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This study was conducted to analyze and quantify the impact of weather factors on road accident 

severity, based on Maryland accident data during 2007-2010. In order to find a better model 

fitted related variables, three candidate models multinomial logit (MNL), ordered probit logit 

(OP), and neural networks were chosen to examine in SAS. The results showed that the 

Multilayer Perceptron Model in neural networks performed the best and is the accident severity 

model of choice. 

During the model construction, eight factors related to weather condition were considered. They 

were: air temperature, average wind speed, total precipitation in the past 24 hours, visibility, 

slight, moderate, heavy precipitation and relative humidity. Based on the comparison criteria, we 

concluded that MNL regression is more interpretive than OP and Neural Networks models. All 

factors except visibility and heavy precipitation had significant impact on accident severity when 

considering the data from the entire Maryland highway system. Using MNL, a data subset with 

accident records only in a section of US route 50 was examined. After excluding the impact 

factors other than weather, a narrow significant variable set was obtained. 
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Chapter 1: Introduction 

1.1 Research Motivation and Objectives 

Recent statistics provided by Maryland State Highway Administration indicate that highway 

accident rates have decreased in recent years. However, due to high speeds and large traffic flow 

volumes, the fatality rate is still two times higher than that on local roads. According to an 

announcement by the Maryland State Highway Administration, despite a national decline in fatal 

crashes, Maryland fatalities increased between 2005 and 2006. In 2006, 101,889 motor vehicle 

crashes, or one every five minutes, occurred on Maryland's roadways, resulting in 53,615 injuries 

and 652 lives lost. From 2007 to 2011, these crashes had cost Maryland residents over $44 

billion (Cumberland Area Long-Range Transportation, 2011). 

 

The ultimate goal of accident analysis is to improve an agency’s ability to make future decisions 

in all components of a highway safety plan. These decisions can be aided by conducting formal 

effectiveness and administrative evaluations of ongoing and completed highway safety projects 

and programs. Analysis involves obtaining and processing quantitative information on the 

benefits and costs of implementing highway safety improvements. Estimations of benefits and 

costs reduce the dependence on engineering judgment and increase the ability of the agency to 

plan and implement future highway safety improvements which have the highest probability for 

success. Thus, scarce safety funds can be properly allocated to high pay-off improvements and 

diverted from those which are marginal or ineffective.  
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The accident prediction module in the previous studies (Randa Oqab Mujalli, 2011; Juan de O˜

na, 2011; Sunil Patil, 2011; Ali Tavakoli Kashani, 2012; and Ali S. Al-Ghamdi, 2002) estimated 

the expected crash severity on a highway using weather, road and traffic characteristics. This 

helped users to evaluate an existing highway, compare the relative safety performance of design 

alternatives, and assess the safety and cost-effectiveness of design decisions. Among all 

evaluating indicators, weather-related highway performance is a crucial aspect in measuring the 

safety of highway system. Severe weather conditions may have various impacts on the 

transportation system, involving the impacts on vehicle conditions, road conditions, and driver 

behavior (Osoro Mogaka Eric, 2011). These weather events can affect the transportation system 

both directly and indirectly (Federal Highway Administration Report, 1999). Especially in 

winter, heavy rains, snow, storms and freezing temperatures can result in a higher frequency of 

car crashes, and will also have higher opportunities to cause traffic congestion. On the other 

hand, people’s reactions to severe weather conditions may also lead to increased fuel 

consumption, delays and number of accidents (A. T. Kashani, 2009).  

 

This research aims to achieve the overall goal of developing a better understanding of the 

impacts of weather on traffic accident severity and giving readers a perspective view of which 

weather elements impact accident severity significantly and how much the impact is. 

 

The accident and log of messages data in the study period was acquired from the Center for 

Advanced Transportation Technology (CATT) Laboratory at the University of Maryland, 

College Park, and from the Coordinated Highway Action Response Team (CHART) reports. 
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The database was filtered and cleaned up. Weather condition databases were acquired from DOT 

archived data. The study area was divided into 5 regions and the nearest central weather tower 

station in each region was assigned to represent the weather condition in each region. The 

weather database was accumulated for a four-year study period and then joined to the main 

database based on closest weather tower station to the time and location of accident. In the case 

study part, subsets of data were filtered on certain sections with higher fatalities on US50. 

Running models on the selected section excluded the impact of traffic factors and made the result 

more accurate.  

 

1.2 Organization of the Thesis 

This thesis is organized in six chapters. The first two chapters focus on the macroscopic analysis 

and give the overview of the weather-related accident statistics and how the traffic elements are 

influenced by severe weather components. The third chapter introduces the three most widely 

used methodologies in constructing the relationship between weather and accident severity. It 

provides a comprehensive review of mathematical applications and uses goodness of fit methods 

to evaluate the different models. Chapter 4 briefly analyzes the content of accident and weather 

databases. Chapter 5 uses the three different models introduced in Chapter 3 to construct 

estimation models. The comparisons of their performances are given in Chapter 6, along with the 

case study on a selected road section. Conclusions and directions for future work follow in 

Chapter 7.  
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Chapter 2: Background and Literature Review 

2.1 Weather-related Factors Impacting Accident Severity  

2.1.1 Overall Impact Analysis 

Weather-related crashes are defined by FHWA as those crashes that occur in adverse weather 

(i.e., rain, sleet, snow, and/or fog) or on slick pavement (i.e., wet pavement, snowy/slushy 

pavement, or icy pavement). Based on the fourteen-year’s NHTSA data, 24% of crashes —

approximately 1,511,000—on average are weather-related each year, and 7,130 people are killed 

and over 629,000 people are injured in weather-related crashes each year. Among all weather-

related crashes, 75% happen on wet pavement and 47% happen during rainfall, which makes rain 

a major factor. Meanwhile, 15% of crashes happen during snow and only 3% happen in foggy 

weather. In terms of accident severity, among all weather-related accidents, 41.6% involve 

personal injury and 0.47% cause fatalities. Detailed statistics are shown in Table 2.1 (Road 

weather management program, FHWA, 2012). 
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Table 2. 1 Weather-Related Crash Statistics (Annual Averages) 

Road Weather 
Conditions  

Weather-Related Crash Statistics 
Annual Rates 

(Approximately) 
Percentages 

Wet Pavement  

1,128,000 crashes 18% of vehicle 
crashes 

75% of weather-related 
crashes 

507,900 persons injured 17% of crash 
injuries 

81% of weather-related 
crash injuries 

5,500 persons killed 13% of crash 
fatalities 

77% of weather-related 
crash fatalities 

Rain 

707,000 crashes 11% of vehicle 
crashes 

47% of weather-related 
crashes 

330,200 persons injured 11% of crash 
injuries 

52% of weather-related 
crash injuries 

3,300 persons killed 8% of crash 
fatalities 

46% of weather-related 
crash fatalities 

Snow/Sleet 

225,000 crashes 4% of vehicle 
crashes 

15% of weather-related 
crashes 

70,900 persons injured 2% of crash 
injuries 

11% of weather-related 
crash injuries 

870 persons killed 2% of crash 
fatalities 

12% of weather-related 
crash fatalities 

Icy Pavement  

190,100 crashes 3% of vehicle 
crashes 

13% of weather-related 
crashes 

62,700 persons injured 2% of crash 
injuries 

10% of weather-related 
crash injuries 

680 persons killed 2% of crash 
fatalities 

10% of weather-related 
crash fatalities 

Snow/Slushy 
Pavement  

168,300 crashes 3% of vehicle 
crashes 

11% of weather-related 
crashes 

47,700 persons injured 2% of crash 
injuries 

8% of weather-related 
crash injuries 

620 persons killed 1% of crash 
fatalities 

9% of weather-related 
crash fatalities 

Fog 

38,000 crashes 1% of vehicle 
crashes 

3% of weather-related 
crashes 

15,600 persons injured 1% of crash 
injuries 

2% of weather-related 
crash injuries 

600 persons killed 1% of crash 
fatalities 

8% of weather-related 
crash fatalities 
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There are a number of factors that could cause road accidents during a bad weather condition. 

These include road condition, vehicle condition, and driver behavior, as shown in Figure2.1. 

Weather impacts traffic through several ways, among which visibility, precipitation, wind speed, 

and temperature are of most concern. Severe weather conditions affect drivers’ capabilities, 

vehicles’ stability and pavement’s friction. (Kilpeläinen M., 2007). On the other hand, severe 

weather conditions also cause chaos in traffic flow and slow down the speed with which 

emergency response agencies can react. Hence, weather condition has significant impact in 

accident severity (Brodsky, 1988). 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.1 Factors in traffic accidents 

 

In countries with severe winters and high annual precipitation, such as Canada and the UK, 

winter road safety is a source of concern for transportation officials. Driving conditions in winter 

Traffic 
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System 
Operation 

Weather 
Impact 

Traffic 
Flow 
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Condition 

Driver 
Behavior 

Vehicle 
Condition 
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can deteriorate and vary dramatically due to snowfall and ice formation, causing significant 

reduction in pavement friction and increasing the risk of accidents. 

 

2.1.2 Impact on Vehicle Condition 

Extreme weather has an effect on car equipment, especially electric cars, because it makes it 

difficult for cars to maintain an equivalent amount of electricity in winter to match their output in 

normal temperatures. The adverse impact of weather on cars’ performance can be detected in 

various aspects, such as environment temperature, battery type, whether the car is designed to 

manage the battery's temperature and how well the condition of the car is maintained. In general, 

vehicles and car components suffer much more during extreme weather than on normal days, 

because difficult weather causes a lot of wear and tear on engine parts and transmission 

components. Salt that is often used as a de-icer during the winter months can also be very 

detrimental to vehicles. Moreover, wipers have higher probability to deteriorate very fast during 

freezing temperatures and snow and icy conditions, and the worst condition is that most normal 

wipers will simply stop working through layers of snow and ice (Jennifer Geiger, 

http://www.howstuffworks.com).  

 

2.1.3 Impact on Road Condition 

A thorough review of the previous studies indicates that both rain and snow, functioning as 

precipitation, can lead to a higher level of car accidents. For instance, Norrman et al. (2000) 

identified that the number of accidents is large on slippery roads. Winter road maintenance with 

massively direct and indirect costs, has stimulated significant interest in quantitative cost-benefit 

assessment of the system’s security and mobility. In the past decade, a lot of research has been 

launched to determine the link between winter road safety, maintenance operations, and weather-

http://consumerguideauto.howstuffworks.com/
http://www.howstuffworks.com/
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related factors (Andreescu and Frost, 1998; Andrey et al., 2001; Handman, 2002; Knapp et al., 

2002; Kumar and Wang, 2006). Severe weather can increase the cost of operation and 

maintenance of roads during winter for highway agencies, traffic management agencies, 

emergency management agencies, law enforcement agencies, and commercial vehicle operators 

(CVOs). Winter road maintenance accounts for about 20% of the state DOT budgets. Each year, 

more than 2.3 billion dollars are spent on snow and ice control operations by state and local 

agencies (Road weather management program, FHWA, 2012). 

 

2.1.4 Impact on Driver Behavior 

Older drivers are at relatively higher risk of causing collisions. Due to the fact that age is highly 

related with reductions in contrast sensitivity (Scialfa and Kline, 2007) and increases in response 

time even in well-practiced tasks (Voelcker-Rehage and Alberts, 2007), wet roads and fog can be 

particularly problematic for older drivers. Fog reduces contrast of the image. This affects the 

sense of distance, which can prompt rear end collisions (Broughton et al., 2007; Buchner et al., 

2006). It also leads to an underestimation of how fast other vehicles are (Horswill and Plooy, 

2008). Moreover, because objects have to be closer to become fully visible, fog reduces the 

amount of drivers’ reacting stimulation time. The increase of collision risk in fog puts even 

professional drivers under stress while driving in fog (Vivoli et al., 1993). Older drivers’ 

response to visibility challenges in the bad driving environment can be analyzed from both 

psychological and physiological aspects (Lana M. Trick, 2010, Scialfa, C. T., 1999).   

 

2.1.5 Impact on Traffic Flow 

Anyone who uses ground transportation has been affected by delays caused by various forms of 

weather. Whether it is rain or snow, ice or fog, the result in traffic flow is usually the same. 
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Travel delay increases as traffic flow slows down. Capacity can be reduced by lane submersion 

due to flooding and by lane obstruction due to accumulation of snow and debris. Due to road 

closures and access restrictions in hazardous conditions (e.g., large trucks in high winds), 

roadway capacity will also decrease. 

 

On highways, slight rain or snow can reduce average speeds by 3 to 13%. Heavy rain can reduce 

average speeds by 3 to 16%. During heavy snow, average speeds can decline by 5 to 40%. Low 

visibility can cause speed reductions of 10 to 12%. Free-flow speed can be reduced by 2 to 13% 

in light rain and by 6 to 17% in heavy rain. Snow can cause free-flow speed to decrease by 5 to 

64%. Speed variance can fall by 25% during rain. Light rain can decrease freeway capacity by 4 

to 11% and heavy rain can cause capacity reductions of 10 to 30%. Capacity can be reduced by 

12 to 27% in heavy snow and by 12% in low visibility. Light snow can decrease flow rates by 5 

to 10%. Maximum flow rates can decline by 14% in heavy rain and by 30 to 44% in heavy snow 

(Highway Capacity Manual 2000). Details are shown in Table 2.2. 

Table2.2: Freeway Traffic Flow Reductions due to Weather 

Weather Conditions  Freeway Traffic Flow Reductions 
Average Speed Free-Flow Speed Volume Capacity 

Light Rain/Snow 3% - 13% 2% - 13% 5% - 10% 4% - 11% 
Heavy Rain 3% - 16% 6% - 17% 14% 10% - 30% 
Heavy Snow 5% - 40% 5% - 64% 30% - 44% 12% - 27% 
Low Visibility 10% - 12%   12% 

 

To summarize, Table 2.3 from FHWA shows how weather factors impact on all four aspects 

(See http://www.ops.fhwa.dot.gov/weather/q1_roadimpact.htm). 

  

http://www.ops.fhwa.dot.gov/weather/q1_roadimpact.htm
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Table2.3 : Weather Impacts on Roads, Traffic and Operational Decisions  
Road Weather 

Variables 
Driver Behavior 

Impacts 
Traffic Flow 

Impacts 
Road and Vehicle Condition 

Impacts 

Air 
temperature 
and humidity 

N/A N/A 

• Road treatment strategy 
(e.g., snow and ice control) 

• Construction 
planning        (e.g., paving 
and striping) 

Wind speed 

• Visibility 
distance (due to 
blowing snow, 
dust) 

• Lane obstruction 
(due to wind-
blown snow, 
debris) 

• Traffic 
speed 

• Travel time 
delay 

• Accident 
risk 

• Vehicle performance (e.g., 
stability)        

• Access control (e.g., 
restrict vehicle type, close 
road)        

• Evacuation decision 
support 

Precipitation  
(type, rate, 
start/end 

times) 

• Visibility 
distance 

• Lane obstruction  
• Driver 

capabilities/ 
behavior 

• Roadway 
capacity 

• Traffic 
speed 

• Travel time 
delay 

• Accident 
risk  

• Vehicle performance (e.g., 
traction) 

• Road treatment strategy 
• Traffic signal timing 
• Speed limit control 
• Evacuation decision 

support 

• Institutional coordination  
• Pavement friction 

Fog 

• Visibility 
distance 

•  Driver 
capabilities/ 
behavior 

 

• Traffic 
speed 

• Speed 
variance 

• Travel time 
delay 

• Accident 
risk  

• Road treatment strategy 
• Access control 
• Speed limit control 

Pavement 
temperature N/A N/A 

• Road treatment strategy  
• Infrastructure damage 

Pavement 
condition 

• Driver 
capabilities/beha
vior (e.g., route 

• Roadway 
capacity 

• Traffic 
speed 

• Infrastructure damage  

• Pavement friction 



11 
 

choice) • Travel time 
delay 

• Accident 
risk 

• Vehicle performance 
• Road treatment strategy 
• Traffic signal timing 
• Speed limit control 

Water level N/A 

• Traffic 
speed 

• Travel time 
delay 

• Accident 
risk 

• Lane submersion  
• Access control 
• Evacuation decision 

support 
• Institutional coordination 

 

 

2.2 Accident Severity Models  

Various techniques have been applied to the analysis of accident severity data. The statistical 

methods used by researchers are mainly dependent on the nature of the response variable and 

various methodological issues associated with the data. The response variable of existing 

accident severity models is generally either a binary outcome (e.g., injury or non-injury) or a 

multiple outcome (e.g., fatality, disabling injury, evident injury, possible injury, no injury or 

property damage). Palutikof (1991) stated that rain had significant effect in increasing the 

probability of traffic fatalities, while Sherretz & Farhar (1978) used a general linear regression 

model to indicate that accident rates increased when high quantity of precipitation occurred. 

During rainy days, the number of accidents can increase by 6% (Brotsky & Hakkert 1988). The 

correlated models connected with road geometric factors were usually created using multivariate 

analysis (Ogden, et al., 1994; Ogden and Newstead, 1994; Vogt, 1999). Corben and Foong, 

(1990) developed a multivariate linear regression model to predict accident rates at signalized 

intersections. 85% of the variance can be explained in this model, showing that the model 

performed well. In a FHWA study by Harwood, et al. (2000), experts combined quantitative data 
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on accidents and other factors with the expert’s judgment on design factors and expected impact 

of these design factors on the accident rate. 

 

A multivariate logistic regression was applied by Bedard et al. (2002) to determine the relation 

between driver characteristics and vehicle conditions to accident fatality rate. O‘Donnell and 

Connor (1996) evaluated the probabilities of four levels of accident severity as a function of 

driver properties and they compared the Ordered Logit and Ordered Probit criterions. Kockelman 

and Kweon (2002) applied ordered probit model to study the risk of different injury levels 

sustained under all crash types. Khattak et al. (2002) applied an ordered probit modeling 

approach in their study to investigate dependent variables including vehicle property, pavement, 

driver, and environmental characteristics that can potentially cause more severe accident with 

older drivers. Evanco (1999) used a multivariate statistical analysis based on population to 

discuss the relationship between fatalities and accident response time. 

 

The application of Artificial Intelligence techniques to analyze transportation problems is fairly 

recent. Abdelwahab et al. (2001) evaluated the performance of Neural Network (NN) conducted 

with the Levenberg-Marquardt algorithm and compared it with an ordered logit model. The 

results showed that the NN model (65.6% and 60.4% classification accuracy for the training and 

testing phases) performed better than ordered logit model (58.9% and 57.1% classification 

accuracy for the training and testing phases). 

 

To summarize, most of the previous research was focused on the number of accidents and the 

factors that could increase the accident frequency. The research that considered accident severity 
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generally took into account all factors that had relations with accidents (Jianming Ma, 2006). 

However, there were only very few studies that included weather related characteristics in the 

analysis of accident severity.  This is the focus of this research and will be described next. 

 

Chapter 3: Methodology 

 

3.1 Multinomial Logit Model 

Multinomial logit regression is suitable for modeling nominal outcome variables, in which the 

log odds of the outcomes are modeled as a linear combination of the regression variables. 

According to the literature, since the dependent variable, accident severity, has a discrete nature, 

discrete choice models are identified as the most suitable approach. Among all the discrete 

choice models, the multinomial logit model (MNL) is the easiest and most widely used in 

predicting accident severity. One primary feature of MNL models is that they do not recognize 

any order in injury levels.  This means that the probabilities of property damage, people injuries, 

or fatalities occurring as a result of each weather factor do not follow the same order as the 

accident severity level. For example, if the regression result shows that a higher air temperature 

may increase the possibility of accidents with injuries compared to accidents with property 

damage, we cannot conclude that a higher air temperature may also increase the possibility of 

accidents with fatality. Because of this feature, MNL models do avoid certain restrictions posed 

by standard ordered models, because they allow variables to have opposing effects regardless of 

injury order. An MNL model assumes that the unobserved factors are uncorrelated over the 

alternatives, also known as the independence of irrelevant alternatives assumption. 
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The utility function is basically the same as in a generalized linear regression model regarding 

the assumption that each error ԑki for severity level k for observation i is independently-

identically-distributed extreme value following a Gumbel distribution. 

The general framework used to model the degree of injury severity sustained by a crash that 

involves individual begins by defining a linear function S that determines the injury outcome k 

for observation i as,  

                                                Sik =βkXik + ԑik                                            (3.1)                  

The probability function for observation i ending in accident severity level k is: 

                                                                       (3.2) 

 

The estimation of the model parameters can be carried out through the method of maximum 

likelihood. In addition to not accounting for the ordering of injury-severity outcomes, the 

multinomial logit model is particularly susceptible to correlation of unobserved effects from one 

injury severity level to the next. Such correlation causes a violation of the model’s independence 

of irrelevant alternatives (IIA) property. On the plus side, traditional multinomial models do not 

impose the sometimes unrealistic parameter restrictions that traditional ordered probability 

models do. Further, if the IIA property holds, it can be shown that in the presences of 

underreporting of crashes all parameters will still be correctly estimated except for the constant 

term (see Washington et al., 2011). 

 

1,2,3

exp( )( )
exp( )

k k ki
i

k k ki
k

XP k
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α β
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3.3 Ordered Probit Model 

As mentioned in the analysis of MNL model, one of the significant drawbacks is that an MNL 

model doesn’t consider the ordering information for accident severity (ranked as fatality, 

personal injury, property damage). The ordered probit (OP) model, however, addresses the 

problem of independence of irrelevant alternatives and includes the ordered discrete data 

(Kockelman, 2001). In order to apply an OP model here, we assume that the sample is large 

enough so that all unobserved components of utility have normal distributions. 

 

Accounting for the ordinal nature of injury data (for example, ranging from no-injury, to possible 

injury, to evident injury, to disabling injury, to fatal injury) is an important consideration in crash 

injury-severity modeling (O’Donnell, 1996). To account for the ordinal nature of the data, 

traditional ordered probability models have been widely applied. The most common approach to 

the derivation of such models is to start by specifying a latent variable, Z, which is used as a 

basis for modeling the ordinal ranking of data. This unobserved variable is most often specified 

as a linear function for each crash observation, such that Z Xβ= , where X is a vector of 

variables determining the discrete ordering for each crash observation, β  is a vector of estimable 

parameters, and ε is a disturbance term (Washington et al., 2011). With this, observed ordinal 

injury data, y, for each observed crash are defined as, 

y = 1 if μ0 <z ≤ μ1, 

y = 2 if μ1<z ≤ μ2, 

                                    y = 3 if μ2<z ≤ μ3,                            (3.3) 

y = …. 

y = k if μk-1 <z ≤  μk, 
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where the μ are estimable threshold parameters that define y, which corresponds to integer 

ordering and k is the highest integer ordered response. The μ are parameters that are estimated 

jointly with the model parameters β and, without loss of generality, μ0 can be set to 0. The 

estimation problem then becomes one of determining the probability of k specific ordered 

responses for each crash observation, i. If the error term, ε, is assumed to be normally distributed 

across observations with a mean of zero and variance of one, an ordered probit model results. 

Setting the lower threshold, μ0, equal to zero results in the outcome probabilities 

                              1( ) ( ) ( )i k kP y k u X u Xβ β−= = Φ − −Φ −                                    (3.4) 

 where μi and μi-1 represent the upper and lower thresholds for injury severity i. Likewise, if the 

errors are instead assumed to be logistically distributed across observations, an ordered logit 

model results (Abdel-Aty, M., 2003). 

3.4 Neural Network 

Neural Networks, also known as Artificial Neural Networks, are usually discussed in terms of 

minimizing an error measure such as the least-squares criterion. The basic concept of NN is to 

build the data modeling process through an analogy to human brain behavioral characteristics, by 

applying parallel information processing algorithms. Such networks achieve the purpose by 

adjusting the large numbers of mutual connections between internal nodes, relying on the 

complexity of the brain system. ANN is a simulation of human thinking, which can be 

considered as a nonlinear dynamical system. The key point is to co-process information storage 

and perform parallel analysis. Although the structure of individual neurons is extremely simple 

and has limited functions, the behaviors the network system can achieve are colorful (Dursun 

Delen, 2006). Because the neural network can process massively parallel transmission and has 

the ability of self-organizing, adapting, and self-learning, it is particularly suitable to deal with 
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the problems with many factors and conditions, especially problems with imprecise and vague 

information (Darçin, 2010). 

 

Figure 3.1 is a schematic neuron flow, where a1 –an are input vectors, w1 –wn are weights for 

each neural synapse, b is bias, and f is a transmission function, usually nonlinear. The output t 

can be formulated as  

                                                                                                           (3.5) 

 

Most NN training algorithms follow a similar scheme with:  

1. random initial estimates  

2. simple case-by-case updating formulas  

3. slow convergence or no convergence (Fouad N. Shoukry, 2005) 

 

 

Figure 3.1 Neuron flow 

( )t f wA b′= +

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Multiple neurons can compose the neural network in many ways, among which the most widely 

used expression is multilayer perceptron (MLP) shown in Figure 3.2. 

 

4. Figure 3.2.  Multivariate Multiple Nonlinear Regression 

 

Multilayer perceptrons (MLP) are general-purpose, flexible, nonlinear models that, given enough 

hidden neurons and enough data, can approximate virtually any function to any desired degree of 

accuracy. Multilayer perceptrons can be used when we have little knowledge about the form of 

the relationship between the independent variables and dependent variables (D. Chimba, 2009).  

5.  

3.5 Model Evaluation and Selection 

In general, based on the previous study, trade-offs of ordering the model have been considered, 

and new methods to take unobserved heterogeneity into account have been opened up in recent 

applications and models. The previous literatures (Kunt, 2012, Savolainen, 2011, Zhang, 2010, 
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Sze, 2007, Nassiri, 2006, and Abdel-Aty, 2004) also stated that the appropriate means often 

depended mainly on the available dataset, including sample size, quantity and quality of 

explanatory variables, as well as specific characteristics of other data. So far, there is no 

consensus on which model is the best, because the model selection criteria are often determined 

by the achievability and nature of the data (Fan Ye, 2011). In some research papers, ordinal 

models were more popular than nominal models because nominal models use the same 

coefficient for estimators among different accident severity and restrict how variables affect 

outcome probabilities. The advantage of nominal models is their simplicity and overall 

performance when the sample is small and lacks detail. Some researchers directly compared 

accident severity models, such as Abdel-Aty (2003), who preferred the OP model to the MNL 

and ML models, while another study by Haleem and Abdel-Aty (2010), led to a conclusion that 

the binary probit model performed better compared to the OP and NL models. But considering 

most recent works, an artificial neural network was applied more frequently and when compared 

with OP and MNL models, it performed better in Abdelwahab’s research in 2001.  

 

Overall, although continuous progress has been made in accident severity modeling over the 

years, the best performance methodology has yet to be found. Different method should be 

applied under different conditions and restrictions, and the crucial weather-related factors have 

yet to be investigated under similar traffic and geometric environment. Detailed model 

comparison based on mean square of errors and log likelihood will be constructed in Chapter 5. 
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Chapter 4: Data 

The initial data resource was provided by the Center for Advanced Transportation Technology 

(CATT) Laboratory in the Department of Civil and Environmental Engineering at the University 

of Maryland, College Park, and the Coordinated Highway Action Response Team (CHART) that 

reports for regions within the District of Columbia in Maryland, and Maryland Department of 

Transportation, State Highway Administration (SHA) and DOT archived data. The data were 

collected, selected and filtered by Norouzi (2012). 

 

The study area is the roadway network in the State of Maryland. Figure 4.1 from Norouzi’s work 

shows the entire accident records in the study area. 

  

Figure 4.1 Accident records in study area 

 

4.1 Accident Severity Data 

After cleaning the initial data by removing data gaps and outliers, the number of accidents shrank 

from 38,718 to 20,469 for the four-year period of 2007 to 2010 in the entire State of Maryland. 



21 
 

The data set consisted of accident type (property damage, personal injury and fatality), road 

section, longitude and latitude, jurisdiction, time and other related information. Due to 

confidentiality concerns, access to police records and accident causes was not possible.  

 

Locations of accidents were pinpointed on road network map for further analysis. The data set 

was restricted to freeways with higher accident rate, which allowed reducing the variability in 

the data set (Norouzi, 2012). Figure 4.2 shows the initial content of accident data. 

 

Figure4.2 Initial content of accident data  

 

4.2 Weather Data 

The weather data for this research were merged from the records of different regions published 

online by Maryland DOT. The initial format of the database was in the shape of month to month 

archived data collected from 49 weather tower stations and contained the following data fields: 

date and time, air temperature, humidity, average wind speed, wind gust, wind direction, 
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precipitation type, precipitation intensity (light, medium, heavy), precipitation accumulation, rate 

(rate per hour in inches), visibility (miles) and surface temperature (see www.chart.state.md.us/). 

For simplicity, the area of research was divided into 5 regions of north, south, west, east and 

Washington, DC. The nearest central weather tower station in each region was assigned to 

represent the weather condition in that region. For instance, the weather station “I-

68_Cumberland” was assigned to west region, “US 50 Kent Narrow Bridge” was assigned to 

east region, “I-895_Levering_Ave” was assigned to north region, “US-301_Potomac” was 

assigned to south region, and “I-270_I-370” was assigned to Washington, DC region. The 

weather data set was also accumulated for the four-year period of study (2007-2010). Figure 4.3 

shows the format of weather database. 

 

Figure 4.3 Weather Database Format 

 

After data cleansing process on more than ten thousand records, the outliers were filtered and 

removed. Two databases, accident and weather, were joined over two dimensions through GIS 

mailto:I-895_@_Levering_Ave
mailto:US-301_@_Potomac
mailto:I-270_@_I-370
mailto:I-270_@_I-370
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tools. To be specific, the time of each accident was matched with the weather status, and each 

accident record was assigned to the closest weather tower station and matched with the weather 

condition at the time of accident. The matching process was performed using SQL queries coded 

in C++ (Norouzi, 2012). 

 

In the final dataset, precipitation is measured using a rain gauge. Intensity is classified according 

to the rate of precipitation. Light rain describes rainfall which falls at a rate of less than 1 

millimeter (0.039 in) per hour; Moderate rain describes rainfall with a precipitation rate of 

between 1 millimeter (0.039 in) and 4 millimeters (0.16 in) per hour. Heavy rain describes 

rainfall with a precipitation rate of greater than 4 millimeters (0.16 in). Three dummy variables 

are used in the regression to describe four stages of precipitation intensity. Visibility is defined as 

the distance (in miles) at which an object or light can be clearly discerned.  

 

Dependent variable “cost” is used to measure accident severity. According to the “Average 

Economic Cost per Death, Injury, or Crash” (National Safety Council, 2010), the approximately 

calculable costs of motor-vehicle crashes are wage and productivity losses, medical expenses, 

administrative expenses, motor vehicle damage, and employers’ uninsured costs. The costs of all 

these items for each death (not each fatal crash), injury (not each injury crash), and property 

damage crash are: 

• Death $1,410,000 

• Nonfatal Disabling Injury $70,200 

• Property Damage Crash (including non-disabling injuries) $8,900  

http://en.wikipedia.org/wiki/Distance
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In the modeling part of this thesis, the probability of each crash category was considered in the 

calculation. Usually, we use 0, 1, and 2 to represent three categories. However, in order to 

explain the weather effect on different categories better, and to prevent the misinterpretation of 

numerical relation, here we use the cost in dollar as the value of dependent variable. As 

described in Chapter 3, using dollar numbers will not affect the SAS outputs, since only the 

percentages of three categories involve in it, not the accurate cost numbers are used. 

 

This research attempted to apply different models with the dependent variable accident cost and 

weather-related variables (air temperature, average wind speed, precipitation total, intensity 

dummy (slight, moderate, heavy), visibility, and relative humidity). A list of all independent 

variables is provided below in Table 4.1. 

Table 4.1 Independent variables for the accident severity model 

Variable Notification Definition 

Air Temperature (F°) 
The temperature indicated by a thermometer placed 

in an instrument shelter 1.5 to two meters above 
ground. 

Average WindSpeed  (MPH) The mean wind speed over a specified period of 
time. 

Precipitation Total (mm) Total precipitation amount in past 24 hours, 
including rain and snow 

Slight 1 when the precipitation intensity is slight, 0 
otherwise 

Moderate 1 when the precipitation intensity is moderate, 0 
otherwise 

Heavy 1 when the precipitation intensity is heavy, 0 
otherwise 

Relative Humidity (%) 
The amount of moisture in the air compared to 
what the air can "hold" at that temperature. It 

doesn’t necessarily indicate precipitation intensity 

Visibility (miles) The distance at which an object or light can be 
clearly discerned 

Cost (thousand dollars) Approximately calculable measurement for 
accident severity 

 

 

http://en.wikipedia.org/wiki/Distance
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Part of the final data used in this research is shown in Figure 4.4.  

 

Figure 4.4 Final data 

4.3 Data description 

The dependent variable is accident cost, which represents the accident severity level. The dataset 

after filtering contained 56.11% accidents leading to property damage, 41.18% accidents leading 

to personal injury, and 2.71% accidents leading to fatality, as shown below in Figure 4.5. 

 

Figure 4.5 Analysis for dependent variable 

 

Using mean and standard deviation analysis with SAS, the following output shown in Figure 4.6 

can be obtained. From the figure, we can see that the standard deviation is especially large for 

the first two variables, air temperature and relative humidity, because these variables have 
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significant seasonal variations in Maryland. From the means of each variable under three levels 

of accident severity, we can see that when severe accidents happen, the average values of air 

temperature, relative humidity, average wind speed, and visibility are higher than when accidents 

which lead to only property damage happen. Meanwhile, the means of precipitation total and 

intensity when severe accidents happen are lower compared to when accidents which lead to 

only property damage happen. 

 
Figure 4.6 Mean and standard deviation analysis with SAS 

 

In order to provide a more reliable regression result, we should check first if multicollinearity 

exists among the variables. Using analysis of variance (ANOVA), we are able to test whether 

the means of variables are equal. This is accomplished by partitioning the total variance into the 

component that is due to true random error and the components that are due to differences 

between means. The most common measures of correlation are Pearson Correlation, Variance 

Inflation Factor (VIF) and Condition index values.  

http://en.wikipedia.org/wiki/Mean
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The value of Pearson Correlation, which can range from -1 to 1, is a measure of the strength of 

the linear relationship between two variables. A value of -1 indicates a perfect negative linear 

relationship between variables, a value of 0 indicates no linear relationship between variables, 

and a value of 1 indicates a perfect positive relationship between variables. The corresponding 

test shows whether it is significant enough to reject the null hypothesis that two variables have 

linear correlation. The output in Figure 4.7 shows that all the Pearson Correlation values are 

significant enough to reject the null hypothesis. For example, in terms of total precipitation and 

relative humidity, the Pearson Correlation value is 0.13526, close to 0, and the probability of 

having a larger absolute value than 0.13526 is less than 0.0001, so that there is no significant 

linear correlation between total precipitation and relative humidity. The same conclusion can be 

obtained from each pair of the eight variables. 

 

The VIF quantifies the severity of multicollinearity. It measures how much the variance of an 

estimated regression coefficient is increased because of collinearity. The square root of the VIF 

tells how much larger the standard error is, compared with what it would be if that variable were 

uncorrelated with the other predictor variables in the model. In terms of our example, as shown 

in Figure 4.8, the VIF of air temperature is 1.08917 (the square root is 1.04363). This means that 

the standard error for the coefficient of that predictor variable is 1.04363 times as large as it 

would be if air temperature were uncorrelated with the other predictor variables. So this 

multiplier is small enough to show that the variance of air temperature won’t increase much 

because of collinearity. The same conclusion can be obtained from the VIF values of other 

variables. 

javascript:glossary('linear_relationship')
http://en.wikipedia.org/wiki/Multicollinearity
http://en.wikipedia.org/wiki/Variance
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The condition indices are the square roots of the ratio of the largest eigenvalue to each individual 

eigenvalue. The condition number indicates the potential sensitivity of the computed inverse to 

small changes in the original matrix. If the Condition Number is above 30, the regression is said 

to have significant multicollinearity. For example, in our case, the condition number for heavy 

precipitation is 11.578, which shows dependence might be starting to affect the regression 

estimate, but the effect is too weak and won’t cause significant multicollinearity. Considering the 

condition indices of other variables, the multicollinearity can be ignored when we analyze the 

data.  
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Figure 4.7 Pearson Correlation and hypothesis test
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Figure 4.8 ANOVA analysis with SAS 
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Moreover, we can use One-way Mutivariate Analysis of Variance (MANOVA) to test each 

variable’s significance in a further step. SAS provides the p-value associated with the F statistic 

of a given independent variable. If the null hypothesis represents that the variable has no effect 

on the outcome, then the p-value is the probability of obtaining a test statistic at least as extreme 

as the one that was actually observed, assuming that the null hypothesis is true. The smaller the 

p-value, the more strongly the test rejects the null hypothesis. For a given alpha level, say 0.05, if 

the p-value is less than 0.05, the null hypothesis is rejected.  If not, then we fail to reject the null 

hypothesis. The multivariate tests of all eight variables show p-values less than 0.05 except 

“heavy”, as in Figure 4.9. Here we set “heavy” as the source of the variability in the specified 

dependent variable “cost”, Univariate output within MANOVA provides the p-value of 0.1572, 

which is greater than 0.05. Thus, we cannot reject the null hypothesis at the significance level of 

5%, that is to say, “heavy” is not a strong predictor at 95% confidence level.   

 

Figure 4.9 MANOVA on “heavy” 

 

In multivariate output, MANOVA calculates four multivariate test statistics. The null hypothesis 

for each of these tests is the same: any independent variable has no effect on the dependent 

variable. As shown in Figure 4.10, Wilks' Lambda can be interpreted as the proportion of the 

http://en.wikipedia.org/wiki/Probability
http://en.wikipedia.org/wiki/Test_statistic
http://en.wikipedia.org/wiki/Null_hypothesis
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variance in the outcomes that is not explained by an effect, so in this case, only 1-0.9897=0.0103 

of the variance in the “cost” can be explained by the effect of weather factors. Pillai’s trace 

shows how much the effect from given variables contributes to the model, and Hotelling-

Lawley’s trace is calculated to test the significance on the difference of the mean of two or more 

variables between the groups. Each of these two tests results in a small value (0.01029, and 

0.01034) but less than 0.05 p-value, which means the weather impact on accident cost is small 

but still significant at 95% confidence level, and differences between the levels of the variables 

exist. The last line, Roy’s greatest root, should be ignored here because it only considers the first 

discriminant function while the independent variables have more than one dimension.  

 

Figure 4.10 Overall MANOVA 

 

To summarize this chapter, after merging and filtering, the final data include 20,469 observations 

in total. Each observation contains one accident and its corresponding severity level, time, 

location, and weather condition at the time of accident.  Accident cost is selected to represent 

severity and 8 weather-related variables (air temperature, average wind speed, precipitation total, 

intensity dummy (slight, moderate, heavy), visibility, and relative humidity) are used in the next 

steps to examine the impact. The correlation test and analysis of variance show no correlation 

between each pair of independent variables. Based on the output of ANOVA, air temperature, 
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average wind speed, visibility, relative humidity, precipitation accumulation and slight or 

moderate precipitation appear to have significant impact on accident severity; while heavy 

precipitation has less impact. Moreover, the overall multivariate test shows that differences exist 

between levels of the accident costs. 
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Chapter 5: Model Estimation and Performance Analysis 

 

5.1 Multinomial Logit Model Estimation Result 

Below we use “proc logistic” in SAS to estimate a multinomial logistic regression model. In 

practice, when estimating the model the model coefficients of the reference group are set to zero. 

Since 3 levels of severity exist, only (3-1) distinct sets of parameters can be identified and 

estimated, so cost=1410, i.e. severity level equals to fatality, is set to reference category. The 

output is shown in Figure 5.1. 

 

Figure 5.1 SAS output for MNL  
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Figure5.1 SAS output for MNL (Cont.) 
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Figure5.1 SAS output for MNL (Cont.) 

From the output we can see that the model has converged. Setting the reference category as 

observations with cost = 1410, the variables have different estimated coefficients when 

computing observations with cost=8.9 and cost= 70.2. In the test of global null hypothesis, SAS 

uses three tests: likelihood ratio, Score and Wald, to test the hypothesis that at least one factor 

has a significant impact on accident cost against the global null hypothesis that none of the 

factors has a significant impact. All p-values are less than 0.0001, so we can reject the null 

hypothesis at 99% confidence level, which tells us that our model as a whole fits significantly 

better than an empty model (i.e., a model with lack of regressors). Several model fit measures 

such as the Akaike Information Criterion (AIC) and the Schwarz Criterion (SC), are listed under 

Model Fit Statistics. Though criteria AIC and SC do not provide a test of a model in the sense of 
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testing a null hypothesis, their values provide a means for model selection. The magnitude of the 

differences between the values of “intercept only” and “intercept and covariates” indicate how 

much better the model fits with covariates. Promising models give small values for these criteria. 

The chi-square test of each parameter shows significance at 99% confidence level.  

 

The information we can get from coefficient signs is almost opposite with the output obtained by 

ANOVA, because when running regression with ANOVA, we should assume that all variables 

are categorical, but in this case variables such as air temperature and precipitation total are not 

categorical, so the signs in ANOVA output do not have much meaning and should be ignored. In 

the multinomial logit model, air temperature, average wind speed, relative humidity and 

visibility appear to have significant negative impact on accident cost, except the impact of air 

temperature to the accident with cost=70.2. All the precipitation related variables appear to have 

negative but less significant impact, except the slight precipitation.   

 

Here we take some examples to describe the statistics “Odds Ratio Estimates” and results 

achieved after simple calculation.  

• A one-unit increase in temperature is associated with a 1-0.994=0.006 unit decrease in the 

relative log odds of having an accident with cost of 8.9 vs. accident with cost of 1410; or a 

1-0.999=0.001 unit decrease in the relative log odds of having an accident with cost of 70.2 

vs. accident with cost of 1410. 

• A one-unit increase in visibility value is associated with a 1-0.964=0.036 unit decrease in 

the relative log odds of having an accident with cost of 8.9 vs. accident with cost of 1410; or 

http://en.wikipedia.org/wiki/Null_hypothesis
http://en.wikipedia.org/wiki/Model_selection
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a 1-0.970=0.030 unit decrease in the relative log odds of having an accident with cost of 

70.2 vs. accident with cost of 1410. 

• A one-unit increase in the precipitation total is associated with a 1.157-1=0.157 unit 

increase in the relative log odds of having an accident with cost of 8.9 vs. accident with cost 

of 1410; or a 1.127-1=0.127 unit increase in the relative log odds of having an accident with 

cost of 70.2 vs. accident with cost of 1410. 

 

The analysis of odds ratio provides an easy way to interpret the different outcomes that different 

groups have on a particular scenario. For example, the impact on the probability of accident with 

cost of 8.9 caused by increase in precipitation total is 0.157/0.127-1=23.6% greater than the 

impact on the probability of accident with cost of 70.2. The odds ratio is a versatile and robust 

statistic, and similarly to the Pearson correlation coefficient, it can measure effect size and 

therefore provides information on the strength of relationship between two levels of a variable. 

Therefore, the analysis of odds ratio gives us a visual understanding of how weather factors have 

different impact in different accident categories.    

 

The overall effects of estimators on accident cost are listed under "Type 3 Analysis of Effects". 

The Wald test shows that only heavy precipitation is not significant at the 95% confidence level. 

The log likelihood is -16013.554. The estimated probability values shown in the plot provide a 

visualized figure of how well the MNL model works.  

 

To calculate the mean squared errors (MSE), let iP  be the true value of the probability of having 

an accident in observation i, and îP  be the predict value of iP . The predicted probability of 
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having all three categories of accidents for each observation can be obtained from SAS. Here we 

take the average of all observations under each category, then the MSE can be calculated using 

equation 5.1. The result is shown in Table 5.1. 

                                                       
3

2

1

1 ˆ( )
3 i i

i
MSE P P

=

= −∑                                                            (5.1)  

 

Table 5.1 MSE calculation for MNL 

Severity Category Actual prob. iP  Average predicted prob. îP  

i=1 Property damage 0.5611 0.52737 

i=2 Person injury 0.4118 0.47263 

i=3 Fatality 0.0271 0 

MSEMNL 0.0055717 

 

 

5.2 Ordered Probit Model Estimation Result 

This part shows an ordered probit regression analysis. In the following application, accident 

severity is the ordered dependent variable. An assumption has been made that the indexing in the 

model is a latent but continuous estimator and the related error is random and follows a normal 

distribution. The observed and coded discrete dependent variable, severity level (cost), is set up 

as the same with ordered value.  

 

The result obtained by SAS is shown in Figure 5.2. The signs of coefficients of estimators are the 

same with MNL model, that is, the higher value of air temperature, average wind speed, relative 
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humidity or visibility will lower the probability of severe accident occurring; the higher value of 

the precipitation total or intensity will increase the probability of severe accident occurring. 

However, not all factors show significant impact under the null hypothesis test, which must 

reconsider the meaning of their signs. Even though the signs of estimated parameters show that 

average wind speed has negative effect and slight precipitation has positive effect on accident 

cost, we cannot reject the null hypothesis that there is no significant impact at 95% confidence 

level. Therefore, we should not include these two variables in the best set.  

 

The value of log likelihood of OP model is -16066.942, smaller than MNL model. Also, the 

mean square errors can be calculated in a same way: MSEop=0.014682. Under these two criteria, 

we prefer using the multinomial logit model to the order probit model. 
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Figure 5.2 SAS output with Ordered Probit Model 
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5.3 Neural Network Estimation Result 

5.3.1 Model selection using Neuro Solution 

First, we use the Neuro Solution software to check which model was the most suitable for 

regression. Three kinds of regression methods were built to compute the performance: linear 

regression, probabilistic neural network, and multilayer perceptron.  

 

After running the learning and training process, the software compared the three networks in 

terms of mean square errors, mean absolute errors and residuals, and produced the performance 

metrics. Table 5.2 shows the results along with the best performing network. 

 

MLP is the best performance model because of its low validation mean squared residual (error) 

compared with other regression models in neural networks. 

Table 5.2 Summary of all three networks 

 
Training  

 
Validation  

 
Testing  

Model Name MSE 
 

MSE 
 

MSE 

MLP-1-O-M (Multilayer Perceptron) 0.215153 
 

0.18455 
 

0.19083 

LR-0-B-M (Linear Regression) 0.210452 
 

0.19270 
 

0.19744 

PNN-0-N-N (Probabilistic Neural 
Network) 0.211488 

 
0.19002 

 
0.19367 

 

 

5.3.2 Training of Accident Severity Data with Matlab 

Multilayer perceptron is a class of artificial neural networks in which the layers are usually 

interconnected in a feed-forward way, that is to say, each neuron in one layer has a one-way 



43 
 

direction to transport information to the neurons of the subsequent layer. Back-propagation is the 

most popular learning technique.  

 

To set up the data, we use 70% of the total 20469 samples in training, 15% in testing and 15% in 

validation. Using 8 weather related variables as input and cost as target data, the networks 

contain two layers, sigmoid hidden neurons and linear output neurons. The structure is shown in 

Figure 5.3.  

 

Figure5.3 Two layers Neural Networks structure 

 

In the learning process, the weights of each connection are compared with the true value to 

minimize the error, and then this process is repeated until convergence is reached. To adjust 

weights properly, nonlinear optimization is applied that is called gradient descent. For this, the 

derivative of the error function with respect to the network weights is calculated, and the weights 

are then changed such that the error decreases (Warren S. Sarle, 1994). The procedure of MPL 

neural networks can be trained and tested with Matlab based on the following formulas: 
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http://en.wikipedia.org/wiki/Back-propagation
http://en.wikipedia.org/wiki/Optimization_(mathematics)
http://en.wikipedia.org/wiki/Gradient_descent
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   1
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=
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                                                                     (5.5) 

k k kr y p= −                     (5.6) 

where = number of independent variables (inputs) 

= number of hidden neurons 

= independent variable 

= bias for hidden layer 

= weight from input to hidden layer 

= net input to hidden layer  

= hidden layer values  

= bias for output (intercept) 

= weight from hidden layer to output 

= net input to output layer  

= predicted value (output values)  

 = depend variable (training values) 

 = error. 

 

During iterative training of a neural network, an epoch is a step through the entire training 

process, followed by testing of the verification set. It contains several iterations. Figure 5.4 

shows that the mean square error meets convergence at epoch 119 with the minimal validation 

MSE of 0.171753.  
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Figure 5.4 Trends of MSE 

 

Table 5.3 lists the mean square of errors in each process. This result provides minimal MSE with 

various numbers of hidden layers, but comparing with traditional regression methods, the values 

are still large. No matter how we adjust the number of hidden layers or change the fitting 

problem to classification problem, the MSE values are always around 0.17. 

Table 5.3 MSE of Neural Networks 

Data set Sample MSE 
Training 14329 0.170285 

Validation 3070 0.171753 
Testing 3070 0.171695 
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In order to find the degree of significance of each parameter, we repeat the same training and 

testing process 8 times. Each time, we delete one weather-related variable and calculate the MSE 

in validation set, as shown in Table 5.4. 

Table5.4 Variable selection with neural networks 

Subset of variables Validation MSE % improved 

Initial set 0.171753 / 

Without air temperature 0.170351 0.816 

Without relative humidity 0.169099 0. 735 

Without average wind speed 0.171829 -1.6144 

Without visibility 0.173752 - 1.1191 

Without precipitation total 0.170839 1.677 

Without slight precipitation 0.167783 1.789 

Without moderate precipitation 0.171533 -2.235 

Without heavy precipitation 0.170726 0.47 

 

 

Deleting air temperature, relative humidity, precipitation total, slight precipitation and heavy 

precipitation in the model decrease the validation MSE and increase the model accuracy, so these 

variables are less significant. On the other hand, deleting average wind speed, visibility and 

moderate precipitation in the model increase the validation MSE, which means these variables 

are important to be considered when generating the networks. 

 

The Receiver Operating Characteristic (ROC) analysis shown in Figure 5.5 again proves the bad 

performance of neural networks. The diagonal divides the ROC space into two parts: Points 

above the diagonal represent good classification results (better than random), and points below 
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the line poor results represent bad classification results (worse than random). All four curves are 

above but very close to the diagonal line, which means after training and testing process, the 

result doesn't have much improvement compared with randomly guessing performance.  

 

 

Figure 5.5 ROC analysis  

 

The results demonstrate that Neural Network is not an effective tool to classify severity levels in 

crashes if appropriate input data is available. Comparing MSE of other methodologies mentioned 

before, the MLP in neural network has a lower accuracy. 
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5.4 Model Comparison and Selection 

The comparison of all three methods is summarized by the values of log likelihood at 

convergence and MSE in Table 5.5. 

Table 5.5 Model Comparison 

 Log likelihood at 
convergence MSE 

Multinomial logit -16013.554 0.0055717 

Ordered Probit -16066.942 0.014682 

Neural Network (MLP) N/A 0.171753 

 

Based on the comparison of the criteria above, we found that the multinomial logit regression is 

more interpretive than the other two methods, since the former has higher value in log likelihood 

at convergence and lower value in MSE.  

 

Moreover, though taking the ordinal information of dependent variable into account, the Order 

Probit model still does not have as good performance as expected compared with MNL model. 

This can be explained by the restriction of using an identical coefficient for an estimator across 

different accident severities. The OP model only allows one weather-related factor either to 

increase the probability of fatality and decrease the probability of property damage, or to 

decrease the probability of fatality and increase the probability of property damage, but it can’t 

explain when both severity levels increase or decrease in probability. This may not be suitable 



49 
 

when it comes to reality. Also, the OP model failed in explaining clearly what effect a factor has 

on estimating the probability of middle severity level, people injury. 

The signs of coefficients in different models are summarized in Table 5.6 along with their 

significance.   

Table5.6 Summary of coefficients in different models 

      Model 

Variable 

MNL OP NN 

Sign Significance Sign Significance Significance 

Air temperature - N - Y N 

Relative humidity - Y - Y N 

Average wind speed - Y - N Y 

Visibility - Y - Y Y 

Precipitation total + N + Y N 

Slight + Y + N N 

Moderate + Y + Y Y 

Heavy + N + Y N 
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  Chapter 6: Case Study 

In the previous chapters, the impact of weather-related variables was analyzed based on the 

accident record on the entire highway network in Maryland, and a relatively good result was 

generated with multinomial logit model. However, when we want to examine the effects of 

weather on accident severity, we must exclude the effect of other factors such as highway 

geometric characteristics and traffic elements. In the following analysis, a case study on US 50 is 

carried out to test the impact of weather condition on certain road sections, so that when we run 

the regression models, the costs of accidents are not affected by the characteristics of different 

roads, such as lane width, curve degree, pavement material, AADT and so on.  

6.1 US Route 50 

U.S. Route 50 is a major east–west route of the U.S. Highway system, stretching 

across Maryland. As shown in Figure 6.1, it passes the south end of the Baltimore-Washington 

Parkway and becomes the John Hanson Highway, a freeway to Annapolis. The freeway 

continues beyond Annapolis as the Blue Star Memorial Highway which crosses Chesapeake 

Bay on the Chesapeake Bay Bridge and continues to Queenstown where US 50 turns south, 

passing through Easton to Cambridge, and then east through Salisbury to Ocean City on the four-

lane divided Ocean Gateway. US 50 ends near the Atlantic Ocean shore.  

http://en.wikipedia.org/wiki/U.S._Highway_system
http://en.wikipedia.org/wiki/Maryland
http://en.wikipedia.org/wiki/Baltimore-Washington_Parkway
http://en.wikipedia.org/wiki/Baltimore-Washington_Parkway
http://en.wikipedia.org/wiki/John_Hanson_Highway
http://en.wikipedia.org/wiki/Annapolis,_MD
http://en.wikipedia.org/wiki/Blue_Star_Memorial_Highway_(Maryland)
http://en.wikipedia.org/wiki/Chesapeake_Bay
http://en.wikipedia.org/wiki/Chesapeake_Bay
http://en.wikipedia.org/wiki/Chesapeake_Bay_Bridge
http://en.wikipedia.org/wiki/Queenstown,_MD
http://en.wikipedia.org/wiki/Easton,_MD
http://en.wikipedia.org/wiki/Cambridge,_MD
http://en.wikipedia.org/wiki/Salisbury,_MD
http://en.wikipedia.org/wiki/Ocean_City,_MD
http://en.wikipedia.org/wiki/Ocean_Gateway
http://en.wikipedia.org/wiki/Atlantic_Ocean
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Figure 6.1 US route 50 

In order to minimize the impacts caused by the wideness of weather change, we select a road 

section between latitude (38.9, 39.1) and longitude (-77, -76.2), and set the 970 accident records 

in total from 2007 to 2010 as targets.  All accidents locations within this section are shown in 

Figure 6.2. The reason to choose this freeway is that compared with other highways, US 50 has 

more accident records in the four years period and a high fatality rate. Also, the accidents that 

happened in the part to the left of Chesapeake have more parallel weather condition and other 

traffic characteristics. In the following analysis, we take those 970 accident records to build a 

multinomial logit regression model, and compare the significance of each weather factor with the 

overall analysis. After eliminating the impact of different location, we have reasons to believe 

the result is more valuable and closer to reality. 
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Figure 6.2 Accidents records on selected road section 

 

6.2 Multinomial Logit Model Result and Analysis 

In this part, we can also use SAS to estimate a multinomial logit regression model. Before that, 

the same procedure is performed to test the correlation. Using ANOVA, we are able to partition 

the total variance into the component that is due to true random error and the components that 

are due to differences between means. Again, three measures, Pearson Correlation, Variance 

Inflation Factor (VIF) and Condition index values, are used to test multicollinearity. The output 

in Figure 6.3 shows that all the Pearson Correlation values are significant enough to reject the 

hypothesis that two variables have collinearity. For example, in terms of total precipitation and 

relative humidity, the Pearson Correlation value is 0.11476, close to 0, and the probability of 

having a larger absolute value than 0.11476 is 0.0003, less than 0.05, so that there is no 

significant linear correlation between total precipitation and relative humidity at 95% confidence 

level. Similar conclusions can be obtained for each pair of the eight variables. 
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Figure 6.3 Correlation analysis 

 

The VIF measures how much the variance of an estimated regression coefficient is increased 

because of collinearity. For example, the VIF of air temperature is 1.07168 (the square root is 

1.03522), this means that the standard error for the coefficient of that predictor variable is 

1.03522 times as large as it would be if air temperature was not correlated with the other 

predictor variables. So this multiplier is small enough to show that the variance of air 

temperature would not increase much because of collinearity. The same conclusion can be 

obtained from the VIF values of other variables. 

http://en.wikipedia.org/wiki/Variance
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Then we can check the collinearity diagnostics. For example, the condition number for heavy 

precipitation is 11.97987, which shows dependence might be starting to affect the regression 

estimate, but the effect is way below 30, which is too weak and won’t cause significant 

multicollinearity. Considering the condition indices of other variables, the multicollinearity can 

be ignored when we analyze the data.  

 

The output is shown in Figure 6.4.  From the global hypothesis test we can tell that at least one of 

the weather related factors has significant impact on accident cost.  Regardless of the difference 

between each level of accident cost, from the last column of type 3 analysis of effect, we can see 

that air temperature, visibility, precipitation total, slight, moderate, and heavy precipitation all 

have p-values greater than 0.05, so they don't show any significant impact on accident cost at 95% 

confidence level. However, considering that weather factors can have different influence on 

different accident severity, we take a deeper look at analysis of maximum likelihood estimates, 

and find out that the set of variables with significant impact changes.  

 

Here, cost=70.2, i.e. severity level equal to people injury, is set as the reference category. Two 

models are defined in this multinomial regression: one relating cost=8.9 to the reference category, 

cost=70.2 and another model relating cost=1410 to cost=70.2. The fourth column is the 

estimated multinomial logistic regression coefficient for the models. For example, 0.00860 is the 

multinomial logit estimate for a one unit increase in relative humidity for occurring an accident 

with cost=8.9 relative to occurring an accident with cost=70.2, given the other variables in the 

model are held constant. If relative humidity increases by one unit, the multinomial log-odds for 

preferring an accident with cost=8.9 to an accident with cost=70.2 would be expected to increase 
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by 0.00860 unit while holding all other variables in the model constant. Moreover, under this 

assumption, the p-value is 0.0054, less than 0.05, so this impact is significant at 95% confidence 

level.  

 

Further analysis on the comparison of different categories shows that while holding all other 

variables in the model constant, relative humidity and average wind speed have significant 

impact on the possibility of having an accident with property damage, and heavy precipitation 

has a significant impact on the possibility of having an accident with a fatality.   
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Figure 6.4 MNL regression on US route 50 section 
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Figure 6.4 MNL regression on US route 50 section (Cont.) 

 

Comparing the result with what we obtained in the previous chapter, the regression on US 50 

shows less significant weather related factors and different signs for these factors. One possible 

reason is that the analysis on overall Maryland highways overestimates the effect of weather 

factors because of the impacts of traffic and geometric elements. The other reason may be related 

to the error of small sample, especially when considering the signs of each parameter. However, 

regardless of the differences in these results, we can conclude that weather factors do have an 

impact on highway accident severity.   
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Chapter 7: Conclusion and Future Research 

7.1 Identification of Factors Contributing to Accident Severity  

The following statements are based on the MNL result using the accident data over the entire 

state of Maryland. In terms of the signs of each parameter, we cannot simply classify them as 

positive or negative when applying to other cases, because they may differ from region to 

region and be affected by other factors and it’s hard to quantify their impact.    

o Air temperature 

Air temperature has a significant effect on accident severity on highways. When air 

temperature increases during summer, strong sunlight can weaken drivers’ sight, and the light 

will be refracted near the surface. High temperature can damage the engine and increase the 

probability of accident. Lack of proper vehicle maintenance can also have an impact on the 

effect of air temperature on engine performance. 

o Average wind speed 

Average wind speed also has a significant effect on accident severity on highways. When 

wind speed is high, vehicles can be hard to control especially for the new drivers, and the 

visibility usually decreases as well. High wind speed weather, like hurricane and other 

hazard, will blow off branches and create debris on the road, which is a huge safety risk to 

drivers. Thus, higher wind speed has higher probability of causing a severe accident.  

o Visibility  

Lower visibility can cause difficulty on driving, but it does not necessarily have impact on 

accident severity, because drivers will be more cautious and careful. They usually will slow 

down their speed and pay more attention to the road ahead, thus the possibility of severe 

accident is decreased. So visibility has no significant impact on accident severity. 
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o Total precipitation in the past 24 hours and precipitation intensity 

The accumulation of precipitation, no matter rain or snow, has a significant effect in accident 

severity, which is intuitive and can be easily understood. However, heavy precipitation has 

less power impacting accident severity comparing with other intensity. Heavy rain weakens 

the visibility and wets the road surface, which causes drivers to pay more attention while 

driving, thus with the decrease of traffic flow the probability of severe accident decreases.  

o Relative humidity 

Based on the result, relative humidity also has a significant impact on accident severity. 

Similar with the impact of precipitation, the high relative humidity can affect vehicle’s 

normal function and driver’s feeling, but it may be hard to quantify the impact.  

 

Moreover, based on small sample analysis reported in Chapter 6, we can also come to the 

following conclusions: 

Comparing with other weather factors, relative humidity, average wind speed and heavy 

precipitation have more significant impact on accident severity. Also, between different levels of 

severity, a particular weather factor can have different impact. It is possible that while holding all 

other variables in the model constant, the relative humidity and average wind speed have 

significant impact on the possibility of having accident with property damage, but have 

insignificant impact or no impact on the possibility of having accident with people injury or 

fatality. And heavy precipitation may have a significant impact only on the possibility of having 

an accident with fatalities, but not on the other two. Therefore, the impact of weather factors on 

road accident severity should be analyzed case by case before specific conclusions are made. 
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 7.2 Future Research Directions 

In this research, data collected from 2007 to 2010 were used to build regression models with 

weather-related factors and highway accident severity. The conclusion was reached that a 

multinomial logit model has the best performance in explaining the data, and all factors except 

visibility and heavy precipitation have significant impact in accident severity. The same 

procedure was used on the US 50, and the results indicated that fewer factors were significant in 

impacting accident severity. However, this research has several drawbacks which are stated as 

follow. 

 

Data is crucial for accident analysis. The quality of the research is highly dependent on the 

availability and quality of data. In this research, weather data was collected from five weather 

stations statewide, and each station represents the weather condition in an entire zone, which 

lacks precision. Also, if we can connect the non-accident data, such as total highway traffic flow 

in a certain area under the same weather condition and combine it with the same date and 

location, we would be able to compare the difference between severe weather condition and 

normal weather condition, which is more appropriate and accurate. To obtain more valuable data 

will be very helpful in improving future research. 

 

Although it has been determined that most weather-related factors contribute in causing more 

severe accidents, more attention still needs to be given to the joint impact of geometric 

characteristic and environmental factors on accident severity. A lot of research has been 

conducted during the past decades to investigate the relationship between the geometric 
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characteristics and car accidents. The next step of study should combine all significant factors 

together to build a more complicated and well-explained model. 

 

This study is aimed at analyzing the impact of weather conditions on accident severity, but the 

study of weather-related factors and accident frequency is also highly recommended. The 

accident rate and severity regression models are similar with respect to some significant weather-

related factors, but are also different with respect to other factors. Even for those common 

factors, the significance of influence may not be the same. By conducting an accident frequency 

regression model, we can estimate and predict both accident occurrence rate and severity. Thus, 

a model with two dependent variables can help governments to better analyze the impact of 

weather condition on traffic safety and make effective mitigation decisions. 
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