed that since 1996 there have been at least 30 reported 

outbreaks of foodborne illness associated with raw sprouts. Last year, a Salmonella 

outbreak was linked to cantaloupe: a total of 261 people were infected, 94 people 

hospitalized and 3 deaths were reported from across 24 states.  

These dreadful outbreaks have triggered increasing attention of microbiological 

safety of produce. More and more studies have been extensively carried out to 

identify critical control points during preharvest and postharvest process and develop 

novel technologies to ensure produce safety. 

1.6.2 Sanitation Methods on Fresh Produce 

1.6.2.1 Washing and Sanitizing  

Washing and sanitizing treatments play a crucial role in reducing microbial 

populations on fresh fruits and vegetables, thereby, improving the quality and safety 

of fresh or fresh-cut produce.  

Chlorine is the most widely used sanitizing agent for fresh produce (Beuchat, 

1998). It was shown that the efficacy of chlorine sanitation on produce surface is not 

sufficient within the range of 1-2 log reduction of microbial population (Sapers et al., 

1998). Meanwhile, the reaction of chlorine with organic residues can result in the 
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formation of potentially mutagenic or carcinogenic reaction products (Hidaka et al., 

1992). The use of chlorine in food products has been restricted or prohibited in some 

countries, such as the European Union (EU) (Johnson, 2011). Therefore, alternatives 

to chlorine have been studied, and some are in commercial use. 

Electrolyzed water (EW) has been received a lot of attention as a new sanitizing 

agent for produce in recent years. EW has many advantages, such as effective 

disinfection, easy operation, relatively inexpensive, and environmentally friendly. 

However, some disadvantages should be considered as well: 1) the initial cost for the 

equipment purchase is high; and 2) The chlorine gas generated is bothersome to 

operators. Only recently has EW been tested and used as a disinfectant in the food 

industry (Huang et al., 2008). 

Ozone (O3) is a strong oxidizing agent with numerous potential applications in the 

food industry, which has been used for decades in many countries. High reactivity, 

penetrability, and spontaneous decomposition to a nontoxic product (i.e., O2) make 

ozone a viable disinfectant. However, excessive use of ozone may affect food quality 

due to oxidation of some ingredients on food surface. Caution is needed for workers 

during operation, since inevitable contact of ozone may affect respiration and cause 

dizziness and irritation. Ozone has been used with mixed success to inactivate 

contaminant microflora on meat, poultry, eggs, fish, fruits, vegetables, and dry foods.  

Peroxyacetic acid, also known as peracetic acid, is a mixture of the peroxy 

compound, hydrogen peroxide, and acetic acid. It is usually commercialized as a 

liquid, like Tsunami
®

. Peroxyacetic acid is a strong oxidizing agent and tolerant to 

several factors such as temperature, pH (from 1 to 8), hardness and soil 
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contamination; therefore, it is currently applied in the fruit and vegetable processing 

(Artés et al., 2007). Additionally, the break-down products (acetic acid, O2, CO2 and 

water) of peroxyacetic acid are not particularly harmful for the ecosystem (Artés et 

al., 2009). However, it is more expensive than chlorine and exposure to peroxyacetic 

acid can cause irritation to the skin, eyes and respiratory system. 

Chlorine dioxide (ClO2) is a stable dissolved gas in solution, having a higher 

oxidation and penetration power than NaClO and more effective against spores (EPA, 

1999). ClO2 is a strong bactericide and virucide at levels as low as 0.1 μg/mL. Unlike 

chlorine, ClO2 does not ionize to form weak acids in water and remains as dissolved 

gas in solution, which enables ClO2 to be effective over a wide pH range. The main 

drawback is that it has to be generated on-site by reacting sodium chlorite and acid or 

chlorine (EPA, 1999). Besides, ClO2 is unstable and can be explosive when the 

concentration reaches 10% or more in air (Betts & Everis, 2005).  

Hydrogen peroxide is a powerful oxidant, which has been demonstrated to be 

effective in extending shelf-life and reducing native microbial and pathogen 

populations in fresh and fresh-cut produce products (Sapers & Sites, 2003; Artés et 

al., 2007). However, such treatments require lengthly application times (i.e., 15-60 

min) and can cause injury to some commodities such as mushroom and strawberries 

(Sapers & Simmons, 1998). Therefore, handling methods and safety issues of 

hydrogen peroxide are still in discussion (Taormina et al., 1999). 

1.6.2.2 Irradiation  

Irradiation (increasingly referred to as “cold pasteurization”) is a control measure 

in the production of several types of raw or minimally processed foods such as 
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poultry, meat and meat products, fish, seafood, and some fruits and vegetables. It has 

the potential to eliminate vegetative forms of bacterial pathogens as well as parasites 

(Molins et al., 2001). Irradiation is a safe technology, since scientific research has 

determined that food irradiation does not make food „radioactive‟ and at low to 

medium doses, has little negative effect on vitamins and other nutrients humans 

obtain from their food supply (Crawford & Ruff, 1996; Lester et al., 2010a). Today, 

40 countries permit the irradiation of one or more foodstuffs: 12 countries have 

approved its use for pathogen control in poultry, 8 other for use in meats, and 13 in 

fish and seafood (Molins et al., 2001). In the USA, there are more than 40 irradiation 

plants in operation today, all of which are dedicated to sterilization of certain 

industrial products and medical supplies and there is only one commercial food 

irradiation plant operating in the USA. To some extent, the slow growth of food 

irradiation processing in this country is mainly attributable to consumer perceptions. 

Surveys show that Americans know very little about the food irradiation process and 

are inclined to answer „no‟ when asked if they would purchase irradiated foods. 

However, those same surveys indicate that when consumers are told about the 

benefits and safety of irradiation, their acceptance level increases (Crawford & Ruff, 

1996). While there is very strong support for food irradiation among the informed 

scientific community and health organizations, extensive education is needed for 

broad public acceptance. 

1.6.2.3 Intense light pulses 

Intense light pulse (ILP) is an emerging nonthermal technology for 

decontamination of food surfaces and food packages, consisting of short time high-
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peak pulses of broad spectrum white light. It is considered an alternative to 

continuous ultraviolet light treatments for solid and liquid foods and has been 

approved by the US FDA that could be suitable for disinfecting fresh-cut produce. 

(Oms-Oliu et al., 2010).Intense light pulses treatment kills microorganisms using 

short time (from 85 ns to 0.3 ms) high frequency pulses (from 0.45 to 15 Hz) and 

energy per pulse ranging from 3 to 551 J of an intense broad spectrum, rich in UV–C 

light (Gómez-López et al., 2005). It seems to induce structural changes of microbial 

DNA, comparable to the effect caused by continuous UV sources, but others 

mechanisms seem to be involved (Takeshita et al., 2003). Since the ILP 

decontamination effect seems to be dependent on light absorption by microorganisms, 

certain food components could also absorb the effective wavelengths and decrease 

their efficiency. ILP has been used to successfully inactivate E. coli O157:H7 on 

alfalfa seeds (Sharma & Demirci, 2003). Gómez-López et al. (2005) reported that 

foods rich in carbohydrate, such as fruit and vegetables, seem to be more suitable for 

decontamination by ILP (Artés et al., 2009). ILP has considerable potential to be 

implemented in the food industry. However, technological problems need to be 

solved in order to avoid food overheating as well as to achieve better penetration and 

treatment homogeneity. 
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Chapter 2: Assessment of Vitamin and Carotenoid 

Concentrations of Emerging Food Products: Edible 

Microgreens   

Xiao, Z., Lester, G. E., Luo, Y., Wang, Q. (2012) Journal of Agricultural and Food 

Chemistry, 60 (31), 7644–7651. 

 

2.1 Abstract 

Microgreens have gained popularity as a new culinary trend over the past few 

years. Although small in size, microgreens can provide surprisingly intense flavors, 

vivid colors and crisp textures. No scientific data is currently available on the 

nutritional content of microgreens. The present study was conducted to determine the 

concentrations of ascorbic acid, carotenoids, phylloquinone and tocopherols in 25 

commercially available microgreens. Results showed that different microgreens 

provided extremely varying amounts of phytonutrients. Total ascorbic acid contents 

ranged from 20.4 to147.0 mg per 100 g fresh weight (FW), β-carotene, 

lutein/zeaxanthin and violaxanthin concentrations ranged from 0.6 to 12.1, 1.3 to 10.1 

and 0.9 to 7.7 mg/100 g FW, respectively. Phylloquinone level varied from 0.6 to 4.1 

μg/g FW, meanwhile,  α-tocopherol and γ-tocopherol ranged from 4.9 to 87.4 and 3.0 

to 39.4 mg/100 g FW, respectively. Among the 25 microgreens assayed, red cabbage, 

cilantro, garnet amaranth and green daikon radish had the highest concentrations of 

ascorbic acids, carotenoids, phylloquinone, and tocopherols, respectively. Compared 

mature leaves nutritional concentrations recorded in USDA National Nutrient 

Database, microgreen cotyledon leaves possessed higher nutritional densities.  
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2.2 Introduction 

Epidemiological studies have shown that fruit and vegetable consumption is 

associated with reduction in the development of chronic disease, such as cancer and 

cardiovascular disease (Bergquist et al., 2006; Hung et al., 2004). Diets rich in fruits 

and vegetables provide an abundance of phytonutrients (Craig & Beck, 1999), such as 

ascorbic acid (vitamin C), carotenoids (provitamin A compounds), phylloquinone 

(vitamin K1) and tocopherols (vitamin E), which are known to have health protective 

benefits against cancers and cardiovascular disease (Catherine Rice-Evans, 1995). 

The new Dietary Guidelines for Americans (2010) released by the U.S. Department 

of Agriculture (USDA) and the Department of Health and Human Services (DHHS) 

specifically recommends Americans to fill half of their plate with fruits and 

vegetables because they possess benefits for human health. 

Microgreens are an exotic genre of edible greens appearing in upscale markets 

and restaurants which have gained popularity as a new culinary trend over the past 

few years. Microgreens are tender immature greens produced from the seeds of 

vegetables and herbs, having two fully developed cotyledon leaves with or without 

the emergence of a rudimentary pair of first true leaves. Microgreens are usually 2.5-

7.6 cm (1-3 in.) in height, harvested at 7-14 days after germination, depending on the 

species, and sold with the stem and attached cotyledons (seed leaves). Although small 

in size, microgreens can provide a large array of intense flavors, vivid colors and 

tender textures. Therefore, microgreens can be served as a new ingredient in salad, 

soups and sandwiches enhancing their color, texture, and/or flavor, and also can be 

http://www.fruitsandveggiesmorematters.org/?page_id=58
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used as edible garnish to brighten up a wide variety of main dishes (Treadwell, 2010; 

Lee et al., 2004; Lee et al., 2009; Murphy & Pill, 2010).  

Although microgreens have been claimed as nutritionally beneficial, to the best of 

our knowledge, no scientific data are available on the exact phytochemical content of 

microgreens. Limited studies have shown that some young seedlings may have much 

higher levels of vitamins, minerals and other health-giving phytonutrients than the 

mature leaves.  In a recent study from Lester et al. (2010a), it was reported that the 

younger leaves of baby spinach (Spinacia oleracea L.) generally had higher levels of 

phytonutrients: vitamins C, B9 and K1, and the carotenoids (lutein, violaxanthin, 

zeaxanthin and beta-carotene) than the more mature leaves. Oh et al. (2010) also 

found that young lettuce (Lactuca sativa) seedlings, 7 days after germination, had the 

highest total phenolic concentration and antioxidant capacity in comparison to the 

older leaves. Therefore, the object of this study was to assess the phytonutrients 

content of the 25 commercially available microgreens varieties.  The phytonutrients 

assayed include ascorbic acid (total, free and dehydro), carotenoids (beta-carotene, 

violaxanthin and lutein/zeaxanthin), phylloquinone, and tocopherols (α-tocopherol 

and γ-tocopherol). 

2.3 Materials and Methods 

2.3.1 Plant Materials  

Twenty-five varieties of microgreens were purchased from Sun Grown Organics 

Distributors, Inc. (San Diego, CA, USA) from May through July, 2011. They were 

produced by the grower in an unheated greenhouse and under ambient light except 

etiolated golden pea tendrils and popcorn shoots, which were grown in the dark.  All 
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the microgreens were grown in soil and fertilized in a proprietary manner except 

China rose radish and green daikon radish microgreens, which were grown 

hydroponically. Samples were harvested without roots, packed in clamshell 

containers (113.4 g of each) and shipped overnight in a cardboard box which was 

filled with frozen-ice packs. When received, three grams of fresh tissue were weighed 

for ascorbic acid analysis. Remaining tissue was frozen in liquid nitrogen and 

lyophilized for dry weight and other vitamin and carotenoid determinations.  It is 

worth mentioning that golden pea tendrils and green pea tendrils are grown from the 

same seed source. Golden pea tendrils were grown in dark and green pea tendrils 

were grown under ambient light. Photographs of the 25 commercially grown 

microgreens assayed in this study were shown in Fig. 2.1 and commercial names, 

scientific names and plant colors are listed in Table 2.1.  

2.3.2 Dry Weight  

Dry matter was determined by freeze-drying according to a previous procedure 

(Julkunen-Tiitto & Sorsa, 2001). Ten grams of fresh microgreens were weighed into 

plastic tubes, frozen in liquid nitrogen, and lyophilized for 48 h (VirTis Freezemobile 

35 ES Sentry 2.0 freeze dryer, SP Scientific Corp., Warminster, PA, USA), followed 

by holding at room temperature in a dessicator prior to weighing. 

2.3.3 Nutrient Analysis 

All chemicals and standards unless otherwise stated were obtained through 

Sigma-Aldrich Chemical Corp. (St. Louis, MO, USA). Standards of lutein and 

zeaxanthin were obtained from ChromaDex (Irvine, CA, USA). 
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Fig. 2.1 Pictures of 25 commercially available microgreens. 
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Table 2.1 Commercial names, scientific names and plant colors of 25 

commercially grown microgreens assayed in the nutrient study. 
 

Commercial name                      Scientific Name Plant color 

Family Genus and Species 

Arugula Brassicaceae Eruca sativa Mill.  Green 

Bull's blood beet Chenopodiaceae Beta vulgaris L. Reddish-green 

Celery Apiaceae Apium graveolens L. Green 

China rose radish Brassicaceae Raphanus sativus L. Purplish-green 

Cilantro Apiaceae Coriandrum sativum L. Green 

Garnet amaranth Amaranthaceae hypochondriacus L. Red 

Golden pea tendrils
*
 Fabaceae Pisum sativum L. Yellow 

Green basil Lamiaceae Ocimum basilicum L. Green 

Green daikon radish Brassicaceae Raphanus sativus L. Green 

Magenta spinach  Chenopodiaceae  Spinacia oleracea L. Red 

Mizuna Brassicaceae  Brassica rapa L.  Green 

Opal basil Lamiaceae Ocimum basilicum L. Greenish-purple 

Opal radish Brassicaceae Raphanus sativus L. Greenish-purple 

Pea tendrils
*
 Fabaceae Pisum sativum L. Green 

Peppercress Brassicaceae Lepidium bonariense L. Green 

Popcorn shoots Poaceae Zea mays L. Yellow 

Purple kohlrabi Brassicaceae Brassica oleracea L.  Purplish-green 

Purple mustard Brassicaceae Brassica juncea L. Purplish-green 

Red beet Chenopodiaceae Beta vulgaris L. Reddish-green 

Red cabbage Brassicaceae  Brassica oleracea L. Purplish- green 

Red mustard Brassicaceae Brassica juncea L.  Purplish-green 

Red orach Chenopodiaceae Atriplex hortensis L. Red 

Red sorrel Polygonaceae Rumex acetosa L. Reddish-green 

Sorrel Polygonaceae Rumex acetosa L. Green 

Wasabi 

Brassicaceae Wasabia japonica 

Matsum. 

Green 

 

*
Golden pea tendrils and pea tendrils are grown from the same seeds. Golden pea 

tendrils are grown in dark and pea tendrils are grown under light, therefore, the colors 

of them are different (yellow and green, respectively). All the microgreens were 

grown organically except China rose radish and green daikon radish microgreens, 

which were grown hydroponically. 
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2.3.3.1 Ascorbic Acid 

Total ascorbic acid (TAA) and free L-ascorbic acid (AA) were determined 

spectrophotometrically according to the procedure previously reported by Hodges et 

al. (2001). Fresh tissue (3 g) was weighed into a 50 mL centrifuge tube, and 10 mL of 

ice-cold 5% (w/v) meta-phosphoric acid was added, followed by homogenization at 

the speed of 15,000 rpm for 1 min in ice-water bath using a polytron homogenizer 

(Brinkman Instruments, Westbury, NY, USA). Homogenized tissue was centrifuged 

at 7000 g (Beckman J2-MI, Beckman Coulter, Inc., Irving, TX, USA) for 20 min at 

4°C, and supernatant was filtered through Whatman Grade 4 filter paper (Millipore 

Corp. Bedford, MA, USA). Filtrate was used for AA determination and TAA by 

converting dehydroascorbic acid (DHA) to AA with dithiothreitol. TAA and AA were 

determined spectrophotometrically (Genesys 20, Thermo Scientific Inc, Logan, UT, 

USA) at 525 nm. Concentrations of TAA and AA were calculated using an L-

ascorbic acid standard curve (all the R
2
 ≥ 0.99), and their difference was equal to the 

concentration of DHA. 

2.3.3.2 Carotenoids and Tocopherols 

Carotenoids and tocopherols were extracted under yellow light according to the 

modified method described by Lester et al. (2010a). Briefly, 0.05 g of lyophilized 

samples were weighed into 15 mL screw cap glass vials, and then 7.5 mL of 1% 

butylated hydroxytoluene (BHT) in ethanol and 500 µL of internal standard (86.82 

µM trans-β-apo-8 carotenal) were added, followed by ultrasonic homogenization for 

15 s using a Fisher Scientific Model 300 Sonic Dismembrator (Pittsburg, PA, USA). 

The vials were capped under a stream of N2 and placed in a 70°C dry bath for 15 min, 
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after which 180 µL of 80% KOH was added. After mixing and flushing with flow N2, 

vials were capped again and placed in a 70°C dry bath for 30 min. Vials were then 

removed and cooled for 5 min in ice, and then transferred into 15 mL centrifuge 

tubes, after which 3.0 mL of deionized water and 3.0 mL of hexane/toluene solution 

(10:8 v/v) were added. The mixture was vortexed for 1 min, and then centrifuged at 

1000 g (Clay Adams Dynac II Centrifuge, Block Scientific, Inc., Bohemia, NY, USA) 

for 5 min. The top organic layer was collected into an 8 mL glass culture tube, and 

immediately placed into a nitrogen evaporator (Organomation Associates, Inc., 

Berlin, MA, USA) set at 30°C and flushed with stream of N2. The bottom layer was 

extracted again with 3.0 mL of hexane/toluene solution (10:8 v/v) for further 

partition. This extraction was repeated at least four times until the top layer was 

colorless, and all the supernatants were combined into a glass culture tube. After 

evaporation, the residue was reconstituted in 500 µL of mobile phase 

acetonitrile/ethanol (1:1 v/v), filtered into an HPLC amber vial through 0.22 µm 

nylon filter (Milliopore Corp., Bedford, MA, USA) with a glass syringe and 20 µL 

was injected for HPLC analysis. Carotenoids and tocopherols concentrations were 

simultaneously determined using an isocratic reverse phase high performance liquid 

chromatography (RP-HPLC), which were separated on a C18 column (Adsorbosphere 

C18-UHS, 5µm, 150×4.6mm, Grace, Deerfield, IL, USA) with a photo diode array 

detector (DAD) (G1315C, Agilent, Santa Clara, CA, USA), using isocratic mobile 

phase acetonitrile/ethanol (1:1 v/v). The flow rate was 1.2 mL/min and the running 

time was 20 min. Absorbance was measured at 290 and 450 nm simultaneously for 
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tocopherols and carotenoids, respectively. Quantification was based on a standard 

curve for each compound.  

2.3.3.3 Phylloquione 

Phylloquinone was extracted from 25 microgreens under dim light and 

determined by reversed-phase high performance liquid chromatography (RP-HPLC), 

as described by Booth et al. (1994). Each sample (0.1 gram of freeze-dried tissue) 

was homogenized (Brinkman Instruments, Westbury, NY, USA) with 10 mL of H2O 

and 0.4 mL of 200 µg/mL menaquinone (internal standard) at the speed of 15000 rmp 

for 1min, after which 15 mL of 2-propanol/hexane (3:2 v/v) was added. The sample 

was then vortexed for 1 min and centrifuged (Beckman J2-MI, Beckman Coulter, 

Inc., Irving, TX, USA) for 5 min at 1500g, 21°C. The upper (hexane) layer was 

transferred into a glass culture tube and dried under a stream of N2. The residue was 

dissolved in 4 mL of hexane. The sample extract was purified by loading 1 mL of 

redissolved extract onto preconditioned silica gel columns (4mL of 3.5% ethyl ether 

in hexane, followed by 4 mL of 100% hexane), and then washing column with 2 mL 

of hexane. Phylloquinone was eluted with 8 mL of 3.5% ethyl ether in hexane, and 

the eluate was evaporated on a water-jacketed heating block (Pierce Reacti-Therm, 

Pierce Chemical Company, Rockford, IL, USA) at 40°C under N2 flow, and then 

reconstituted in 2 mL of mobile phase (99% Methanol, 1% 0.05M sodium acetate 

buffer, pH=3.0) and filtered through a 0.22 µm nylon syringe filter (Millipore Corp., 

Bedford, MA, USA). Detection of phylloquinone was with a photodiode array 

detector (DAD) (G1315C, Agilent, Santa Clara, CA, USA) on Agilent 1200 Series 

HPLC system and absorbance wavelength was 270 nm. The extract (20 µL) was 
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injected into HPLC and run through a C18 column (201TP, 5µm, 150 × 4.6 mm, 

Grace, Deerfield, IL, USA) using an isocratic mobile phase (described above) flowing 

at the rate of 1 mL/min. The phylloquinone content of the samples was quantified 

according to the internal standard method based on the peak areas. 

2.3.4 Statistical Analysis 

Dry weight analysis and all assays were performed on three replicates. All 

phytonutrient analysis was conducted through one extraction of each replicate from 

each sample. All the data was reported as the mean of three replicates ± standard 

error. Statistical separation of phytonutrient values per species is based by Coefficient 

of Variability (CV) and this variability is in relation to the mean of the population 

from mature leaf data. A combined population of microgreens for each phytonutrient 

CV is listed in tables. 

2.4 Results and Discussion 

2.4.1 Dry Weight Percentage 

Dry weight percentage of the 25 commercially available microgreens ranged from 

4.6% to 10.2%, as shown in Table 2.2. Among them, pea tendrils had the highest dry 

weight percentage and red beet possessed the lowest one. The overall average dry 

weight percentage of the 25 varieties of microgreens was 6.9 ± 0.1 %. 

2.4.2 Phylloquinone Concentrations 

Phylloquinone (vitamin K1) is required for blood coagulation and most abundant 

in photosynthetic tissues of dark-green vegetables, such as spinach  (Spinacia 

oleracea L.), kale (Brassica oleracea L. var. acephala) and broccoli  (Brassica 

oleracea var. italica)  (Bolton-Smith et al., 2000). The HPLC chromatograph of 

http://en.wikipedia.org/wiki/Coagulation
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Vitamin K standards and extract from microgreens was shown in Fig. 2.2. Among the 

25 microgreens assayed, there was considerable variation in phylloquinone 

concentration, ranging from 0.6 to 4.1 µg/g fresh weight (FW) as shown in Table 2.2. 

Among them, the most concentrated in phylloquinone was garnet amaranth (4.1 µg/g 

FW), red sorrel (3.3 µg/g FW), green basil (3.2 µg/g FW), pea tendrils (3.1 µg/g FW) 

and red cabbage (2.8 µg/g FW) microgreens. In contrast, magenta spinach, golden 

pea tendrils, red orach microgreens and popcorn shoots had vitamin K1 concentration 

ranging from 0.6 to 0.9 µg/g FW. Samples identified as rich in phylloquinone were 

generally green (e.g. pea tendrils) and bright red in color (e.g. garnet amaranth 

microgreens), while yellow-colored microgreens, such as popcorn shoots and golden 

pea tendrils, had relatively low concentration of vitamin K1, which is in agreement 

with a previous report (Bolton-Smith et al., 2000). Surprisingly, magenta spinach, 

which has a similar appearance to the leading vitamin K1 microgreens source, garnet 

amaranth (4.1 µg/g FW), had among the lowest vitamin K1 concentration. 

Comparison of fully-grown and cotyledon leaves demonstrated that growth stage 

affected vitamin K1 concentration, and for some of the varieties, the effect was 

obvious. For example, according to the USDA National Nutrient Database (2011), 

phylloquinone concentration in mature amaranth, basil and red cabbage were 1.14, 

0.41 and 0.04 µg/g FW, respectively, which were much lower than their 

corresponding microgreens (4.09, 3.20 and 2.77 µg/g FW, respectively). Four of the 

25 microgreen varieties assayed in this study had comparable amount of 

phylloquinone to mature leaf spinach, which is generally considered as an excellent 
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source of vitamin K1; and 18 out of 25 exhibited vitamin K1 densities equal to or 

higher than that of broccoli, the most commonly consumed vegetable in US (Bolton-

Smith et al., 2000; USDA, 2011); demonstrating that most of the 25 microgreens can 

serve as good natural sources of vitamin K1.  

Table 2.2 Dry weight percentage and phylloquinone concentrations in 25 

commercially grown microgreens
a
. 

 
Microgreen name Dry Weight (%) Phylloquinone (µg/g FW) 

Arugula 5.5 ± 0.0
 
 1.6 ± 0.1 

Bull's blood beet 6.2 ± 0.1 2.0 ± 0.1 

Celery 6.8 ± 0.1 2.2 ± 0.1 

China rose radish 8.1 ± 0.1 1.8 ± 0.1 

Cilantro 8.3 ± 0.1 2.5 ± 0.1 

Garnet amaranth 9.3 ± 0.1 4.1 ± 0.0 

Golden pea tendrils 9.8 ± 0.2 0.7 ± 0.0 

Green basil 7.3 ± 0.0 3.2 ± 0.1 

Green daikon radish 7.8 ± 0.1 1.9 ± 0.1 

Magenta spinach 5.1 ± 0.2 0.6 ± 0.0 

Mizuna 5.3 ± 0.0 2.0 ± 0.0 

Opal basil 6.8 ± 0.1 2.0 ± 0.1 

Opal radish 7.8 ± 0.1 2.2 ± 0.2 

Pea tendrils 10.2 ± 0.2 3.1 ± 0.2 

Peppercress 7.3 ± 0.1 2.4 ± 0.2 

Popcorn shoots 7.0 ± 0.1 0.9 ± 0.0 

Purple kohlrabi 6.1 ± 0.0 2.3 ± 0.1 

Purple mustard 5.7 ± 0.1 1.3 ± 0.1 

Red beet 4.6 ± 0.1 1.9 ± 0.1 

Red cabbage 7.7 ± 0.1 2.8 ± 0.1 

Red mustard 5.6 ± 0.1 1.9 ± 0.1 

Red orach 6.2 ± 0.2 0.7 ± 0.0 

Red sorrel 7.0 ± 0.1 3.3 ± 0.0 

Sorrel 4.9 ± 0.0 1.7 ± 0.1 

Wasabi 5.6 ± 0.0 1.9 ± 0.1 

Coefficient of variation  15% 
                  a

 Values are expressed as means ± standard error (n=3). 

 

 

 
 



28 

 

 

 

Fig. 2.2 HPLC chromatograms of vitamin K standards (A) and extraction of 

garnet amaranth microgreens (B).  

Menaquinone (Vit K2) is the internal standard. HPLC conditions are described in the 

materials and methods. 

 

2.4.3 Ascorbic Acid Concentrations 

Ascorbic acid (vitamin C) is an essential nutrient for the human body, acting as an 

antioxidant. When the plant is subject to physical or physiological stress (harvesting 

injury, chilling, irradiation, etc.), the AA can be oxidized into DHA (Hodges et al., 

2001). It is previously reported that the utilization of DHA is equivalent to that of 

AA, although the metabolic turnover time is different (Tsujimura et al., 2008). In this 

study, TAA, AA and DHA concentration were determined and listed in Table 2.3. 

The 25 microgreens exhibited TAA concentration ranging from 20.4 to 147.0 

mg/100 g FW. Among samples tested, red cabbage and garnet amaranth microgreens 
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had the highest TAA contents, followed by China rose radish, opal basil and opal 

radish. The vitamin C content of red cabbage microgreens (147.0 mg/100 g FW) was 

6-fold higher than previously published data of the mature red cabbage (24.4 mg/100 

g FW) (Singh et al., 2006) and 2.6 times greater than that (57.0 mg/100 g FW) 

recorded in USDA National Nutrient Database for Standard Reference, Release 24 

(USDA, 2011), and was determined to be 2.4 times greater than estimated average 

requirement (EAR) for ascorbic acid. Garnet amaranth (131.6 mg/100g FW) had 

much higher ascorbic acid content than reported concentration of mature leaf (11.6-

45.3 mg/100 g FW) (Mensah et al., 2008; Punia et al., 2004). China rose radish, opal 

basil and opal radish microgreens also were relatively abundant sources of vitamin C 

with more than 90.0 mg/100 g FW, equal to 1.5 times of the recommended dietary 

allowance (RDA).These microgreen varieties had higher ascorbic acid concentration 

than does broccoli (89.2 mg/100 g FW) (USDA, 2011), which is generally recognized 

as an excellent source of vitamin C. Even though some of the 25 microgreens tested  

had relatively low levels of total AA, such as golden pea tendrils (25.1 mg/100 g FW) 

and sorrel microgreens (20.4 mg/100 g FW), they were comparable to spinach (28.1 

mg/100 g FW) (USDA, 2011), which is one of the most commonly consumed leaf-

vegetables in US. Therefore, it was suggested that fresh microgreens are generally 

good to excellent sources of ascorbic acid and likely more concentrated with TAA 

than their mature plant counterparts, which is in accordance with Bergquist‟s (2006) 

findings on baby spinach: that younger plants had higher ascorbic acid content than 

older harvested leaves.  
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Table 2.3 Total ascorbic acid (TAA), free ascorbic acid (AA), and 

dehydroascorbic acid (DHA) concentrations in 25 commercially grown 

microgreens
 a
. 

 

a
 Values are expressed as mean ± standard error (n=3). 

 

2.4.4 Carotenoid Concentrations  

2.4.4.1 β-Carotene 

β-Carotene (provitamin A) is an important fat-soluble antioxidant and can protect 

cellular membranes by scavenging free radicals (Singh et al., 2006). Together with 

other carotenoids, the HPLC chromatogram of β-carotene standard and extraction of 

Microgreen name TAA  

(mg/100 g FW) 

AA  

(mg/100 g FW) 

DHA  

(mg/100 g FW) 

Arugula 45.8 ± 3.0 32.7 ± 1.3 13.2 ± 2.8 

Bull's blood beet 46.4 ± 3.0
 
 46.0 ± 3.3 0.5 ± 0.3 

Celery 45.8 ± 3.1 32.6 ± 1.3 13.2 ± 2.8 

China rose radish 95.8 ± 10.3 73.2 ± 3.4 22.6 ± 7.4 

Cilantro 40.6 ± 2.4 24.5 ± 1.8 16.1 ± 2.2 

Garnet amaranth 131.6 ± 2.9 105.1 ± 3.1 26.5 ± 1.4 

Golden pea tendrils 25.1 ± 0.7 15.3 ± 1.7 9.8 ± 1.2 

Green basil 71.0 ± 2.7 59.0 ± 1.8 12.0 ± 1.1 

Green daikon radish 70.7 ± 2.7 58.8 ± 1.7 11.9 ± 1.1 

Magenta spinach 41.6 ± 0.8 36.0 ± 0.8 5.6 ± 0.2 

Mizuna 42.9 ± 1.6 32.3 ± 1.0 10.6 ± 0.7 

Opal basil 90.8 ± 2.7 81.8 ± 1.6 9.0 ± 2.0 

Opal radish 90.1 ± 2.7 81.1 ± 1.7 9.0 ± 1.9 

Pea tendrils 50.5 ± 0.9 27.9 ± 1.1 22.5 ± 0.3 

Peppercress 57.2 ± 1.6 33.0 ± 0.7 24.2 ± 1.8 

Pop corn shoots 31.8 ± 0.7 21.4 ± 2.5 10.4 ± 3.0 

Purple kohlrabi 62.8 ± 7.3 48.1 ± 3.7 14.7 ± 3.7 

Purple mustard 72.1 ± 4.6 53.6 ± 2.6 18.5 ± 4.4 

Red beet 28.8 ± 0.4 27.5 ± 0.3 1.3 ± 0.5 

Red cabbage 147.0 ± 3.6 103.3 ± 9.0 43.7 ± 5.4 

Red mustard 62.2 ± 2.6 40.8 ± 1.4 21.4 ± 1.3 

Red orach 45.4 ± 0.9 43.7 ± 0.9 1.7 ± 0.2 

Red sorrel 56.7 ± 1.4 41.9 ± 1.9 14.9 ± 0.7 

Sorrel 20.4 ± 0.5 17.9 ± 0.3 2.6 ± 0.2 

Wasabi 44.8 ± 1.9 35.0 ± 2.0 9.8 ± 0.1 

Coefficient of variation 12% 18% 35% 
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cilantro microgreens was shown in Fig. 2.3. As shown in Table 2.4, the β-carotene 

levels ranged from 0.6-12.1 mg/100 g FW. Among the tested microgreens, red sorrel 

had the highest β-carotene concentration (12.1 mg/100 g FW), followed by cilantro, 

red cabbage and peppercress (11.7, 11.5, and 11.1 mg/ 100 g FW, respectively). The 

lowest β-carotene concentration was found in golden pea tendrils and popcorn shoots 

(around 0.6 mg/100 g FW) with the other microgreens at intermediate values (5.2 to 

8.6 mg/100 g FW). Compared with fully-developed cilantro leaves, cilantro seedlings 

contained 3-fold more β-Carotene.  Red cabbage microgreens contained an average of 

11.5 mg/100 g FW which is approximately 260-fold more than the value (0.044 

mg/100 g FW) reported for mature red cabbage leaves (Singh et al., 2006). Wasabi, 

green basil, pea tendrils and garnet amaranth microgreens are also abundantly 

concentrated with β-carotene. The β-carotene concentration in these microgreens is 

comparable to that of carrot (Daucus carota L.) and sweet potato (Ipomoea 

batatas (L.) Lam) which are well known β-carotene-rich vegetables (Punia et al., 

2004; USDA, 2011). In summary, all the microgreens tested can be considered 

as excellent sources of β-carotene, with the exceptions of popcorn shoots and golden 

pea tendrils.  

2.4.4.2 Lutein/zeaxanthin   

Lutein and zeaxanthin are xanthophyll carotenoids, accumulating in the macula of 

human eyes. Numerous epidemiological studies have shown lutein and zeaxanthin 

play a critical role in the prevention of age-related macular degeneration and cataract 

 

 



32 

 

 

Table 2.4 β-Carotene, violaxanthin and lutein/zeaxanthin concentrations in 25 

commercially grown microgreens
a
. 

 
Microgreen name β-Carotene  

(mg/100 g FW) 

Lutein/zeaxanthin  

(mg/100 g FW) 

Violaxanthin  

(mg/100 g FW) 

Arugula 7.5 ± 0.4
 
 5.4 ± 0.2 2.6 ± 0.1 

Bull's blood beet 5.3 ± 0.8
 
 4.3 ± 0.7 2.3 ± 0.1 

Celery 5.6 ± 0.1 5.0 ± 0.1 2.6± 0.1 

China rose radish 5.4 ± 0.5 4.9 ± 0.4 1.9 ± 0.1 

Cilantro 11.7 ± 1.1 10.1 ± 0.3  7.7 ± 0.6 

Garnet amaranth 8.6 ± 0.3 8.4 ± 0.1 4.4 ± 0.1 

Golden pea tendrils 0.6 ± 0.0 2.7 ± 0.0 1.0 ± 0.1 

Green basil 8.4 ± 0.4 6.6 ± 0.3 2.7 ± 0.2 

Green daikon radish 6.1 ± 0.1 4.5 ± 0.1 1.7 ± 0.0 

Magenta spinach 5.3 ± 0.3 3.2 ± 0.2 3.7 ± 0.5 

Mizuna 7.6 ± 0.4 5.2 ± 0.3 2.4 ± 0.1 

Opal basil 6.1 ± 0.4 5.3 ± 0.3 2.0 ± 0.0 

Opal radish 6.3 ± 1.0 5.5 ± 0.9 2.3 ± 0.4 

Pea tendrils 8.2 ± 1.1 7.3 ± 1.2  3.9 ± 1.4 

Peppercress 11.1 ± 0.6 7.7 ± 0.4 3.1 ± 0.2 

Popcorn shoots 0.6 ± 0.1 1.3 ± 0.1 0.9 ± 0.1 

Purple kohlrabi 5.7 ± 0.2 4.0 ± 0.1 1.5 ± 0.0 

Purple mustard 5.6 ± 0.4 6.4 ± 1.9 1.0 ± 0.2 

Red beet 7.7 ± 0.1 5.5 ± 0.0 3.7 ± 0.0 

Red cabbage 11.5 ± 1.2 8.6 ± 1.0 2.9 ± 0.3 

Red mustard 6.5 ± 0.4 4.9 ± 0.3 1.7 ± 0.1 

Red orach 6.3 ± 0.3 3.9 ± 0.2 3.2 ± 0.2 

Red sorrel 12.1 ± 0.6 8.8 ± 0.2 3.6 ± 0.1 

Sorrel 5.2 ± 1.0 4.2 ± 0.8 1.3 ± 0.3 

Wasabi 8.5 ± 0.2 6.6 ± 0.3 2.2 ± 0.2 

Coefficient of Variation 31% 18% 18% 
a
 Values are expressed as mean ± standard error (n=3). 

(Ma & Lin, 2010). In the analysis of lutein and zeaxanthin, these two isomers were 

co-eluted in HPLC system, so all the values were calculated based on the area under 

the curve of lutein standard and expressed in lutein equivalents but represented as the 

sum of lutein and zeaxanthin. While all 25 microgreens assayed in this study 

contained lutein and zeaxanthin (Table 2.4), cilantro had the highest 

lutein/zeaxanthin levels with 10.1 mg/100g FW. Red sorrel, red cabbage and garnet 
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amaranth microgreens followed with lutein/zeaxanthin concentrations of 8.8, 8.6 and 8.4 

mg/100g FW, respectively. These values were higher than that of mature spinach (7.2 

mg/100g FW) , which contains high quantities of lutein/zeaxanthin (Perry et al., 2009). 

The lowest concentration of lutein/zeaxanthin, 1.3 mg/100g FW was found in popcorn 

shoots. According to the USDA National Nutrient Database (2011), it was determined 

that the values of lutein/zeaxanthin in raw mature cilantro and red cabbage were 0.9 and 

0.3 mg/100g FW, respectively, which contrasted with the more abundant concentrations 

in their microgreens counterparts which had 11.2 times and 28.6 times greater 

lutein/zeaxanthin concentrations, respectively. These findings suggest that these 

immature leaves of the microgreens tend to possess higher lutein/zeaxanthin 

concentration than their fully-grown plant counterparts (USDA, 2011).  

2.4.4.3 Violaxanthin 

Violaxanthin is a natural orange-colored carotenoid found in photosynthetic organs of 

plants. The concentrations of violaxanthin in the 25 microgreens varied considerably with 

cilantro microgreens containing 7.7 mg/100 g FW violaxanthin while popcorn shoots and 

golden pea tendrils only containing 0.9 and 1.0 mg/100 g FW violaxanthin, respectively 

(Table 2.4). The rest of the microgreens had violaxanthin ranged from 1.3 to 4.3 mg/100 

g FW. The maximum concentration of violaxanthin in cilantro microgreens was more 

than 5-fold than that of mature cilantro leaves (1.4 mg/100 g FW) and 2.8 times than that 

of mature spinach (2.7 mg/100 g FW), both of which are considered as good sources of 

violaxanthin (Bunea et al., 2008; Kobori & Arnaya, 2008). Twenty-two out of the 25 

microgreens assayed possessed violaxanthin concentration higher than mature cilantro, 

and 40% of them were at levels equal to or higher than commonly consumed mature-leaf 

spinach and baby-leaf spinach (Lester et al., 2010a). 

http://en.wikipedia.org/wiki/Xanthophyll
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Fig. 2.3 HPLC chromatograms of carotenoid standards (A) and extraction of 

cilantro microgreens (B).  

β-Apo-8‟-carotenal is the internal standard and lutein and zeaxanthin are co-eluted. 

HPLC conditions are described in the materials and methods. 

 

2.4.5 Tocopherol Concentrations 

Tocopherols and tocotrienols are together summarized as “vitamin E”, known as fat 

soluble antioxidants. Each group has four isomers (α-, β-, γ- and δ-). The most active 

form of all the tocopherols is α-tocopherol, while γ-tocopherol is the most abundant 

one in plants (Schwartz et al., 2008). In this study, α-and γ-tocopherol contents for the 

25 different microgreens varieties are summarized (Table 2.5) and the HPLC 

chromatogram of tocopherol standards and extraction of green daikon radish 

microgreens was shown in Fig. 2.4. Green daikon radish has extremely high α-

tocopherol and γ-tocopherol contents of 87.4 and 39.4 mg/100 g FW, respectively. In 
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addition, cilantro, opal radish and  peppercress microgreens are also excellent sources 

of α-tocopherol and γ-tocopherol, with the α-tocopherol concentrations ranging from 

41.2 to 53.1 mg/100 g FW, and γ-tocopherol values from 12.5 to 16.7 mg/100 g FW. 

Even though the values of α-tocopherol (4.9 mg/100g FW) and γ-tocopherol (3.0 

mg/100g FW) in golden pea tendrils were among the lowest of the 25 microgreens, 

their values were still markedly higher than those for more mature spinach leaves (2.0 

and 0.2 mg/100g FW, respectively) (USDA, 2011). Red cabbage microgreens 

contained over 40 times the vitamin E content of that in its mature counterpart (0.06 

mg/100 g FW) reported by Podsedek et al. (2006). 

 
 

Fig. 2.4 HPLC chromatogram of tocopherol standards (A) and extraction of 

green daikon radish microgreens (B).  
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Table 2.5 α-Tocopherol and γ-tocopherol concentrations in 25 commercially 

grown microgreens
a
. 

 
Microgreens name α-Tocopherol (mg/ 100 g FW) γ-Tocopherol (mg/ 100 g FW) 

Arugula 19.1 ± 4.3
 
 7.1 ± 2.4 

Bull's blood beet 18.5 ± 2.5 5.0 ± 0.7 

Celery 18.7 ± 5.1 6.1 ± 1.4 

China rose radish 19.7 ± 3.1 7.5 ± 1.1 

Cilantro 53.0 ± 13.5 12.5 ± 2.0 

Garnet amaranth 17.1 ± 2.1 11.2 ± 1.3 

Golden pea tendrils 4.9 ± 0.3 3.0 ± 0.2 

Green basil 19.9 ± 0.3 6.0 ± 0.4 

Green daikon radish 87.4 ± 15.9 39.4 ± 7.8 

Magenta spinach  14.2 ± 3.3 5.1 ± 0.8 

Mizuna 25.0 ± 3.7 9.6 ± 1.4 

Opal basil 24.0 ± 2.1 8.3 ± 0.8 

Opal radish 47.7 ± 14.6 16.7 ± 5.3 

Pea tendrils 35.0 ± 6.8 8.3 ± 2.0 

Peppercress 41.2 ± 3.7 14.5 ± 1.4 

Popcorn shoots 7.8 ± 0.1 3.5 ± 0.0 

Purple kohlrabi 13.8 ± 1.0 5.6 ± 0.4 

Purple mustard 18.6 ± 1.3 7.0 ± 0.7 

Red beet 34.5 ± 2.3 8.3 ± 0.6 

Red cabbage 24.1 ± 5.5 10.3 ± 3.1 

Red mustard 22.1 ± 1.9 8.2 ± 0.7 

Red orach 18.3 ± 2.8 7.0 ± 0.9 

Red sorrel 21.8 ± 1.2 7.7 ± 0.5 

Sorrel 9.3 ± 1.5 3.1 ± 0.5 

Wasabi 18.7 ± 2.9 7.6 ± 1.0 

Coefficient of Variation 20% 16% 
a
 Values are expressed as mean ± standard error (n=3). 

 

2.5 Conclusions 

In summary, the phytonutrient contents of 25 commercially available microgreens 

varieties have been determined.  In general, microgreens contain considerably higher 

concentration of phytonutrients than their mature plant counterparts, although large 

variations were found among these 25 species tested. Maximum values of vitamin C, 

vitamin K1, and vitamin E were found in red cabbage, garnet amaranth and green 

daikon radish microgreens, respectively. In terms of carotenoids, cilantro microgreens 
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showed the highest concentration of lutein/zeaxanthin and violaxanthin and ranked 

second in β-carotene concentration. In contrast, popcorn shoots and golden pea 

tendrils were relatively low in phytonutrients, although they were still comparable 

nutritionally to some commonly consumed mature vegetables. It is also noted that 

golden pea tendrils, which is grown in the absence of light, processed much lower 

phytonutrient concentrations than pea tendrils grown under light, suggesting that light 

plays an important role on nutritional values during the growth of microgreens. The 

data generated by this research likely provides a scientific basis for evaluating the 

phytonutrient concentration of microgreens cotyledon leaves. It can also be used as a 

possible reference in estimating the dietary intake and adequacies of vitamins from 

microgreens. However, since growing, harvesting, and postharvest handling 

conditions may have a considerable impact on the synthesis and degradation of 

phytonutrients, additional studies maybe needed to evaluate the effect of these 

agricultural practices on phytonutrient retention. 
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Chapter 3: Evaluation and Correlation of Sensory, Chemical 

and Nutritional Quality Characteristics of Microgreens  

 

3.1 Abstract 

Sensory attributes, chemical compositions and nutritional values of six varieties 

of microgreens representing one or more of the sensory categories: mustard, herbal, 

veggie, mild or peppery/radish were selected from 25 varieties of microgreens by a 

preliminary in-house panel. Consumer acceptance of the 6 microgreen varieties was 

carried out by 80 consumer panelists. Representing the „veggie‟ category, Bull‟s 

blood beet (Beta vulgaris L.) was rated highest in acceptability of appearance, 

texture, flavor and overall eating quality. In contrast, peppercress (Lepidium 

bonariense  L.) representing the peppery/radish category, was scored lowest in 

acceptability of flavor and overall eating quality. Chemical compositions and 

nutritional values differed among six varieties. China rose radish (Raphanus sativus 

L.) had the highest titratable acidity and total sugars, while red amaranth (Amaranthus 

tricolor L.) had the highest pH value and lowest total sugars. The highest amounts of 

total ascorbic acid, phylloquinone, carotenoids, tocopherols and total phenolics were 

found in China rose radish, opal basil (Ocimum basilicum L.), red amaranth, China 

rose radish and opal basil, respectively. The relationships between sensory-sensory 

and sensory-chemical attributes were further studied. Overall eating quality of 

microgreens was best correlated with flavor scores. The pH values and total phenolic 

contents were strongly correlated with flavor-related sensory attributes (such as 

sourness, astringency, bitterness, etc.) and overall eating quality. Overall, all the 
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microgreens evaluated in this study demonstrated “good” to “excellent” consumer 

acceptance and nutritional profile.  

3.2 Introduction 

Microgreens is a new specialty food product, which has garnered more attention 

in US. They are tiny version of regular plants produced from the seeds of vegetables, 

herbs and grains. They have two fully developed cotyledonary leaves with the first 

pair of true leaves emerging or partially expanded. Microgreens are usually 2.5−7.6 

cm (1−3 in.) in height and harvested at 7−14 days after germination, depending on the 

species, and sold with the stem and attached cotyledons (seed leaves). Although small 

in size, microgreens can provide surprisingly intense flavors, vivid colors, and crisp 

textures and can be served as an edible garnish or a new salad ingredient. In recent 

years, microgreens have become a new culinary trend, currently being served in 

upscale restaurants and showing up in some grocery stores such as Whole Foods and 

Mom‟s (Brentlinger, 2005). Our previous study has found that microgreens were 

generally packed with more phytonutrients (such as α-tocopherol, β-carotene and 

ascorbic acid) than their mature plants (Xiao et al., 2012), which made them even 

more popular.  

As known, sensory evaluation is very important for food quality control and 

product development because it could provide direct information of product related to 

future salability. In general, the overall eating quality of fresh produce is related to 

several sensory attributes, including appearance, texture, flavor, sound and feel 

aspects. Among all the quality attributes, appearance is the initial quality attribute that 

attracts consumers to a fruit or vegetable product, and affects their choice in the first 
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phase of purchase; however, other organoleptic characteristics (e.g., flavor and 

texture) play a crucial role in consumer satisfaction and future purchases (Barrett et 

al., 2010; Francis et al., 2012). As consumers desire more and more nutritious and 

healthy foods, nutritional values of food are often intwined in consumers‟ purchasing 

decision.  

To date, no comprehensive study has been performed on the emerging food 

product: microgreens. Therefore, the objective of this study is 1) to assess sensory 

properties and consumer acceptance of microgreens; 2) to investigate the 

relationships between chemical compositions and sensory attributes of microgreens; 

3) to identify chemical measurements that may predict overall eating quality and 

consumer acceptability of microgreens; and 4) to evaluate the nutritional quality of 

microgreens. 

3.3 Materials and Methods 

3.3.1 Sample Materials 

All the microgreens evaluated in this study were generously donated by Fresh 

Origins Farm (San Diego, CA, USA). They were grown in peat moss in unheated 

greenhouses under ambient light and harvested without roots. Samples were then 

immediately packed in clamshell containers (113.4 g of each ✕ 3 containers) and 

shipped overnight in a cardboard box with foam and ice packs inside. All microgreens 

were received as bare-root seedlings at ARS Beltsville Agricultural Research Center, 

Beltsville, MD, where the samples were inspected to remove any defective 

microgreens before being used for sensory analysis. Sub-samples of each container 

used for chemical analysis were immediately weighed and freeze-dried for HPLC 
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analysis or juiced for titratable acidity and pH analysis. The remainder of the samples 

was stored in 1°C for 1 d prior to sensory analyses.  

3.3.2 Sensory Evaluation 

3.3.2.1 Descriptive analysis 

So far, there is no lexicon for sensory properties of microgreens; therefore, an 

appropriate sensory ballot specifically for microgreens was developed for the 

following sensory tests. In this study, descriptive sensory analysis was first profiled. 

A qualitative sensory profile of microgreens was developed by an 8-member panel in 

which everyone had much experience on sensory evaluation of produce. The sensory 

components included appearance, texture, aroma, taste and flavor of microgreens. 

The sensory terminology and language was generated, developed and justified by 

evaluating 25 commercially available microgreens in five different sessions on May 

4, May 10, May 11, May 17 and June 20, respectively. The 25 varieties of 

microgreens were then classified into five categories by the panel, mainly based on 

their flavor characteristics.  

3.3.2.2 In-house Preliminary Test 

After the sensory ballot (Table 3.1) was developed and flavor categories were 

established, an in-house preliminary test was conducted. Based on the perceived 

sensory characteristics, the 25 varieties of microgreens were sorted into five 

categories, namely: mustard group, herbal group, veggie group, mild group and 

peppery/radish group, respectively. The category/group information on their 

commercial names and scientific names were listed in Table 3.2. To select the most 

liked microgreens in each category, an in-house preliminary sensory test using 8 staff 
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members (4 males and 4 females) who like eating vegetables, but were not involved 

in the microgreens sensory study. 

Table 3.1 On-screen ballot for sensory attributes scored from 0 to 100 in line 

scale for microgreens sensory evaluation. 

Sensory Attributes Left end 

(Score = 0) 

Right end 

(Score = 100) 

Intensity of Aroma None Very strong 

Intensity of Astringency  

(drying, roughing and puckering mouth feel) 

None Very strong 

Intensity of Bitterness None Very strong 

Intensity of Grassy  

(Earthy, herbal or having a flavor of grass) 

None Very strong 

Intensity of Heat 

(peppery, spicy or pungent) 

None Very strong 

Intensity of Sourness None Very strong 

Intensity of Sweetness None Very strong 

Intensity of Texture Tender Tough 

Acceptability of Appearance  Bad Excellent 

Acceptability of Texture Bad Excellent 

Acceptability of Flavor  Bad Excellent 

Acceptability of Overall eating quality Bad Excellent 

Microgreens representing the mustard and herbal, veggie, mild, and 

peppery/radish categories were received in the mornings of October 25, November 1 

and November 27, 2012, respectively. The sensory evaluations were conducted 

immediately in the afternoons of receiving dates. All the samples were washed using 

tap water thoroughly and spun to remove excess water on the surface. The 

microgreens representing each of the five categories were evaluated consecutively 

and there was a 10-minute break between two sessions. All sensory evaluations were 

carried out on computers by using the previously designed ballot (Table 3.2) derived 

from Compusense 
®

 5.0 sensory software (Guelph, Ontario, Canada). Previous tests 

had indicated that five grams of microgreens were sufficient for rating all the sensory 

quality attributes; therefore, five grams of microgreens were placed into a sample 
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container, which was labeled by a unique 3-digit random number and served in a 

random order.  

3.3.2.3 Consumer Acceptance Test 

Selected microgreens from each the five categories were evaluated in the 

consumer acceptance test, which was conducted in Beltsville, MD on February 13 to 

February 15, 2013. They are beet bull‟s blood, China rose radish, Dijon mustard, opal 

basil, peppercress and red amaranth, respectively. Pictures of selected microgreens 

evaluated in this study are presented in Fig. 3.1.The 80 consumer panelists were 

comprised of volunteer Beltsville Agricultural Research Center staff and University 

of Maryland students, who like vegetables, eat them frequently and had no knowledge 

of this experiment. Acceptability of appearance, texture, flavor and overall eating 

quality and intensity of aroma, texture, astringency, bitterness, grassy, heat, sourness 

and sweetness were evaluated from 5 g of sample. In the end, the demographic (age, 

gender, and ethnicity) information of each panelist was asked. There were eight 

sessions in total and 10 panelists per session. Between sessions, all the samples were 

kept in refrigerator (4 °C) and maintained at room temperature for 15 minutes before 

serving. The sensory evaluation was conducted in the same way mentioned in 3.3.2.2. 

3.3.3 Chemical Analysis 

The titratable acidity (TA) was measured by titrating 10 mL aliquot of the 

microgreens juice with 0.1 N NaOH to the end point of pH 8.1, monitored with a pH 

meter (S20 SevenEasy™, Mettler-Toledo International Inc., Columbia, MD, USA) at 

21 °C. The results were expressed as percentage of citric acid. The pH measurements 

were performed using a digital pH meter.  
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Table 3.2 Commercial names and scientific names of 25 commercially 

available microgreens in five groups evaluated in the in-house preliminary 

sensory test. 

 

Category Commercial name Scientific name 

 

 

Mustard 

Arugula Eruca sativa Mill. 

Dijon mustard Brassica juncea (L.) Czern. 

Mizuna Brassica rapa L. ssp. nipposinica 

Red mustard Brassica juncea (L.) Czern. 

Wasabi Wasabia japonica Matsum. 

 

 

Herbal  

Cilantro Coriandrum sativum L. 

Italian basil  Ocimum basilicum L. 

Opal basil Ocimum basilicum L. 

Red sorrel Rumex acetosa L. 

Sorrel Rumex acetosa L. 

 

 

Veggie  

Brussel sprout Brassica oleracea L. var. gemmifera 

Bull‟s blood beet Beta vulgaris L. 

Celery Apium graveolens L. 

Merlin beet Beta vulgaris L. 

Red cabbage Brassica oleracea L. var. capitata 

 

 

Mild  

Magenta orach Atriplex hortensis L. 

Pak choy Brassica rapa L. var. chinensis 

Popcorn shoots Zea mays L. 

Red amaranth Amaranthus tricolor L. 

Tuscan kale Brassica oleracea L. 

 

 

Peppery/Radish  

China rose radish Raphanus sativus L. 

Daikon radish Raphanus sativus L. 

Peppercress Lepidium bonariense  L. 

Purple kohlrabi Brassica oleracea L. var. Gongylodes 

Ruby radish Raphanus sativus L. 

 

Sugar content of microgreens was analyzed following the procedure of Stommel 

(Stommel, 1992) with some modifications. Sugars were extracted using ethanol: 

Milli-Q water (80: 20, v/v). The mixture was eluted through a C18 Sep-Pak cartridge 

(Water Corp., Milford, MA, USA) prior to filtering through a 0.45 µm membrane 

filter. Sugars were determined on HPLC using a carbohydrate analysis column 

(Waters Corp., Milford, MA, USA) with an isocratic mobile phase of acetonitrile: 

water (75:25, v/v) at the flow rate of 1 mL/min. Individual sugar was detected on a 
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refractometer (model 410, Waters Corp., Milford, MA, USA). Total sugar content 

was expressed as the sum of fructose, glucose and sucrose contents. 

3.3.4 Phytonutrient Analysis 

3.3.4.1 Ascorbic Acid 

Total ascorbic acid (TAA) and free ascorbic acid (AA) were determined using a 

reverse phase high performance liquid chromatography (RP-HPLC) according to the 

method of Bartoli et al. (2006) with modifications. In this assay, dehydroascorbic acid 

(DHA), the oxidized form of AA, was reduced to AA for TAA determination. Fresh 

tissue (3 g) was ground in 10 mL of ice-cold 5% (w/v) meta-phosphoric acid at the 

speed of 15,000 rpm for 1 min in ice-water bath using a polytron homogenizer 

(Brinkman Instruments, Westbury, NY, USA). The mixture was centrifuged at 7000 g 

(Beckman J2-MI, Beckman Coulter, Inc., Irving, TX, USA) for 15 min at 4 °C, and 

the supernatant was filtered through Whatman #4 filter paper (Millipore Corp. 

Bedford, MA, USA). Ascorbic acid was detected with a photodiode array detector 

(DAD) (Model: G1315C) on an Agilent 1200 series HPLC system (Agilent, Santa 

Clara, CA, USA) at 243 nm. The extract was filtered through a 0.22 μm nylon syringe 

filter (Millipore, Bedford, MA, USA) and then directly injected (vol. = 10 µL) into 

the HPLC and run through a C18 column (Luna, 5 µm, 250 ✕ 2.0 mm, Phenomenex, 

Torrance, CA, USA) with an isocratic mobile phase (100 mM phosphate buffer, pH = 

3.0) flowing at the rate of 0.6 mL/min. Total AA was determined by HPLC after 

reducing DHA by mixing the same volume of the sample filtrate with 5 mM 

dithiothreitol (DTT) in 150 mM phosphate buffer (pH = 7.4 with 5 mM EDTA) for 

15 min in darkness. Concentrations of TAA and AA were quantified based on peak 
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areas using a reduced ascorbic acid standard curve (R
2
 ≥ 0.99), and their difference 

was equal to the concentration of DHA.  

3.3.4.2 Phylloquinone 

Phylloquinone was extracted under dim light and determined by RP-HPLC, as 

described in 2.3.3.3. 

3.3.4.3 Carotenoids and tocopherols 

Carotenoids and tocopherols were simultaneously determined using an isocratic 

RP-HPLC according to the procedure previously established in our laboratory, as 

described in 2.3.3.2.  

3.3.4.4 Total phenolic content 

Total phenolic concentration (TPC) was measured using Fast Blue BB (FBBB) 

assay developed by Medina (2011) and modified for chlorophyll-containing tissue by 

Lester et al. (2013). Briefly, lyophilized microgreens sample (100 mg) was extracted 

with 10 mL of 80% MeOH by sonicating for 30 s. Hexane (4 mL) was then added 

into the extraction mixture to remove chlorophyll. After sonication for 30 s and 

centrifugation at 6650 x g for 5 min at 4 °C, the hexane layer was removed and 

discarded. The hexane wash procedure was repeated two more times. The washed 

methanolic extract was filtered through Whatman Grade No. 4 filter paper (Millipore 

Corp., Bedford, MA, USA) and then diluted with DI H2O to the appropriate 

concentrations. One milliliter of diluted sample, gallic acid standard or DI H2O blank 

control was added to borosilicate tubes, followed by 0.1 mL of 0.1% FBBB [4-

benzoylamino-2, 5-dimethoxybenzenediazonium chloride hemi (zinc chloride) salt]. 
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The solution was mixed for 30 s, followed by adding 0.1 mL of 5% (w/v) NaOH, and 

mixed and incubated for 90 min under light at room temperature. Absorbance was 

measured at 420 nm. The total phenolic concentration of samples was measured 

against the gallic acid (GA) calibration standard (concentrations of 0, 10, 50, 100, 200 

250, 500 mg/L) and the results were expressed as milligram of gallic acid equivalents 

(GAE) per gram of dried weight sample. 

3.3.5 Statistical Analysis 

The sensory data of the in-house preliminary test was analyzed by PROC MIXED 

and overall acceptability was ranked by PROC RANK (SAS 9.2, SAS Institute, Inc., 

Cary, NC, USA). The distribution of sensory data in consumer test was examined 

using PROC UNIVARIATE and analyzed using PROC MIXED. Sources of variation 

were varieties (6) considered fixed and the panel sessions (8) and panelists (80) 

considered random. Relationships of variety preference relative to gender and age 

were examined using analysis of covariance (ANCOVA). Chemical composition and 

nutrient data were analyzed using PROC GLM for one-way analysis of variance 

(ANOVA). Mean comparisons were evaluated using Tukey‟s honestly significant 

difference (HSD) test with P value of 0.05. Data were also analyzed using PROC 

CORR to determine whether there were any correlations between different sensory 

quality attributes and between chemical composition and sensory quality attributes, 

using Pearson correlation: (*), (**), and (***) are used in the text to indicate 0.05, 

0.01 and 0.001 levels of significance, respectively. Sensory data was additionally 

examined by Factor Analysis using PROC FACTOR to extract factors which could 

describe variability shared in common among sensory attributes.  
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3.4 Results and Discussion 

3.4.1 Descriptive Analysis and Preliminary Test 

A sensory ballot was developed as to describe the perceived sensory attributes of 

microgreens by an 8-member panel (Table 3.1). Twelve sensory attributes were 

defined and developed, including the intensity of aroma, texture, astringency, 

bitterness, grassy, heat, sourness and sweetness and the acceptability of appearance, 

texture, flavor and overall eating quality. Among them, some attributes were 

specifically defined: astringency was defined as drying, roughing and puckering 

mouth feel, grassy was defined as earthy, herbal flavor or having a flavor of grass and 

heat was defined as peppery, spicy or pungent. In the preliminary screening test, one 

or two microgreens were selected for each category/group. It is worthy note the 

screening test was a preliminary test and not a consumer test; therefore, it was only 

utilized to provide reference information to select several varieties of microgreens 

used for the 80-panelist consumer test. All the data was not shown in this paper.   

In the mustard category, Dijon mustard was selected as it showed highest scores 

of heat flavor intensity and acceptability of flavor and second highest overall eating 

quality, which could best represent the mustard group. In the herbal category, opal 

basil was outstanding as it has highest intensity score of sweetness and lowest 

intensity scores of bitterness, astringency, heat and sourness, which contributed to the 

highest acceptability of flavor and overall acceptability. In the veggie category, bull’s 

blood beet was highlighted due to the attractive red-greenish color. Besides, the 

acceptability of flavor and overall eating quality of bull‟s blood beet was scored  
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Fig. 3.1 Pictures of six varieties of microgreens evaluated in consumer 

acceptance test. 

A = Bull‟s blood beet; B = Red amaranth; C = Dijon mustard;  

D = China rose radish; E = Peppercress; F = Opal basil.  
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highest. In the mild category, red amaranth stood out from the rest with highest 

scores of acceptability of appearance, flavor and overeall eating quality. In the 

peppery/radish category, China rose radish was selected since it presented the 

strongest heat/peppery flavor, which was the typical flavor of radish and chili pepper. 

The good visual display of green leaves and red stems of China rose radish also 

contribute to its good overall acceptability. Meanwhile, there was another one 

drawing our attention: peppercress, which showed the highest intensity of aroma, 

bitterness, astringency, sourness, sweetness and grassy and the second highest of heat. 

Although the resultant flavor and overall acceptability of peppercress was rated 

lowest, it was of great interest for us to further investigate its complex sensory 

quality; therefore, peppercress was also included in the consumer test. Overall, six 

varieties of microgreens were selected for the following consumer acceptance test, 

which are Dijon mustard, opal basil, bull‟s blood beet, red amaranth, China rose 

radish and peppercress, respectively.  

3.4.2 Consumer Acceptance Test  

The make-up of 80-member consumer panel and demographic information was 

shown in Table 3.3.  For all six microgreens evaluated, sensory scores of 

acceptability of appearance/visual quality were excellent (scores > 70), with the 

exception of opal basil, which was scored as good (scores of 40 to 70) (Saftner et al., 

2008), as shown in Table 3.4. Among all microgreens, scores were excellent for 

acceptability of texture during chewing, with relatively high scores of 71.3 to 85.5. 

Scores of acceptability of flavor were generally in the good range except peppercress, 
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which was also scored as the lowest in overall eating quality. Since scores of overall 

eating quality were good to excellent (in the range of ~40/39.7 to 76.5), all the six 

microgreens were considered to be of at least acceptable/good eating quality, of 

which bull‟s blood beet was scored highest and considered excellent with a score of 

76.5. 

Among all the six microgreens, they varied in all sensory quality scores. Bull‟s 

blood beet was scored highest and peppercress was scored lowest in overall eating 

quality while no significantly difference was found in other four varieties. Bull‟s 

blood beet and red amaranth, each of which are partially/entirely red/garnet in color, 

were scored highest and second highest in overall eating quality. Both bull‟s blood 

beet and red amaranth were scored high for acceptability of appearance, texture and 

flavor and for intensity of sweetness, meanwhile scored low for intensity of 

bitterness, astringency, heat, sourness and textural toughness. Except for the high 

intensity of heat, Dijon mustard has similar sensory quality characteristics to those of 

bull‟s blood beet and red amaranth, and consequently it was also scored high in 

overall eating quality (No. 3).  

In contrast, peppercress was scored highest in the intensity of astringency, 

bitterness and sourness and high in the grassy, heat, sourness, and lowest in the 

acceptability of flavor, resulting in the lowest score of overall eating quality. Overall, 

higher bitterness and astringency ratings for peppercress, Dijon mustard and China 

rose radish microgreens (both in Brassicaceae family) were likely to be associated 

with the presence of high concentrations of glucosinolates, which are widely 

recognized as bitter compounds. These results suggest flavor (such as astringency,   
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Table 3.3 Age, gender and ethnicity make-up of consumer panel. 

 

Age (years) Ethnicity (%) 

 20 or less 21 to 30 31 to 40 41 to 50 51 to 60 61 or older Total (%) Black/African-

American 

4 

Female 3 10 7 10 11 5 46 (58%) Asian 25 

Male 2 3 8 5 10 6 34 (42%) Hispanic 4 

Total 5 (6%) 13 (16%) 15 (19%) 15 (19%) 21 (26%) 11 (14%) 80 (100%) White 66 

 

 

 

 

 

 

Table 3.4 Intensity and acceptability of microgreen sensory attributes by consumer panel across age, gender and ethnicity. 

 

Intensity of 

(rating 0 to 100) 

Acceptability of 

 (rating 0 to 100) 

 

Microgreens 

 

Aroma 

 

Astringency 

 

Bitter 

 

Grassy 

 

Heat 

 

Sour 

 

Sweet 

 

Texture 

   

Texture  

    

Flavor 

   

Appearance 

     

Overall 

Eating 

Quality 

Bull‟s blood beet 20.0 c 19.3 c 31.0 bc 61.0 ab 12.7 d 13.3 b 14.4 a 23.7 b 85.5 a 66.9 a 86.4 a 76.5 a 

China rose radish 21.6 c 40.7 a 40.3 ab 58.2 ab 67.2 b 24.2 ab   8.6 a 40.3 a 72.2 b 52.5 bc 72.7 b 53.7 b 

Dijon mustard 24.3 bc 35.5 ab 40.8 ab 50.2 b 86.2 a 24.0 ab 11.5 a 24.3 b 80.2 ab 54.9 ab 86.2 a 61.0 b 

Opal basil 49.5 a 36.6 a 51.3 a 69.5 a 30.9 c 24.0 ab   8.7 a 32.6 ab 71.3 b 46.0 bc 55.9 c 49.0 bc 

Peppercress 35.1 b 41.9 a 51.9 a 61.7 ab 66.0 b 29.5 a 10.4 a 29.3 ab 71.9 b 39.5 c 77.8 ab 39.7 c 

Red amaranth 29.2 bc 23.1 bc 24.1 c 69.5 a 10.8 d 17.2 b 14.6 a 23.1 b 79.2 ab 59.1 ab 82.5 a 63.1 ab 
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bitterness, and sourness) is a very important quality attribute determining the 

acceptance of microgreens. The results are also consistent with previous reports that 

bitter taste and astringency were identified as the main reason for consumers to reject 

many vegetables containing phytonutrients (e.g. glucosinolates in Brassica 

vegetables), despite their known health benefits (Drewnowski & Gomez-Carneros, 

2000). 

 

Fig. 3.2 Factor analysis of sensory data for six varieties of microgreens evaluated 

in consumer acceptance test. 
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Factor analysis was conducted on the sensory data to identify variability shared in 

common among the sensory attributes for all the six microgreens. Bull‟s blood beet 

and red amaranth which had generally high scores of overall eating quality, had 

positive scores for Factor 1 (explaining 50.1% of variation observed among the 

sensory descriptors), with high loading values of the acceptability of flavor, texture 

and appearance and the intensity of sweetness (Fig. 3.2). Likewise, the varieties 

(China rose radish, opal basil and peppercress) that had generally low scores of 

overall eating quality showed negative scores for Factor 1 and the variety (Dijon 

mustard) that had generally intermediate score of overall eating quality was scored 

near zero for Factor 1. Meanwhile, Factor 2 explained 37.0% of the variation 

observed among the sensory descriptor and the intensity of aroma, heat, grassy, 

sourness, astringency, bitterness and texture loaded onto this factor. Varieties 

(peppercress, opal basil, China rose radish and Dijon mustard) that scored generally 

high for the intensity of aroma, heat, grassy, sourness, astringency, bitterness and 

texture had positive scores for Factor 2 and varieties (red amaranth and bull‟s blood 

beet) that scored generally low in these sensory attributes had negative scores for 

Factor 2. To sum up, factor analysis suggested that bull‟s blood beet, red amaranth 

and Dijon mustard had higher sensory quality than China rose radish, opal basil and 

peppercress with bull‟s blood beet having the best and peppercress having the lowest 

overall eating quality, which was very similar to the results from other statistical 

analyses as described above.   

In addition, we compared the intensity and acceptability sensory scores of six 

microgreens by gender (Table 3.5). Across age and ethnicity, no significant 
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differences were found between female and male in all the sensory attributes of six 

microgreens, except for the acceptability of flavor and overall eating quality of Dijon 

mustard. Surprisingly, female and male showed significantly different (P = 0.001) 

perception on Dijon mustard microgreens, with female demonstrating much lower 

acceptability scores of flavor and therefore overall eating quality.  

3.4.3 Relationships between Sensory Attributes  

In order to more accurately assess the impact of each sensory quality 

characteristic on overall eating quality, the relationships among sensory attributes 

were investigated. For all microgreens, overall eating quality was most strongly 

correlated with acceptability of flavor (r = 0.98***). Overall eating quality was also 

strongly correlated with scores of acceptability of texture (r = 0.82***) and intensity 

of sourness (r = -0.87***), bitterness (r = -0.71***), astringency (r = -0.66**), 

sweetness (r = 0.61**). Additionally, eating quality scores were weakly correlated 

with score of acceptability of appearance (r = 0.49*) and intensity of aroma (r = -

0.53*). Acceptability of flavor was correlated with the intensity of some flavor-

related characteristics: sourness (r = -0.84***), bitterness (r = -0.68**), astringency (r 

= -0.57*) and sweetness (r = 0.53*). These results suggest that flavor-related 

characteristics best predict consumer preferences for overall eating quality, though 

textural and visual quality characteristics also contribute. Among these flavor-related 

characteristics, there were some inherent correlations. For example, intensity of 

sourness was strongly correlated with intensity of astringency (r = 0.81***), 

bitterness (r = 0.80***), and heat (r = 0.72***) and weakly correlated with intensity 

of sweetness (r = -0.53*). Intensity of astringency was strongly correlated with 
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intensity of bitterness (r = 0.77***) and heat (r = 0.70***). Intensity of bitterness was 

correlated with intensity of sweetness (r = -0.67 **), which confirmed that sweetness 

and bitterness are mutually suppressed in mixtures. All of these correlations showed 

that flavor is a gestalt perception, which is very important to overall sensory 

acceptance.  

3.4.4 Chemical Composition 

In general, TA and total sugar content are used to describe flavor of fruits and 

vegetables (Francis et al., 2012). TA and sugar contents of six microgreens were 

presented in Table 3.6. TA is related to the concentration of organic acids present in a 

food, and it is commonly used as quality parameter. The TA of fresh microgreens, 

expressed in grams of citric acid per 100 g of fresh microgreens, was between 0.09 

and 0.019 g citric acid/100 g (Fig. 4). China rose radish and peppercress microgreens 

showed the highest TA values and bull‟s blood beet microgreen was ranked the 

lowest. Surprisingly, the TA data set perfectly matched with the sensory high and low 

scores of sourness intensity in the same order, which suggests that the difference in 

TA among varieties is large enough to impact sensory perception, especially for 

sourness. Opposite to the TA, the lowest pH value was found in China rose radish 

microgreen, and the highest ones were in bull‟s blood beet and red amaranth 

microgreens. 

Overall, total sugar contents were low and generally presented at about 1.0 g/100g 

or less, with glucose (0.08–0.56 g/100g FW) and fructose (0.02–0.06 g/100g FW) 

being the two major sugars in all microgreens. There was no report on sugar contents 

of microgreens to date. Wills and coworkers reported the sugar content of bean
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a Values are expressed as mean ± standard error (n = 3). Values within the same column followed by the same letter are not significantly different 

(P < 0.05). b N.S. = Non-significant (P < 0.05).  
 

Table 3.5 Intensity and acceptability of microgreen sensory attributes by female and male consumer panelists across age and ethnicity 
a
. 

 
Intensity of 

(rating 0 to 100) 

Acceptability of 

(rating 0 to 100) 

 

Microgreens 

 

Aroma 

 

Astringency 

 

Bitter 

 

Grassy 

 

Heat 

 

Sour 

 

Sweet 

 

Texture 

   

Texture  

    

Flavor 

   

Appearance 

     

Overall 

Eating 

Quality 

Female 

Bull‟s blood beet 17.9 b 17.6 c 29.9 cd 62.5 ab 12.3 ef 10.8 c 11.0 ac 20.8 bc 86.4 a 68.4 a 87.6 a 79.2 a 

China rose radish 20.1 b 44.4 a 41.4 ad 61.9 ab 68.0 bc 28.7 ab   7.1 ac 65.1 ab 71.4 bc 48.2 bd 72.3 bc 49.5 cd 

Dijon mustard 25.8 b 39.8 ab 46.6 ac 55.7 bc 88.1 a 28.6 ab   8.6 ac 22.3 bc 79.2 ac 43.8 bd 88.3 a 50.0 cd 

Opal basil 47.8 a 38.9 ab 51.3 ab 74.2 a 33.8 d 26.1 ab   5.2 c 30.8 ac 69.2 c 40.9 cd 56.1 c 41.8 d 

Peppercress 33.6 ab 45.0 a 49.5 ab 62.9 ab 70.7 bc 31.7 a   6.5 bc 26.9 bc 71.2 ac 39.6 d 77.4 ab 38.4 d 

Red amaranth 26.2 b 22.0 bc 25.1 d 63.0 ab 10.6 f 20.3 ac 15.1 a 18.6 c 78.6 ac 57.6 ac 81.7 ab 61.5 ac 

Male 

Bull‟s blood beet 22.1 b 21.5 bc 32.9 bd 58.8 ac 13.2 ef 16.8 ac 17.8 ab 27.6 bc 84.2 ab 64.8 ab 84.8 a 72.9 ab 

China rose radish 23.7 b 35.8 ab 38.9 ad 53.3 bc 66.1 bc 18.0 ac 10.2 ac 47.3 a 73.3 ac 58.3 ad 73.2 bc 59.3 ad 

Dijon mustard 22.3 b 29.6 ac 32.9 bd 42.7 c 83.6 ab 17.7 ac 14.4 ac 26.9 bc 81.5 ac 68.5 a 83.4 ab 72.1 ab 

Opal basil 51.9 a 33.6 ac 51.2 ab 62.9 ab 27.0 de 21.2 ac 12.2 ac 35.1 ab 74.2 ac 52.8 ad 55.6 c 56.2 bd 

Peppercress 37.2 ab 37.8 ab 55.0 a 60.0 ac 59.5 c 26.5 ac 14.4 ac 32.5 ac 72.9 ac 39.2 cd 78.3 ab 41.3 d 

Red amaranth 33.2 ab 24.6 bc 22.9 d 71.6 ab 11.1 ef 12.9 bc 15.2 ac 29.1 ac 79.8 ac 61.2 ab 83.6 ab 64.7 ac 

Female vs. Male 

Bull‟s blood beet N.S.b N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. N.S. 

China rose radish “ “ “ “ “ “ “ “ “ “ “ “ 

Dijon mustard “ “ “ “ “ “ “ “ “ 0.001 “ 0.001 

Opal basil “ “ “ “ “ “ “ “ “ N.S “ N.S 

Peppercress “ “ “ “ “ “ “ “ “ “ “ “ 

Red amaranth “ “ “ “ “ “ “ “ “ “ “ “ 
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Table 3.6 Analysis of titratable acidity (TA), pH, fructose, glucose, sucrose and total sugar content of six varieties of microgreens 

evaluated in consumer acceptance test 
a
.  

Microgreens TA 

(% citric acid) 

pH Fructose 

(g/100 g FW) 

Glucose 

(g/100 g FW) 

Sucrose 

(g/100 g FW) 

Total sugar 

(g/100 g FW) 

Bull‟s blood beet 0.09 ± 0.00 d 6.37 ± 0.13 a 0.33 ± 0.02 b 0.08 ± 0.01 cd 0.03 ± 0.00 abc 0.44 ± 0.03 ab 

China rose radish 0.19 ± 0.00 a 5.67 ± 0.01 b 0.50 ± 0.07 ab 0.47 ± 0.08 a 0.06 ± 0.01 a 1.03 ± 0.17 a 

Dijon mustard 0.16 ± 0.00 b 5.77 ± 0.07 b 0.40 ± 0.03 ab 0.35 ± 0.03 ab 0.02 ± 0.00 b 0.77 ± 0.06 ab 

Opal basil 0.16 ± 0.00 b 5.82 ± 0.08 b 0.08 ± 0.01 c 0.08 ± 0.01 cd 0.04 ± 0.01 abc 0.20 ± 0.02 c 

Peppercress 0.19 ± 0.00 a 5.86 ± 0.09 b 0.56 ± 0.06 a 0.26 ± 0.04 bc 0.06 ± 0.01 ab 0.88 ± 0.11 a 

Red amaranth 0.13 ± 0.00 c 6.43 ± 0.03 a 0.13 ± 0.01 c 0.02 ± 0.00 d 0.02 ± 0.01 c 0.17 ± 0.00 c 
a Values are expressed as mean ± standard error (n = 3). Values within the same column followed by the same letter are not significantly different 

(P < 0.05).
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sprouts at the same level of microgreens analyzed in our study (Wills et al., 1984). In 

this study, high total sugar content did not result in particularly high scores of sweet 

taste. China rose radish microgreens had the highest contents of total sugars, glucose 

and sucrose, whereas it had the lowest score of sweetness intensity. Conversely, while 

red amaranth microgreen had the lowest contents of total sugar, fructose, glucose and 

sucrose, it was evaluated having the highest score of sweetness intensity. It was 

reported that sweetness perception can be modified by acid levels and aroma 

compounds (Tieman et al., 2012). The lowest score of sweetness in China rose radish 

microgreens could be associated with its high content of acids, which offset the 

perception of sweet taste. Correspondingly, red amaranth microgreens did show a 

relatively low TA value, probably making the sweetness standing out of other flavors.  

3.4.5 Phytochemical Concentrations 

The results of phytochemical analyses on ascorbic acid, phylloquinone, 

carotenoids, tocopherols and total phenolics of six microgreens were showed in Table 

3.7 and Table 3.8. The TAA concentration in six microgreens ranged from 10.6 to 

68.0 mg/100g FW. Among the six samples, China rose radish microgreens had the 

highest TAA concentration, followed by Dijon mustard, peppercress and red 

amaranth. Bull‟s blood beet and opal basil microgreens contained the relatively low 

level of TAA. The phylloquinone concentration of all the six microgreens evaluated 

was about the same level, ranging between 2.1 and 4.0 µg/ g FW. For carotenoids, red 

amaranth had the highest amounts of β-carotene, lutein/zeaxanthin and violaxanthin, 

followed by Dijon mustard, China rose radish and peppercress. All the carotenoid 

data was consistent with those of our previous study (Xiao et al., 2012).Total  
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Table 3.7 Analysis of water content, ascorbic acid (AA), dehydroascorbic acid (DHA), total ascorbic acid (TAA), phylloquinone (Vk1) and  

total phenolics (TPC) of six varieties of microgreens evaluated in consumer acceptance test 
a
. 

a
 Values are expressed as mean ± standard error (n = 3). Values within the same column followed by the same letter are not significantly different 

(P < 0.05). 

 

Table 3.8 Analysis of β-carotene (β-C), lutein/zeaxanthin (L/Z), violaxanthin (VX), α-tocopherol (α-T), γ-tocopherol (γ-T) of six varieties of 

microgreens evaluated in consumer acceptance test 
a
.  

 

Microgreens  Carotenoids 

(mg/100g FW) 

 Tocopherols 

(mg/100g FW) 

  β-C L/Z VX  α-T γ-T 

Bull‟s blood beet  3.8 ± 0.3 d 3.5 ± 0.2 d 2.0 ± 0.0 bc  0.0 ± 0.0 c 0.1 ± 0.0 d 

China rose radish  5.8 ± 0.3 b 5.1 ± 0.3 b 1.7 ± 0.2 bc  2.0 ± 0.2 a 0.5 ± 0.0 a 

Dijon mustard  6.1 ± 0.1 b  4.7 ± 0.2 bc 2.3 ± 0.1 b  1.1 ± 0.0 b  0.3 ± 0.0 b 

Opal basil  4.3 ± 0.2 cd 3.9 ± 0.2 cd 1.2 ± 0.1 c  0.0 ± 0.0 c  0.2 ± 0.0 cd 

Peppercress  5.5 ± 0.1 bc 4.6 ± 0.1 bc 1.9 ± 0.0 bc  0.0 ± 0.0 c  0.3 ± 0.0 b 

Red amaranth  8.1 ± 0.5 a 6.7 ± 0.3 a 4.2 ± 0.4 a  0.0 ± 0.0 c 0.2 ± 0.0 c 
a Values are expressed as mean ± standard error (n = 3). Values within the same column followed by the same letter are not significantly different 

(P < 0.05). 

Microgreens  Water content 

(%) 

 Ascorbates 

(mg/100g FW) 

 Phylloquinone 

(ug/g FW) 

 Total phenolics 

(mg GAE/100g 

FW) 

   AA DHA TAA  Vk1  TPC 

Bull‟s blood beet  95.1 ± 0.2 a  7.6 ± 0.2 a 5.6 ± 1.9 c 13.2 ± 1.9 c  2.1 ± 0.4 a  303.0 ± 9.8 c 

China rose radish  92.1 ± 0.5 c  16.6 ± 10.2 a 51.4 ± 10.5 a 68.0 ± 3.6 a  3.2 ± 0.6 a  465.5 ± 15.9 b 

Dijon mustard  94.3 ± 0.0 ab  22.6 ± 10.9 a 36.3 ± 10.8 abc 58.9 ± 0.8 a  3.2 ± 0.7 a  149.5 ± 3.9 d 

Opal basil  94.3 ± 0.2 ab  2.0 ± 0.0 a 8.6 ± 0.5 bc 10.6 ± 0.5 c  4.0 ± 0.7 a  700.4 ± 9.7 a 

Peppercress  93.8 ± 0.1 b  8.1 ± 2.9 a 37.9 ± 3.3 ab 46.0 ± 2.1 b  2.9 ± 0.7 a  274.7 ± 20.1 c 

Red amaranth  93.5 ±0.2 b  12.6 ± 2.4 a 23.2 ± 3.4 abc 35.8 ± 2.7 b  2.3 ± 0.4 a  256.5 ± 12.0 c 
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phenolic content (TPC) varied significantly among varieties from 149.5 to 700.4 mg 

GAE/100 g FW in the six microgreens. The highest TPC was found in opal basil, 

which was almost 5-fold higher than Dijon mustard, which surprisingly still contained 

slightly higher TPC than some commonly consumed vegetables, e.g. broccoli (35-100 

mg GAE/100 g) (Turkmen et al., 2005; Zhang & Hamauzu, 2004). The α-tocopherol 

was not present in all the six microgreens. Only China rose radish and Dijon mustard 

microgreens contained certain amounts of α-tocopherol, with the number of 2.0 

mg/100 g FW and 1.1 mg/100 g FW, respectively. The γ-tocopherol concentrations 

were ranging from 0.1 to 0.5 mg/100 g FW. These results on tocopherols were not in 

accordance with our previous report, in which all the 25 microgreens were rich in 

tocopherols. Nutritional profile of produce could be affected by many preharvest and 

postharvest factors, such as seed source, growth location, growth environments, 

storage time and duration. With respect to these phytonutrients, all the six 

microgreens analyzed in our study could be considered to be good sources of 

phytonutrients and antioxidants.  

3.4.6 Relationships between Sensory and Chemical Attributes  

The sensory evaluation provides information about the attributes of a product 

from consumers‟ perspectives. However, it is usually difficult to recruit enough 

consumers or trained panelists to get involved in sensory evaluations before a new 

food product is marketed. Therefore, it is significant to develop a relationship 

between the chemical composition of a product and its sensory attributes, as well as 

between sensory perceptions and acceptability for consumers (Escribano et al., 2010). 
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In our study, the TA values of all the six microgreens were not significantly 

correlated with the intensity of sourness or any other sensory quality characteristics. 

Not as expected, a negative correlation between TA and pH was not found in this 

study, nevertheless, the tendency of TA and pH were almost in the opposite way. 

Whilst, the pH values have correlations with many sensory attributes. It has a 

significant correlation with acceptability of overall eating quality (r = -0.70***) and 

flavor (r = -0.67**), intensity of bitterness (r = 0.77***), sourness (r = 0.60**) and 

astringency (r = 0.52*), and negative correlation with sweetness (r = -0.50*), 

suggesting that the pH value may be a good indicator for flavor and overall eating 

quality. Many other researchers previously reported that astringency elicited by acids 

was a function of pH and not concentration or anion species while sourness was 

influenced by concentration, pH and anion species (Goldman et al., 1999; Lawless et 

al., 1996; Sowalsky & Noble, 1988). This could explain why astringency was 

correlated with pH (r = 0.52*), not TA, while sourness was correlated with pH (r = 

0.60**) and not TA (r = 0.42, not significant). 

Total sugar content was not correlated with the sensory scores of intensity of 

sweetness but weakly and negatively correlated with intensity of bitterness (r = -0.45, 

not significant). Sucrose content was negatively correlated with intensity of bitterness 

(r = -0.62**) and sourness (r = -0.48*). Similarly, glucose was also negatively 

correlated with bitterness (r = -0.62**). Sugars were not alone in accounting for 

variation in the sweetness of fruits and vegetables, especially when the amount of 

sugar was low. The perception of sweetness may be affected by other acidic or bitter 

compounds present in fruits and vegetables (Keast & Breslin, 2003). Taking China 
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rose radish as an example, the total sugar content of China rose radish was highest; 

however, its intensity of sweetness score was the lowest. The difference between 

sensory perception and chemical components could lie in the acid contents (Abbott et 

al., 2004; Baldwin et al., 1998). The high acidity, shown as highest TA value and 

lowest pH value, could make China rose radish taste less sweet. Similarly, red 

amaranth that had the lowest total sugar content was scored highest for intensity of 

sweetness, which was probably due to the low acidity, making red amaranth 

perceived as much sweeter.  

The TPC value was strongly correlated with overall eating quality (r = 0.66***) 

and sensory scores of flavor-related attributes: intensity of astringency (r = -0.73***), 

heat (r = -0.84***), sourness (r = -0.80***), bitterness (r = -0.60**) and sweetness (r 

= 0.58**) and acceptability of flavor (r = 0.58*). It is well known that food 

astringency is due to the presence of phenolic compounds, like procyanidins in many 

fruits. In addition, phenolic compounds also contribute to the bitter taste (e.g. 

flavanon neohesperidosides in citrus fruits) and pungent taste (e.g. capsaicins in chili 

peppers) (Tomás‐Barberán & Espin, 2001). Based on the results obtained in current 

study, the TPC value may be considered as an informative parameter in evaluating the 

overall eating quality and flavor-related sensory attributes of microgreens. Therefore, 

it is of significance to measure TPC value and appropriately interpret it into sensory 

information. 

In addition, some phytonutrient data also had relationship with the sensory 

attributes. Violaxanthin has strong correlations with intensity of sourness (r = 

0.77***) and bitterness (r = 0.60**), acceptability of flavor (r = -0.72***) and overall 
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eating quality (r = -0.7***). Both α-tocopherol and γ-tocopherol had correlations with 

bitterness (r = -0.64** and r = -0.61**, respectively).  However, future work is 

needed to further specify the inherent mechanism for those relationships. 

3.5 Conclusions 

In conclusion, six selected microgreens evaluated in our study varied in sensory 

quality characteristics with consumer panel ranking bull‟s blood beet with the highest 

preference and peppercress with the lowest acceptance. Among all the sensory quality 

attributes tested, flavor quality attribute best predicted overall eating quality of 

microgreens. Visual and textural quality attributes also affected consumer acceptance. 

The pH and TPC values could be used as indicators to provide sensory information 

and predict consumer acceptability. Overall, microgreens with good consumer 

acceptability have a good nutritional profile and can provide health benefits to 

consumers.  
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Chapter 4: Postharvest Quality and Shelf Life of Radish 

Microgreens as Impacted by Storage Temperature, 

Packaging Film, and Chlorine Wash Treatment 

Xiao Z., Luo Y., Lester G. E., Kou L., Yang T., Wang Q. (2013) LWT-Food Science 

and Technology, 55 (2), 551-558. 

 

4.1 Abstract 

Microgreens are new and emerging products, which are young seedlings of 

vegetables and herbs. Our previous study showed that microgreens contain higher 

nutrients compared to their mature counterparts. However, they typically have a short 

shelf life (1-2 days) at ambient temperature. The objective of this study was to 

optimize postharvest handling conditions to reduce the quality loss and extend the 

shelf life of daikon radish microgreens. Storage temperature, packaging film, and 

wash treatment were investigated. Changes in headspace composition, quality index, 

chlorophyll concentration, tissue electrolyte leakage, and aerobic mesophilic bacteria 

(AMB) and yeast & mold (Y&M) counts were monitored periodically during storage. 

Results indicated that 1) storage temperature significantly (P < 0.05) affected package 

atmosphere, product quality and shelf life. One degree Celsius was the optimal 

temperature for storage of radish microgreens with no chilling injury observed; 2) 

film oxygen transmission rate (OTR) significantly (P < 0.05) affected O2 and CO2 

composition, but OTR did not significantly affect quality attributes during 28 days of 

storage at 1°C; 3) Chlorine wash treatment (100 mg/L) significantly reduced initial 
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microbial populations by 0.5 log cfu/g, including AMB and Y& M. However, 

microbial populations rebounded after day 7.  

4.2 Introduction 

Microgreens have gained popularity as a new culinary trend appearing in upscale 

markets and restaurants over the past few years.  They are tender cotyledonary-leaf 

plants having vivid colors, intense flavors and tender textures; therefore, they are 

usually served fresh as ingredients in salad, soups and sandwiches or used as an 

edible garnish (Treadwell et al., 2010).  In a recent study, we found that microgreens 

generally contain higher concentrations of phytonutrients (such as α-tocopherol, β-

carotene and ascorbic acid) than their mature-leaf counterparts (Xiao et al., 2012). 

However, microgreens are delicate and have a very short shelf life (1-2 days) at 

ambient temperature; and as such are categorized to be highly perishable products 

(Chandra et al., 2012). 

Storage temperature is one of the most important factors affecting the postharvest 

physiology and storage behavior of produce. In general, low temperature storage can 

reduce quality loss and extend shelf life by depressing rates of respiration, 

senescence, and growth of spoilage microorganisms (Manolopoulou et al., 2010; 

Spinardi & Ferrante, 2012). Optimum storage temperature varies depending on the 

fruit or vegetable. For some chilling sensitive fruits and vegetables, the use of low 

temperature storage adversely affects quality attributes and causes deterioration more 

rapidly (Galvez et al., 2010; Paull, 1999). Thus, the selection of optimum storage 

temperature is crucial. 
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Modified atmosphere packaging (MAP) is an effective technology for 

maintaining freshness and prolonging shelf life of produce, which has been 

successfully applied in fresh and minimally processed produce, such as lettuce 

(Lactuca sativa L.), broccoli (Brassica oleracea L. cv. Acadi), spinach (Spinacia 

oleracea L.) and mushrooms (Agaricus bisporus cv. U3 Sylvan 381) (Sandhya, 2010). 

There are many factors influencing package atmosphere of products, including 

product respiration rate, packaging film oxygen transmission rate (OTR), product 

weight, package surface area, storage temperature and relative humidity (Sandhya, 

2010). In food supply chains, package size and product weight are often pre-

determined. Selecting a packaging film with suitable OTR to match the product 

respiration rate is the best way to maintain quality and extend shelf life of produce. 

Consumer demand for fresh, convenient and nutritional foods have spurred a 

recent rapid growth of the minimally processed fruit and vegetable (Kobori et al., 

2011). In the fresh-cut processing chain, chlorine-based solutions are very potent and 

efficient sanitizers and have been widely used in the fresh-cut industry in the USA. 

However, the use of chlorinated sanitizers is banned in some European countries due 

to the potential risk of undesirable disinfection by-products (DBPs) upon reaction 

with organic matters, such as chloroform (CHCl3), haloacetic acids or other 

trihalomethanes (THMs) (Artes et al., 2009). In recent years, some alternatives have 

been proposed, e.g. irradiation, ozone, electrolyzed water, essential oils, and organic 

acids. However, none of them have gained widespread acceptance by the industry 

(Rico et al., 2007). 
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Currently, there is no ready-to-eat microgreens are commercially available in the 

food supply chains due to their perishability and high price. Green daikon radish 

(Raphanus sativus L.var. longipinnatus) is one of the most commonly-grown 

commercial microgreens. It has an extraordinarily high concentration of α-tocopherol 

(87.4 mg/100 g FW) (Xiao et al., 2012), which is an important lipid-soluble 

antioxidant and can protect cell membranes from oxidative stress. Moreover, the 

potent spicy flavor, bright green color and tender texture of daikon radish 

microgreens are also favorable. However, little information is available on optimal 

storage temperature, packaging film and wash treatment configuration of green 

daikon radish microgreens. Therefore, the objectives of this study were 1) to optimize 

storage temperature; 2) to evaluate the effect of packaging film OTR under optimum 

storage temperature; and 3) to investigate the effect of chlorine wash treatment under 

optimal storage temperature and packaging film OTR on maintaining quality and 

prolonging shelf life of green daikon radish microgreens. 

4.3 Materials and Methods 

4.3.1 Sample Preparation  

Green daikon radish (Raphanus sativus var. longipinnatus) seeds were purchased 

from Living Whole Foods, Inc. (Springville, UT, USA). Seeds were sown in 28 cm 

W ✕ 54 cm L ✕ 6 cm D culture trays (Vacuum-Formed Standard 1020 Open Flats 

without holes, Growers Supply, Dyersville, IA, USA). The media was Fafard 3B 

potting soil consisting of 45% peat moss, 15% vermiculite, 15% perlite and 25% bark 

(Griffin Greenhouse & Nursery Supplies, Bridgeton, NJ, USA). Seeds were grown in 

a temperature-controlled (25°C) growth chamber. During the first three days, the 
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trays were covered and seeds were germinated in the dark. For the next 4 days, the 

seedlings were exposed to light irradiance (42 µmol s
-1

 m
-2

, determined by LI-1000 

datalogger, LI-COR, Lincoln, NB, USA) for a 12-hr photoperiod. Seven-day-old 

radish microgreens were harvested by cutting stem ends with scissors sterilized with 

75 mL/100 mL alcohol. After harvest, radish microgreens were inspected prior to any 

treatment and plants with defects were discarded.  

4.3.1.1. Temperature Treatments 

Fifteen grams of radish microgreens were packaged in polyethylene bags (15 cm 

✕ 15 cm, Pacific Southwest Container Inc., Modesto, CA, USA) with film oxygen 

transmission rate (OTR) of 16.6 pmol s
-1 

m
-2

 Pa
-1

. All the bags were sealed and stored 

at 1, 5, or 10°C cold rooms under dark for 14 days. Evaluations were performed on 

day 0, 3, 7, 10 and 14. All treatments were conducted in four replicates. 

4.3.1.2. Packaging Treatments 

Radish microgreens (15 g) were packaged in 15 cm × 15 cm bags prepared from 

polyethylene films with OTRs of 8.0, 11.6, 16.6, 21.4, or 29.5 pmol s
-1 

m
-2

 Pa
-1

. The 

permeability of the films was tested by the manufacturer (Pacific Southwest 

Container Inc., Modesto, CA, USA) under conditions of 23°C and 101.3 kPa using a 

MOCON apparatus according to ASTM F2714-08 and ASTM F2622-08 standards. 

Four replicates of each treatment were prepared for each evaluation day (day 0, 7, 14, 

21 and 28). All samples were stored at 1°C in a dark room for subsequent evaluation.  

4.3.1.3. Wash Treatments 

The sodium hypochlorite (NaOCl) wash solutions (50, or 100 mg/L free chlorine, 

pH 6.5) were prepared using Clorox
®

 (6 mL/100 mL sodium hypochlorite, Clorox 
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Co., Oakland, CA, USA) and the pH was adjusted with citric acid solution. All the 

free chlorine levels before treatments were measured with a chlorine photometer (CP-

15, HF Scientific Inc., Fort Myers, FL, USA). Radish microgreen samples (350-400 

g) were washed in pre-disinfected mesh bags with gentle agitation in 40 L wash 

solutions at 20°C for 1 min, followed by rinsing with 20°C tap water for 1 min. 

Washed samples were then centrifuged at 300 rpm for 3 min with a commercial T-

304 salad centrifugal dryer (Garroute Spin Dryer, Meyer Machine Co., San Antonio, 

TX, USA) to remove excess surface water. Unwashed samples were used as controls. 

Portions (15 g) of washed and unwashed radish microgreens were placed into 

polyethylene bags (15 cm × 15 cm) with OTR of 29.5 pmol s
-1 

m
-2

 Pa
-1

 and stored at 

1°C for 28 days in the dark. Four bags were randomly selected on each sampling day 

(day 0, 7, 14, 21 and 28) for quality evaluations. 

4.3.2 Headspace Gas Composition 

The O2 and CO2 contents in the headspace of packages were analyzed using an 

O2/CO2 gas analyzer (CheckMate II, PBI-Dansensor A/S, Ringsted, Denmark) by 

inserting the needle of the measuring assembly through a septum adhered to the 

packaging film. 

4.3.3 Quality Index 

4.3.3.1 Chlorophyll Analysis 

Total chlorophyll content was determined spectrophotometrically using the 

method of Auderset et al. (1986) with minor modifications. Excised radish 

cotyledonary leaves (1.0 g) were transferred into 50-mL centrifuge tubes. After 

homogenization in 10 mL 80 mL/100 mL acetone (HPLC-UV grade, Pharmco-Aaper, 
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Brookfield, CT, USA) solution at the speed of 17, 500 rpm for 30 s (Adaptable 

homogenizer, VDI 25, VWR International, West Chester, PA, USA), the mixture was 

filtered (Grade 413 Filter Paper, Qualitative, VWR International, West Chester, PA, 

USA) into a 25 mL amber volumetric flask and rinsed with 80 mL/100 mL acetone 

solution until filter cake became colorless.  The filtrate was diluted with 80 mL/100 

mL acetone solution to 25 mL and stored at -20 °C until ready to measure. 

Absorbance was read at 646, 663, and 710 nm (UV-1700 Spectrophotometer, 

Shimadzu, Kyoto, Japan) and total chlorophyll was calculated by the following 

formula: 

Total chlorophyll (µg/g FW) = 

[(A646 – A710) * 0.01732 + (A663 – A710) * 0.00718] * dilution volume (mL) * 1000/ 

fresh weight (g)  

4.3.3.2 Electrolyte Leakage Analysis 

Tissue electrolyte leakage was measured following a modified procedure from 

Allende et al. (Allende et al., 2004). Radish microgreens (5 g) were submerged in 150 

mL deionized water at 20 °C and shaken for 30 min. The electrolyte of the solution 

was measured using a Model 135A Thermo Orion conductivity meter (Beverly City, 

MA, USA). Total electrolytes were obtained after freezing the samples at -20 °C for 

24 h and subsequent thawing. Tissue electrolyte leakage was expressed as a 

percentage of the total electrolyte. 

4.3.3.3 Overall Quality and Off-odor Evaluation 

Overall visual quality and off-odor were evaluated following the procedure of 

Luo et al. (2004) and Meilgaard et al. (1991). Briefly, the visual quality was evaluated 
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on a 9-point hedonic scale, where 9, 8, 7 and 6 = like extremely, strongly, moderately 

and slightly, respectively, 5 = neither like nor dislike and 1, 2, 3 and 4 = dislike 

extremely, strongly, moderately and slightly, respectively. A score of 6 was 

considered the limit of salability (Kim et al., 2004). Off-odor score was based on a 0 

to 4 scale where 0 = no off-odor, 1 = slight off-odor, 2 = moderate off-odor, 3 = 

strong off-odor, and 4 = extremely strong off-odor. All visual quality and off-odor 

evaluation were carried out by three trained evaluators (1 male and 2 female, aged 28 

and 43 years old). The evaluators have had over five-year of research experience with 

fresh produce, especially performing sensory evaluation of leafy greens. Prior to the 

start of this experiment, additional trainings specific to the organoleptic properties of 

radish microgreens were provided to the evaluators.  

4.3.3.4 Microbial Enumeration  

Microbial growth on radish microgreens was assayed following a procedure from 

Luo et al. (2004) and Allende et al. (2004b) with some modifications. Samples of 3 g 

radish microgreens were macerated with 27 mL sterile phosphate buffered saline 

(PBS, 10 ✕ solution, Fisher Scientific, Pittsburgh, PA, USA) with a stomacher 

blender (Model 80, Seward Medical, London, UK) for 2 min at high speed. A 50 µL 

sample of each filtrate or its appropriate dilution was logarithmically spread on agar 

plates with a Whitley automatic spiral plater (Wasp II, Don Whitley Scientific Ltd., 

West Yorkshire, UK). The aerobic mesophilic bacteria (AMB) population was 

determined by plating samples on tryptic soy agar (TSA, Difco, Detroit, MI, USA) 

and incubating at 28 °C for 24 h. Yeast and mold (Y&M) enumeration was performed 

by culturing with potato dextrose agar (PDA, Difco, Detroit, MI, USA) supplemented 
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with 200 mg L
-1

 chlorophenicol (Sigma-Aldrich, St Louis, MO, USA) and incubated 

at room temperature (22 °C) for 44-48 h. Microbial colony counting was conducted 

with a ProtoCOL automated colony counter (Synbiosis, Cambridge, UK) and reported 

as log CFU/g of tissue. 

4.3.4. Statistical Analysis  

Four replicates from each treatment were evaluated on each sampling day. Data 

was analyzed using SPSS 13.0 (SPSS Inc., Chicago, IL, USA) by one-way analysis of 

variance (ANOVA). To determine the statistical significance of the data, Tukey‟s 

honestly significant difference (HSD) test was conducted for post-hoc multiple 

comparisons at a significance level of 0.05. All the data was reported as the mean of 4 

replicates ± standard error (SE). 

4.4 Results and Discussion 

4.4.1 Effect of Temperatures on Quality and Shelf Life 

The changes in headspace atmospheres of packaged radish microgreens were 

significantly (P < 0.05) affected by storage temperature (Fig. 4.1A and 4.1B). 

Packages stored at 10 °C experienced a rapid depletion of O2 and accumulation of 

CO2, with the low O2 (9.1 kPa) and high CO2 (2.5 kPa) levels within the packages at 

the end of 14-day storage. In contrast, all the packages stored at 1 and 5 °C 

maintained a higher level of O2 (15.5 and 13.1 kPa, respectively) and a lower 

concentration of CO2 (1.3 and 1.6 kPa, respectively) than the packages stored at 

higher temperature 10°C. This is likely due to the lower respiration rate of the 

samples stored at lower temperatures. 
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Decrease in chlorophyll content is associated with cellular degradation and/or 

senescence, which is often used to estimate quality loss of green vegetables (Hodges 

et al., 2000). No information has been found specifically on total chlorophyll content 

of microgreens. In this study, the initial chlorophyll content of radish microgreen 

leaves was around 754 µg/g fresh weight (FW). As shown in Fig. 4.1C, total 

chlorophyll content decreased in all samples through 14-day storage except for those 

held at 1 °C, at which temperature samples maintained the highest chlorophyll 

content (691.1 µg/g FW), and no apparent yellowing phenomenon was observed at 

the end of the storage period. In contrast, samples stored at 10 °C were first to show 

signs of yellowing on day 7, with a rapid decline in chlorophyll content with a final 

value of 171.8 µg/g fresh weight. Decrease in chlorophyll content is clearly 

temperature-dependant with lower temperature resulting in greater chlorophyll 

retention. It is probably due to the reduction of metabolic activity on chlorophyll 

degradation under low temperature (Pogson & Morris, 1997). 

Tissue electrolyte leakage is an indicator of cell membrane damage (Fan & 

Sokorai, 2005) and has been closely related to quality loss in fresh-cut produce during 

storage (Kim et al., 2005; Luo et al., 2004). During this study, there was no 

significant difference found in three temperature treatments (1, 5, and 10 °C) (Fig. 

4.1D). All the samples showed minimal increase (0.3 - 0.9%) in electrical 

conductivity during the entire 14-day storage, indicating that the samples stored at 

low temperature did not lose cell membrane integrity. It was also suggested that 

daikon radish microgreen is not susceptible to chilling injury (Chandra et al., 2012). 
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Fig. 4.1 Effect of temperature on the changes in O2 (A) and CO2 (B) partial 

pressures within packages, chlorophyll content (C), electrolyte leakage (D),  

overall quality (E), off-odor (F), aerobic mesophilic bacteria (AMB) (G) and 

yeast & mold (Y&M) (H) populations of packaged green daikon radish 

microgreens using 16.6 pmol s
-1 

m
-2

 Pa
-1

 OTR film during storage (n = 4).  

 

Vertical bar represents ± standard error. 
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Overall visual quality and off-odor are important factors influencing the 

marketability of a food product. In this experiment, storage temperature significantly 

affected visual quality deterioration and off-odor development (Fig. 4.1E and 4.1F). 

Throughout the whole 14-day storage period, radish microgreens stored at 1 °C were 

rated highest in overall quality, followed by samples at 5 °C, with the final score of 

7.9 and 6.5 on day 14, respectively. Samples stored at 10 °C maintained acceptable 

visual quality (a score of 7.6) until day 7, however, after day 7, yellowing was 

observed and all these samples experienced a sharp decline in overall quality which 

became unacceptable (scored 4.8) within 10 days of storage, indicating that 

temperature abuse is severely detrimental for the delicate radish microgreens. No off-

odor was detected on radish microgreens before day 7 for all treatments. On day 10, 

all the three treatments displayed slight to moderate off-odor and the higher the 

storage temperature was, the higher the intensity of off-odor was detected. At the end 

of 14-day storage, only slight off-odors were detected (scored 0.5 and 1.0, 

respectively) in the samples stored at 1 and 5 °C and moderate off-odor (scored 1.6) 

was detected in 10 °C treatment. The development of off-odors had a positive 

correlation with the decrease of O2 and the increase of electrolyte leakage, suggesting 

that tissue senescence and deterioration resulted in cell membrane damage and 

undesirable fermentative volatiles, such as ethanol and acetaldehyde (Kim et al., 

2005).  

Changes in aerobic mesophilic bacteria (AMB) and yeast and mold (Y&M) 

populations on radish microgreens stored at different temperatures were shown in 

Fig. 4.1G and Fig. 4.1H. Storage temperatures significantly (P < 0.05) affected  
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microbial growth rate. During the 14-day storage, AMB populations on radish 

microgreens stored at 10 °C increased more rapidly than those stored at 1and 5 °C. 

AMB populations at 10 °C increased by a total of 0.8 log cfu/g, compared to 0.1 and 

0.2log for 1 and 5 °C, respectively. Y&M growth followed a similar trend. Low 

temperature significantly inhibited the growth of AMB and Y&M and samples stored 

at 1 °C maintained a relatively lower bacterial population than samples stored at 5 °C. 

Storage temperature significantly affected the quality attributes and microbial 

growth of green daikon radish microgreens. Samples stored at 1 °C maintained the 

best quality during the 14-day storage; therefore, 1 °C was considered to be the 

optimal storage temperature for green daikon radish microgreens and was selected for 

the following packaging film and chlorine wash experiments.  

4.4.2 Effect of Modified Atmosphere Packaging on Quality and Shelf Life 

Packaging film OTR significantly (P < 0.05) affected the headspace O2 and CO2 

concentrations of radish microgreens packages at 1°C (Fig. 4.2A and 4.2B). 

Atmospheres in the packages prepared with higher OTR films (21.4 and 29.5 pmol s
-1 

m
-2

 Pa
-1

) equilibrated at higher levels of O2 (15.0 - 16.0 kPa) and lower levels of CO2 

(1.2 - 1.3 kPa). This finding is in accordance with a previous report on fresh-cut salad 

savory (Kim et al., 2004). Packages prepared with 8 pmol s
-1 

m
-2

 Pa
-1

 film OTR 

exhibited a relatively more rapid depletion of O2 and accumulation of CO2, than those 

occurred in all other treatments. However, the headspace O2 concentrations were as 

high as 8.8 kPa and CO2 concentrations were relatively low (3.0 kPa) on day 28, 

indicating that the tissues had not experienced anaerobic respiration.  
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After the 28-day storage at 1 °C, the content of total chlorophyll had declined 

slightly to a final range of 656-678 µg/g FW. Among all packaging film treatments, 

the total chlorophyll contents did not vary significantly over the entire storage time 

(Fig. 4.2C). Compared to 8.0 and 11.6 pmol s
-1 

m
-2

 Pa
-1

 film OTR treatments, total 

chlorophyll loss of samples in 21.4 and 29.5 pmol s
-1 

m
-2

 Pa
-1

 OTR film packages 

were slightly greater at the end of storage, however, the difference was not 

statistically significant (P < 0.05). 

There was no significant difference on the tissue electrolyte leakage of radish 

microgreens among different packaging film OTRs (Fig. 4.2D). Interestingly, it was 

noted that there was a sharp decrease in tissue electrolyte leakage for all treatments 

from day 0 to day 7, and also a slight decrease in the following seven days (from day 

7 to day 14). This phenomenon was also observed in fresh-cut cilantro leaves during 

the early stages of storage at 0 °C by Luo et al. (2004). This decrease in electrolyte 

leakage on day 7 suggested that a cell membrane damage recovery process may exist 

in plants/produce in the early stages of cold storage (Luo et al., 2004). During 

subsequent storage, increased electrolyte leakage was recorded for all packaging 

treatments. At the end of the 28-day storage period, samples packaged in 29.5 pmol s
-

1 
m

-2
 Pa

-1
 OTR film had the lowest electrolyte leakage percentage (0.9%), whereas, 

the highest value (1.3%) was found in the lowest (8.0 pmol s
-1 

m
-2

 Pa
-1

) OTR film 

package. 
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Fig. 4.2 Effect of packaging film OTR on the changes in O2 (A) and CO2 (B) 

partial pressures within packages, chlorophyll content (C), electrolyte leakage 

(D),  overall quality (E), off-odor (F), aerobic mesophilic bacteria (AMB) (G) and 

yeast & mold (Y&M) (H) populations of packaged green daikon radish 

microgreens of green daikon radish microgreens during 1 °C storage (n = 4).  

 

Vertical bar represents ± standard error. 
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There was no noticeable quality loss among all treatments from day 0 to day 7 

(Fig. 4.2E). Starting on day 14, tiny black spots were observed on the leaves of radish 

microgreens, resulting in reduced quality scores. At the end of storage, the overall 

quality scores of radish microgreens in all treatments had declined to 7.3-7.5, which 

was above the acceptable level. 

Slight off-odor (a score of 0.7-1.3) developed in all samples at the end of storage 

(Fig. 4.2F). Samples from 29.5 pmol s
-1 

m
-2

 Pa
-1

 OTR film packages developed the 

least off-odor, followed by 21.4 pmol s
-1 

m
-2

 Pa
-1

 OTR film packages. This trend of 

increasing values with decrease in film OTR was in accordance with that found for 

electrolyte leakage, indicating that the development of off-odor was associated with 

loss of cell membrane integrity (Wang et al., 2005). In addition, it is noted that no off-

odor (a score of 0) was detected in samples packaged in 11.6 pmol s
-1 

m
-2

 Pa
-1

 OTR 

film bags; instead, a pleasant but incongruent smell was present on all sampling days. 

The same experiments were repeated in another 1°C chamber, and the same results 

were obtained. No satisfactory explanation was found. 

The initial microbial load on radish microgreens was relatively high (7.1 log cfu/g 

of AMB and Y&M), similar to that found in baby spinach leaves (Allende et al., 

2004). The result is also consistent with the finding recently reported by Chandra et 

al. (2012) for unwashed „Tah Tasai‟ Chinese cabbage microgreens. It was also 

hypothesized by Chandra et al. (2012) that the delicate microgreen stalks may be 

more vulnerable to microbial attachment and growth than mature ones. From day 7 to 

day 21, AMB and Y&M populations (Fig. 4.2G and 4.2H) on radish microgreens 

remained stable at 1 °C. After day 21, the growth of AMB and Y&M increased 



81 

 

 

slowly with the final count of 7.5-7.8 log cfu/g. Although gas compositions were 

significantly affected by different packaging treatments, there was no significant 

difference in the growth of AMB and Y&M among treatments (P < 0.05), suggesting 

that gas composition did not influence the overall growth of AMB and Y&M of 

radish microgreens under 1 °C storage. Luo et al. (2004) found similar results for 

fresh-cut cilantro leaves. Therefore, it may be deduced from these results that 

temperature is the predominant factor influencing growth for most microorganisms 

(Koseki & Itoh, 2002). 

Among all the OTR film treatments, no significant difference was found on 

maintaining the quality and prolonging the shelf life of radish microgreens. Overall, 

samples packaged in 29.5 pmol s
-1 

m
-2

 Pa
-1

 OTR film maintained relatively better 

quality during 28-day storage under 1 °C, demonstrating lowest tissue electrolyte 

leakage, AMB and Y&M counts, and off-odor score (except the suspicious off-odor 

score of 11.6 pmol s
-1 

m
-2

 Pa
-1

 OTR film treatment); thus, the film with 29.5 pmol s
-1 

m
-2

 Pa
-1

 OTR was chosen to be used in the subsequent wash study of daikon radish 

microgreens. 

4.4.3 Effect of Wash Treatment on Quality and Shelf Life  

During the entire 28-day storage period, no significant difference (P < 0.05) was 

found in the changes of O2 and CO2 composition in packages among all wash 

treatments (Fig. 4.3A and 4.3B). In the first seven days, the headspace O2 

concentration of all bags dropped rapidly, nearly reaching equilibrium by day 7. All 

treatments maintained a constant high level of O2 (14.0-16.0 kPa) until the end of 

storage. Meanwhile, the CO2 level increased rapidly during the 1
st
 7 days followed by 
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a slight decline. This result suggests that wash treatment had no significant (P < 0.05) 

effect on O2 reduction and CO2 evolution rates of radish microgreens packaged in the 

same permeable polyethylene bags (OTR = 29.5 pmol s
-1 

m
-2

 Pa
-1

) and stored at low 

temperature (1°C).  

During the 28-day storage at 1°C, the total chlorophyll content did not vary 

significantly (P < 0.05) (Fig. 4.3C). There was no direct relationship between wash 

treatment and total chlorophyll content. This lack of discernable effect due to wash 

treatment may be the result of large sample variation obscuring the variation 

attributable to wash treatment.  

On day 0, unwashed samples (control) showed higher tissue electrolyte leakage 

than all other washed samples, probably due to tissue fluids exuded from cut ends 

during washing. Meanwhile, water-washed samples exhibited lowest electrolyte 

leakage (0.8%) of all wash treatments, which is the same result reported for a recent 

study on „Tah Tasai‟ Chinese cabbage microgreens (Chandra et al., 2012). After day 

14, tissue electrolyte leakage increased rapidly for 100 mg/L chlorine treated samples 

and the values were significantly (P < 0.05) higher than those of other treatments on 

day 21 and day 28. On the contrary, no significant difference was observed in the 

changes of electrolyte leakage during subsequent storage among other treatments 

(Fig. 4.3D).  
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Fig. 4.3 Effect of chlorine wash treatment on the changes in O2 (A) and CO2 (B) 

partial pressures within packages, chlorophyll content (C), electrolyte leakage 

(D),  overall quality (E), off-odor (F), aerobic mesophilic bacteria (AMB) (G) and 

yeast & mold (Y&M) (H) populations of green daikon radish microgreens 

during 1 °C storage using 29.5 pmol s
-1 

m
-2

 Pa
-1

 OTR film (n = 4). Control 

represents unwashed sample.  

 

Vertical bar represents ± standard error.           
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 All samples subjected to different wash treatments maintained the highest 

possible visual score of 9.0 during storage at 1°C until day 14 (Fig. 4.3E). After day 

14, the visual quality of 100 mg/L chlorine treated samples declined rapidly, 

receiving the lowest overall score (a score of 7.2) at the end of the 28-day storage. 

However, no significant difference was found for overall quality of all other 

treatments (unwashed, water, 50 mg/L chlorine), which maintained good visual 

quality (scores of 7.8-8.0) at the end of storage. This suggests that the 100 mg/L 

chlorine treatment may have caused tissue damage during wash, which led to the 

quality loss during storage. However, the wash treatment with 50 mg/L free chlorine 

did not appear to have a detrimental effect on quality. 

The results for off-odor development followed the same trends as those for visual 

quality (Fig. 4.3F). Only trace amount of off-odor (scored 0.2 - 0.8) was detected for 

each treatment on day 14. At the end of storage, a slight to moderate level of off-odor 

(scored 1.2 - 1.5) was detected from all samples except for 100 mg/L chlorine treated 

samples, which developed the strongest off-odor with a moderate to strong score of 

2.5. The sensory results agreed well with those from tissue electrolyte leakage, 

suggesting that the loss of freshness and development of off-odor was related to tissue 

damage and senescence. 

A wash treatment with 100 mg/L free chlorine significantly reduced microbial 

population on day 0, while no difference was found among all other treatments (Fig. 

4.3G and 4.3H).  Microbial populations increased after day 7 of storage. However, 

samples that received the 100 mg/L chlorine treatment had a more significant increase 

in microbial populations than the other treatments. AMB and Y&M growth on 
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samples treated with 100 mg/L chlorine overtook that of all other treatments on day 

14 and continued to outgrow others until the end of storage. This is in agreement with 

the more rapid quality loss observed in this treatment, probably due to tissue damage 

incurred during washing.  A similar result was reported for „Tah Tasai‟ Chinese 

cabbage microgreens treated with chlorinated water (Lee et al., 2009). Water washed 

samples experienced slightly less microbial growth after day 14 than did 50 mg/L 

chlorine washed samples. Among all treatments, unwashed samples maintained 

lowest microbial growth after the 14
th

 day of storage, which is in accordance with the 

finding in a recent study of Kou et al. (2013). This result is probably due to the lower 

moisture content in these packages.  Excess moisture remaining on washed leaf 

surfaces, and the possible damaged incurred from agitation during washing and 

drying may have promoted microbial growth in those packages. Radish microgreens 

have young and delicate leaf tissues that can be easily damaged during preparation. 

Since removal of excess water without tissue injury is often closely related to the 

maintenance of quality and shelf life of fresh or fresh-cut produce, future studies may 

need to optimize the washing, and drying processes.  

4.5 Conclusions 

The quality and shelf life of radish microgreens as impacted by three major 

postharvest treatment factors, i.e. storage temperature, packaging film OTR, and 

chlorine wash treatment, were evaluated in this study. Storage temperature had a 

significant impact on package atmosphere, product visual quality, microbial growth 

and membrane integrity. A storage temperature of 1 °C was rated as the best 

treatment followed by 5 °C storage. Samples stored at 1 °C maintained the highest 
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overall visual quality with minimum off-odor development, lowest AMB and Y&M 

counts. This treatment also maintained the highest tissue integrity with minimum 

chlorophyll degradation, whereas those stored at 10 °C lost quality more rapidly. 

Packaging film OTR significantly affected headspace gas composition during 1 

°C storage; however, it did not have a significant effect (P < 0.05) on the quality and 

shelf life of the product, probably due to the presence of high level O2 and low level 

CO2 within the packages over time and low respiration rate of microgreens stored at 1 

°C. In our study, microgreens packaged in all OTR film bags stored at 1 °C 

maintained good quality and shelf life throughout 28 days. 

Among all wash treatments and control (no wash), 100 mg/L free chlorine wash 

treatment had a significant impact on the reduction of microbial population initially.   

However, microbial growth on these samples exceeded those of all other treatments 

after 7 days. In this study, the use of chlorine washing solutions did not achieve the 

goal of producing ready-to-eat radish microgreens with low microbial load and long 

shelf life, therefore, some alternative treatments need to be further investigated in the 

future study. 
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Chapter 5: Effect of Light Exposure on Sensorial Quality, 

Concentrations of Bioactive Compounds and Antioxidant 

Capacity of Radish Microgreens during Low Temperature 

Storage 

Xiao, Z., Lester, G.E., Luo, Y., Xie, Z., Yu, L., Wang, Q. (2014) Food Chemistry, 

151, 472-479.   

5.1 Abstract 

Radish microgreens constitute a good source of bioactive compounds; however, 

they are very delicate and have a short shelf life. In this study, we investigated the 

impact of light exposure and modified atmosphere packaging on sensorial quality, 

bioactive compound concentrations and antioxidant capacity of radish microgreens 

during storage. Results showed that light exposure during storage increased the 

amount of ascorbic acid and had no effect on α-tocopherol or total phenolic 

concentrations. Dark storage resulted in higher hydroxyl radical scavenging capacity 

and carotenoid retention. No significant differences were found for relative 2, 2-

diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity between light and 

dark treatments. Radish microgreens in bags of 29.5 pmol s
-1 

m
-2

 Pa
-1

 oxygen 

transmission rate (OTR) maintained better quality than those within laser-

microperforated bags. In conclusion, light exposure accelerated deterioration of 

radish microgreens, while dark storage maintained quality; and application of OTR 

bags was beneficial in extending shelf life.  
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5.2 Introduction 

Microgreens are a new class of specialty vegetables that are often harvested at the 

cotyledonary leaf stage without roots and seed coats. Microgreens are favored by 

chefs and consumers in high-end restaurants for their attractive colors, tender texture, 

and intense flavors. A recent report on phytonutrient studies (Xiao et al., 2012) 

demonstrated that most microgreens contain substantially higher levels of bioactive 

compounds, such as ascorbic acid, phylloquinone, tocopherols and carotenoids, than 

their more mature true-leaf forms. As the demand for microgreens increases, and they 

begin to appear in farmer‟s markets and specialty grocery stores, the optimization of 

their postharvest storage conditions is therefore becoming important.  

Commercially, containers used for microgreens are plastic clamshell containers, 

in which the gas composition is atmospheric. In order to accurately measure the 

headspace gas composition, laser microperforated plastic bags were used in the 

current study as a substitute for clamshell containers. However, our previous studies 

found that using optimized modified atmosphere packaging and low temperature 

storage considerably extended the shelf-life of radish microgreens (Xiao et al., 2013). 

Thus both packaging conditions will be investigated. 

Fresh produce, including microgreens, are usually displayed under light in 

grocery stores. Recently, the effect of light exposure on quality and phytochemical 

concentrations of different vegetables has been studied extensively. Büchert et al. 

(2011) reported that continuous low intensity light delayed yellowing and postharvest 

senescence of broccoli florets (Brassica oleracea L.). Noichinda, et al. (2007) 

reported that low intensity fluorescent light accelerated fresh weight loss, but 
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prevented the loss of vitamin C of Chinese kale (Brassica oleracea var. alboglabra) 

during storage. Lester et al. (2010b) found that continuous light exposure prevented 

loss of ascorbic acid and was beneficial in enhancing carotenoids and tocopherols of 

baby-leaf spinach (Spinacia oleracea L.). Studies also showed that light exposure 

could cause detrimental effects on produce quality. A study by Sanz et al. (2009) 

demonstrated that asparagus (Asparagus officinalis L.) stored under light 

experienced accelerated deterioration and shortened shelf life than those stored under 

continuous dark. Martínez-Sánchez et al. (2011) also observed that light exposure 

could promote browning of fresh-cut Romaine lettuce. 

Daikon radish microgreens (Raphanus sativus var. longipinnatus) were chosen in 

this study due to its abundance in bioactive compounds relevant to human health 

(Xiao et al., 2012) and broad usage in restaurants in the US. The objective of this 

study is to determine the effect of light exposure and packaging conditions on 

sensorial quality, concentrations of bioactive compounds, and antioxidant capacity of 

daikon radish microgreens during cold storage.  

5.3 Materials and Methods 

5.3.1 Sample Preparation 

Daikon radish microgreens (Raphanus sativus var. longipinnatus) were grown by 

Sun Grown Organic Distributors, Inc. (San Diego, CA, USA) in an unheated 

greenhouse and under ambient light. Samples were harvested without roots, packed in 

clamshell containers and shipped overnight in insulated containers with ice packs. 

When received, all samples were inspected prior to packaging and defective plant 

tissues were discarded. Samples (20 g) were re-packaged in 12.5 cm ✕ 12.5 cm 
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plastic bags, which were made of either polyethylene film (Pacific Southwest 

Container Inc., Modesto, CA, USA) with OTR of 29.5 pmol s
-1 

m
-2

 Pa
-1

 or laser-

microperforated oriented polypropylene film (LMP), provided by Dole Fresh 

Vegetables, Inc. (Salinas, CA, USA), respectively. The samples in each packaging 

type were further randomly divided into two groups and subjected to light and dark 

treatments. The samples subjected to light were stored under continues fluorescent 

light (light intensity ≈ 30 μmol∙s
-1

∙m
-2

) and those receiving dark treatment were stored 

in two-layer brown paper bags (light intensity ≈ 0.1 μmol∙s
-1

∙m
-2

). The light intensity 

was measured by LI-1000 data loggers (LI-COR, Lincoln, NB, USA) at the top of 

packages. Three packages of radish microgreens were randomly selected from each 

treatment on day 0, 4, 8, 12 and 16 for evaluations.  

5.3.2 Headspace Gas Composition 

Packaging headspace gas samples were withdrawn by inserting the needle through 

a septum adhered to the packaging film. The gas composition (O2 and CO2) was 

measured using an O2/CO2 gas analyzer (CheckMate II, PBI-Dansensor A/S, 

Ringsted, Denmark).   

5.3.3 Quality Attributes 

5.3.3.1 Color (L*, C*, h°) 

Color coordinates (CIE L*, C*, h°) were directly measured on the products using 

a model CR-410 colorimeter (Konica Minolta, Ramsey, NJ, USA) with a 50 mm 

diameter viewing aperture. The equipment was calibrated with a standard white plate 

(Y = 94.0, x = 0.3130 and y = 0.3191). The concentrations of each package of radish 
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microgreens were transferred to a clear plastic tray. Color was measured at ten 

locations and the mean value was taken to ensure that color readings were 

representative of each sample. Three replicate packages were evaluated for each 

treatment on each sampling day (day 0, 4, 8, 12 and 16). The results were expressed 

as lightness (L*), Chroma (C*) and hue angle (h°) values. 

5.3.3.2 Weight Loss  

Weight loss was determined by weighing the bagged samples from at the 

beginning of storage and during storage. Three replicates were evaluated for each 

treatment on each sampling day (day 0, 4, 8, 12 and 16). Results were expressed as 

percentage of weight loss relative to the initial fresh weight.  

5.3.3.3 Sensory Evaluation 

Sensory evaluation was conducted by a six-member trained panel using a ballot 

designed with Compusense
®

 5.0 system (Guelph, Canada). All the samples were 

evaluated under controlled yellow light in individually partitioned sensory booths. A 

total of 4 samples, one from each of the four treatments were served one at a time to 

each panelist. Each sample was labeled with a random 3-digit number and served to 

the panel members in random orders. The visual quality was rated using a 9-point 

hedonic scale, anchored by 9 = like extremely, 5 = neither like nor dislike and 1= 

dislike extremely (Meilgaard et al., 1991); a score of 6 was considered the limit of 

salability (Kim et al., 2004). Off-odor was scored on a 0 to 4 scale where 0 = no off-

odor, 1 = slight off-odor, 2 = moderate off-odor, 3 = strong off-odor, and 4 = 

extremely strong off-odor.  
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5.3.4 Analysis of Bioactive Compounds 

5.3.4.1 Ascorbic Acid  

Total ascorbic acid (TAA) and free ascorbic acid (AA) were determined using a 

reverse phase high performance liquid chromatography (RP-HPLC) using the 

protocol described in 3.3.4.1.  In this assay, the amount of dehydroascorbic acid 

(DHA) was equal to the difference between TAA and AA.   

5.3.4.2 Carotenoids and Tocopherols 

Carotenoids and tocopherols were simultaneously determined using an isocratic 

RP-HPLC according to the procedure previously established in our laboratory (Xiao 

et al., 2012), as described in 2.3.3.2. 

5.3.5 Determination of Antioxidant Capacity  

5.3.5.1 Total Phenolics  

Total phenolic content (TPC) was measured using Fast Blue BB (FBBB) assay 

developed by Medina (2011) and modified for chlorophyll-containing tissue by Lester 

et al. (2013), as described in 3.3.4.4.  

5.3.5.2 Relative DPPH Radical Scavenging  

The relative 2, 2-diphenyl-1-picrylhydrazyl (DPPH) radical scavenging capacity 

(DPPH) was evaluated according to the method of Cheng et al. (2006). The test 

solution (0.1 mL) of sample extracts, Trolox standards, or blank solvent control was 

added to 0.1 mL of freshly prepared DPPH solution to initiate the reaction. The 

absorbance of the reaction mixture was measured at 515 nm for 40 min of reaction in 
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the dark. DPPH values were calculated using areas under the curve and expressed as 

micromoles of Trolox equivalents (TE) per gram of dried weight sample. 

5.3.5.3 Hydroxyl Radical Scavenging Capacity  

Hydroxyl radical scavenging capacity (HOSC) assay was conducted according to 

the protocol of Moore et al. (2006) using a Victor multilabel plate reader 

(PerkinElmer, Turku, Finland). Aqueous sample extracts were evaporated to dryness 

and redissolved in 50% acetone. Reaction mixtures consisted of 170 µL of 9.28 × 10
-8

 

M fluorescein prepared in 75 mM sodium phosphate buffer, 30 µL of standard, 

sample extract, or blank, 40 µL of 0.1990M H2O2 and 60 µL of 3.43 mM FeCl3. 

Fluorescence was measured every minute for 3 h with an excitation wavelength of 

485 nm and emission wavelength of 535 nm. HOSC values were expressed as 

micromoles of Trolox equivalents (TE) per gram of sample on a dry weight basis.  

5.3.6 Statistical Analysis 

Package atmospheres, dry weight, weight loss, antioxidant activity, color, 

nutrient, and quality and off odor data were analyzed as three-factor linear models 

using the PROC MIXED procedure (SAS Institute Inc., Version 9.2, Cary, NC, 

USA). Analysis factors were storage time (5 levels), package film (2 levels), and light 

condition (2 levels). Three replications were evaluated per treatment on each 

sampling day for all parameters except quality and off odor for which 6 replications 

were evaluated per treatment per sampling day. Quality and off-odor evaluator ratings 

were averaged for each sample. Different samples were analyzed on each evaluation 

day for all studies. Assumptions of normality and variance homogeneity of the linear 
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model were checked and the variance grouping technique was used to correct for 

variance heterogeneity. When effects were statistically significant, means were 

compared using Sidak adjusted p-values to maintain experiment-wise error  0.05. 

Data was reported as the mean of 3 replicates ± standard error (SE). 

5.4 Results and Discussions 

5.4.1 Effect on Headspace Gas Composition 

The gas composition in all laser microperforated bags (LMP) was maintained at 

atmospheric and not affected by the light treatment during the storage period (Fig. 

5.1A). This suggests that the laser microperforated films used in this study allowed 

sufficient gas exchange with the surrounding environment to compensate for O2 

consumption and CO2 production that may have been produced by the microgreens.  

In contrast, the O2 and CO2 levels in OTR bags were significantly impacted by the 

light exposure. Within the first 4 days of storage, there was a sharp decline in O2 

levels inside the packages of both light and dark treatment. However, O2 levels 

increased in light-stored packages while under dark remained unchanged from day 4 

until the end of storage (day 16). Similar to O2, under both light and dark conditions 

the package headspace CO2 levels remained nearly unchanged in laser 

microperforated films throughout the entire storage period (Fig. 5.1B).  In OTR bags, 

the CO2 levels differed significantly under light vs. dark storage. Under light 

conditions, CO2 levels remained nearly unchanged from day 0 to day 12, followed by 

a slight increase (up to 0.8) from day 12 to day 16. While there was a sharp increase 

in CO2 from day 0 to day 4 (up to 3.8) and remained high throughout the storage 

under dark condition.  The large difference in gas compositions observed under light  
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Fig. 5.1 Effect of light exposure on the headspace gas composition in oxygen 

transmission bags (OTR) and laser microperforated bags (LMP) at 5 °C for 16 

days. 

 

OTR+L, OTR+D, LMP+L and LMP+D represents radish microgreens in OTR bags 

subjected to light, in OTR bags subjected to dark, in LMP bags subjected to light, and 

in LMP bags subjected to dark, respectively. Values are means ± standard errors of 

three replicates.   
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versus dark conditions is likely attributable to the respiratory and photosynthetic 

activities of microgreens.   

In general, exposure to light during storage induces stomatal opening, resulting in 

increased respiratory activity, which leads to the consumption of O2 and release of 

CO2 (Sanz et al., 2008). In the presence of light, chlorophyll-containing tissues could 

also continue photosynthetic activity, which depletes CO2 and releases O2 in packages 

(Olarte et al., 2009). In our study, the high levels of O2 and lower levels of CO2 in 

light-stored microgreens packages suggests active photosynthetic processes in 

microgreens during storage under light exposure.  

5.4.2 Effect on Quality Attributes 

5.4.2.1 Color (L*, C*, h
°
) 

Color changes were presented in terms of the coordinates, lightness (L*), chroma 

(C*) and hue (h
°
) (Fig. 5.2). The color of radish microgreens was significantly 

affected by light exposure, packaging atmosphere and storage duration. In general, L* 

values initially decreased during storage and then slowly increased returning to the 

original value, except for the treatment of LMP+D which increased beyond the 

original value (Fig. 5.2A). Irrespective of packaging treatments, the L* values of 

light-stored samples were significantly lower than those of dark-stored samples, 

which indicated that light-stored samples were darker. The tendency of samples to 

darken when exposed to light has been reported by previous studies on green parts of 

chard and leek (Ayala et al., 2009; Sanz et al., 2008). The darkening of plant samples 

observed in these instances was probably caused by the photosynthetic activity in the  
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Fig. 5.2 Effect of light exposure on lightness (L*), chroma (C*), hue angle (h°) of 

radish microgreens stored in oxygen transmission bags (OTR) and laser 

microperforated bags (LMP) at 5 °C for 16 days.  

OTR+L, OTR+D, LMP+L and LMP+D represents radish microgreens in OTR bags 

subjected to light, in OTR bags subjected to dark, in LMP bags subjected to light, and 

in LMP bags subjected to dark, respectively. Values are means ± standard errors of 

three replicates.   
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presence of light during postharvest storage, through which the green pigment 

chlorophyll was produced.  

Chroma (C*) represents the intensity or purity of the hue (Gómez et al., 2010). 

The higher the C* value, the more intense the sample hue appears. Among all four 

treatments, the least change in C* was found in dark-stored OTR microgreens 

samples, indicating that the intensity of hue of the tissue was not significantly 

affected by this storage condition (Fig. 5.2B). 

In this study, all the h
°
 (color) values were in the quadrant of 90° (yellow) to 180° 

(green); therefore, the decrease of h
°
 value means that samples tend to turn from 

green to yellow-green. The higher the h
°
 value, the greener the microgreens. Our 

results demonstrate that light exposure clearly affected h
°
 value of samples stored in 

OTR bags with a progressive decrease in h
°
 during storage, while samples in dark-

stored OTR bags were minimally affected with only a slight decrease in h
°
 values on 

day 8, and no change thereafter (Fig. 5.2C). The yellowing observed in the light-

stored samples at the end of the storage period provides additional evidence that light 

exposure accelerates discoloration of radish microgreens. Hue values of microgreens 

packaged in LMP bags decreased during storage but no significant differences were 

found between light and dark treatments, indicating that LMP packaging played a 

more important role in tissue discoloration than OTR packaging. The high oxygen 

concentration in LMP packages resulted in more rapid yellowing, an indication of 

tissue senescence and chlorophyll degradation (Heaton & Marangoni, 1996). 

Contradictory reports were found in literature regarding the effect of light 

exposure on quality maintenance of fresh produce. Studies from Sanz et al. (2008) 
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and Ayala et al. (2009) showed a similar gradual decrease in hue angle values of 

chard and leek, respectively, during storage. However, Kasim and Kasim (2007) 

reported that low intensity light exposure was beneficial to the preservation of green 

color of Brussels sprout and broccoli florets. Based on the L*, C*, h
° 
coordinate data 

in our study, it was concluded that the impact of packaging film is more important 

than that of light or dark exposure in maintaining visual quality of radish microgreens 

light- and dark-stored OTR bags maintained the freshest appearance compared to 

light- and dark-stored LMP bags following 16 days at low temperature storage. 

5.4.2.2 Effect on Sensorial Quality 

The effect of light exposure on the sensorial quality, irrespective of packaging, 

resulted in that dark-stored microgreens having significantly better visual quality than 

samples in lighted storage. Initially, all microgreens had a fresh appearance on day 4 

with no significant difference among treatments.  However, by day 8, microgreens 

stored under dark received significantly higher visual quality scores than those stored 

under light (Fig. 5.3A). After 8 days of storage, OTR samples stored in darkness 

maintained high visual quality while the visual quality of light-exposed OTR samples 

and all the LMP samples were below the limit of acceptability. The visual quality of 

dark-stored OTR microgreens was rated above 5.0 (i.e. considered likeable) 

throughout the entire 16 day storage while all other microgreens continued sharp 

decline in visual quality. Accompanying the changes in visual quality, radish 

microgreens exposed to light produced an off-odor more slowly than those stored 

under dark conditions (Fig. 5.3B). While light exposure initially prevented the 

occurrence of off-odor in OTR samples, after 8 days of storage the intensity of off-  
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Fig. 5.3 Effect of light exposure on visual, off-odor and weight loss of radish 

microgreens stored in oxygen transmission bags (OTR) and laser 

microperforated bags (LMP) at 5 °C for 16 days. 

 

OTR+L, OTR+D, LMP+L and LMP+D represents radish microgreens in OTR bags 

subjected to light, in OTR bags subjected to dark, in LMP bags subjected to light, and 

in LMP bags subjected to dark, respectively. Values are means ± standard errors of 

six replicates.   
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odor of light-exposed microgreens was higher than that of dark-stored samples. 

Samples stored in LMP packages in darkness showed less intensity of off-odors at 

each sampling day than those stored in OTR packages except for day 4 when there 

was no significant difference between packaging treatments. The lower off-odor 

scores for LMP bags than for OTR bags were probably due to higher permeability of 

LMP film. In our study, exposure to light during postharvest storage was found to 

have a negative effect on the sensorial quality maintenance of radish microgreens, 

which is in accordance with the findings reported by some previous researchers on 

minimally processed chard, leek, asparagus and Romaine lettuce (Ayala et al., 2009; 

Martínez-Sánchez et al., 2011; Sanz et al., 2008; Sanz et al., 2009).  

5.4.2.3 Effect on Weight Loss  

Weight loss of radish microgreens under light exposure was significantly (P < 

0.05) higher than that for dark-stored samples on each sampling day (Fig. 5.3C). The 

weight loss of light-stored microgreens increased throughout storage, ending up with 

8.1% and 7.6% of weight loss in OTR and LMP packages, respectively. In contrast, 

samples stored in the dark maintained a stable fresh weight and with little weight loss 

(around 1.0%) during the entire 16-day storage period. Similar research findings were 

reported for light-exposed storage of Brussels sprout, Chinese kale, broccoli and 

cauliflower (Kasim & Kasim, 2007; Noichinda et al., 2007; Olarte et al., 2009), 

which showed that stomata were closed in darkness within 1 day of storage, but 

remained open during storage under light conditions. It is generally recognized that 

the degree of stomatal opening is directly related to both the transpiration rate and the 

diffusion of CO2 for photosynthesis. Under light exposure, an increased transpiration 
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rate, due to more stomatal openings, consequently accelerates the loss of water vapor 

from tissues, which is the likely cause of the higher weight loss. It was also observed 

that there was substantial moisture condensation inside the packaging film in light 

exposed packages, which was further evidence of high leaf transpiration rate under 

light. 

5.4.3 Effect on Bioactive Compounds  

5.4.3.1 Ascorbic Acid 

Dry weight percentage was shown in Fig. 5.4A, which was used for calculating 

all the nutrient concentrations. The changes in AA concentration of radish 

microgreens in all treatment groups followed a similar trend over the 16-day low 

temperature (5°C) storage (Fig. 5.4B). With the exception of samples stored in OTR 

bags and exposed to light (OTR+L), free ascorbic acid concentration increased 

initially (from day 0 to day 8), decreased until day 12, and then increased again until 

the end of storage. Compared with the samples stored in dark, radish microgreens 

stored under light showed significantly (P < 0.01) higher AA concentrations during 

the entire storage. Dehydroascorbic acid (DHA), the oxidized form of AA followed 

the opposite trend of AA, decreasing during the first 4 days of storage for all samples 

except samples packaged in LMP bags and stored in dark (LMP+D) and then slightly 

increasing until day 12, and declining thereafter (Fig. 5.4C). Dehydroascorbic acid 

for LMP+D samples increased gradually until day 8 and then increased rapidly 

through the end of the storage.  The increase in total ascorbic acid (TAA) which 

occurred in all radish microgreens during the 16-day storage period regardless of the 

presence of light and packaging treatments (Fig. 5.4D) is due to the combination of  
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Fig. 5.4 Effect of light exposure on dry weight, ascorbic acid, dehydroascorbic 

acid, total ascorbic acid, β-carotene, lutein/zeaxanthin, violaxanthin, α-

tocopherol of radish microgreens stored in oxygen transmission bags (OTR) and 

laser microperforated bags (LMP) at 5 °C for 16 days.  

 

OTR+L, OTR+D, LMP+L and LMP+D represents radish microgreens in OTR bags 

subjected to light, in OTR bags subjected to dark, in LMP bags subjected to light, and 

in LMP bags subjected to dark, respectively. Values are means ± standard errors of 

three replicates.  
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increase in AA or DHA. In general, light-stored samples showed higher TAA 

concentrations than dark-stored samples over the entire storage period. The TAA 

concentration of radish microgreens was initially 30.8 mg/100mg FW on day 0 and 

increased by 18.3% in OTR samples after 16-day light exposure. In comparison, OTR 

samples stored in the dark retained very stable level of TAA (30.8-31.7 mg/100mg 

FW) during storage, with a small increase in the middle of the period (34.0 

mg/100mg FW). Samples stored in OTR films preserved more AA and less DHA 

than those stored in LMP films during storage, regardless of light or dark storage. 

In our study, the exposure to light contributed to higher levels of TAA over time. 

As expected, light exposure may increase the photosynthetic capacity of radish 

microgreens during postharvest storage, which resulted in production of D-glucose,  

which is the precursor of AA synthesis (Zhan et al., 2012). Interestingly, there was no 

TAA loss in radish microgreens packaged in OTR film bags stored at 5°C regardless 

of light or dark storage. Instead, light exposure positively boosted the total amount of 

TAA. A similar trend for total ascorbic acid in light-exposed baby spinach was found 

by Lester et al. (2010b).  

It is noted that AA at 1.4 mg/100g FW only accounted for 4% of TAA 

concentration on day 0, meaning that most of the vitamin C was present as DHA, its 

oxidized form. This phenomenon is thought to be associated with postharvest 

oxidative stresses, resulting from a variety of factors, including physical damage, 

temperature fluctuation, and internal senescence, all of which may contribute to the 

decrease in AA by oxidizing it to DHA (Hodges et al., 2004).  



105 

 

 

5.4.3.2 Carotenoids 

Light exposure significantly accelerated β-carotene degradation in radish 

microgreens during storage in both packaging treatments, whereas the samples stored 

in the dark showed little change in β-carotene level throughout the storage period 

(Fig. 5.4E). Other researchers reported similarly that more β-carotene concentration 

was preserved in spinach leaves stored in dark condition than in light condition 

(Lester et al., 2010b). The changes of lutein/zeaxanthin concentrations in all 

treatments followed a similar trend during storage, with LMP+D samples leading the 

way with faster decrease and earlier increase, but all treatments increasing after day 8 

(Fig. 5.4F). Similarly to β-carotene, lutein/zeaxanthin and violaxanthin (Fig. 5.4G) 

concentration was lower in the samples stored under light than in those stored in 

darkness. It is known that when the light energy is excessive to the need of plants for 

photosynthesis, a reversible xanthophylls conversion of violaxanthin to zeaxanthin 

via the intermediate antheraxanthin (violaxanthin cycle) occurs, whereby violaxanthin 

can be de-epoxidized into zeaxanthin (Havaux & Niyogi, 1999; Jahns et al., 2009). In 

our study, more violaxanthin was observed in dark condition, which indicated that the 

epoxidation reaction may occur in this storage condition. Zeaxanthin epoxidation to 

form violaxanthin is commonly induced under low light conditions (Lubián & 

Montero, 1998). Although the lutein/zeaxanthin concentration in radish microgreens 

did not decrease in the dark storage as the violaxanthin increased, this data was the 

sum of lutein and zeaxanthin, which may not reflect the change in zeaxanthin.  



106 

 

 

5.4.3.3 Tocopherols 

It is generally recognized that α-tocopherol is the predominant form found in 

leaves, while γ-tocopherol and tocotrienols accumulate to higher levels in seed of 

many plant species (Demurin et al., 1996; Tan, 1989). Gamma-Tocopherol is the 

precursor of α-tocopherol (Lester et al., 2010b). In higher plants, γ-tocopherol 

methyltransferase is an important enzyme in the biosynthetic pathway of α-

tocopherol, which catalyzes the last step of α-tocopherol biosynthesis (Dwiyanti et 

al., 2011). During storage, the α-tocopherol concentration increased (Fig. 5.4H) over 

time, irrespective of light/dark treatment. Conversely, a substantial decline in γ-

tocopherol occurred during the 16 day storage. However, there was no consistent 

difference between γ-tocopherol concentrations of light and dark treated samples 

(data not shown). Although there was no clear trend in γ-tocopherol concentrations, 

the γ-tocopherol concentration tended to decrease as the α-tocopherol increased and 

vice versa for most of the treatments and storage periods. In a previous study, Lester 

et al. (2010b) reported that continuous light exposure helped retain more α-tocopherol 

and γ-tocopherol in baby spinach during storage than did dark storage. In this case, 

photo-oxidative stress may have induced an increase in α-tocopherol (Porfirova et al., 

2002).  

5.4.4 Effect on Antioxidant Properties 

There were no significant differences in TPC among package or light treatments 

over the storage period (Fig. 5.5A). A previous study on fresh-cut romaine lettuce 

showed that TPC was not significantly different among samples stored under light but 

dark storage tended to have higher level of TPC (Martínez-Sánchez et al., 2011). It is 
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well known that phenolic compounds are generally synthesized via the 

phenylpropanoid metabolic pathway, in which L-phenylalanine is converted into 

trans-cinnamic acid by the enzyme phenylalanine ammonia lyase (PAL, EC 4.3.1.5) 

and some other phenolic compounds are subsequently produced, such as chlorogenic 

acid (Martínez-Sánchez et al., 2011; Zhan et al., 2012). Phenolic compounds also act 

as important antioxidants and they can be oxidized to quinone during oxidative stress. 

Therefore, the TPC value assayed actually depends on the balance of synthesis and 

oxidation (Zhan et al., 2012).  

DPPH radical scavenging capacity was not significantly affected by light 

exposure or storage duration during the 16 days they were held at 5°C (Fig. 5.5B). 

The trend was very similar to that of TPC described above, which may be due to the 

same antioxidant mechanism of electron transfer (ET) reaction. Differently, the 

HOSC assay is measuring the scavenging capacity of hydroxyl radical, in which 

hydrogen atom transfer (HAT) reaction is involved (Huang et al., 2005). Our data 

showed that the HOSC values of radish microgreens were significantly affected by 

different light and packaging film treatments (Fig. 5.5C). The HOSC of radish 

microgreens in all conditions underwent a substantial decline for the first 8 days of 

storage and a slight increase thereafter until the end of storage period. Compared to 

samples under darkness, those under light exposure had significantly lower HOSC 

values at each sampling day, irrespective of packaging film. In food system, 

antioxidants (such as vitamin C) may act as pro-oxidants by indirectly catalyzing the 

hydroxyl radical generation (Huang et al., 2005).Thus, as AA concentration increased 

(described above), more hydroxyl radicals may have been generated, 
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Fig. 5.5 Effect of light exposure on total phenolics, relative DPPH radical 

scavenging capacity (DPPH) and hydroxyl radical scavenging capacity (HOSC) 

of radish microgreens stored in oxygen transmission bags (OTR) and laser 

microperforated bags (LMP) at 5 °C for 16 days.  

OTR+L, OTR+D, LMP+L and LMP+D represents radish microgreens in OTR bags 

subjected to light, in OTR bags subjected to dark, in LMP bags subjected to light, and 

in LMP bags subjected to dark, respectively. Values are means ± standard errors of 

three replicates. 
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resulting in decreased HOSC antioxidant activity in light exposed samples. Studies 

have shown that antioxidants such as phenolics may go through synthesis and 

metabolism during storage (Kalt et al., 1999). The change in the bioactive compounds 

profile may decrease or increase the overall antioxidant capacities of fruits and 

vegetables (Kevers et al., 2007). Overall, the trend in the change of the antioxidant 

capacities sheds light on the complexity of bioactive behavior in microgreens during 

storage. Unfortunately this cannot be explained by the amount change of bioactive 

compounds as determined in this study. A further study examining the metabolism of 

individual bioactive compound in radish microgreens during storage may provide us 

more understanding on these activities.  

5.5 Conclusions 

In conclusion, light exposure during storage contributed to the maintenance of a 

higher concentration of ascorbic acid in daikon radish microgreens; but it accelerated 

quality deterioration and weight loss during storage. Dark storage helped to preserve 

the quality and prolong the shelf life of radish microgreens. Additionally, dark-stored 

radish microgreens maintained higher levels of β-carotene, lutein/zeaxanthin and 

HOSC antioxidant activity. No significant differences in α-tocopherol concentration, 

total phenolics concentration and DPPH antioxidant capacity were found between 

light and dark stored OTR and LMP packaged microgreens. These results showed 

that postharvest environmental conditions need to be considered carefully in order to 

maintain consumer acceptability, concentration of bioactive compounds and storage 

life.  
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Chapter 6: Comparison of the Growth of Escherichia coli 

O157: H7 and O104: H4 during Sprouting and Microgreen 

Production from Contaminated Radish Seeds 

 

6.1 Abstract 

Radish sprouts and microgreens were produced using seeds inoculated with 

Escherichia coli O157: H7 and O104: H4. Sprouts were harvested after 5 days and 

microgreens harvested after 7 days, and E. coli populations on sprouts and 

microgreens were compared. Both E. coli O157:H7 and O104:H4 proliferated rapidly 

during sprouting, reaching contamination levels of 5.8 to 8.1 log cfu/g and 5.2 to 7.3 

log cfu/g, respectively, depending on the initial inoculation of the seeds. In 

comparison, E. coli O157:H7 and O104:H4 populations on harvested microgreens 

ranged from 0.8 to 4.5 log cfu/g and from 0.6 to 4.0 log cfu/g, respectively, at 

corresponding seeds contamination levels. Although harvested microgreens carried 

significantly less (P < 0.001) E. coli  than the corresponding sprouts, significant 

proliferation by E. coli O157:H7 and O104:H4 occurred during both sprouting and 

microgreen growth.  

6.2 Introduction 

As consumers‟ demand for healthy and convenient food increases, raw seed 

sprouts have gained popularity worldwide as they are perceived as healthier sources 

of carbohydrates, proteins, minerals, and vitamins (Martínez-Villaluenga et al., 2008). 

However, sprouts consumption has recently been implicated in several foodborne 
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illnesses outbreaks. An outbreak of enterohemorrhagic Escherichia coli (EHEC) 

O157: H7 which affected over 6000 people in Japan in 1996, was linked to the 

consumption of contaminated radish sprouts (Taormina et al., 1999). The recent 

Jimmy John‟s Salmonella outbreak associated with consumption of alfalfa sprouts in 

December 2010 sickened 88 people across 15 states in the United States. In 2011, 

sprouts from an organic farm in Germany were determined the sources of an outbreak 

of enteroaggregative E. coli (EAEC) O104:H4, which infected nearly 4000 people, 

and caused 53 deaths (Uphoff et al., 2013).  These outbreaks have heightened 

consumer concerns to the safety of sprouts, and prompted many food retail/service 

establishments to institute policies restricting the availability of sprouts.  

In recent years, consumer demands for microgreens have also grown rapidly. 

Microgreens are tender cotyledonary-leaf plants with cotyledonary leaves fully 

developed and the first pair of true leaves emerged or partially expanded. Compared 

to mature leafy produce, microgreens exhibit more vivid colors, intense flavors and 

tender textures.  A recent study showed that microgreens generally contained higher 

concentrations of phytonutrients (such as α-tocopherol, β-carotene and ascorbic acid) 

than their mature-leaf counterparts (Xiao et al., 2012).  

Unlike mature fresh produce, both sprouts and microgreens are grown in facilities 

that restrict the access of insects and wild animals, and minimize other factors of 

environmental contaminations. Contaminated seeds are generally the source in most 

sprout-related outbreaks (NACMCF, 1999), which would also likely be true for 

microgreens. For commercial production, sprouts typically germinate from seeds in 

rolling drums with high humidity and frequent watering. The conditions for sprouting 
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are conducive of bacterial growth, and it has been reported that E. coli can exceed 7 

log cfu/g during sprout production without negatively affecting the appearance of the 

sprouts (Taormina et al., 1999). In contrast, microgreens are grown hydroponically or 

in a shallow layer of soil/soil substitutes in green houses as real plants. To date, there 

is a lack of scientific information relative to the microbiological safety risks of 

microgreens. The primary objective of this work was to investigate the survival and 

proliferation of E.coli O157: H7 and O104: H4 on radish sprouts and microgreens 

cultured under laboratory conditions simulating commercial sprout and microgreen 

productions.   

6.3 Materials and Methods 

6.3.1 Bacterial strains and inoculum preparation 

E. coli O157: H7 strain ATCC 43888 harboring a stable plasmid (pGFP) that 

encode for green fluorescence protein (GFP) and ampicillin-resistance (Fratamico et 

al., 1997), and strain ATCC 43895 were from EMFSL collections. E. coli O157:H7 

strain EC415, which was isolated from spinach outbreak in 2006, was provided by 

Dr. M. Marmmel (FDA CFSAN, Laurel, MD). E. coli O104:H4 strain TW16133, 

which was isolated from Germany sprout outbreak in 2011, was obtained from Dr. 

Shannon D. Manning of Michigan State University (Al Safadi et al., 2012). Both 

ATCC 43895 and EC415 were transformed with pGFP extracted from ATCC 

43888/pGFP. Plasmid stability of the transformed strains was evaluated by two 

consecutive overnight subculturings (approximately 60 generations) in the absence of 

selective antibiotic (Ampicillin) followed by plating on non-selective agar plates. All 

the colonies examined expressed GFP, indicating stable maintenance of the plasmid. 
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All strains were maintained at -80 °C in brain heart infusion broth (BHI, Difco, 

Detroit, MI, USA) with 20% glycerol.  

Individual strains were re-activated on tryptic soy agar (TSA, Difco, USA) plate 

and single colonies were then inoculated into 20 tryptic soy broth (TSB, Difco, USA) 

containing 100 µg/mL Ampicillin and grown at 37 °C overnight with shaking at 200 

rpm. Cells were harvested by centrifugation at 6000 × g for 5 min at 4 °C and 

resuspended in sterile phosphate buffered saline (PBS) solution. Aliquots of cell 

suspensions were further diluted in sterile distilled (DI) water to obtain desired 

concentrations for inoculation. Cell suspensions of the three O157:H7 strains were 

combined as a cocktail for seed inoculation, and the O104:H4 strain was used 

separately for inoculation. 

6.3.2 Seeds and inoculation 

 Daikon radish (Raphanus sativus var. longipinnatus) seeds were purchased from 

a commercial provider (Living Whole Foods, Springville, UT, USA) and stored at 4 

°C in sealed plastic bags until use. For inoculation, radish seeds were visually 

inspected and those with visible defects purged. A portion of 100 g seeds were 

immersed in 200 mL of appropriate inoculum suspension with gentle swirling for 5 

min at ambient temperature. To achieve targeted low and high levels of inoculation 

on seeds, the concentrations of inoculum suspensions were 10
2
~10

3
 and 10

5
~10

6
 

cfu/mL, respectively. After draining, inoculated seeds were spread over sterile 

absorbent sheets and air-dried overnight under a laminar/ventilated flow biological 

safety hood. After drying, inoculated seeds were stored in refrigerator and used for 

sprout germination or microgreen planting with 48 hours. The targeted low level 
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inoculation of radish seeds was 1 log cfu/g, and that of high level inoculation was 4 

log cfu/g.  Radish seeds with high inoculums density and un-inoculated seeds were 

also mixed at a ratio of 1:99 (w/w) to form sporadically inoculated seed batches. The 

same batches of seeds with specific inoculation levels were used for sprouting and 

growing microgreens.  

6.3.3 Sprouting 

 Inoculated radish seeds (10 g) were placed in a sterile sprouting glass jar (source, 

location) and soaked in sterile DI water for 4 hours at ambient temperature. After 

draining, seeds were incubated at 25 °C with relative humidity of 70 ± 5% in the dark 

for 3 days. Sprouting jars were kept at an angle that ensured proper drainage during 

the incubation. Germinating seeds were rinsed with water twice daily. Radish sprouts 

were exposed to light on day 4 and harvested on day 5 as whole plants, including 

undeveloped leaf buds, stem and roots, for microbial enumeration.  

6.3.4 Microgreen growth 

 Fafard Super Fine Germination Mix (Griffin Greenhouse & Nursery Supplies, 

Bridgeton, NJ, USA), a soil substitute commonly used by microgreen growers, was 

evenly spread  in standard 1020 flat plastic culture trays (28 cm W x 54 cm L x 6 cm 

D, Growers Supply, Dyersville, IA, USA) to form a thin layer of approximately 2.5 

cm in depth. The germination mix was moisturized with sterile water before seeding. 

Inoculated seeds (10 g) were evenly spread on top of the germination mix in each tray 

and incubated in a temperature-controlled growth chamber set at 25/18°C (day/night) 

with 12 hour photoperiods. During the first three days, trays were covered and seeds 

germinated in the dark. On day 4, the seedlings were exposed to white fluorescent 
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light (light irradiance = ~150 µmol s
-1

 m
-2

, determined by LI-1000 datalogger, LI-

COR, Lincoln, NE, USA). Radish microgreens were daily irrigated to saturation 

using an overhead sprayer. On the 7
th

 day, microgreens were harvested by cutting 

stems at 1 cm above the substratum surface with sterilized scissors. A 5-g subsample 

of randomly selected microgreens from each tray (replicate) was collected for 

microbial enumeration.  

6.3.5 Enumeration of E. coli 

E. coli populations on the seeds, sprouts and microgreens were enumerated 

following a procedure from Luo and coworkers (Luo et al., 2004) with some 

modifications. A combination of direct plating technique and most probable number 

(MPN) method for enumeration was used in this study. In preliminary study, bacterial 

enumeration data obtained using direct plating and MPN methods were compared and 

no significant difference (P < 0.05) was found when identical samples were tested. 

The results were also consistent with a previous report of Line and coworkers (Line et 

al., 2001). Therefore, MPN method was used for complementing the direct plating 

method, especially when the microbial population was lower than the detection limit 

of direct plating. In this study, when the detection limit was equal or higher than 2.30 

log cfu/g, direct plating method was used. When detection limit was lower than 2.30 

log cfu/g, MPN method was used. 

Five grams of seeds, aseptically harvested sprouts, or microgreens were 

pummeled with 45 mL sterile PBS in filtered bags using a stomacher (Model 80, 

Seward Medical, London, UK) for 2 min at high speed mode. Filtered solution was 

used for microbial enumeration either by plating or by Most Probably Number (MPN) 
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procedure. For direct plating, 50 µLfiltrate or appropriate dilution was spiral plated 

on Sorbitol MacConkey agar (SMAC, Neogen Inc., Lansing, MI, USA) plates 

supplemented with 200 µg/mL
 
ampicillin using a Whitley automatic spiral plater 

(Wasp II, Don Whitley Scientific Ltd., West Yorkshire, UK) and incubated at 37 °C 

overnight. Colonies of E. coli O157:H7 or O104:H4 were counted with an automated 

plate counter (ProtoCOL, Synoptics, Cambridge, UK) and reported as log cfu/g of 

sample. For the purpose of direct quantitative comparison, E. coli counts on sprouts 

and microgreens were also reported as log cfu per “gram seed equivalent” (gse), 

which represented cell counts on sprouts or microgreens germinated from 1 g of seed 

and was calculated by factoring in the average yields of sprouts or microgreens. MPN 

procedure (Luo et al., 2011) was used when the expected cell population was low (< 

2.3 log cfu/g). Eight 3-mL aliquots of sample filtrate were 10-fold serially diluted 

using TSB supplemented with 100 µg/mL ampicillin in a deepwell microplate (5.0 

mL x 48 wells) and incubated overnight at 37 °C. Subsequently, 2.5 µL of the 

enriched bacterial solution in each well was arrayed on SMAC plates with 200 mg/L 

ampicillin and incubation overnight 37 °C. Corresponding patches with green 

fluorescence were counted as positive for E. coli O157:H7, and red (sorbitol 

fermenting) patches counted as E. coli O104:H4. The E. coli population was 

calculated using an online MPN calculator (Curiale, 2004). The results were 

expressed as log cfu/g of sample. 

6.3.6 Microbiological profile of growth media and seeds  

The microbiological profiles of germination mix and un-inoculated radish seeds 

were determined using 3M™ Petrifilms (3M Inc., St. Paul, MN, USA). Germination 
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mix (5 g) or radish seeds (5 g) was mixed with 45 mL PBS and stomached for 2 min 

as above.  Aliquots of 1 mL filtrate or its dilution was placed on appropriate biofilms 

and incubated as follow. Aerobic mesophilic bacteria (AMB) were determined on 

3M™ Petrifilm™ Aerobic Count Plates incubated at 37 °C for 24h; yeasts and molds 

(Y&M) were determined on 3M™ Petrifilm™ Yeast and Mold Count Plates 

incubated at 25 °C for 5d; Enterobacteriaceae (EB) counts were determined on 3M™ 

Petrifilm™ Enterobacteriaceae Count Plates incubated at 37 °C for 24h; and total 

coliforms (TC) were determined on 3M™ Petrifilm™ E. coli/Coliform Count Plates 

incubated at 37 °C for 24h. The filtrates of germination mix and radish seeds were 

also spread on SMAC containing 100 µg/mL of ampicillin to screen for the presence 

of bacteria that might form colonies indistinguishable from that of E. coli O104:H4. 

No such colonies were observed. 

6.3.7 Statistical analysis  

All the experiments were conducted in four replications. Reported data were 

expressed as the mean ± standard error (SE). Microbial data were log transformed. 

Univariate analysis of variance (ANOVA) was performed with SPSS 13.0 for 

Windows (SPSS Inc, Chicago, IL, USA). The statistical significance of the data was 

determined by performing Tukey‟s honestly significant difference (HSD) tests for 

post hoc multiple comparisons at an experiment-wise significance level of 0.05.  

6.4 Results and Discussion 

6.4.1 Microbiological profile of growth medium and seeds 
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Fig. 6.1 showed the microbial populations of germination mix and raw radish 

seeds. The main microbiological group in germination mix was yeasts and molds at 

5.7 log cfu/g and followed by total aerobic mesophilic bacteria at 3.7 log cfu/g. 

Fig. 6.1 Populations of total aerobic plate counts (APC), yeast and mold (Y&M), 

Enterobacteriaceae count (EB) and E. coli/Coliforms count (EC) on growth 

medium and radish seeds.  

 

Vertical bars represent standard errors (n = 4). 

 

Enterobacteriaceae counts in germination mix amounted to 3.5 log cfu/g, same as 

total E. coli/Coliform, indicating Enterobacteriaceae in germination mix was 

primarily composed of E. coli/Coliforms. The main component of germination mix is 

Sphagnum peat moss which could inhibit bacterial growth due to the low pH, but had 
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a less effect on yeast and molds (Cocozza et al., 2003; Everett et al., 2013). This 

could explain why the yeasts and molds count was high and target pathogens were not 

found in the growth medium. 

Indigenous microbial populations on raw radish seeds were mainly composed of 

aerobic mesophilic bacteria and yeast & mold, amounting to 3.3 and 2.5 log cfu/g, 

respectively. These results agree with previously published observations showing that 

seeds typically carried microbial loads ranging from 10
3
 to 10

6
 cfu/g (Kim et al., 

2009; Robertson et al., 2002). Enterobacteriaceae or E. coli/Coliform bacteria were 

not detected on radish seeds. 

6.4.2 E. coli O157: H7 growth on radish sprouts and microgreens   

The survival and growth of E. coli O157: H7 on radish sprouts and microgreens 

produced from seeds with different inoculation levels were shown in Fig. 6.2. E. coli 

O157: H7 was not detected on non-inoculated radish seeds or the resultant sprouts 

and microgreens. By the end of 5-day sprouting, sprouts germinated from radish 

seeds inoculated at high level (4.6 log cfu/g) carried E. coli O157: H7 population of 

8.1 log cfu/g (or 9.0 log cfu/gse). Those from radish seeds inoculated at low level (1.5 

log cfu/g) carried a much lower E. coli O157:H7 population (7.6 log cfu/g or 8.5 log 

cfu/gse). For sporadically contaminated seeds (1% seed inoculated), E. coli O157: H7 

populations on sprouts reached 5.8 log cfu/g (or 6.7 log cfu/gse). Although no attempt 

was made to quantify the growth of E. coli O157:H7 during sprouting, the above data 

indicated that E. coli O157:H7 was capable of growth by at least 3.2 to 5.1 logs. 

Previous studies showed that low levels of Salmonella species inoculated on alfalfa 

seeds increased by as much as 4 to 5 logs in the germinated sprouts (Andrews et al., 
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1982) and E. coli O157: H7 inoculated alfalfa seeds increased by 2 to 4 logs in the 

sprouts (Stewart et al., 2001). Prokopowich et al. (1991) previously reported that  

 

Fig. 6.2 Populations of E. coli O157: H7 on radish seeds, sprouts, and 

microgreens, produced from un-inoculated, low level, high level and sporadically 

inoculated seeds.  

 

Sporadically contaminated seed treatment is a mix of 1% high level inoculated seeds 

with un-inoculated seeds. Vertical bars represent standard errors (n = 4). 

 

microbial populations on sprouts obtained from retail stores reached as high as 10
9
 

cfu/g. In contrast, microgreens grown from similarly inoculated radish seeds carried 

significantly lower (P < 0.001) population of E. coli O157: H7 cells. E. coli O157:H7 

population reached 3.5, 4.5, and 0.8 log cfu/g on microgreens grown from low, high, 

and sporadically inoculated radish seeds, respectively, which corresponded to 4.5, 5.5 

and 1.8 log cfu/gse. 
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6.4.3 E. coli O104: H4 growth on radish sprouts and microgreens 

The initial inoculation levels of E. coli O104: H4 on radish seeds were 4.3 log 

cfu/g for high level, 0.8 log cfu/g for low level and 2.3 log cfu/g for sporadic 

inoculation which is a mix of 1% high level inoculated seeds with un-inoculated 

seeds. Un-inoculated seeds were also carried out as control, with no target bacteria 

detected in either sprouts or microgreens. As with E. coli O157:H7, the populations of 

E. coli  

 

Fig. 6.3 Populations of E. coli O104: H4 on radish seeds, sprouts, and 

microgreens, produced from un-inoculated, low level, high level and sporadically 

inoculated seeds.  

 

Sporadically contaminated seed treatment is a mix of 1% high level inoculated seeds 

with un-inoculated seeds. Vertical bars represent standard errors (n = 4). 
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O104: H4 on radish sprouts were significantly (P < 0.001) higher (3.3 to 4.6 logs) 

than those on the seeds, indicating significant proliferation during seed germination 

and sprout growth. E. coli O104:H4 populations on sprouts reached 5.2, 7.3 and 5.3 

log cfu/g, or 6.1, 8.2 and 6.2 log cfu/gse, respectively, for those germinated from low, 

high, and sporadically inoculated radish seeds. Disregarding E. coli O104:H4 cells 

removed with daily rinsing, these results represented a proliferation of E. coli 

O104:H4 during sprouting by 2.9 - 4.4 logs from seeds inoculated at different levels.  

On the other hand, the proliferation of E. coli O104:H4 on the edible part of 

microgreens was less significant. E. coli O104:H4 populations on harvested 

microgreens reached 1.8, 4.0 and 0.6 log cfu/g, or 2.8, 5.0, and 1.6 log cfu/gse, 

respectively, for seeds inoculated at low level, high level, and those inoculated 

sporadically. These would represent proliferation of E. coli O104:H4 by -0.6, 0.0 and 

1.0 logs on the microgreens. However, since it was likely that a large fraction of the 

proliferations by E. coli O104:H4 was not counted for by analyzing the harvested 

microgreen tissues, the actual proliferation by E. coli O104:H4 was likely more 

significant. The low proliferation of E. coli O104:H4 on microgreens germinated 

from sporadically inoculated seeds could be due to un-uniform distribution of bacteria 

and sampling of microgreens. 

Overall, both E. coli O157:H7 and O104: H4 on inoculated radish seeds 

significantly proliferated during sprouting, and to a lesser extent, during the 

germination and growth of microgreens, regardless of the initial inoculation levels. At 

the same seed contamination level, cell counts of E. coli O157:H7 and O104:H4 on 

harvested microgreens tend to be 3-4 logs lower than those on sprouts. The higher 
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growth of E. coli on sprouts could be primarily due to the frequent rinsing and 

mixing, which greatly promote the dispersion and redistribution of bacterial cells on 

various parts of sprouts. Other factors unique to sprouting, such as high humidity and 

darkness, could also contribute to the higher growth of bacterial pathogens on sprouts. 

Another evident explanation for the lower bacterial cell counts on microgreens is the 

fact that only a part of the plants is harvested, leaving bacterial cells on seed coats, 

roots, and lower stems, and in growth substrata unaccounted.  

Since neither sprouts nor microgreens generally involve a kill step for bacterial 

inactivation before consumption, preventing seed contamination is the key to 

ensuring the safety of these products. Current FDA guidelines require effective 

antimicrobial seed treatments for sprouting. However, most of the available seed 

treatments fail to completely inactivate bacteria cells attached to various seeds used 

for sprouting (Chyer et al., 2003; Weissinger & Beuchat, 2000). Data presented here 

indicated that significant proliferation by both E. coli O157:H7 and O104:H4 

occurred during sprouting at low levels of seed contamination.  

6.5 Conclusions  

In conclusion, E. coli populations on harvested radish microgreens were 3-4 logs 

lower than that on sprouts produced from seeds with same contamination levels. In 

our laboratory study, microgreens seemed to present relatively low food safety risks 

in comparison to sprouts germinated from seeds with the same contamination levels; 

however, significant proliferation of bacterial pathogens occurs during microgreen 

growth. Therefore, it is of great importance to minimize bacterial contamination of 

seeds for sprouts and microgreens.   



124 

 

 

Chapter 7: Conclusions and Future Work 

7.1 Conclusions 

This research project is the first comprehensive study the new specialty food 

product: microgreens. The main research findings are as follows: 

 Microgreens provide attractive appearance, tender texture and intense flavor, 

and serve as excellent sources of healthful nutrients. 

 Microgreens are generally more nutrient-dense than their mature counterparts, 

compared with the records in USDA National Nutrient Database. 

 All microgreens evaluated in our study demonstrated “good” to “excellent” 

consumer acceptance and nutritional profile.  

 Overall acceptability of microgreens was strongly correlated to flavor 

acceptability.  

 The quality maintenance and shelf life extension of radish microgreens could 

be achieved by using low temperature and modified atmosphere packaging. 

 Light exposure speeded up transpiration, thus accelerated quality deterioration 

and increased weight loss of radish microgreens during postharvest storage. 

 During postharvest storage, transportation and retail of radish microgreens, 

light exposure should be avoided as it hasten senescence attributes.  

 E. coli populations on radish microgreens were 3-4 logs lower than that on 

sprouts produced from seeds with same contamination levels. 

 Compared to sprouts, microgreens seem to bear relatively lower safety risks.  
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7.2 Future Work 

Several research directions arise from our research findings in this dissertation. 

7.2.1 Chemical, Enzymatic and Molecular Analysis of Microgreens. 

It is our intention to investigate thoroughly the underlying mechanism of the 

observation that microgreens are more nutrient-dense than mature plants. The starting 

point will be nutrient biosynthesis during growth and gene expression. Taking 

ascorbic acid as an example, as reported in the literatures (Dan et al., 1996), ascorbic 

acid is synthesized from L-galactono-1, 4-lactone by L-galactono-γ-lactone 

dehydrogenase (GLDH; EC 1.3.2.3); therefore, enzymatic and molecular analysis of 

plants at different growth stages could provide us the information on the changes in 

enzyme activity and gene expression occurred during seed germination and plant 

growth.  

7.2.2 Ready-to-eat Microgreens Versus Living Microgreens  

Our quality study on microgreens has shown us the optimal condition for 

postharvest storage, however, wash treatment did not work well on developing ready-

to-eat microgreens products. To date, there is no ready-to-eat microgreens available 

in supermarkets, therefore, it is necessary to develop ready-to-eat microgreens with 

good quality, long shelf life and ensured safety. Our aim is to develop and explore 

appropriate wash and dry processes, well-performed packaging materials and 

effective sanitizers to minimize the safety risk of microgreens consumption. 

As seen in some restaurants and grocery stores, microgreens are sold as living forms 

in containers with growth medium in it.  It seems like the living microgreens look 

fresher and have longer shelf life. Is it true? As living plants, microgreens need 
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adequate light exposure to maintain photosynthesis, otherwise, yellowing and wilting 

could happen. During transportation and storage, living microgreens may undergo a 

long period of dark time, which may have an impact on sensorial and nutritional 

quality. It will be of interest to carry out a comparative postharvest study between 

ready-to-eat microgreens and living microgreens.  

7.2.3 Microbiological Safety Study of Microgreens  

Based on our research finding on the comparison of E. coli growth on sprouts and 

microgreens, it can be seen that microgreens seem to present a lower food safety risk. 

Therefore, the mechanisms of bacterial distribution, attachment and interaction with 

the microgreens plants could be further investigated. As reported, specific virulence 

genes are required for bacterial attachment to plant tissues (Barak et al., 2005); 

therefore, molecular genetic analysis would help to explore the interaction of 

pathogens and microgreens. In addition, microscopy strategy, such as confocal 

scanning laser microscopy, can be used to observe the morphology of pathogen and 

plant cells and interaction between them.   
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