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The interaction of many coupled dynamical units is a theme across many scien-

tific disciplines. A useful framework for beginning to understanding such phenomena

is the coupled oscillator network description. In this dissertation, we study a few

problems related to this.

The first part of the dissertation studies generic effects of heterogeneous in-

teraction delays on the dynamics of large systems of coupled oscillators. Here, we

modify the Kuramoto model (phase oscillator model) to incorporate a distribution of

interaction delays. Corresponding to the continuum limit, we focus on the reduced

dynamics on an invariant manifold of the original system, and derive governing

equations for the system, which we use to study stability of the incoherent state and

the dynamical transitional behavior from stable incoherent states to stable coherent

states. We find that spread in the distribution function of delays can greatly alter



the system dynamics.

The second part of this dissertation is a sequel to the first part. Here, we con-

sider systems of many spatially distributed phase oscillators that interact with their

neighbors, and each oscillator can have a different natural frequency, and a different

response time to the signals it receives from other oscillators in its neighborhood.

By first reducing the microscopic dynamics to a macroscopic partial-differential-

equation description, we then numerically find that finite oscillator response time

leads to many interesting spatio-temporal dynamical behaviors, and we study inter-

actions and evolutionary behaviors of these spatio-temporal patterns.

The last part of this dissertation addresses the behavior of large systems of

heterogeneous, globally coupled oscillators each of which is described by the generic

Landau-Stuart equation, which incorporates both phase and amplitude dynamics.

Our first goal is to investigate the effect of a spread in the amplitude growth param-

eter of the oscillators and that of a homogeneous nonlinear frequency shift. Both of

these effects are of potential relevance to recently reported experiments. Our sec-

ond goal is to gain further understanding of the observation that, at large coupling

strength, a simple constant-amplitude sinusoidal oscillation is always a solution for

the dynamics of the global order parameter when the system has constant nonlinear

characteristics.
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Chapter 1

Introduction

1.1 Synchronization

Synchronization is a fundamental phenomena exhibited in many natural and

engineered systems. The first recorded scientific description of synchronization was

due to Huygens who reported that two pendulums suspended on the same wooden

beam tended to move together. He further noticed that this tendency reestablished

itself after it was disturbed. Thus it was a genuine effect intrinsic to the combined

pendulums-beam system. Since then many other co-operative phenomena associ-

ated with the coupling of similar systems have been found. We now outline some

examples.

In the mid-nineteenth century, Lord Rayleigh described in his book, The theory

of Sound, a case where two organ pipes of the same pitch were situated next to

each other, and, through their interaction, instead of making them sound at the

same pitch, both were suppressed to silence. Synchronization also arises between

very different systems. In the early twentieth century, Appleton and Van der Pol

1



found that the frequency of a triode generator could synchronize with another weak

signal from a different source which was of slightly different frequency. Here, rather

than two similar systems compromising on a common behavior, one of the systems

simply follows that of the other. Furthermore, Synchronization is observed in living

organisms as well. For instance, the daily 24-hour sleep/wake cycle of many animals

is found to be governed by the circadian clock of the body, which is entrained to the

24-hour day-night period of the Earth. The operation of the circadian clock has been

traced to functioning of the suprachiasmatic nucleus inside the brain. Two popular

accounts dealing with physiological clocks can be found in Refs. [63, 59]. Other

examples of physiological Synchronization occur for the heart and the intestine. In

these cases, a remarkable aspect of Synchronization is that they involve not just a few

interacting entities, but many such entities, e.g., the large number of pacemaker cells

in the heart. Thus, Synchronization can be a truly global and macroscopic effect built

on top of local and microscopic behaviors. Synchronization can also occur among

physically well separated entities, which communicate by some means. For example,

when certain species of fireflies gather on a tree, they can synchronize and flash in

unison; in a similar vein, audience members in a concert hall can rather quickly

synchronize their applause. These diverse examples show that Synchronization is a

very general phenomenon spanning a broad variety of situations, including physical,

biological, and even social situations; and crossing scales from the microscopic to

the macroscopic.
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1.2 Why coupled oscillator networks

In the previous section, we have seen some examples of Synchronization in

vastly differing contexts. Despite differing details, a common theme underlying

many of such situations is the building up of a global macroscopic response from

local microscopic dynamics and interactions. In the spirit of reductionism, we assume

that all complexities in the real world ultimately reduce to the functioning of its

constituents. Therefore, e.g., in order to understand the human body, we move down

level by level, first to functions of individual organs, like beating of the heart, then

one level further down to functions of more microscopic constituents, like beating

of the individual heart pacemaker cells. Then in order to study the higher level

functioning of the heart as a whole, we move up the reductionist hierarchy again

and suppose that each pacemaker cell has to interact with, or couple to, some other

pacemaker cells, and we believe that it is through such coupling that the global

synchronized beating of the heart arises. Indeed, nature has shown us that the final

behavior of the heart beat has to be a coherent whole. Loss of such synchrony in

the heart leads to serious pathologies.

One of the simplest ways to cast the above picture into simple mathematical

models is to imagine each local entity, e.g., a single pacemaker cell, as a generic

oscillator (the precise mathematical form to be specified with the precise questions

under study), and then imagine a lot of such oscillators to interact with one an-

other through some form of coupling. Through the study of such oscillator network

models, we may hope to gain important insights into how, e.g, individual heart
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pacemaker cells differing from one another, nevertheless beat collectively to make

the heart beat as a coherent whole. Two important insights obtained from such

modelings are that collective macroscopic behaviors of this sort depend crucially on

how the local constituents are coupled together, and that the resulting system can

exhibit a wide variety of behaviors when the coupling conditions change. Generally,

for models of such coupled oscillator networks, three factors determine the overall

dynamics of the system as a whole:

1. Dynamics of the individual isolated oscillators.

2. The topology according to which the oscillators are connected together.

3. The coupling dynamics through which each oscillator is coupled to other os-

cillators connected to it.

In this dissertation, motivated by physical considerations and recent experi-

ments, we study, both theoretically and computationally, the properties of collective

macroscopic behaviors of many coupled oscillators. In particular, we are concerned

with large networks of coupled oscillators, i.e., networks comprising a very large

number of oscillators, and we desire to consider a setting in which the individual

oscillators are of sufficiently different character, mimicking what is normally the case

with many real-world systems.

1.3 Methodology and layout of this dissertation

The primary focus of this dissertation is on the generic dynamical behavior of

oscillator networks. As done previously by others, we assume very simple models
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for the dynamics of oscillators. We note that despite our simple model dynamics,

previous studies indicate that useful insights can be expected to result [57]. Noted

examples include synchronous flashing of fireflies [8], pedestrian induced oscilla-

tions of the Millennium Bridge [65, 15, 1], cardiac pace-maker cells [19, 39], alpha

rhythms in the brain [17], glycolytic oscillations in yeast populations [18, 13, 41],

cellular clocks governing circadian rhythm in mammals [72], oscillatory chemical

reactions [24, 67], coupled lasers [25, 70, 73], Josephson junction circuits [36, 50],

etc. While real-world oscillators and their interaction networks can be complicated,

the simplifications that we will employ make the problems tractable and enable dis-

covery of generic collective phenomena and mechanisms that may be insensitive to

the detailed behavior of individual oscillators. One useful model that has received

wide attention is the Kuramoto Model [26, 27]. For this model, the fundamental

microscopic dynamics of individual oscillators are assumed to be stable limit-cycle

oscillations. This model further assumes that coupling among oscillators is “weak”

enough that the limit cycle amplitude is very stable. Then the effects from all other

oscillators on any other oscillator affect only the phase on its limit cycle. The first

two problems studied in this dissertation involve large coupled oscillator networks

of the Kuramoto type. In particular, the question that motivates us, is the effects

of time delay due to, for example, finite signal propagation speed or finite response

time. In Chapter 2 we study the problem in the context of an all-to-all coupled

population of phase oscillators, and contrast the resulting behavior with the clas-

sical model without time delay, and with models with treatments of time delays

but in a more restricted form. We show that many interesting dynamical behaviors
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result from time delay. Then in Chapter 3, we further extend this consideration

by imagining the oscillators to be distributed in space, and to interact with other

oscillators in their neighborhood. We see that time delay in this spatial setting

induces a variety of interesting spatio-temporal behavior. Then in Chapter 4 we

study a problem related to oscillator networks made up of oscillators which allow

more dynamics than that of the Kuramoto type. Recall that the phase oscillator

model is useful when the interaction among oscillators is weak; therefore, it may

no longer be adequate when the interaction is strong. In such cases we need to

account for temporal evolution of both the oscillators’ amplitudes as well as their

phases. In order to understand systems with this type of dynamics, we employ

the Landau-Stuart oscillator model [57], and consider the network dynamics that

results upon coupling many such Landau-Stuart oscillators. On the experimental

front, a motivation for considering this class of oscillator networks is due to recent

experiments [67] which show results that cannot be described using the phase-only

oscillator dynamics approach of the Kuramoto Model.
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Chapter 2

Dynamics of large coupled oscillator net-

works with time-delayed interactions

2.1 Introduction

As introduced in Chapter 1, studies of large networks of coupled oscillators

have been motivated by diverse real examples and considerations. However, an in-

completely understood aspect of such problems is that signal propagation may take

non-negligible time, and that systems often have a finite reaction time to inputs

that they receive. Time delays are thus both natural and inevitable in many of

these systems. In order to elucidate phenomena induced by time delay in large

coupled oscillator systems, Refs. [69, 10] and [23, 43] carried out studies of globally

coupled oscillators of the Kuramoto type ([26], [27]) in the presence of time delay.

These previous works all treated the special case in which all time delays between

interacting oscillators were identical, and, in that context, they uncovered many

interesting behaviors revealing that time delay can profoundly affect the dynamics
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of coupled oscillator systems. However, in most situations where delays are an im-

portant consideration, the delays are not all identical. The aim of this chapter is

to study the more realistic case where there is a distribution of time delays along

the links connecting the oscillators. We shall see that previous striking features

obtained in the case of uniform time delay are evidently strongly dependent on co-

herent communication between oscillators, and, as a consequence, are substantially

changed by the incorporation of even modest spread in the time delays. For exam-

ple, comparing results for typical cases with uniform delay and with a 30% spread in

delay, we will show that this delay spread (a) can completely eliminate the resonant

structure in the average delay time dependence of the critical coupling kc for the

onset of coherence, (b) can introduce hysteresis into the system behavior, and (c)

can substantially decrease the number of attractors that simultaneously exist in a

given situation.

2.2 Formulation

We consider a network of oscillators with all-to-all coupling according to the

classical Kuramoto scheme, but incorporating link-dependent interaction time delays

τij for coupling between any two oscillators i and j,

d

dt
θi(t) = ωi + (k/N)

N∑
j=1

sin [θj(t− τij)− θi(t)] , (2.1)

where θi(t) is the phase of oscillator i, ωi is the natural frequency of oscillator i,

k characterizes the coupling strength between oscillators, N is the total number of

oscillators, τii = 0, and i = 1, 2 · · ·N . Following Kuramoto, we note that the effect
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of all the oscillators in the network on oscillator i may be expressed in terms of an

“order parameter” ri,

N−1

N∑
j=1

sin(θj(t− τij)− θi(t)) = Im[rie
−iθi(t)], (2.2)

ri(t) = N−1

N∑
j=1

eiθj(t−τij). (2.3)

To facilitate the analysis, we consider the following two simplifying assumptions.

First, we consider the continuum limit N → ∞ appropriate to the study of large

systems, N � 1. Second, we assume the collection of all delays τij is characterized by

a distribution h(τ) such that the fraction of links with delays between τ and τ+dτ is

h(τ)dτ . We, furthermore, assume that, for randomly chosen links, τ is uncorrelated

with the oscillator frequencies ω at either end of the link. These assumptions enable

a description of the system dynamics in terms of a single oscillator distribution

function f(θ, ω, t), which evolves in response to a mean field r(t) according to the

following oscillator continuity equation,

∂

∂t
f +

∂

∂θ

{[
ω +

k

2i

(
e−iθr − eiθr∗

)]
f

}
= 0. (2.4)

In this case, the mean field r(t) is given by

r(t) =

∫ ∞
0

ξ(t− τ)h(τ)dτ, (2.5)

ξ(t) =

∫ ∞
−∞

∫ 2π

0

f(ω, θ, t)eiθdθdω, (2.6)

where Eq. (2.6) gives the input that nodes would receive in the absence of delay,
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and Eq. (2.5) “corrects” this input by incorporating the appropriate delay for each

fraction of inputing links, h(τ)dτ , with delay τ .

Expanding f(ω, θ, t) in a Fourier series, we have

f(ω, θ, t) =
g(ω)

2π

{
1 +

∞∑
n=1

[
fn(ω, t)einθ + f ∗n(ω, t)e−inθ

]}

where g(ω) ≡
∫ 2π

0
f(ω, θ, t)dθ is the time-independent oscillator frequency distribu-

tion. Following the method outlined in [53], we consider the dynamics of Eq. (2.4)

on an invariant manifold in f -space:

fn(ω, t) = [a(ω, t)]n. (2.7)

The macroscopic dynamics of a(ω, t) can be derived by substituting Eq. (2.7) into

Eq. (2.4), leading to

∂a/∂t+ iωa+ (k/2)
(
ra2 − r∗

)
= 0. (2.8)

In the case when the oscillator frequency distribution g(ω) is Lorentzian, i.e.,

g(ω) =
∆/π

(ω − ω0)2 + ∆2
, (2.9)

and assuming suitable properties of the analytic continuation into complex ω of

a(ω, t) (see Ref. [53]), Eq. (2.6) can be evaluated explicitly by contour integration

with the contour closing at infinity in the lower half complex ω-plane to give ξ(t) =∫∞
−∞ g(ω)a∗(ω, t)dω = a∗(ω0 − i∆, t). Thus Eq. (2.5) becomes

r(t) =

∫ ∞
0

a∗(t− τ)h(τ)dτ. (2.10)

Furthermore, by setting ω = ω0 − i∆ in Eq. (2.8) we have

d

dt
a(t) + (∆ + iω0)a(t) +

k

2

(
r(t)a(t)2 − r∗(t)

)
= 0, (2.11)
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where in both Eqs. (2.10) and (2.11) the particular argument value ω = ω0− i∆ has

been suppressed; i.e., a(ω0 − i∆, t) is replaced by a(t). Equations (2.10) and (2.11)

thus form a complete description for the dynamics on the invariant manifold (2.7)

when g(ω) is Lorentzian. Recently a result has been obtained [54] that, when applied

to our problem, establishes that all attractors of the full system, Eqs. (2.4) - (2.6),

are also attractors of our reduced system, Eqs. (2.10) and (2.11), and vice versa.

(The result of Ref. [54] was previously strongly indicated by numerical experiments

of Ref. [34].)

Previous studies of the effect of delay on the Kuramoto system (Refs. [69, 10,

23, 43]) considered uniform delay on all the links, corresponding to h(τ) = δ(τ −T ).

Our goal is to uncover the effect of heterogeneity of delays along the network links.

Accordingly, we consider that h(τ) has some average value T with a spread about

this value, and h(τ) ≡ 0 for τ < 0. A convenient class of functions for this purpose

is

h(τ) =
1

T
ĥn

( τ
T

)
,where ĥn(τ̂) = Anτ̂

ne−βnτ̂ . (2.12)

Here, An and βn are determined by the normalization conditions:
∫∞

0
ĥn(τ̂)dτ̂ = 1

and
∫∞

0
τ̂ ĥn(τ̂)dτ̂ = 1, yielding

An = (n+ 1)n+1/n! , βn = n+ 1. (2.13)

For this family of distributions, we have that the standard deviation of τ about its

mean T is given by

δτ = (< τ 2 > − < τ >2)1/2 = T/
√
n+ 1. (2.14)
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Thus, for n → ∞, we recover the case, h(τ) = δ(τ − T ), previously investigated in

Refs. [69, 10, 23, 43]. And, by decreasing n, we can study the effect of increasing the

relative spread δτ/T in the delay times. The dependence of h(τ) on n is depicted

in Fig. 2.1.

0 1 2 3
0

1

2

3

4

τ

h
(τ

)

 

 

n=100

n=20

n=1

Figure 2.1: Graphs of h(τ) at T = 1 for n = 1, 20, 100.

We can exploit the convolution form of (2.5) and turn it into a differential

equation for r(t). Taking a Laplace Transform, we have, for the case of Lorentzian

g(ω),

r̄(s) = H(s)ā∗(s), (2.15)

where r̄(s) and ā(s) are the Laplace transform of r(t) and a(t) respectively, while

H(s) = [(T/βn)s+ 1]−(n+1), (2.16)

is the Laplace transform of h(τ). Our choice of the function class given by Eq. (2.12)

is motivated by the fact that it yields a particularly convenient Laplace transform

and corresponding time-domain formulation. In particular, transforming back to
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the time-domain by letting s→ d/dt, Eq. (2.15) yields

[(T/βn)(d/dt) + 1]n+1 r(t) = a∗(t). (2.17)

Thus, we now have Eqs. (2.11) and (2.17) as our description for the dynamics on the

invariant manifold with heterogeneous link delays. Here, it is noteworthy that Eqs.

(2.11) and (2.17) form a system of ordinary differential equations in comparison with

the original system Eq. (2.1) which comprises a very large number of time-delay

differential equations. Note that for the case of uniform delay, h(τ) = δ(τ − T ), we

take the limit n → ∞, in which case Eq. (2.15) takes the form r̄(s) = e−sT ā∗(s),

yielding r(t) = a∗(t − T ), which, when substituted into Eq. (2.11), gives the time-

delay differential equation for a(t) in Ref. [53].

2.3 The incoherent state solution and its stability

A trivial exact solution to the system (2.11) and (2.17) is given by r(t) =

a(t) = 0, which we refer to as the “incoherent state” 1. Stability of the incoherent

state can be studied by linearizing Eq. (2.11) about the solution a(t) = 0 and setting

a(t) = a0e
st, from which we obtain

1 = [kH(s)/2](s+ iω0 + ∆)−1. (2.18)

The critical coupling kc at which a stable incoherent state solution becomes unstable

as k increases through kc, corresponds a solution to Eq. (2.18) with Re(s) = 0.

The solid curves in Fig. 2.2 show results obtained from Eq. (2.18) with

1Note that for r(t) = 0, Eq. (2.4) implies that the oscillators do not interact, and run freely at

their natural frequencies whose spread leads to a uniform distribution in phase.
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Lorentzian g(ω) for the critical coupling value kc versus T at different n’s with pa-

rameters ω0 = 3 and ∆ = 1. For the case of uniform delays (n → ∞), kc as a

function of T exhibits the type of dependence found in Ref. [69] with characteristic

“resonances”. However, as the relative spread δτ/T is increased (n is decreased), we

see that the resonant structure that applies for the case of zero spread is strongly

modified. For example, even at the relatively small spread of δτ/T ≈ 0.1 (corre-

sponding to n = 100), there is only one peak (at T ≈ 1) and one minimum (at

T ≈ 2), with kc for T > 2 being very substantially higher than in the case of no

spread. For δτ/T ≈ 0.302 (n = 10) the effect is even more severe, and the previous

resonant structure is completely obliterated. For comparison, the dashed curves in

Fig. 2.2 show results for δτ/T ≈ 0.302 (upper) and 0 (lower) when g(ω) is Gaus-

sian with the same peak value as for the Lorentzian distribution used to obtain the

solid curves 2. The Gaussian and Lorentzian results are similar, suggesting that the

qualitative behavior does not depend strongly on details of g(ω).

2.4 Bistable behaviors

As reported in Ref.[69], bistable behavior can exist; i.e., a situation in which

both incoherent and coherent states are stable. In Figs. 2.3(a) and 2.3(b) we show

the hysteresis loops obtained by numerical solution of Eqs. (2.11) and (2.17) for

n <∞ and, for n =∞, where the n =∞ result is obtained by solution of the delay

2In the Gaussian case the term (s + iω0 + ∆)−1 in Eq. (2.18) is replaced by (i
√

2σ)−1Z(ζ),

where ζ = (ω0 + is)/(
√

2σ), σ = 〈(ω − ω0)2〉, and Z(ζ) is the “plasma dispersion function” (see

http://farside.ph.utexas.edu/teaching/plasma/ lectures/node82.html).
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Figure 2.2: Solid curves are plots of the critical value of kc versus T for Lorentzian

g(ω) with ω0 = 3,∆ = 1, and n = 10, 100, 500, 1000,∞, corresponding to δτ/T ≈

0.302, 0.1, 0.045, 0.032, 0. The dashed curves are for Gaussian g(ω) as described in

the text.

equation obtained by inserting r(t) = a∗(t − T ) in (2.11). Comparing Fig. 2.3(a),

which is for T = 1, with Fig. 2.3(b), which is for T = 3, we note the striking result

that, for large T , hysteresis is sustained only with large enough spread in the delay

distribution, i.e., when n is small [e.g., for n = ∞ and T = 3 (Fig. 2.3(b)) the

bifurcation is supercritical and hysteresis is absent].
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Figure 2.3: Hysteresis loop at ω0 = 3, ∆ = 1, (a) for T = 1, (b) for T = 3.

2.5 The coherent state solution and its stability

Coherent oscillatory states can be obtained by substituting the ansatz a(t) =

a0e
iΩt, where a0 and Ω are real constants, into Eq. (2.10) and (2.11). This gives

[i(Ω + ω0) + ∆] +(k/2)
(
a2

0H
∗(iΩ)−H(iΩ)

)
= 0,

r(t) = a0e
−iΩtH∗(iΩ). (2.19)

As reported in both [69] and [10], for h(τ) = δ(τ−T ), multiple branches of coherent

state solutions are possible in Eq.(2.19). Furthermore, we can employ Eqs. (2.11)

and (2.17) to study the stability of each coherent state by introducing a small

perturbation δa(t)eiΩt to the coherent state solution in (2.19), with δa(t) = K1e
st +

K2e
s∗t. This yields the following equation for s:

[s− k
2
H(s+ iΩ) + A][s− k

2
H(s− iΩ) + A∗]

= (ka2
0/2)

2
H(s− iΩ)H(s+ iΩ),

(2.20)

where A = ∆ + i(ω0 + Ω) + ka2
0H(−iΩ). Instability of each coherent state is then

determined by whether there are solutions to (2.20) for s with positive real parts.
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In Fig. 2.4(a) we compare the theoretical results for |r| calculated from Eqs. (2.19)

and (2.20) with simulation results based on Eq. (2.1) with N = 100 and δτ/T ≈ 0.1

(n = 100) for the first two branches of coherent states with ω0 = 3,∆ = 0.1, T = 1.

The solid (dashed) curves correspond to stable (unstable) coherent states. The

Eq. (2.1) simulation values reported in the figures represent time averages of these

quantities computed after the solution has apparently settled into the coherent state.

It is seen that there is good agreement between the theory and simulations using Eq.

(2.1). In addition, on simulating these two branches of coherent states, we verified

that the finding of Ref. [10] that the basin of attraction is large for the first branch,

but small for the second one, also holds with heterogeneous delays.

Furthermore, the number of coherent attractors strongly depends on the spread

in delay times. Figure 2.4(b) shows the dependence of the number of coherent

attractors on the relative delay spread δτ/T = (n+1)−1/2, with k = 40, ω0 = 0, T =

1, for two values of the frequency spread, ∆ = 5 (dashed) and ∆ = 10 (solid) (for

which kc = 10 and 20, respectively). For both cases, it is seen that as the relative

delay spread is increased ((n+1)−1/2 is increased), the number of coherent attractors

decreases. And there remains at least one such attractor when n approaches unity,

while a parameter dependent maximum is attained when n→∞, which we find is

generally larger for smaller ∆ and larger k 3.

3Kim et al. [23] (and reference therein) propose that the presence of many attractors in a

Kuramoto-like model with delay (uniform delay in their treatment) can serve as a mechanism for

information storage in the nervous system.
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Figure 2.4: (a) Magnitude of r for the first two branches of coherent states with

parameter values: ω0 = 3,∆ = 0.1, n = 100, T = 1 for h(τ). Solid lines give

the theoretical values of the stable coherent states, dashed lines give the unstable

coherent states, and asterisks give the simulation results. (b) Number of coherent

attractors (number of solutions of Eq. (2.19) that are stable according to (2.20))

versus δτ/T for the following parameters: k = 40, T = 1, ω0 = 0; ∆ = 10 for the

solid line (kc = 20), ∆ = 5 for the dashed line (kc = 10).

2.6 Conclusions

In conclusion, in this chapter we address, for the first time, the effect of hetero-

geneous delays on the dynamics of globally coupled phase oscillators. As compared

to the case of uniform delay (Refs. [69, 10, 23, 43]), we find that delay heterogeneity

can have important consequences, among which are the following: (i) decrease in

resonant structure of the dependence of kc on T (Fig. 2.2); (ii) increase of kc (Fig.

2.2); (iii) enhancement of hysteretic effects (Figs. 2.3(a) and 2.3(b)); (iv) reduction

in the number of coherent attractors (Fig. 2.4(b)). Furthermore, we have introduced
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a framework for the study of delay heterogeneity that can be readily applied to a

variety of extensions of the continuum limit (N → ∞) Kuramoto model, such as

communities of oscillator populations with different community dependent charac-

teristics [7, 42], non-monotonic g(ω) [34], and periodic driving [5] (see Ref. [53] for

more examples).
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Chapter 3

Dynamics and pattern formation of large

systems of spatially-coupled oscillators with

finite response times

3.1 Introduction

In this chapter, we consider applications in which the oscillators are distributed

spatially, and interact with oscillators in the local neighborhood. In particular, we

seek to uncover the spatio-temporal dynamics of a system of coupled oscillators with

heterogeneous oscillator response times. We first give a microscopic description of

the individual oscillators and their couplings. We then spatially coarse-grain this

description and use the methods developed in Ref. [30] and Chapter 2 (also Ref.

[31]) to derive a set of partial differential equations giving a macroscopic description

of the system dynamics. Using our derived macroscopic equations, we then nu-

merically explore the spatio-temporal dynamics and resulting pattern formation in
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both one- and two-dimensions. We find that a rich variety of behaviors are induced

by the presence of time delay in the oscillator response. These include hysteresis,

propagating fronts, spots, target patterns, chimerae [2, 28, 30, 62], spiral waves, etc.

Related work on one dimensional spatial patterns of a spatially one dimensional

oscillator system with local time delayed coupling appears in Ref. [60].

3.2 Formulation

We consider a system of N spatially distributed interacting phase oscillators

with time delays between the response of an oscillator and the signal it receives.

The evolution equation of oscillator m is

d

dt
θm(t) = ωm +

N∑
n6=m

K̂mn {sin[θn(t− τmn)− θm(t)]}

= ωm +
N∑

n 6=m

K̂mn
1

2i
{e−i[θm(t)−θn(t−τmn)] − c.c.}, (3.1)

where K̂mn is the interaction strength between oscillators m and n, which is assumed

to be spatial in character (i.e., K̂mn becomes small or zero if the distance between

oscillator m and oscillator n is large), τmn is the interaction time delay in the effect

of oscillator n on oscillator m, and c.c. denotes complex conjugate.

Assuming a separation in the scales of the macroscopic and microscopic system

dynamics, we follow a path similar to that employed by kinetic theory to reduce the

study of a gas of many interacting molecules to a fluid description. We begin by

partitioning the continuous space into discrete regions Ix̄ centered at the discrete

set of spatial points x̄, such that the domain of interest is ∪x̄Ix̄, and Ix̄ ∩ Ix̄′ = ∅ for

x̄ 6= x̄′. The diameter of each region is |Ix̄| ∼ w, and the volume of each region is
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wd where d denotes the dimension of space.

These regions are assumed to be small enough that K̂mn ≈ K̂ml if oscillators n

and l are in the same region Ix̄′ , yet large enough that many oscillators (NIx̄′
� 1)

are contained within each Ix̄′ . Thus we can meaningfully define

ρ(x̄′) ≡ NIx̄′

wd
,

r(x̄′, t) ≡ 1

NIx̄′

∑
n∈Ix̄′

eiθn(t), (3.2)

respectively as the local density and the local order parameter in Ix̄′ . In addition,

for all m ∈ Ix̄ and n ∈ Ix̄′ , we approximate K̂mn ≈ Kx̄x̄′ . The summation in (3.1)

can thus first be approximated as

1

2i

∑
Ix̄′

Kx̄,x̄′NIx̄′
e−iθm(t) 1

NIx̄′

∑
n∈Ix̄′

eiθn(t−τmn) − c.c.

 . (3.3)

In all of what follows, we consider only the simple illustrative case that τmn = τm,

i.e., we suppose that the delay in the effect of oscillator n upon oscillator m is

independent of n. This would, e.g., apply if the signal propagation time from n to

m was very fast, but each oscillator had a finite reaction time. Together with Eq.

(3.2), Eq. (3.3) can then be written as

∑
Ix̄′

wdKx̄x̄′ρ(x̄′)Im{e−iθm(t)r(x̄′, t− τm)}. (3.4)

Since we assume NIx̄ � 1 for all x̄, it is appropriate to introduce a distribution

function F (θ, ω, x̄, τ, t) proportional to the fraction of oscillators in Ix̄ with θ ∈

[θ, θ+ dθ], ω ∈ [ω, ω+ dω] and τ ∈ [τ, τ + dτ ] at time t. We furthermore pass to the

limit of continuous space by replacing the discrete variable x̄ by a new variable x
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which we now regard as continuous. In terms of this distribution, we introduce the

marginal distribution ĝ(ω, τ, x),

ĝ(ω, τ, x) =

∫ 2π

0

F (θ, ω, τ, x, t)dθ. (3.5)

Here, note that since ω, τ and x for any oscillator are assumed to be constant in

time, the θ−integral of F is time independent even though F itself depends on time.

With Eq. (3.5), the quantity r in Eq. (3.2) becomes

r(x, t) =

∫∞
0

∫∞
−∞

∫ 2π

0
F (θ, ω, τ, x, t)eiθdθdωdτ∫∞

0

∫∞
−∞

∫ 2π

0
F (θ, ω, τ, x, t)dθdωdτ

=
1

ρ(x)

∫ ∞
0

∫ ∞
−∞

∫ 2π

0

F (θ, ω, τ, x, t)eiθdθdωdτ (3.6)

The overall system dynamics can be studied in terms of the evolution equation for

F (θ, ω, τ, x, t),

∂F

∂t
+

∂

∂θ

(
F{ω + Im[η(x, t− τ)e−iθ]}

)
= 0, (3.7)

where

η(x, t) =

∫
ρ(x′)K(x, x′)r(x′, t)dx′ (3.8)

is Eq. (3.4) in the continuum limit, and the integration in (3.8) is over the d-

dimensional spatial domain. Referring back to our previous analogy to kinetic theory

of a gas, we think of Eqs. (3.7) and (3.8) as a kinetic description roughly analogous

to the Boltzmann equation.

To proceed we wish to reduce our kinetic description (3.7) and (3.8) to a

PDE (partial differential equation) system analogous to the fluid equations of gas
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dynamics. We do this using the recent work of Ott and Antonsen (Refs. [53]-[54]).

We expand F in a Fourier series of the form

F (θ, ω, τ, x, t) =
ĝ(ω, τ, x)

2π

{
1 +

[
∞∑
n=1

fn(ω, τ, x, t)einθ + c.c.

]}
. (3.9)

As discussed and justified in Refs. [53] and [54], we seek a solution in the form

fn(ω, τ, x, t) = α̂(ω, x, t− τ)n. (3.10)

Equations (3.6) to (3.8) then yield

∂

∂t
α̂(ω, x, t− τ) + iωα̂(ω, x, t− τ)

+
1

2

[
η(x, t− τ)α̂2(ω, x, t− τ)− η∗(x, t− τ)

]
= 0,

(3.11)

η(x, t− τ) =

∫
ρ(x′)K(x, x′)r(x′, t− τ)dx′, (3.12)

r(x, t) =

∫
1

ρ(x)

∫ ∞
−∞

ĝ(ω, τ ′, x)α̂∗(ω, x, t− τ ′)dωdτ ′, (3.13)

where the star ∗ denotes complex conjugate, and τ ′ is written inside Eq. (3.13)

to emphasize its role as a dummy integration variable as compared with τ ’s in the

other equations.

In what follows, we study an illustrative case corresponding to

ĝ(ω, τ, x) = g(ω)h(τ)ρ0, (3.14)

K(x, x′) = kq(x− x′), (3.15)

where
∫∞
−∞ g(ω)dω =

∫∞
0
h(τ)dτ = 1. Equation (3.14) implies that the oscillator

frequencies, locations, and delay distributions are uncorrelated, and that the oscil-

lator density ρ0 is uniform. Equation (3.15) states that the strength of the coupling
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between oscillators at two points depends uniformly on their spatial separation. Fur-

ther, in (3.15) we take q(x) to be suitably normalized, so that the constant k may

be regarded as an overall coupling strength. With these assumptions, together with

the transformation t→ t+ τ in Eqs. (3.11) and (3.12), and rewriting τ ′ as τ in Eq.

(3.13), we obtain

∂

∂t
α̂(ω, x, t) + iωα̂(ω, x, t) +

k

2

[
η(x, t)α̂2(ω, x, t)− η∗(x, t)

]
= 0, (3.16)

η(x, t) =

∫
ρ0q(x− x′)r(x′, t)dx′, (3.17)

r(x, t) =

∫ [∫ ∞
−∞

g(ω)α̂∗(ω, x, t− τ)dω

]
h(τ)dτ. (3.18)

In order to reveal generic expected behavior, we now further specify particular con-

venient choices for the frequency distribution, g(ω), the response time distribution,

h(τ), and the spatial interaction kernel, q(x).

We assume a Lorentzian form for g(ω),

g(ω) =
∆/π

(ω − ω0)2 + ∆2

=
1

2πi

{
1

ω − ω0 − i∆
− 1

ω − ω0 + i∆

}
. (3.19)

Assuming α̂ is analytic in ω, we close the ω−integration path in (3.18) with a large

semi-circle of radius R → ∞ in the lower half complex ω−plane. Thus we obtain

from the pole of g(ω) at ω = ω0 − i∆ [see Eq. (3.19)],

r(x, t) =

∫
α∗(x, t− τ)h(τ)dτ, (3.20)

where α(x, t) = α̂(ω0− i∆, x, t), and we have assumed (Ref. [53]) that, as Im(ω)→

−∞, α̂(ω, x, t) is sufficiently well-behaved that the contribution from the integration
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over the large semicircle approaches zero as R → ∞. Setting ω = ω0 − i∆ in Eq.

(3.16) we obtain the following equation for the time evolution of α(x, t),

∂

∂t
α(x, t) + (∆ + iω0)α(x, t) +

k

2

[
η(x, t)α2(x, t)− η∗(x, t)

]
= 0. (3.21)

Our assumed form for the response time distribution h(τ) is given in Chapter

[?] (also Ref. [31]),

hn(τ) = Anτ
ne−βnτ , (3.22)

where An and βn are defined by
∫∞

0
h(τ)dτ = 1 and

∫∞
0
τh(τ)dτ = T . Noting the

convolution form of Eq. (3.20), we can re-express (3.20) as

(
T

n+ 1

∂

∂t
+ 1

)n+1

r(x, t) = α∗(x, t). (3.23)

For the interaction kernel, we choose q(x) to be the solution to the problem,

(
∇2 − 1

L2

)
q(x) = − 1

L2
δ(x). (3.24)

For example, for an unbounded domain with boundary conditions q(x) → 0 as

|x| → ∞, we obtain

q(x) =



1
2L

exp
(
− |x|

L

)
for d = 1,

1
2πL2K0

(
|x|
L

)
for d = 2,

1
4π|x|L2 exp

(
− |x|

L

)
for d = 3,

(3.25)

where K0(|x|/L) is a zero order Bessel function of imaginary argument. Using Eq.

(3.24), Eq. (3.17) can be rewritten by acting on it with the operator (∇2 − 1
L2 ),
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giving

∇2η(x, t)− 1

L2
η(x, t) = − 1

L2
ρ0r(x, t) (3.26)

Thus we obtain a closed system of three PDE’s in the independent variables x

and t given by Eq. (3.21) for α(x, t), Eq. (3.23) for r(x, t), and Eq. (3.26) for η(x, t).

In the rest of this chapter we study solutions of these equations in one- and two-

dimensional domains of size D with periodic boundary conditions. The parameters

of this system are

∆, ω0, k, L, T,D, ρ0, n.

By suitable normalization we can remove three of these parameters. We will do this

by redefining η and k to absorb ρ0 and by normalizing time to ∆−1 and distance

to L. This can also be viewed as using our original parameter set with the choices

∆ = 1, L = 1, ρ0 = 1. In either case, our normalized PDE description becomes

∂

∂t
α(x, t) + (1 + iω0)α(x, t) +

k

2

[
η(x, t)α2(x, t)− η∗(x, t)

]
= 0, (3.27)(

T

n+ 1

∂

∂t
+ 1

)n+1

r(x, t) = α∗(x, t), (3.28)

(∇2 − 1)η(x, t) = −r(x, t). (3.29)

In addition, in what follows we will only consider n = 0 corresponding to h(τ) =

T−1 exp(−τ/T ). Thus, our reduced parameter set is

ω0, k, T,D. (3.30)

Before turning to the study of Eqs. (3.27)-(3.29), we briefly comment on the

analogy of the derivation of our evolution equations (3.27)-(3.29) to the derivation

of the equations of gas dynamics from Boltzmann’s equation. Substituting (3.10)
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into (3.9) and summing the geometric series (|α̂| < 1 is assumed for convergence),

we obtain

F (θ, ω, x, τ, t) =
ĝ(ω, x, τ)

2π

(
1− |α̂|2

1 + |α̂|2 − 2|α̂| cos(θ − ψ)

)
, (3.31)

where α̂ = |α̂| exp(−iψ). It is shown in Refs. [53] and [54] that, under very general

conditions, the solution to our Eq. (3.7) relaxes to this form. In gas dynamics, the

solution to Boltzmann’s equation, via the Chapman-Enskog expansion (Ref. [9]), is

assumed to approximately relax to a local Maxwellian distribution whose velocity-

space width is controlled by the temperature, and whose velocity-space maximum

is located at the fluid velocity. In analogy with this situation, Eq. (3.31) is peaked

in θ (analogous to velocity space) at the location θ = ψ (analogous to the fluid

velocity), and the width of this peak is controlled by |α̂| (analogous to temperature)

with F becoming a delta function in θ as |α̂| → 1 (analogous to temperature → 0).

In contrast to the derivation of gas dynamics from the Boltzmann equation, our

relaxation to (3.31) is due to the phase mixing of many oscillators with different

natural frequencies, whereas relaxation to a local Maxwellian in gas dynamics is

due to chaos in the collisional dynamics of interacting particles. Another difference

is that (3.31) is an exact, rigorous result (as shown in Refs. [54] and [55]), while

relaxation to a local Maxwellian in the derivation of gas dynamics is an asymptotic

result in the ratio of the mean free path (and mean free time) to the macroscopic

length (and time) scale.
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3.3 Numerical studies and discussions

3.3.1 1D propagating fronts, “bridge” and “hole” patterns

The simplest solutions of our system, Eqs. (3.27)-(3.29), are the homogeneous

incoherent state solution (r = 0 everywhere) and the homogeneous coherent state

solution (r = r0e
iΩt where r0 and Ω are real constants). As shown in Refs. [69, 10]

and Chapter 2 (also Ref. [31]) for the case of globally coupled oscillators [corre-

sponding to ∇2 → 0 in Eq. (3.29)], a distribution of interaction time-delays induces

bistability and hysteretic behaviors. Figure 3.1 shows an example of the hysteresis

loop in the |r| − k plane for spatially homogeneous states with ω0 = 5, T = 1, which

is obtained by solving Eqs. (3.27) to (3.29) with η = r for the coherent solution

r = r0e
iΩt.

We first consider a one-dimensional version of our system, Eqs. (3.27)-(3.29),

for a k value within the bistable region, k = 12, and examine the evolution resulting

from several initialized configurations with different spatial regions in the homoge-

neous incoherent and coherent state solutions. Results are shown in Fig. 3.2. Note

that the final state is either coherent or incoherent depending on how large the initial

incoherent region is. Thus, there appears to be a critical initial size of the incoherent

region beyond which the incoherent region takes over. Furthermore, from Fig. 3.2,

we see that the evolutionary process leading to this final state is by propagation of

fronts separating coherent and incoherent regions, and that these fronts propagate

at an approximately constant speed. In addition to this initial example, we find

a variety of other one-dimensional spatio-temporal behaviors to be reported in the
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following.

8 10 12 14 16
0

0.5

1

k

|r
|

Figure 3.1: Hysteresis loop for ω0 = 5, T = 1. The upper and lower branches

correspond to stable coherent and incoherent states.

Next, we consider the dynamics as a function of the coupling strength k.

Recall from Fig. 3.1 that there is a hysteretic region of coexisting coherent and

incoherent states for the region k′c < k < kc where k′c = 10 and kc = 14.5. Figure 3.3

shows the time evolution of |r(x, t)| as a function of k. When the state is initialized

with half (25 ≤ x ≤ 75) the domain in the homogeneous incoherent state and the

remaining half in the homogeneous coherent state, it is seen that if k is sufficiently

close to k′c, then the incoherent region engulfs the coherent region, while if k is

sufficiently greater than kc, the homogeneous coherent solution takes over, and by

comparing Figs. 3.3(a) to 3.3(e), we find that the propagation velocity decreases

as k is increased toward kc. As k increases past k ∼ 12, the simple propagating

front phenomenon seen in Figs. 3.2 and 3.3(a)-3.3(c) is replaced by more complex

behavior. For example, in Fig. 3.3(d) we observe the formation of a “bridge” at

k = 13 (< kc), i.e., a narrow stable coherent region sandwiched between two broad
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Figure 3.2: |r(x, t)| for, (a) an initial configuration with a small part of the one-

dimensional spatial domain in the incoherent state (blue) and a large part in the

coherent state (orange), (b) a larger part of the spatial domain is initially in the

incoherent state than that in (a), and (c) a still larger initial incoherent region.

(ω0 = 5, T = 1, D = 100, k = 12).

incoherent regions. This solution is apparently a long-time stable state. It develops

as the two propagating fronts collapsing the coherent regions slow to a halt as they

approach each other. We note further that the bridge has an amplitude which is

smaller than that of the stable homogeneous solution, and the oscillation frequency

is different as well (graphs not shown). Further, this bridge type solution persists

for k > kc, and can give rise to further intriguing dynamics like multiple bridges, as

shown in Figs. 3.3(g), and even more vigorous behaviors of merging and re-creation

of plateaus of coherent regions and bridges, as seen in Fig. 3.3(h). Comparing

Fig. 3.3(f) to 3.3(h), it is notable that a wide variety of evolutionary behaviors

occurs within a relatively small range in k, including the formation of single and

multiple bridges, as well as collapse and re-creation of plateaus. Figure 3.4 studies

the glassy-like behavior related to that seen in Fig. 3.3(h) at a slightly different set of
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system parameters. The figure shows plateaus of coherent regions (orange triangles

in Figs. 3.4(a) and 3.4(b)) and bridge-like patterns (yellow stripes), connected

through dynamical creation, merging and re-creation of such structures until the

system eventually evolves into the homogeneous coherent state. Figure 3.4(c) shows

the phase evolution inside the plateau region (orange triangle) of Fig. 3.4(a) centered

at t ≈ 420, x ≈ 50. Figure 3.4(d) shows the phase evolution corresponding to the

four-bridge-structure between the top of Fig. 3.4(a) and the bottom of Fig. 3.4(b)

(700 ≤ t ≤ 1300). We note that within a plateau, the whole region oscillates roughly

homogeneously (see the nearly parallel evolving fronts in Fig. 3.4(c)), and each

bridge pattern functions as a sink of incoming waves (see the zig-zag-like pattern

in Fig. 3.4(d)). Further important dynamical characteristics during this vigorous

glassy-like transition state are revealed in Figs. 3.4(e) and 3.4(f), which show |r| and

θ (where r = |r|eiθ) respectively at t = 148. We see that there are multiple hole-like

patterns (deep dips in |r| in Fig. 3.4(e)), at which the phase changes sharply, (see

Fig. 3.4(f), and note that the changes in phase for the outer two holes appear to be

virtually discontinuous, as discussed in more detail shortly). In comparison, for the

multiple-bridge region at t = 1200, Figs. 3.4(g) and 3.4(h) show that both |r| and

θ change smoothly in space.

Figure 3.5 shows the dynamical characteristics associated with the hole-like

patterns in another setting where these patterns dominate and are not interspersed

with other spatial features (like bridges and plateaus). The figure corresponds to

the same parameters as those in Fig. 3.3(h), but initialized with different incoherent

and coherent regions. Compared with Fig. 3.3(h), there is a relatively short time
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for the system to stay in the plateau-like regions, and instead of settling in the

homogeneous coherent state solution as in Fig. 3.3(h), four distinct hole-like patterns

emerge (black lines starting at t ≈ 130 in Fig. 3.5(a)). As time evolves, the two

inner holes move toward each other and annihilate, while the outer two continue to

evolve, apparently becoming stationary. Note also that for the two merging holes,

they approach each other at a faster speed when they are closer to each other.

Examination of the phase evolution of the system (Figs. 3.5(b) and 3.5(e)) suggests

the center of each hole act as a source of plane waves, in contrast with the bridge

solution which acts as a sink (see Fig. 3.4(d)). For the inner two moving holes,

while each is characterized by a dip in magnitude (see Fig. 3.5(c) at t = 192), the

dips decrease in magnitude as the two holes approach each other, with the relative

phase difference on the two sides of the hole center close to being continuous (see

Fig.3.5(d)). However, if the holes are stationary, e.g., the outer two holes in Figs.

3.5(c) and 3.5(f), each dip in |r| is close to zero, with the relative phase difference on

the two sides being an essentially discontinuous slip of ±3π. A further observation

in the case of two stationary holes is that there is a bump in |r| half-way between

them corresponding to the location at which incoming waves emitted from the holes

converge (see x = 50 in Fig. 3.5(f)).

In fact, when k ≈ kc, the hole-like pattern is a feature that shows up readily

when two plane waves with a relative phase difference of ±π (or odd-multiples of

them) collide. An example is studied in Fig. 3.6 where two waves of relative phase

difference π collide giving rise to a hole pattern. This observation is consistent with

the relative phase differences observed at the two outer holes studied in Fig. 3.5(g).
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Furthermore, although the hole pattern seems to arise only under relatively specific

conditions, it is found to be pretty stable with respect to changes in parameters

or small perturbations once it is formed. Finally, as shown in Fig. 3.7, we note

that the hole core occupies a finite width and so is not a point singularity when

T 6= 0. This will be shown to have a close correspondence with the spiral wave in

our two-dimensional study (sec. 3.3.3).

It is further interesting to note some similarity between our observations in

the region k ≈ kc and the intermittency regime of the complex Ginzburg-Landau

equation (CGLE) (See for example, section III of Ref. [6], and section 2.5 of Ref.

[46]). There, the CGLE displays similar glassy-like transition patterns characterized

by large plateaus of coherent regions with hole-like patterns being continuously

created and destroyed. However, there are also differences between the two systems.

For example, the CGLE does not seem to have a close counterpart to the bridge

pattern observed in our system, while more intricate dynamics of hole creation and

destruction leading to zigzagging holes and defect chaos have not been observed in

our study.

3.3.2 2D propagating fronts and “bridge” patterns

Figures 3.8 and 3.9 show the d = 2 counterparts to the d = 1 propagating fronts

and associated features. Similar to what was previously done for d = 1, half of the

system is initialized in the homogeneous incoherent state and the remaining half in

the homogeneous coherent state, and they are divided by a sinusoidally wiggling

boundary (Figs. 3.8(a) and 3.9(a)). Analogous to the d = 1 case, for d = 2,

34



the homogeneous incoherent state and homogeneous coherent state take over when

k is sufficiently small or large compared to kc respectively. The most interesting

behaviors again take place when k ≈ kc. With k = 14.4 < kc, Fig. 3.8 shows the

development of a stable bridge solution. In contrast, with k = 14.8 > kc, Fig. 3.9

shows a surprisingly rich spatio-temporal pattern evolution. As in Fig. 3.8, the

originally coherent half apparently starts to shrink into a bridge (see Fig. 3.9(b));

however, as time progresses further, we see that coherent regions arise out of the

originally incoherent regions to form new features (see also Figs. 3.3(g) and 3.3(h)

in the d = 1 case), and these new features interact in a nontrivial two dimensional

manner. For example, when two neighboring coherent regions get close to each

other, they can form bonds and merge into each other: see the connections formed

between bridge-like structures from t = 83 to t = 98; also see the coherent spot

formed at the upper left hand corner at t = 245 and see how it merges into the

bridge on its right as time progresses to t = 400. We also observe that, during the

process of merger, bridge-like structures may also temporarily separate and then

re-connect: see the connecting bridge at the bottom right hand corner from t = 138

to t = 170. A further notable feature is the coherent spot on the top left hand

corner at t = 561 (a target pattern in the phase plot as shown in the next section),

which survives from t = 561 to the end of the numerical run. In the above reported

numerical experiments we observe that both incoherent and coherent regions coexist

for a long time. We do not know, however, whether a coherent or incoherent state

ultimately will take over the whole domain at longer time.
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3.3.3 2D Spots, spiral waves and target patterns

Figure 3.10 shows the time evolution of both |r(x, t)| and sin[θ(x, t)] [ where

r(x, t) = |r(x, t)| exp[iθ(x, t)], and x = (x, y) in 2D ] when the system is initialized

with a small random initial condition at each grid point, and the coupling strength

is k = 15.5 (> kc = 14.5). As expected from our previous studies, when k >

kc, coherent regions (|r| ≈ 1) emerge from the initial incoherent state. Further,

the phase plots show some distinct target-like patterns of nested closed surfaces of

constant phase (see t = 40 and t = 217). As time progresses, coherent regions

(red in the |r| plots) become dominant and only small islands of incoherent regions

remain (blue in the |r| plots). Similar to our previous observation of propagating

fronts when k > kc (compare Figs. 3.9(g) and 3.9(h)), coherent regions can form

in an originally incoherent region (|r| � 1). For example, see the figures from

t = 139 to t = 161, and especially from t = 195 to t = 225, where we see coherent

regions (red/yellow) appearing and growing in the interior of incoherent (blue) blob,

eventually destroying it. As can be inferred by comparing the |r| and sin(θ) plots,

small blue, dot-like features in the |r| plots represent phase defects in the complex

amplitude (i.e., counter clockwise encirclement of such a feature leads to a phase

change of either +2π or −2π), and these blue dot features are commonly seen as

spiral wave type patterns in the phase plots. When, as in the previously noted

plots from t = 195 to 225, coherent regions take over from an incoherent patch, we

also note that a number of phase defects result (which must be formed in opposite-

spiral-parity pairs due to the conservation of topological charge); see t = 250. The
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isolated phase defects subsequently wander about, and some of them are seen to

annihilate with others of opposite parity (see the two defects closest to the bottom

of the picture at t = 267 and their evolution up to t = 293), or sometimes they

are absorbed into an incoherent region (e.g., compare the |r| plots at t = 195 and

t = 217). Lastly, regarding the speed of motion of spiral patterns, we note that

similar to the observation in Fig. 3.5(a), when oppositely charged spirals get close

enough to each other, their speed of approach becomes distinctively faster till they

annihilate each other.

In studies of the CGLE, the hole pattern and spiral wave pattern are analogous

phenomena occurring in d = 1 and d = 2, respectively. Indeed, the hole pattern and

spiral wave pattern exhibit similar characteristics in our study. Both features are

stable with respect to small changes in parameters, and exhibit similar dynamical

characteristics of approach and annihilation as described above. In addition, Fig.

3.11 shows, in parallel with Fig. 3.7, that the central core of the spiral wave pattern

occupies a finite area when T 6= 0. This is similar to the chimera-centered spirals

noted in Refs. [35, 29].

3.3.4 2D pulsating pattern

Another class of local coherent structures supported in the d = 2 case is shown

in Figs. 3.12 and 3.13, which shows a localized pulsating spot in an incoherent

background. It is interesting to notice that oscillations of the magnitude and phase

(which show up in the form of target patterns) of r(x, t) are not the same, with that

of the phase oscillation being more irregular and more than an order of magnitude
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faster than the amplitude oscillation (Figs. 3.12(d) and 3.13(g)). It is interesting to

note that for the CGLE, stable pulsating patterns come only with the addition of a

quintic term (see Ref. [14], and the later work Ref. [4] and references therein).

3.4 Summary and Concluding Remarks

In this chapter, we have studied the spatio-temporal dynamics of spatially

coupled oscillator systems where the oscillators have a heterogeneous distribution

of response times. Using the results of Refs. [53]-[55], we have derived a macro-

scopic PDE description for this situation [Eqs. (3.27)-(3.29)]. The resulting macro-

scopic dynamics are found to exhibit a wide variety of pattern formation behav-

iors. We characterized the possible behaviors roughly according to the hysteresis

loop corresponding to bistable homogeneous incoherent and homogeneous coher-

ent state solutions. Numerical studies show that the system behaviors for k suffi-

ciently below/above the bistable k-range are simple in that the homogeneous inco-

herent/coherent state eventually takes over the entire domain. In contrast, for k

in or near the bistable range the system can exhibit a variety of interesting spatio-

temporal phenomena. These include propagating fronts, bridge patterns, hole pat-

terns (d = 1), spiral waves (d = 2), spots, target patterns, pulsating patterns, etc.

Finally, it is interesting to consider the role of time delay in contributing to

the features that we observed. If there is no time delay (i.e., T = 0), there is no

homogeneous bistable behavior as observed in Fig. 3.1, and the transition from the

homogeneous incoherent state to the homogeneous coherent state is supercritical

and takes place at kc = 2∆. In this case, many of the interesting spatio-temporal
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phenomena that we have found for T > 0 are absent. For example, when T = 0,

the intricate 1D glassy state transitions were not observed, and the system typically

evolves relatively rapidly into either homogeneous incoherent or homogeneous coher-

ent state solutions. The 2D waves arisen from topological defects are still present;

however, for T = 0 the system will be similar to the case of zero nonlinear dispersion

in Ref. [62], where the incoherent core remains a point defect but not a finite area

as observed when T 6= 0. Thus finite response time introduces additional dynamics,

leading to the large variety of behaviors observed.
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Figure 3.3: A comparison of the time evolutions of |r(x, t)| for different values of k

where r is initialized with half of the interval at the coherent state (25 ≤ x ≤ 75)

and half at the incoherent state. Notice the difference in time scales of Fig. 3.3(g)

and Fig. 3.3(h) from other figures (ω0 = 5, T = 1, D = 100; periodic boundary

conditions are imposed).
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Figure 3.4: (a,b) Glassy state of transition, formation of plateaus of coherent regions

and hole patterns, and final evolution into the homogeneous coherent state. (c,d)

Phase evolution in the plateau and multiple-bridge regions. (e,f) |r(x, 148)| and

θ(x, 148). (g,h) |r(x, 1200)| and θ(x, 1200) (ω0 = 4, T = 1, D = 100, k = 10.3 (>

kc = 10); initial condition: r is given by the homogeneous coherent state solutions

for 25 ≤ x ≤ 75, and r = 0 otherwise; periodic boundary conditions are imposed).
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Figure 3.5: Formation and dynamical evolution of hole patterns. (a) |r(x, t)|. (b-d)

Close-up views of four hole patterns with two inner traveling holes. (e-g) Close-up

views of two stationary hole patterns. (ω0 = 5, T = 1, D = 100, k = 14.8; initial

condition: r is given by the homogeneous coherent state solutions for 0 ≤ x ≤ 41

and 59 ≤ x ≤ 100, and r = 0 otherwise; periodic boundary conditions are imposed).
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Figure 3.6: An example of the hole solution by collision of two plane wave solutions.

The two waves meet at x = 50 with a π phase difference. (ω0 = 5, T = 1, D =

100, k = 14.8 and periodic boundary conditions). The initial condition corresponds

to a discontinuous r given by a right traveling plane wave solution with m = 3

(where the wave number is 2mπ/D) for 0 ≤ x ≤ 50 and a left traveling plane wave

solution with m = 4 for 50 < x ≤ 100. Correspondingly, we observe from (d) that

[θ(0, 200)− θ(100, 200)] = 2π.
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Figure 3.7: Finite width of (one-dimensional) hole core (ω0 = 5, T = 1, D =

33.3, k = 14.8).
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Figure 3.8: Time evolution of |r(x, t)| of a d = 2 configuration initialized with half

of the region at the incoherent state and half at the coherent state divided by a

wiggled boundary with k = 14.4 (< kc = 14.5) (ω0 = 5, T = 1, D = 100; periodic

boundary conditions are imposed).
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Figure 3.9: Time evolution of |r(x, t)| from an initial configuration (a) with half

of the region at the incoherent state and half at the coherent state divided by a

wiggled boundary with k = 14.8 (> kc = 14.5). A comparison with Fig. 3.8 shows

a much richer spatio-temporal dynamical pattern (ω0 = 5, T = 1, D = 100; periodic

boundary conditions are imposed).
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Figure 3.9: (Cont’d) Time evolution of |r(x, t)| from an initial configuration (a) with

half of the region at the incoherent state and half at the coherent state divided by a

wiggled boundary with k = 14.8 (> kc = 14.5). A comparison with Fig. 3.8 shows

a much richer spatio-temporal dynamical pattern (ω0 = 5, T = 1, D = 100; periodic

boundary conditions are imposed).
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|r(x, t)| exp[iθ(x, t)]) from random initial condition, (a) and (b) (ω0 = 5, T = 1, D =

100, k = 15.5 (> kc = 14.5); periodic boundary conditions are imposed).
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Figure 3.10: (Cont’d)Time evolution of |r(x, t)| and sin[θ(x, t)] (where r(x, t) =

|r(x, t)| exp[iθ(x, t)]) from random initial condition, (a) and (b) (ω0 = 5, T = 1, D =

100, k = 15.5 (> kc = 14.5); periodic boundary conditions are imposed).
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Figure 3.11: Finite area of (two-dimensional) spiral cores (ω0 = 5, T = 1, D =

20, k = 15).
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of |r| at the center of the pulse; compare with Fig. 3.13 for oscillations in phase

(ω0 = 5, T = 1, D = 100, k = 14.52; periodic boundary conditions are imposed).
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Figure 3.13: Pulsating pattern: phase variation. Figures (a) to (f) show the rapid

time variations of the phase. Figure (g) shows the time variation of sin(θ) at the

center of the pulse (Parameters are as indicated in Fig. 3.12).
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Chapter 4

Phase and amplitude dynamics in systems

of coupled oscillators: growth heterogene-

ity, nonlinear frequency shifts, and locked

states

4.1 Introduction

In the previous chapters, we focus our attention on modeling by the phase

oscillator description. In the phase oscillator description the dynamical units are as-

sumed to be oscillatory with fixed amplitude. Thus, the state of each individual unit

can be specified solely by a phase angle θ, and the evolution of oscillator i is taken

to be determined by its present state θi and by the states θj of the other oscillators

(j 6= i). The simplest model of this type was originally put forward by Kuramoto

in 1975 and has proven to be an extremely useful paradigm for understanding this

general type of system [26, 27, 3, 64, 52]. In addition, the Kuramoto model has also
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served as a basis for formulating related phase oscillator models appropriate to a

wide variety of situations (e.g., see Refs. [53, 54, 55]). The basic question addressed

by the Kuramoto model is the competition between the synchronizing effect of cou-

pling and the desynchronizing effect of different natural frequencies of the individual

oscillators. The principal result [26, 27, 3, 64, 52, 53, 54, 55] coming from the solu-

tion of the Kuramoto model is that, in the limit of a large number of oscillators, this

competition is resolved by a transition, whereby there is a critical coupling strength

below which the oscillations of individual oscillators occur with random phase and

there is no macroscopic population-wide oscillation, while above which oscillators

begin to develop phase coherence, and globally-averaged population-wide oscillation

emerges.

A drawback of the phase oscillator description is that, by its definition, it

excludes the effect of amplitude dynamics and the possible coupling of amplitude

dynamics with phase dynamics. Another useful oscillator model incorporating am-

plitude dynamics is based on the normal form of an isolated system near a Hopf

bifurcation,

dz

dt
= (α + iω)z − (β + iγ)|z|2z, (4.1)

also referred to as a Landau-Stuart oscillator [57]. In (4.1) z is complex with |z|

and the angle of z representing the amplitude and phase of the oscillator. The real

parameter α is the linear amplitude growth rate of the oscillations, with α > 0 for

growth (and α < 0 for damping). The Hopf bifurcation occurs as α passes through
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zero. The other real parameters ω, β, γ respectively characterize the small-amplitude

natural frequency of the oscillator, and the finite amplitude nonlinear shifts of the

small amplitude growth rate and frequency. The bifurcation is supercritical if β > 0

(the nonlinear term saturates growth) and subcritical (hysteretic) if β < 0 (the

nonlinear term enhances growth). Here we will only deal with the supercritical case

[in the subcritical case, if α > 0, orbits typically go far from z = 0, thus invalidating

the expansion resulting in (4.1)]. For α < 0, Eq. (4.1) has as its stable solution

z = 0. For α > 0, z = 0 is unstable, and (4.1) results in an attracting limit cycle

attractor,

z =

√
α

β
exp

[
i

(
ω − γα

β

)
t+ θ0

]
, (4.2)

which traces a circular orbit about the origin of the complex z-plane. In general, the

normal form oscillator parameters (α, ω, β, γ) derived from the physical system under

study will depend on some set, p = (p(1), p(2), · · · , p(n))T , of physical parameters for

that system. That is, [ω, α, β, γ] = [ω(p), α(p), β(p), γ(p)].

We are interested in the situation, also studied in Refs. [61, 16, 40, 37, 38,

11, 56], where many oscillators of the form of Eq. (4.1) are coupled together and

where each such oscillator (indexed by a subscript i = 1, 2, · · · , N � 1) may have a

different parameter set. That is, if oscillator i has parameter set pi, then

[ωi, αi, βi, γi] = [ω(pi), α(pi), β(pi), γ(pi)]. (4.3)

If the value of p is regarded as assigned randomly from oscillator to oscillator ac-
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cording to some probability distribution function (pdf), then that will induce a cor-

responding probability distribution function (pdf) Ĝ of the parameters [ω, α, β, γ],

such that

Ĝ(ω, α, β, γ)dωdαdβdγ (4.4)

represents the fraction of oscillators with parameters ω, α, β, γ in the range ω ∈

[ω, ω + dω], α ∈ [α, α + dα], β ∈ [β, β + dβ], γ ∈ [γ, γ + dγ], and applicable in the

limit N →∞, where N is the number of oscillators.

Considering this general problem, one would like to know how the system

behavior depends on the distribution function Ĝ(ω, α, β, γ). However, as Ĝ is a

distribution in the four variables ω, α, β, γ, this is clearly too big a problem to address

in full generality. Here we will pursue a more modest program. In particular, the

situation we treat is motivated by the experimental work in Ref. [67], which suggests

the following questions: (i) what is the effect of spread in α allowing the simultaneous

presence of dead (α < 0) and active (α > 0) oscillators in the uncoupled state, and

(ii) what is the effect of a nonlinear frequency shift γ (for simplicity, we treat the

oscillators as all having the same γ), and iii) how we can understand a certain type

of simple nonlinear behavior often observed in these systems when the coupling

strength between oscillators is large?

4.2 Formulation, background and outline

We assume β and γ are the same for all oscillators, βi = β̄ and γi = γ̄.

Furthermore, we scale β̄ to one by a proper normalization of zi (zi → zi/
√
β̄). Thus
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Ĝ(ω, α, β, γ) = G(ω, α)δ(β − 1)δ(γ − γ̄). (4.5)

If ω and α are uncorrelated in their variation from oscillator to oscillator, then G is

of the form

G(ω, α) = g(ω)h(α). (4.6)

In what follows we assume that Eq. (4.6) holds 1, and that g(ω) is symmetric and

monotonically decreasing with respect to its maximum value, which we can take

to be located at ω = 0 (if the maximum of g(ω) occurred at some non-zero value,

ω = ω̄, then the location of the maximum can be shifted to zero by the change of

variables z = z′eiω̄t, ω′ = ω − ω̄).

For (4.1) with βi = 1, γi = γ̄ and (4.6) specifying our ensemble of uncoupled

oscillators, we now proceed to globally couple these ensemble members through a

mean field, 〈z〉,

dzi
dt

= (αi + iωi)zi − (1 + iγ̄)|zi|2zi + Γ〈z〉, (4.7a)

〈z〉 =
1

N

N∑
j=1

zj, (4.7b)

1In general, however, we note that ω and α can be expected to have correlations; e.g., even

if the physical parameter vector p has dimension n ≥ 2 and the variation of components are

uncorrelated, we can still expect that the particular functional dependences, Eq. (4.3), of the

oscillator parameters on the physical parameters will induce correlations between ω and α.
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where the parameter Γ measures the strength of the coupling and is assumed real

and positive, Γ ≥ 0. Letting angle brackets denote averaging over all oscillators,

we will sometimes refer to 〈z〉 as the “order parameter” because whether or not

there is global collective behavior for N → ∞ corresponds to whether |〈z〉| > 0 or

〈z〉 = 0. See Refs. [61, 16, 40, 37, 38, 11, 56] for previous related work on large

coupled systems of Landau-Stuart equations. Note that in many of these works

[61, 16, 40, 37, 38] the coupling term is written as K(〈z〉− zi) in place of Γ〈z〉. This

choice is simply related to ours by the transformation αi = α̂i − K, Γ = K. We

prefer the parametrization in Eq. (4.7) because one of our principal motivations will

be experiments [67] where it can be plausibly argued that quantities analogous to

Γ and the average value of αi (denoted ᾱ) can be varied essentially independently.

In addition, in Refs. [61, 16, 40, 37, 38] it was considered that α̂i was the same

positive constant for all i, α̂i = α̂, and furthermore that γ̄ = 0. Parameter and time

normalizations were then chosen to transform α̂ to 1, yielding, in place of (4.7)

dzi
dt

= (iωi + 1− |zi|2)zi +K(〈z〉 − zi). (4.8)

We, however, will be interested in the effect of a spread in αi with the possibility of

the simultaneous occurrence of positive and negative αi for different i, and also in

the effects of nonlinear frequency shift γ̄ 6= 0.

A principal motivation for this study is the recent paper, Ref. [67], which

describes experiments in which many (∼ 104/cm3) specially designed small porous

particles are continuously and rapidly mixed in a catalyst-free Belousov-Zhabotinsky
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reaction mixture. The catalyst for the reaction is immobilized on the small porous

particles, each of which can potentially serve as an effective chemical oscillator.

Oscillations in the chemical states of the particles are visualized as the color of the

particles oscillates between red and blue. The particle density serves as a parameter

analogous to our coupling constant Γ, while regulation of the stirring rate effectively

provides a control analogous to control of the mean oscillator growth rate,

ᾱ =

∫
αh(α)dα. (4.9)

Because the process by which the particles are prepared is not perfect, it is expected

that there will be substantial spread in their parameters, and in particular in ω and

α. These spreads are of particular interest because: (i) spread of oscillator frequen-

cies is the essential feature leading to the transition from incoherently oscillating

units to macroscopic oscillation in the Kuramoto model, and (ii) the parameter α

determines whether individual particles, when uncoupled, oscillate (α > 0) or do

not oscillate (α < 0). In the case α < 0 the attractor for Eq. (4.1) is the fixed point

z = 0, often referred to as “oscillator death”. With reference to point (ii), because

of the spread in α, in some range of stirring rates, we can expect a situation like

that shown schematically in Fig. 4.1, which depicts an uncoupled oscillator growth

rate pdf h(α) yielding substantial fractions of the particles in the oscillating and

dead states. As ᾱ increases from very negative values, (−ᾱ) � δα) (analogous to

low stirring rates in the experiment), to very positive values, ᾱ � δα (analogous

to high stirring rates), there is a continuous transition from predominantly dead to
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predominantly oscillatory dynamics of the uncoupled oscillators. Another notable

feature of these experiments is that the collective coherent frequency of oscillation

exhibits a marked dependence on the oscillation amplitude through its dependence

on the density of the porous particles at fixed stirring rate (e.g., the third panels

in Fig. 2(a) and 2(b) of Ref. [67]). This is a strong indication that the nonlinear

frequency shift γ̄ plays a significant role. It is notable that Ref. [67] developed a set

of chemical rate equations that, when solved numerically, yield good agreement with

the experiments. While this is a singular achievement, we are interested in obtaining

additional understanding of the processes involved and in determining its genericity.

To the extent that qualitative behavior of our Landau-Stuart model mimics behav-

ior observed in the particular experiment in Ref. [67], the typicality of the observed

phenomena is strongly implied. Furthermore, if the above agreement holds, then

any analytical results obtained for the Landau-Stuart model may lead to further

understanding of these experimental phenomena. Thus it is our desire to employ

the generic coupled Landau-Stuart model, Eqs. (4.7), to explore and understand the

nature of the interplay between frequency spread, growth rate spread and nonlinear

frequency shift. In this connection, it is worth noting that our work may be applica-

ble to other experiments. Indeed, as described in Ref. [67], the chemical experiment

was, at least partly, intended to mimic observed oscillator quorum-sensing in yeast

populations [13, 41]. In addition, the basic stability analysis technique used here

(Sect. 4.3) is similar to that originally introduced in Refs. [37] and [38] can also

be applied to other amplitude / phase oscillator systems, such as the laser system

considered in Ref. [73].
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Figure 4.1: Schematics of h(α).

We now give a brief review of the most important papers [61, 16, 40, 37, 38,

11, 56] related to our work. References [61, 16, 40, 37, 38] considered Eq. (4.8) (all

oscillators have identical αi and γi = 0) and examined the behavior as a function of

the coupling constant K and the spread σ in the oscillator frequencies. Shiino and

Frankowicz [61] by a combination of numerical experiments and analysis obtain an

approximate K−σ plane phase diagram. References [16, 40] examine the transition

between “amplitude death” 2 (i.e., zi = 0 for all oscillators) and collective oscillation,

explicitly obtaining analytical results for the boundary in K − σ space separating

death and collective oscillation.

Matthews et al. [37, 38], in addition to presenting an extensive numerical ex-

ploration, also develop an analytical technique for handling the transition to globally

coherent oscillation from phase-incoherent individual oscillation with |zi| > 0 (as in

2In addition to the situation of many coupled Landau-Stuart equations, oscillator death occurs

very generally for many types of coupled oscillator situations, including coupling between only a

few oscillators (e.g., two). As an example of one of the many references on this topic, we note the

recent paper, Ref. [66], and references therein.
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the Kuramoto transition [27, 3, 64, 52, 53, 54]); thus this work was the first to

include analysis of the effect of amplitude dynamics on this type of transition. In

addition, another important result of Refs. [37, 38] was the numerical discovery that

near the boundary in parameter space where the transition to collective behavior

occurs, this collective behavior can be rather complex, including period doubling

cascades, chaos, quasiperiodicity and hysteresis. Further, sufficiently far above the

boundary it was found that steady oscillatory behavior prevails (as in the Kuramoto

model).

Reference [11] introduces a situation that the authors call “aging” in which

there are two populations, each described by an equation of the form of (4.7) (with

αi = α̂−K and Γ = K); the “old” population has α̂i = −α̂o < 0 (corresponding to

amplitude death at K = 0), and the “young” population has α̂i = α̂y > 0; ωi was

taken to be the same constant Ω for all old and young oscillators (see also [56] which

allows distinct old and young natural frequencies, ωi = Ωo and Ωy); and behavior

was investigated as a function of the ratio of the populations of old relative to young.

In the set up of Refs. [11, 56], due to the homogeneity of frequencies, the transition

problem reduces to the analysis of two coupled Landau-Stuart equations.

The rest of this chapter is organized as follows. Section 4.3 derives the charac-

teristic equation governing linear stability of perturbations from the 〈z〉 = 0 state.

Section 4.4 evaluates the characteristic equation for the case of a Lorentzian fre-

quency distribution, g(ω) = [π(1 +ω2)]−1. Section 4.5 evaluates the effect of spread

in α on linear stability in the case of Lorentzian g(ω) and no nonlinear frequency

shift (γ̄ = 0). Section 4.6 evaluates the effect of nonlinear frequency shift (γ̄ 6= 0) on

63



stability in the case of Lorentzian g(ω) and no spread in α. Section 4.7 uses the ex-

ample of a flat-top frequency distribution, g(ω) = U(1−|ω|)/2 (where U(•) denotes

the unit step function) to show that the qualitative behavior found in Secs. 4.5

and 4.6 is insensitive to the form of g(ω). Section 4.8 discusses behavior above the

instability threshold for cases when there is no spread in the nonlinear parameters

β and γ of (4.1) (as in Eq. (4.7)). Section 4.9 studies stability of the corresponding

nonlinear solutions in the limit of large coupling, Γ/Γc →∞, where Γc denotes the

critical value of Γ at which the 〈z〉 = 0 state becomes unstable. A primary issue ad-

dressed in Secs. 4.8 and 4.9 is the explanation of why a purely oscillatory state with

constant amplitude (referred to as the “locked state”) can always be observed for

the macroscopic solutions as Γ/Γc is increased. Conclusions and further discussions

are given in Sec. 4.10.

4.3 Linear stability of the 〈z〉 = 0 state

We consider Eqs. (4.7) in the limit N → ∞. In this case, there is a solution

corresponding to zero value of the order parameter 〈z〉. For 〈z〉 = 0, Eq. (4.7a) has

the solutions

zi = 0 for αi < 0, (4.10a)

zi =
√
αi exp{i[(ωi − γ̄αi)t+ θ0i]} for αi > 0. (4.10b)
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We express the order parameter 〈z〉 as

〈z〉 = 〈z〉− + 〈z〉+, (4.11a)

〈z〉− =
1

N

∑
i,αi<0

zi, (4.11b)

〈z〉+ =
1

N

∑
i,αi>0

zi, (4.11c)

That is, 〈z〉− and 〈z〉+ denote the contribution to the order parameter from oscilla-

tors with αi < 0 and αi > 0, respectively. Note that (4.10a) implies 〈z〉− = 0, while

(4.10b) implies 〈z〉+ = 0 if N → ∞ and the angles θ0i are uniformly distributed in

[0, 2π]. Thus, by (4.11a), we see that 〈z〉 = 0 is indeed a self-consistent solution

of the system (4.7) for N → ∞. We now ask whether this solution is stable to

small perturbations. If it is not, then the state 〈z〉 = 0 will not persist, and global

collective behavior will result. We denote the perturbation of the order parameter

by

〈δz〉 = 〈δz〉− + 〈δz〉+, (4.12a)

〈δz〉± =
1

N

∑
i,αi≷0

δzi, (4.12b)

where δzi is a perturbation from the unperturbed orbit dynamics given by Eqs.

(4.10).

Calculation of 〈δz〉−. Considering oscillator i for which αi < 0, and perturbing

Eq. (4.7a) about zi = 0, we obtain the linearized equation,
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dδzi
dt

= (αi + iωi)δzi + Γ〈δz〉. (4.13)

Assuming exponential time dependence of the orbit perturbations, δzi ∼ exp(st),

Eq. (4.13) yields

δzi =
Γ〈δz〉

(s+ |αi| − iω)
for αi < 0. (4.14)

Thus

〈δz〉− = Γ〈δz〉
∫ ∞
−∞

∫ 0

−∞

g(ω)h(α)

(s+ |α| − iω)
dαdω, (4.15)

where for N →∞ we have replaced the sum over i in (4.11b) by integration over ω

and α weighted by the pdf’s g(ω) and h(α) [Eq. (4.6)]. Note that the α integration

in (4.15) runs from α = −∞ to α = 0 and thus includes only those oscillators for

which α < 0.

Formulation for calculating 〈δz〉+. We begin by re-expressing Eq. (4.7a) in

polar form, zi = ρi exp(iθi) where ρi(t) and θi(t) are real,

dρi
dt

= αiρi − ρ3
i + ΓRe{e−iθ〈z〉}, (4.16a)

dθi
dt

= ωi − γ̄ρ2
i +

Γ

ρi
Im{e−iθ〈z〉}, (4.16b)

〈z〉 = 〈ρeiθ〉. (4.16c)

We now introduce a pdf for the state variables (ρ, θ) and parameters (ω, α) which

we denote by
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f(ρ, θ, ω, α, t).

Thus

∫ 2π

0

∫ ∞
0

fdρdθ = g(ω)h(α).

By conservation of the number of oscillators and Eqs. (4.16), f satisfies the following

continuity equation,

∂f

∂t
+

∂

∂ρ

{[
αρ− ρ3 +

Γ

2

(
e−iθ〈z〉+ eiθ〈z〉∗

)]
f

}
+

∂

∂θ

{[
ω − γ̄ρ2 +

Γ

2iρ

(
e−iθ〈z〉 − eiθ〈z〉∗

)]
f

}
= 0,

(4.17)

where

〈z〉 =

∫∫∫
ρeiθfdρdθdωdα. (4.18)

For α > 0 the time independent incoherent (〈z〉+ ≡ 0) solution of (4.17) and (4.18)

is

f0 =
g(ω)h(α)

2π
δ(ρ−√α). (4.19)

We now introduce a perturbation to the solution (4.19),

f = f0 + est−iθδf + {O.P.T.}, (4.20)

where {O.P.T.} denotes “other perturbation terms” whose θ variation is propor-

tional to exp(inθ) with n 6= −1. These other terms do not contribute to 〈z〉+ [see

Eq. (4.18)] and so turn out to be of no consequence to what follows. Inserting (4.20)

and (4.19) into (4.17) we obtain for α > 0
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(s− iω + iγ̄ρ2)δf +
∂

∂ρ

[
(α− ρ2)ρδf

]
=

Γ〈δz〉g(ω)h(α)

4π

{
δ(ρ−√α)√

α
− δ′(ρ−√α)

}
,

(4.21)

where

δ′(ρ−√α) =
d

dρ
δ(ρ−√α).

Calculation of 〈δz〉+. We now solve (4.21) for δf . To do this we assume a

solution of the form

δf =
Γ〈δz〉g(ω)h(α)

4π
[c1(ω, s)δ(ρ−√α) + c2(ω, s)δ′(ρ−√α)], (4.22)

and substitute this assumed form into (4.21). Using the delta function identities

F (ρ)δ(ρ−√α) = F (
√
α)δ(ρ−√α),

F (ρ)δ′(ρ−√α) = F (
√
α)δ′(ρ−√α)− F ′(√α)δ(ρ−√α),

(where the second of these identities follows from differentiating the first), Eq. (4.21)

yields

T1 + T2 =
1√
α
δ − δ′ (4.23)

where δ = δ(ρ − √α), δ′ = δ′(ρ − √α), T1 results from the first term on the left

hand side of (4.21),
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T1 = (s− iω +iγ̄ρ2)(c1δ + c2δ
′)

= (s− iω +iγ̄α)(c1δ + c2δ
′)− 2iγ̄

√
αc2δ,

and T2 results from the second term on the left hand side of (4.21),

T2 =
∂

∂ρ
{(α− ρ2)ρ(c1δ + c2δ

′)} = 2αc2δ
′.

Separately equating coefficients of δ and δ′ on the two sides of (4.23), we obtain

two linear equations for the coefficients c1 and c2. Solution of these equations yields

c1 =
1√
α

s− iω + 2α− iγ̄α
s− iω + 2α + iγ̄α

�
1

s− iω + iγ̄α
,

c2 = − 1

s− iω + iγ̄α + 2α
.

Insertion of (4.22) with these expressions for c1 and c2 into (4.18) then yields 〈δz〉+,

〈δz〉+ =Γ〈δz〉
∫ +∞

−∞
dωg(ω){∫ +∞

0

(s− iω + α)h(α)

[s− iω + 2α + iγ̄α][s− iω + iγ̄α]
dα

}
.

(4.24)

Note that the α integration in (4.24) is only over positive α (i.e., the integration

runs from α = 0 to α =∞.)

Equation determining s. Inserting (4.15) and (4.24) into (4.12a) we obtain,

Γ−1 =

∫ ∞
−∞

∫ +∞

0

(s− iω + α)g(ω)h(α)dαdω

[s− iω + 2α + iγ̄α][s− iω + iγ̄α]

+

∫ ∞
−∞

∫ 0

−∞

g(ω)h(α)dαdω

s+ |α| − iω ≡ D(s).

(4.25)
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By causality, this expression for the dispersion function D(s), as well as our previous

results, Eqs. (4.15) and (4.24), for 〈δz〉− and 〈δz〉+, apply if the ω-integration poles

are in the lower half ω-plane. This condition is satisfied for both of the integrals in

(4.25) and all values of α if Re(s) > 0. Since we are interested in the occurrence

of instability, and instability corresponds to Re(s) > 0, the form giving D(s) by

(4.25) is sufficient for our purposes (D(s) for Re(s) ≤ 0 can be obtained by analytic

continuation, from the Re(s) > 0 result).

4.4 Lorentzian Frequency Distribution

As discussed in Sec. 4.1, and as we will verify by the example in Sec. 4.7, we

believe that different monotonically decreasing, continuous frequency distribution

functions g(ω) often yield similar qualitative behaviors (but see Ref. [51]), and we,

therefore, specialize here to one such g(ω) that allows easy analytic evaluation of

the integrals over ω, namely, the case of Lorentzian g(ω),

g(ω) =
1

π

1

ω2 + 1
=

1

2πi

{
1

ω − i −
1

ω + i

}
, (4.26)

where we have adopted a normalization of t,Γ and α so that the half-width of g(ω)

is one (g(0) = 2g(1)). Since Re(s) > 0, the only ω-pole of the integrands in (4.25)

that is located in Im(ω) ≥ 0 is the one at ω = i [see Eq. (4.26)]. In addition, the

magnitudes of the integrands behave like |ω|−3 for large |ω|. Thus, we can deform

the ω-integration path by shifting it upward into the complex ω-plane, letting Im(ω)

along the path approach +∞. The integration then yields the residue of the pole
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at ω = i,

D(s) =

∫ +∞

0

(s+ 1 + α)h(α)dα

[s+ 1 + 2α + iγ̄α][s+ 1 + iγ̄α]

+

∫ 0

−∞

h(α)dα

s+ |α|+ 1
.

(4.27)

In Sec. 4.5 we investigate conditions under which Eq. (4.27) predicts instabil-

ity (i.e., existence of a solution to D(s) = Γ−1 with Re(s) > 0).

4.5 Condition for Instability: The effect of a spread in the

growth rates in α

In this section, we consider the case where there is no nonlinear frequency shift

(i.e., γ̄ = 0), with g(ω) being Lorentzian. Using a generalization of the technique

in Ref. [40] (see proof of their Theorem 2), it can be shown that the solution of

D(s) = 1/Γ is real. Thus, as we pass from stability to instability, s goes through

s = 0. This results in the following general condition for instability,

Γ >
1

D(0)
, (4.28)

and (4.27) and (4.28) imply that instability occurs when Γ exceeds the critical value

Γc given by

Γc =

{∫ ∞
0

α + 1

2α + 1
h(α)dα +

∫ 0

−∞

1

1− αh(α)

}−1

. (4.29)

As a simple reference case, we first consider (4.29) when there is no dispersion

in α,

h(α) = δ(α− ᾱ)
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in which case we obtain

Γc =


(2ᾱ + 1)/(ᾱ + 1), for ᾱ ≥ 0,

1 + |ᾱ|, for ᾱ ≤ 0.

(4.30)

The resulting phase diagram is given by the black line in Fig. 4.2. This result (with

the different parametrization used in Eq. (4.8)) has been previously obtained in Refs.

[37, 38]. Note that Γc → 2 as ᾱ → +∞. The value Γc = 2 is the critical coupling

value that applies for the Kuramoto model with a Lorentzian frequency pdf, Eq.

(4.26). The applicability of the Kuramoto result for large ᾱ can be understood from

Eq. (4.16a) with Γ neglected, dρ/dt = ᾱρ − ρ3, which when linearized about the

incoherent equilibrium value, ρ =
√
ᾱ, yields dδρ/dt = −2ᾱδρ. Thus perturbations

from ρ =
√
ᾱ relax at the exponential rate 2ᾱ, and, for large ᾱ, this rate becomes

much faster than the other relevant time scale, namely, the spread in ω (which we

have normalized to 1). Hence, for ᾱ � 1, the oscillator amplitude is essentially

frozen, and the Kuramoto oscillator description is valid. As shown in Fig. 4.2 and

Eq. (4.30), when ᾱ� 1 does not hold, the effect of amplitude dynamics is to reduce

Γc (for ᾱ ≥ 0) from the Kuramoto value with the reduction increasing to a factor

of 2 as ᾱ → 0+ (Γc = 2 at ᾱ → +∞ in comparison with Γc = 1 at ᾱ = 0). An

additional interesting point is that comparison of the black line in Fig. 4.2 with the

results for the phase diagram in the case of Belousov-Zhabotinsky system of Ref.

[67] (see discussion in Sect. 4.1) shows a striking qualitative similarity between the

two (e.g., see Fig. 3 of Ref. [67]).

Referring to Eq. (4.30) and Fig. 4.2, we see that there is a sharp transition

in behavior as ᾱ crosses ᾱ = 0. In particular, the 〈z〉 = 0 state for ᾱ < 0 results
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from the fact that zi = 0 for all oscillators, while for ᾱ > 0 all oscillators have

|zi| =
√
ᾱ > 0 and 〈z〉 = 0 results from incoherence of the individual oscillator

phases. This sharp transition in behavior is reflected by the discontinuity of the

derivative, dΓc/dᾱ, at ᾱ = 0. The sharp nature of the transition at ᾱ = 0 is, however,

a nonphysical artifact of the assumption of no dispersion in the individual oscillator

growth / damping rates used in obtaining (4.30). In typical physical situations, such

as the experiment in Ref. [67] (see discussion in Sect. 4.2), dispersion in α is to be

expected (Fig. 4.1). To simply illustrate its effect we consider the example where

h(α) is uniform within some range δα about an average value ᾱ,

h(α) = (2δα)−1U(δα− |α− ᾱ|), (4.31)

where U(x) denotes the unit step function; U(x) = 1 for x ≥ 0 and U(x) = 0 for

x < 0. Using (4.31) in (4.29), we get for ᾱ > δα,

Γ−1
c =

1

2δα

[
δα +

1

4
ln

(
ᾱ + δα + 1/2

ᾱ− δα + 1/2

)]
; (4.32)

for ᾱ < −δα,

Γ−1
c =

1

2δα
ln

(
1− ᾱ + δα

1− ᾱ− δα

)
; (4.33)

and for |ᾱ| < δα,

Γ−1
c =

1

2δα

[
ᾱ + δα

2
+ ln(1− ᾱ + δα) +

1

4
ln(1 + 2ᾱ + 2δα)

]
. (4.34)

As the dispersion in α, δα, approaches zero, (4.31) becomes a delta function, and

Eqs. (4.32)-(4.34) reduce to (4.30). The other two lines in Fig. 4.2 show the

phase diagram from Eqs. (4.32)-(4.34) for two more values of δα. For δα > 0 the
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Figure 4.2: The effect of dispersion in α (γ̄ = 0) with a Lorentzian g(ω). Stabil-

ity/Instability regions of Γ − ᾱ space for several different values of spread δα in

the linear growth parameter α with mean ᾱ [Legend: Black line (δα = 0), red line

(δα = 0.5), blue line (δα = 2)].

discontinuity in dΓc/dᾱ (which occurs for δα = 0 at ᾱ = 0) is removed by dispersion

in α, and the sharp transition that occurs at ᾱ = 0 (black line in Fig. 4.2) is now

smoothed out 3. Further, it is also noticed that the minimum of Γc rises and shifts

from ᾱ = 0 when δα = 0 to ᾱ > 0 when δα > 0.

3Equation (4.29) [together with a transformation of the form of the interaction term to that of

Eq. (4.8)] can also be used to generalize previous work of Ref. [11] on the “aging transition” to

include dispersion of the natural frequencies.
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4.6 The effect of a nonlinear frequency shift

We now address the effect of nonlinear frequency shift, γ̄ 6= 0, and we consider

the simple case of no dispersion in α, h(α) = δ(α−ᾱ) again for the case of Lorentzian

g(ω). We note from Eq. (4.7), if the distribution of ωi values is symmetric, then

positive and negative values of γ̄ are equivalent (zi → z∗i ). Thus, we consider γ̄ > 0

only. As is evident from Eq. (4.27), γ̄ has no effect on the linear theory for ᾱ < 0,

and, consequently, the result for Γc given by Eq. (4.30) still applies for ᾱ ≤ 0.

For ᾱ > 0, however, the effect of a nonlinear frequency shift can be substantial.

Equation (4.27) for h(α) = δ(α− ᾱ), ᾱ > 0 gives

Γ−1 = D(s) =
s+ 1 + ᾱ

(s+ 1 + 2ᾱ + iγ̄ᾱ)(s+ 1 + iγ̄ᾱ)
, (4.35)

which yields a quadratic equation for s, solution of which can be used to obtain

stability boundary curves in Γ−ᾱ space. At the transition point, Re(s) goes through

zero. Substituting s = iΩ into Eq. (4.35) and separating the real and imaginary

parts, Γc and Ω are then given by the solution of the following pair of equations

1− Ω2 + 2ᾱ(1− γ̄Ω)− ᾱ2γ̄2 = Γc(1 + ᾱ), (4.36a)

2(1 + ᾱ)(Ω + ᾱγ̄) = ΓcΩ. (4.36b)

When γ̄ = 0 (note Ω = 0 for this case), the solution for the critical coupling strength

of (4.36) is given by

Γc0 =
1 + 2ᾱ

1 + ᾱ
, (4.37)
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by which (4.36a) can be rearranged to give

Γc = Γc0 −
(Ω + ᾱγ̄)2

1 + ᾱ
, (4.38)

which shows that the effect of γ̄ is always to decrease Γc. Figure 4.3 shows the

values of Γc as a function of ᾱ for several different values of γ̄ (γ̄ = 0 plotted in

black, γ̄ = 2 plotted in red, and γ̄ = 4 plotted in blue). By solving for Ω in (4.36b)

and substituting it back in (4.36a), we obtain

Γc = Γc0 −
1

1 + ᾱ

[
ᾱγ̄Γc

Γc − 2(1 + ᾱ)

]2

. (4.39)

Equation (4.39) shows that Γc → 2 as ᾱ → +∞. As seen in Fig. 4.3, increasing

γ̄ eventually moves the minimum of Γc below one and shifts the location of the

minimum into ᾱ > 0.

4.7 The effect of the frequency distribution function

In Secs. 4.5 and 4.6 we consider the effect of a spread in α and of a nonlinear

frequency shift for the illustrative case of a Lorentzian distribution function of the

oscillator natural frequencies, Eq. (4.26). We now ask how might these results be

altered if a different frequency distribution were used. We note that the Lorentzian

decays rather slowly for large ω, g(ω) ∼ ω−2. Thus to test dependence on the form

of g(ω), we will examine another distribution function which is very different from

the Lorentzian, in that it has a sharp cutoff to g(ω) = 0 as ω increases. In particular,

we will consider a “flat-top” distribution, that is uniform in −1 ≤ ω ≤ 1 and zero

otherwise,

g(ω) =
1

2
U(1− |ω|), (4.40)
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Figure 4.3: Stability / Instability regions of Γ− ᾱ space for several different values

of the nonlinear frequency shift parameter γ̄ [Legend: Black line (γ̄ = 0), red line

(γ̄ = 2), blue line (γ̄ = 4)]. Notice that the three lines coincide when ᾱ < 0.
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where U(x) is the unit step function. In spite the qualitatively different large |ω|

behaviors of the Lorentzian and the flat-top g(ω) distributions, we will find that the

resulting stability conditions show qualitatively similar behaviors.

The calculation of Γc with g(ω) given by (4.40) is done by using (4.25) (see

Appendix A). In Fig. 4.4 we show the dependence of Γc on ᾱ for several different

values of δα, where h(α) is given by (4.31) and γ̄ = 0 for all oscillators. A comparison

between Fig. 4.4 and Fig. 4.2 reveals remarkably similar dependence, apart from

a difference in the vertical scale due to different functional dependence of g(ω) 4.

Next, we consider the dependence of Γc on γ̄ when h(α) = δ(α− ᾱ) with g(ω) given

by (4.40). Figure 4.5 shows the dependence of Γc on ᾱ for several different values

of γ̄. The black line shows the result when γ̄ = 0, which is the same black line in

Fig. 4.4. The other two lines are obtained by numerically solving (A.7) when γ̄ 6= 0.

In comparison with Fig. 4.3, we see similar dependence in that, as γ̄ increases, Γc

decreases.

4.8 Nonlinear phenomena above the instability threshold

with finite α-spread and nonlinear frequency shift

In the previous sections, we calculated the critical coupling strength Γc mark-

ing the onset of instability of the quiescent state (〈z〉 = 0). Above the critical value

Γc, we find that Landau-Stuart oscillator networks exhibit a rich variety of collective

behavior. We now briefly first review past work on the nonlinear behavior found

4It can be shown that when h(α) = δ(α− 1), Γ−1
c = πg(0) for any general unimodal frequency

distribution g(ω) symmetric about ω = 0 (see Ref. [38]).
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Figure 4.4: The effect of dispersion in α with a uniformly distributed g(ω), Eq.

(4.40). Stability/Instability regions of Γ − ᾱ space for several different values of

spread δα in the linear growth paratmeter α with mean ᾱ [Legend: Black line

(δα = 0), red line (δα = 0.5), blue line (δα = 2.0)].

79



−2 0 2 4
0

0.5

1

1.5

2

ᾱ
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Figure 4.5: Stability / Instability regions of Γ− ᾱ space for several different values

of the nonlinear frequency shift parameter γ̄ [Legend: Black line (γ̄ = 0), red line

(γ̄ = 2), blue line (γ̄ = 4)]. Notice that the three lines coincide when ᾱ < 0.
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above the instability threshold.

Matthews et al. [38] study nonlinear collective behaviors in the special case

when αj = 1 and γj = 0 for all oscillators (j = 1, 2, · · ·N), and g(ω) takes on several

different functional forms. An important observation in that paper is that the system

behavior can be quite complicated for a range of Γ not too far above Γc, e.g., there

are period doubling cascades to chaos, large amplitude oscillations, quasiperiodicity,

hysteretic behavior close to the boundaries between different macroscopic states, etc.

However, when Γ is sufficiently far from Γc, the system is found to settle into a simple

steady oscillatory state, 〈z〉 = constant × exp(iΩt) for some constant Ω. We refer

to this as a “locked state”.

When the nonlinear frequency shift parameter γ̄ is nonzero [20, 47, 48, 49],

the system can exhibit an additional type of complicated coherent behavior. For

example, Refs. [20, 47, 48, 49, 12] study systems closely related to Eq. (4.7), but

with homogeneous parameters. An important feature found in those references is

the tendency for the system to form clusters (a “cluster” in the above references is

defined as a group of oscillators which behave identically). Further, depending on

parameter values and on initial conditions, the systems can form cluster states of

varying sizes. In Refs. [47] and [48], the authors also find chaotic behavior.

Despite the complications noted above, we emphasize the important result that

in all these cases, the system can always settle into a simple locked state when Γ is

sufficiently large. Furthermore, in our own simulations which (unlike previous work)

include spreads in α, and ω, and simultaneously allow βj = β̄ 6= 0 and γj = γ̄ 6= 0, it

is again always found that, as Γ is increased, there is always a locked state solution
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that the system can settle into. As an example, Fig. 4.6 shows snapshots of the long-

time asymptotic distributions of the oscillator z−values obtained from numerical

simulations of Eq. (4.7) with g(ω) given by (4.40), N = 50000, h(α) given by

(4.31), ᾱ = 0.5, δα = 1.0, γ̄ = 0.5 (corresponding to Γc = 0.89), for successively

larger values of Γ/Γc, all of which are large enough that a locked state is achieved

(Fig. 4.6(a): Γ/Γc = 2, Fig. 4.6(b): Γ/Γc = 10, Fig. 4.6(c): Γ/Γc = 100). Note

that, as appropriate for a locked state, as time increases, these snapshots rotate

uniformly about the origin at a fixed angular rate Ω.

We see in Fig. 4.6(a) that the distribution has finite spreads in both the magni-

tude and phase of z. Examination of the solution shows that oscillators with smaller

(larger) natural frequencies ω tend to occur on the clockwise (counterclockwise) side

of the distribution, while larger (smaller) α tend to occur at larger (smaller) |z| for

fixed argument of z. Previous works (e.g., [38]) did not consider a distribution of

α and consequently did not find a spread in |z| at constant argument of z (i.e., the

oscillators are distributed along a curve in the complex z-plane). Comparing Figs.

4.6(a), 4.6(b) and 4.6(c), we see that the spread in z/|〈z〉| becomes smaller and

smaller as Γ/Γc increases. In fact, we argue in Sec. 4.9 below that this spread goes

to zero as Γ/Γc →∞ (note the greatly magnified scale for Fig. 4.6(c)).

Figure 4.7 illustrates an example of the occurrence and evolution of a non-

locked dynamical attractor at lower Γ/Γc with other parameters the same as those

in Fig. 4.6. In particular, Fig. 4.7 shows |〈z〉| (top panel) and Re〈z〉 (bottom panel)

versus time, after the system has settled into an attractor for Γ/Γc = 1.07. (Note

that for a locked state, |〈z〉| is constant, and Re〈z〉 varies sinusoidally in time.)
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(c) Γ/Γc = 100

Figure 4.6: Locations of 50000 oscillators (black) in the locked states with different

Γ/Γc. Twenty oscillators (red cross) of parameter values evenly spaced simulta-

neously in (α, ω) ∈ [−0.5, 1.5] × [−1, 1] are highlighted, i.e., the oscillator with

(α, ω) = (−0.5,−1) is located at the minimum radius position, and the oscillator

with (α, ω) = (1.5, 1) is located at the maximum radius position, and other oscil-

lators of intermediate parameter values evenly distributed in between (N = 50000,

ᾱ = 0.5, δα = 1.0, γ̄ = 0.5; random initial conditions).
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Figure 4.7: Time evolution of |〈z〉| (top panel) and Re〈z〉 (bottom panel) for a

system of 500, 000 oscillators (Parameters: ᾱ = 0.5, δα = 1.0, γ̄ = 0.5, Γ/Γc = 1.07;

random initial conditions.)

4.9 Large coupled Landau-Stuart oscillator networks in the

strong coupling limit

An important exception to the observation of locked states at sufficiently large

Γ has been noted by Montbrió and Pazó [44] who studied the situation where there

was a spread in the nonlinear frequency shift. They showed that, in that case,

locked states do not necessarily exist for large Γ, and that other behaviors can

occur. In our further works [32, 33] we will further investigate the subtle effects of

constant nonlinearity parameters γ̄ and β̄, and effects due to spreads in the γj and

βj distributions without employing the weak coupling approximation of Montbrió

and Pazó [44]. In what follows we, as in all other previous references (except for

[44]) consider the case where there is no spread in the nonlinear coefficients (γj = γ̄
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and βj = β̄ for all j), and we ask why the locked state applies for large enough Γ.

In order to analytically show that a locked state must result for homogeneous

nonlinearity parameters γ̄ and β̄ at sufficiently large Γ/Γc, we now consider very

large Γ/Γc approximated by taking the limit Γ/Γc → ∞. In particular, using this

limit, we will show the existence of a locked state and we will demonstrate that it

is stable.

When Γ� αj, ωj for all j, system (4.7) reduces to

dzj
dt

= −(1 + iγ̄)|zj|2zj + Γ〈z〉. (4.41)

Here we have assumed that |zj| � 1 in the Γ→∞ limit. This will be subsequently

verified. Alternatively, if the ωj are uniform, ωj = ω, and Γ � αj, even if Γ �

ω does not apply, we can still obtain Eq.(4.41) via elimination of ω through the

transformation zj → zje
iωt. Thus, in this limit, the dynamics is determined by

the coupling to other oscillators and the nonlinear characteristics of the individual

oscillators, rather than by the linear properties of the individual oscillators. This is

consistent with our numerical tests in Fig. 4.6, which suggests that as Γ/Γc → ∞,

the distribution of oscillators approaches that of a system of homogeneous parameter

values, with the effects of spreads due to α and ω going away (see Fig. 4.6(c)). We

now divide Eq.(4.41) by Γ, and redefine variables as

ẑj =
zj√
Γ
, (4.42a)

t̂ = Γt. (4.42b)
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Thus, each term in Eq. (4.41) scales as Γ3/2 justifying the neglect of the other terms

in Eq. (4.7). Equations (4.41) become

dẑj

dt̂
= −(1 + iγ̄)|ẑj|2ẑj +

1

N

N∑
k=1

ẑk, (4.43)

Taking the locked state ansatz ẑj = ρ(t̂) exp{i[θ(t̂) + φj)]} and considering the case

when all the φj are the same, gives

dρ

dt̂
= ρ(1− ρ2), (4.44a)

dθ

dt̂
= −γρ2, (4.44b)

where, without loss of generality we set φj = 0 for all j. This yields the asymptotic

solution,

ẑ0(t̂) = e−iγt̂. (4.45)

To analyze the stability of (4.45), we perturb ẑ0 to ẑ0 + e−iγt̂δẑj. From (4.43), the

dynamics of δẑj is governed by

d

dt̂
δẑj = (−1− iγ) (δẑj + δẑ∗j )− δẑj +

1

N

∑
k

δẑk. (4.46)

where ∗ denotes complex conjugation. Similarly, we have

d

dt̂
δẑ∗j = (−1 + iγ) (δẑj + δẑ∗j )− δẑ∗j +

1

N

∑
k

δẑ∗k. (4.47)

Equations (4.46) and (4.47) can be regarded as two independent equations for δẑj

and δẑ∗j respectively. To study the stability properties of δẑj and δẑ∗j , consider

δẑj ∼ δẐj(s)e
st̂ and δẑ∗j ∼ δẐ∗j (s)est̂, for which Eqs. (4.46) and (4.47) give
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(s+ 2 + iγ) δẐj + (1 + iγ) δẐ∗j − 〈δẐ〉 = 0, (4.48a)

(s+ 2− iγ) δẐ∗j + (1− iγ) δẐj − 〈δẐ∗〉 = 0, (4.48b)

where 〈δẐ〉 = N−1
∑

k δẐk, 〈δẐ∗〉 = N−1
∑

k δẐ
∗
k . Summing over j we obtain

Υ

 〈δẐ〉
〈δẐ∗〉

 = 0, (4.49)

where

Υ ≡

 (s+ 1 + iγ) (1 + iγ)

(1− iγ) (s+ 1− iγ)

 . (4.50)

Equation (4.49) implies that either (i) detΥ = 0, or (ii)〈δẐ〉 = 〈δẐ∗〉 = 0. Possibility

(i) gives s(s + 2) = 0, yielding s = 0 and s = −2. Physically, the neutrally stable

root, s = 0, corresponds to a uniform, rigid rotation of the phases of all the Ẑj. If

possibility (ii) applies, Eqs. (4.48a) and (4.48b) become

Ψ

 δẐj

δẐ∗j

 = 0, (4.51)

where

Ψ ≡

 (s+ 2 + iγ) (1 + iγ)

(1− iγ) (s+ 2− iγ)

 . (4.52)

Since detΨ = (s + 1)(s + 3), we obtain two additional roots s = −1 and s = −3.

Because the allowed perturbations in case (ii) are restricted to lie in the 2(N − 1)

dimensional space specified by the two constraints, 〈δẐ〉 = 0 and 〈δẐ∗〉 = 0, the
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multiplicity of each of the roots s = −1 and s = −3 is N − 1. Since there is no root

with Re(s) > 0, the equilibrium is stable.

4.10 Conclusions

In this chapter we have studied some properties of large all-to-all coupled

Landau-Stuart oscillator networks which have both amplitude and phase degrees

of freedom. In the first half of the chapter, motivated by experiments reported in

Ref. [67], we studied stability of the incoherent state (〈z〉 = 0) and determined the

stability / instability boundary for different cases. First, we studied networks with

spread in the distribution of the linear amplitude growth parameter α, but with

no nonlinear frequency shift contribution, i.e., γ = 0 for all oscillators. Second, we

studied networks with no spread in the distribution α, but with a constant nonlinear

frequency shift parameter γ̄ for all oscillators. After establishing a mathematical

framework to determine the stability / instability boundary, we characterized the

changes in the stability / instability boundary that these modifications cause. First,

we found that a spread δα in the distribution of α smoothes out the sharp transition

at ᾱ = 0 if δα = 0. Second, spread in α causes the minimum of Γc to shift away

from ᾱ = 0 to ᾱ > 0 when δα > 0. Third, increase of the nonlinear frequency shift

parameter γ̄ monotonically lowers Γc.

Similar to large networks of phase oscillators of the Kuramoto type, large

networks of Landau-Stuart oscillators can synchronize into a locked state exhibiting

steady constant amplitude sinusoidal motion when the coupling strength is large

enough. In order to better understand this behavior, we studied locked states of Eq.
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(4.7) with homogeneous nonlinearity parameters in the limit Γ/Γc →∞. We found

that as Γ/Γc →∞, Eq. (4.7) reduces to Eq. (4.43), which depends only on coupling

among oscillators through the constant nonlinear characteristics. Furthermore, we

showed that such locked states are stable. And this answers the question why a

locked state can always be observed for the system studied.
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Appendix A

Theoretical values of the critical coupling

strength with a uniformly distributed g(ω)

In this appendix we summarize the theoretical results of the critical coupling

strength Γc when g(ω) is given by the uniform distribution

g(ω) =
1

2
U(1− |ω|), (A.1)

First, we determine Γc when there is no spread in h(α), i.e., h(α) = δ(α− ᾱ),

and γ = 0 for all oscillators. When ᾱ > 0, we have

Γ−1
c =

π

4
+

1

2
tan−1

(
1

2ᾱ

)
; (A.2)

similarly, when ᾱ < 0, we have

Γ−1
c = tan−1

(
1

|ᾱ|

)
. (A.3)

For the cases when there is spread in h(α), we assume the same model h(α) =

(2δα)−1U(δα − |α − ᾱ|). By denoting ᾱ+ = ᾱ + δα and ᾱ− = ᾱ − δα, we have for
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ᾱ > δα,

Γ−1
c =

π

4
+

1

4δα

[
ᾱ+ tan−1

(
1

2ᾱ+

)
− ᾱ− tan−1

(
1

2ᾱ−

)
+

1

4
ln

∣∣∣∣4ᾱ2
+ + 1

4ᾱ2
− + 1

∣∣∣∣] ; (A.4)

for ᾱ < δα,

Γ−1
c = − 1

2δα

[
ᾱ+ tan−1

(
1

ᾱ+

)
− ᾱ− tan−1

(
1

ᾱ−

)
+

1

2
ln

∣∣∣∣ ᾱ2
+ + 1

ᾱ2
− + 1

∣∣∣∣] ; (A.5)

and for |ᾱ| < −δα,

Γ−1
c = I1 + I2, where (A.6a)

I1 =
π

4

( ᾱ+

2δα

)
+

1

4δα

[
ᾱ+ tan−1

(
1

2ᾱ+

)
+

1

4
ln
∣∣4ᾱ2

+ + 1
∣∣] , (A.6b)

I2 = − 1

2δα

[
−ᾱ− tan−1

(
1

ᾱ−

)
− 1

2
ln
∣∣ᾱ2
− + 1

∣∣] . (A.6c)

Similar to the results with a Lorentzian g(ω), it can be readily shown that Eqs.

(A.4)-(A.5) reduce to Eqs. (A.2) and (A.3) in the limit δα→ 0.

Next, we determine Γc when there is no spread in h(α), i.e., h(α) = δ(α− ᾱ)

where ᾱ is constant, and the nonlinear frequency parameter γ̄ is a nonzero constant

for all oscillators. For ᾱ < 0, we know that γ̄ does not affect stability of the state

〈z〉 = 0, so Γc is still given by Eq. (A.3). For ᾱ > 0, we have, by substituting

s = iΩ into the final expression after integration in Eq. (4.25), and introducing

η± = Ω± 1 + ᾱγ̄, that Γc and Ω are to be given by the solution of the following pair

of equations,

−4Γ−1
c =

γ̄

2
ln

∣∣∣∣η2
+(η2

− + 4ᾱ2)

η2
−(η2

+ + 4ᾱ2)

∣∣∣∣− [π + tan−1
(η+

2ᾱ

)
− tan−1

(η−
2ᾱ

)]
, (A.7a)

0 = γ̄
[
π − tan−1

(η+

2ᾱ

)
+ tan−1

(η−
2ᾱ

)]
+

1

2
ln

∣∣∣∣η2
+(η2

+ + 4ᾱ2)

η2
−(η2

− + 4ᾱ2)

∣∣∣∣ . (A.7b)
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It can be easily checked from (A.7) that Γc reduces to (A.2) when γ̄ → 0 (Note

Ω→ 0 in this limit).
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[56] D. Pazó and E. Montbrió, “Universal behavior in populations composed of
excitable and self-oscillatory elements,” Phys. Rev. E, 73, 055202 (2006).

[57] A. Pikovsky, M. Rosenblum and J.Kurths, Synchronization: A Universal Con-
cept in Nonlinear Sciences (Cambridge University Press, 2004).

[58] J. G. Restrepo, E. Ott and B. R. Hunt, “Synchronization in large directed
networks of coupled phase oscillators,” Chaos, 16, 015107 (2005).

[59] T. Roenneberg, Internal Time: Chronotypes, Social Jet Lag, and Why You’re
So Tired (Harvard University Press 2012).

[60] G. C. Sethia and A. Sen, “Clustered Chimera States in Delay-Coupled Oscilla-
tor Systems,” Phys. Rev. Lett. 100 144102 (2008).

[61] M. Shiino and M. Frankowicz, “Synchronization of infinitely many coupled
limit-cycle type oscillators,” Phys. Lett. A 136, 103 (1989).

[62] S. Shima and Y. Kuramoto, “Rotating spiral waves with phase-randomized core
in nonlocally coupled oscillators,” Phys. Rev. E 69 036213 (2004).

[63] S. Strogatz, Sync: The Emerging Science of Spontaneous Order (Hyperion
2003).

97



[64] S. H. Strogatz, “From Kuramoto to Crawford: exploring the onset of synchro-
nization in populations of coupled oscillators,” Physica D 143, 1 (2000).

[65] S.H. Strogatz, D.M. Abrams, A.McRobie, B. Eckhardt and E.Ott, “Theoretical
mechanics: Crowd synchrony on the Millennium Bridge,” Nature 438, 43
(2005).
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