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PRECONDITIONING STRATEGIES FOR MODELS OFINCOMPRESSIBLE FLOWhoward elmanyAbstrat. We desribe some new preonditioning strategies for handling the algebrai systemsof equations that arise from disretization of the inompressible Navier-Stokes equations. We demon-strate how these methods adapt in a straightforward manner to deisions on impliit or expliit timedisretization, explore their use on a olletion of benhmark problems, and show how they relate tolassial tehniques suh as projetion methods and SIMPLE.Key words. Navier-Stokes equations, solvers, preonditioning, inompressible uids.1. Introdution. In this paper, we desribe a new lass of omputational al-gorithms for solving the systems of algebrai equations that arise from disretizationand linearization of the inompressible Navier-Stokes equationsut � �r2u+ (u � grad)u+ gradp = f�divu = 0 in 
; (1.1)subjet to suitable boundary onditions on �
. Here, 
 is an open bounded domainin R2 or R3 , u and p are the veloity and pressure, respetively, f is the body fore perunit mass, and � is the kinemati visosity. The algorithms onsist of preonditioningstrategies to be used in onjuntion with Krylov subspae methods. They are appliedto the primitive variable formulation of (1.1) and are designed to take advantage ofthe struture of the systems.The objetive in developing these solution algorithms is for them to be e�etiveand adaptable to a variety of irumstanes. In partiular, they an handle bothsteady and evolutionary problems in a straightforward manner, and they o�er thepossibility of being extended to more general systems, suh as those that inludetemperature in the model. Their implementation depends on having eÆient solu-tion algorithms for ertain subsidiary problems, spei�ally, the Poisson equation andthe onvetion-di�usion equation. These salar problems are easier to solve than theNavier-Stokes equations; e�etive approahes inlude multigrid, domain deomposi-tion, and sparse diret methods. One suh \building bloks" are available, they anbe integrated into a solver for the oupled system (1.1). In this paper, we desribesuh solvers and demonstrate their utility.A summary of the paper is as follows. Setion 2 gives a brief overview of the orig-inal development of the algorithmi approah as designed for the steady Stokes equa-tions and desribes what modi�ations are needed for the Navier-Stokes equations.Setion 3 shows how this general approah is related to other traditional strategiesfor solving (1.1), inluding projetion methods [4, 32℄ and SIMPLE [25℄. Setion 4presents the main ideas for onstruting solvers designed for the Navier-Stokes equa-tions, whih entail devising strategies for eÆiently approximating the inverse of aomponent of the disrete operator. Setion 5 shows the results of a series of numeri-al experiments demonstrating the utility of this approah for evolutionary problems.Finally, Setion 6 summarizes the approah and presents some ways it an be gener-alized to handle more omplex models.yDepartment of Computer Siene and Institute for Advaned Computer Studies, University ofMaryland, College Park, MD 20742. elman�s.umd.edu. This work was supported in part by theNational Siene Foundation under grant DMS0208015.1



2. Bakground. By way of introdution, onsider the steady-state Stokes equa-tions �r2u+ grad p = f�divu = 0 : (2.1)Div-stable disretization by �nite elements [15℄ or �nite di�erenes [23℄ leads to alinear system of equations � A BTB 0 �� up � = � f0 � (2.2)where, for problems in d dimensions, A is a blok diagonal matrix onsisting of a set ofd unoupled disrete Laplae operators. The oeÆient matrix of (2.2) is symmetriand inde�nite, and therefore the minres [24℄ variant of the onjugate gradient methodis appliable. This iterative method requires a �xed amount of omputational workat eah step, and it is the optimal Krylov subspae method with respet to the vetorEulidian norm for solving Ax = b where A is symmetri inde�nite. That is, theresidual rk = b�Axk of the kth iterate satis�eskrkk2 = minpk(0)2�k kpk(A)r0k2 � minpk(0)2�k max�2�(A) jpk(�)j kr0k; (2.3)where �k denotes the set of all real polynomials pk of degree at most k for whihpk(0) = 1, and �(A) is the set of eigenvalues of A.If �(A) is ontained in two equal-sized intervals[�a;�b℄ [ [; d℄; a; b; ; d > 0;then the onvergene fator minpk(0)2�k max�2�(A) jpk(�)j is bounded by [16℄2 1�p(b)=(ad)1 +p(b)=(ad)!1=2 :The key for rapid onvergene is for this quantity to be small. For (2.2), this isahieved by preonditioning. Consider a preonditioning operator of the form [27, 30,34℄ Q = � A 00 QS � : (2.4)This leads to the generalized eigenvalue problem� A BTB 0 �� up � = �� A 00 QS �� up � : (2.5)If � 6= 1, then the �rst blok of this equation gives u = [1=(�� 1)℄A�1BT p, andsubstitution into the seond blok yieldsBA�1BT p = �QSp; � = �(� � 1); � = 1�p1 + 4�2 : (2.6)A good approximationQS to the Shur omplement BA�1BT will result in eigenvaluesf�g that lie in a small interval, so that the eigenvalues f�g in turn lie in two small2



intervals. It is shown in [33℄ that a good hoie forQS is the pressure mass matrix,Mp.In partiular, all � are ontained in an interval that is independent of the disretizationmesh parameter h, and, therefore, all � are also independent of h.Use of the preonditioner (2.4) with minres entails the appliation of the ationof the inverse of Q to a vetor at eah iteration; this requires the solution of a set ofPoisson equations on the disrete veloity spae (appliation of the ation of A�1),and appliation of the ation of M�1p on the disrete pressure spae. The pressuremass matrix is uniformly well-onditioned with respet to h, so the latter operation isinexpensive [35℄. For this preonditioner to be useful, the Poisson solves must be doneeÆiently. A feature of this approah is that these solves an be also be approximatedwith little degradation of its e�etiveness. (This ontrasts with the alternative strat-egy of using iterative methods to solve the deoupled system BA�1BT p = BA�1f .)Formally, this orresponds to replaing A in (2.4) with some approximation QA. Agood hoie would be some QA that is spetrally equivalent to A with respet to h,obtained for example using a few steps of multigrid applied to the Poisson equation.See [9, 31℄ for more details on this and other aspets of solving this problem.Now onsider the Navier-Stokes equations (1.1). Fully impliit time disretizationleads to the oupled nonlinear equations1�u(m+1) � �r2u(m+1) + (u(m+1) � grad)u(m+1) + gradp(m+1) = f(u(m))�divu(m+1) = 0;where (u(m); p(m))T is the solution at time step m, and � and f(u(m)) depend on thetime disretization strategy. For example, for the bakward Euler method, � = �t,the time step, and f(u(m)) = f � 1�tu(m). At eah time step, this system an then besolved using a nonlinear iteration, produing a sequene of iterates (u(m+1)j ; p(m+1)j )T .An example is the Piard iteration, in whih the onvetion oeÆient is lagged:1�u(m+1)j+1 � �r2u(m+1)j+1 + (u(m+1)j � grad)u(m+1)j+1 + gradp(m+1)j+1 = f(u(m))�divu(m+1)j+1 = 0 (2.7)Div-stable spatial disretization [15, 23℄ gives a linear system of equations of the form� F BTB 0 �� u(m+1)p(m+1) � = � f (m)g(m) � ; (2.8)where F is now a blok diagonal matrix onsisting of a set of d unoupled disreteoperators arising from the time-dependent onvetion-di�usion equation. The bloksof F essentially have the form 1�M + �A+N (2.9)where M , A and N are a disrete mass matrix, Laplaian, and onvetion operator,respetively. We will disuss our results below in terms of the Reynolds numberRe = jujL� ; in our examples, the length sale and veloity sales are L = 2, juj = 1,so that Re = 2=�.11For large Re, F may also inlude stabilization terms, as when the streamline di�usion disretiza-tion [2℄ is used. This disretization strategy is used for the experimental results disussed in Setion5. 3



The analogue of (2.4) for (2.8) isQ = � F 00 QS � : (2.10)Preonditioning as in (2.5) leads to the eigenvalue problemBF�1BT p = �QSp; (2.11)for the Shur omplement, and one again, we seek an operator QS for whih theeigenvalues are tightly lustered, and suh that appliation of the inverse of QS to avetor in the disrete pressure spae is inexpensive.We defer a disussion of this main point, strategies for hoosing QS, to Setion4. We onlude here by identifying an improvement in the general design of solutionalgorithms available for the Navier-Stokes equations. The eigenvalues of (2.11) maybe omplex, and this would plae the eigenvalues of the preonditioned version ofthe Navier-Stokes equations in two regions in the omplex plane, one on eah sideof the imaginary axis [6℄. (This is analogous to the two intervals ontaining theeigenvalues of the preonditioned Stokes operator.) For the Stokes equations, thepositive-de�nite blok diagonal form of the preonditioner makes the preonditionedoperator symmetri, whih in turn allows the use of the optimal minresmethod. Now,however, (2.8) is not symmetri and there is no Krylov subspae solver that is optimalas in (2.3) and has a �xed amount of omputational work per iteration [13, 14℄. Sinethere is no symmetry to maintain, we an use a blok-triangular variant of (2.10),Q = � F BT0 �QS � : (2.12)This hoie leads to the generalized eigenvalue problem� F BTB 0 �� up � = �� F BT0 �QS �� up � ;for whih the eigenvalues are those of (2.11) together with � = 1. A good hoie ofQS will then fore all eigenvalues to be lustered on one side of the imaginary axis.Use of this preonditioner in ombination with a Krylov subspae method suh asgmres [28℄ requires approximately half the iterations as the variant based on (2.10),with minimal extra ost per iteration.So far we have restrited our attention to stable disretizations, for whih there isa zero blok in the (2,2)-entry of the oeÆient matrix of (2.8). It is often onvenientto use disretizations that require stabilization; for example, this enables the use ofequal-order �nite elements for veloities and pressures on a ommon grid [18, 21℄. Inthis ase, the system to be solved has the form� F BTB �C �� up � = � fg � ; (2.13)where C is a stabilization operator. A seond interpretation of (2.12) provides insightinto what is needed in this situation. Consider the blok LU-fatorization� F BTB �C � = � I 0BF�1 I �� F BT0 �(BF�1BT + C) � : (2.14)4



This means� F BTB �C �� F BT0 �(BF�1BT + C) ��1 = � I 0BF�1 I �is an \ideally" preonditioned system whose eigenvalues are identially 1. It suggeststhat the preonditioner should have the formQ = � QF BT0 �QS � : (2.15)That is, just as for stable disretizations, we require a good approximation QS for theShur omplement with respet to F , whih for (2.13) is BF�1BT +C. Moreover, asdisussed for the Stokes equations, in general, additional eÆienies an be ahievedusing QF � F , i.e. by using iterative methods to approximate the ation of the inverseof the (onvetion-di�usion) operator F .3. Relation to other methods. In this setion, we show some onnetionsbetween the preonditioning methods onsidered above and two established solutionmethods for the Navier-Stokes equations, projetion methods and SIMPLE. This is abrief overview of a more detailed disussion that an be found in [10℄.The \lassial" �rst order projetion method for evolutionary problems [4, 32℄an be viewed as a two-step proedure for advaning from time step m to step m+1.Viewed in its semi-disrete form, with only time disretization, it isStep 1: solve u(�) � u(m)�t � �r2u(�) + (u(m) � grad)u(m) = f for u(�);Step 2: solve  1�tI r�r 0 ! u(m+1)p(m+1) ! =  1�tu(�)0 ! : (3.1)In the seond step, p(m+1) is obtained by solving a Poisson equation, and u(m+1) isthen the orthogonal projetion of the intermediate quantity u(�) into the spae ofinompressible vetor �elds. Spatial disretization gives the matrix formulationStep 1: solve � 1�tM + �A�u(�) = f � �� 1�tM +N�u(m)Step 2: solve  1�tM BTB 0 ! u(m+1)p(m+1) ! =  1�tMu(�)0 ! ;where A, N and M are as in (2.9). The updated disrete pressure is obtained bysolving the disrete pressure Poisson equationBM�1BT p(m+1) = Bu(�):Substitution of u(�) into Step 2 shows that the advanement in time is done bysolving the algebrai system 1�tM+�A � 1�tM+�A�� 1�tM��1BTB 0 ! u(m+1)p(m+1) != f � �� 1�tM +N�u(m)0 ! :(3.2)5



It was observed in [26℄ that the sequene of operations performed for the projetionmethod derive from a blok LU-deomposition of the oeÆient matrix of this system, 1�tM+�A � 1�tM+�A�� 1�tM��1BTB 0 ! = 1�tM+�A 0B �B � 1�tM��1BT ! I � 1�tM��1BT0 I ! : (3.3)Following [26℄, it is instrutive to ontrast this with what would be required toperform an update derived purely from linearization and disretization of the originalproblem (1.1). If linearization is performed in a manner analogous to (3.1), i.e.,by treating onvetion fully expliitly, then a time step would onsist of solving thesystem  1�tM+�A BTB 0 ! u(m+1)p(m+1) != f � �� 1�tM +N�u(m)0 ! (3.4)instead of (3.2). The oeÆient matrix of (3.2) an be viewed as an approximation tothe oeÆient matrix of (3.4), the only di�erene lying in the blok (1,2){entry:BT � � 1�tM+�A� � 1�tM��1BT = �(�t)�AM�1BT = O(�t):Sine this is of the same order of magnitude as the time disretization error, thereis no loss of auray assoiated with the projetion method [17℄. Thus, projetionmethods an be viewed as a devie for avoiding having to solve the Stokes-like systemof equations of (3.2). The analogue for (3.4) of the blok-LU deomposition (3.3) is 1�tM+�A BTB 0 != 1�tM+�A 0B �B � 1�tM+�A��1BT! I � 1�tM+�A��1BT0 I !;whih is a fatorization like that of (2.14). As we have observed, what is needed foreÆient proessing of this system a good approximation to the Shur omplement op-erator, in this ase B � 1�tM+�A��1BT . This partiular (generalized Stokes) problemhas been treated in [1, 3℄.Remark. Viewing (3.2) as derived from (3.4) also provides a means of impliitlyde�ning boundary onditions for projetion methods. This is done for the pressuresvia the Shur omplement operator BM�1BT appearing in (3.3). No boundary on-ditions are needed for u(�) sine this quantity is impliitly inorporated into (3.2).See [5, 26℄ for further disussion of this point; referene [5℄ also shows how these ideaswork for higher order time disretization.To desribe a onnetion between the widely used SIMPLE (\Semi-Impliit Me-thod for Pressure-Linked Equations") method [25℄ and the preonditioning methodol-ogy of Setion 2, we followWesseling [36, pp. 296�℄. SIMPLE uses a blok fatorization� F BTB 0 � � � QF 0B �BF̂BT �� I F̂�1BT0 I � (3.5)where both QF and F̂ are approximations to F . This represents an alternative ap-proximation to the blok fatorization (2.14). The �rst operator QF is determined in6



a manner analogous to the approah of Setion 2, via an iteration that approximatesthe ation of the inverse of F . The seond approximation F̂ is hosen so that theoperator BF̂�1BT an be used expliitly. The standard implementation [25℄ uses thediagonal of F for F̂ . This means that the approximate Shur omplement BF̂�1BTresembles a disrete Laplaian operator.The solver for (2.8) derived from (3.5) is a stationary iteration essentially of theform u(m+1)j+1p(m+1)j+1 ! =  u(m+1)jp(m+1)j ! + I F̂�1BT0 I !�1 QF 0B �BF̂BT !�1" f (m)g(m) !� F BTB 0 ! u(m)jp(m)j !# :This an easily be adapted to produe a preonditioned iteration. The main di�erenebetween this approah and those of the next setion lies in the approximation to theShur omplement. The hoie determined by F̂ = diag(F ) is a good one in the aseof small time steps but is less e�etive when the spatial mesh size is small or whenows are onvetion-dominated [36℄.4. Approximation to the Shur omplement. In ontrast to the methodsdisussed in the previous setion, the perspetive of the new approah is to treat theoupled equations diretly by approximating the Shur omplement assoiated with(2.8) or (2.13). In this setion, we disuss two ways to do this.For the �rst, assume that both m and j are �xed in (2.7), and let w = u(m+1)jdenote the lagged onvetion oeÆient. Consider the translated onvetion-di�usionoperator 1� I��r2+w �r. Suppose that the pressure spae also admits a onvetion-di�usion operator (��r2 + w � r)p, and furthermore that the ommutator of thetranslated onvetion-di�usion operators with the gradient operator,( 1�I � �r2 +w � r)r�r( 1�I � �r2 +w � r)p ;is small in some sense. A disrete version of this assertion is that(M�1u F ) (M�1u BT )� (M�1u BT ) (M�1p Fp) (4.1)is also small, where Mu is the mass matrix assoiated with the veloity disretizationand Fp is a disrete approximation to the translated onvetion-di�usion operator;both F and Fp have the form given in (2.9). It follows thatBF�1BT � ApF�1p Mp ; (4.2)where Ap = BM�1u BT is a disrete Laplaian operator. The matrix on the right handside here de�nes a preonditioning operator QS . More generally, any suitable disreteapproximation to the Laplaian an be used for Ap; in partiular, if stabilization isrequired, then BM�1u BT will be rank-de�ient and an alternative, stable, approxima-tion Ap to the Laplaian would be needed. The resulting operator an then be used asan approximation to BF�1BT +C. See [12, 20, 29℄ for additional disussion of thesepoints; in partiular, [20℄ gives an alternative derivation of QS using the fundamentalsolution tensor for the linearized Navier-Stokes operator. An important point is thatalthough ommutativity is used in the derivation above, it is not neessary that (4.1)7



be small (it is not small when equal order �nite element methods on di�erent gridsare used [7℄) for the idea to be e�etive.An alternative approximation to the Shur omplement is derived from a simpleobservation in linear algebra [8℄. Suppose G and H are two retangular matries ofdimensions n1 � n2 with full rank n1 � n2. The matrixHT (GHT )�1GTmaps Rn1 to range(HT ) � Rn1 , and it �xes range(HT ). That is, HT (GHT )�1GT = Ion range(HT ). With the hoies G = BF�1, H = B, this givesBT (BF�1BT )�1BF�1 = I on range(BT )or, equivalently, BT (BF�1BT )�1B = F on range(F�1BT ):If range(BT ) were ontained in range(F�1BT ), then this would imply that(BBT ) (BF�1BT )�1(BBT ) = BFBT ;or (BF�1BT )�1 = (BBT )�1(BFBT ) (BBT )�1: (4.3)It is generally not the ase that range(BT ) � range(F�1BT ), so that the expressionabove is not a valid equality. However, if we view (4.3) as an approximation, we anuse the expression on the right side to de�ne a preonditioning operator Q�1S . Notethat this approah is appliable only to div-stable disretizations; ideas to generalizeit to stabilized disretizations are under development.We refer to the operator de�ned by (2.15) and (4.2) as the \Fp-preonditioner,"and that de�ned by (2.15) and (4.3) as the \BFBt-preonditioner." Both strategieswere originally developed with steady problems in mind, and in this regard theyhave been studied in [8, 11, 12, 20, 22, 29℄. Some of their properties for solving theproblems that arise from low-order �nite element or �nite-di�erene disretization ofsteady problems are as follows:1. With Fp-preonditioning, gmres iteration exhibits a rate of onvergene thatis independent of the disretization mesh size h [12, 22℄.2. With BFBt-preonditioning, onvergene of gmres iteration is mildly depen-dent on mesh size, with iteration ounts that appear to grow in proportionto h�1=2 [8℄.3. Both methods lead to onvergene rates that are mildly dependent on theReynolds number [8, 12, 20, 29℄.As we will see in Setion 5, for evolutionary problems the dependene of onvergenerates on mesh size and Reynolds numbers beomes negligable; similar results have alsobeen shown in [9, 11℄. The results ited here are largely experimental. The report[22℄ ontains rigorous bounds showing that the eigenvalues of the Fp-preonditionedoperator AQ�1 are ontained in a region that is independent of mesh size h and timestep �t; these an be used to establish bounds on the asymptoti onvergene ratesof gmres.Using the preonditioner (2.15) with an iterative method suh as gmres to solvesystems (2.8) or (2.13) requires that the ation of the inverse of Q be applied at eah8



step. The main omputational tasks required for this are to apply the ation of the in-verse of QS to a member of the disrete pressure spae, and to apply the ation of theinverse of QF to a member of the disrete veloity spae. For Piard iteration (2.7),the latter operation entails solution of a set of salar disrete onvetion-di�usionequations. This an be done e�etively by iterative methods. For evolutionary prob-lems espeially, this is a straightforward omputation beause of the presene of themass matrix in F ; see [11℄.For the other main task, appliation of the ation of the inverse of QS, the prin-ipal ost is for solution of the Poisson equation. The Fp-preonditioner requires onePoisson solve at eah step, and the BFBt-preonditioner requires two per step. Oneagain, this task an be handled by iterative methods, and moreover, approximatesolutions to the Poisson equations are suÆient. In our experiene, one or two stepsof V-yle multigrid are suÆient for good performane of the omplete solver.If we ompare these two preonditioning methods, it is evident that the Fp-approah tends to have more favorable properties. However, one advantage of theBFBt method is that it is fully automated: it is de�ned expliitly in terms of operatorsonstruted from the disretization, and it requires no ation on the part of a potentialuser in order to be spei�ed. In ontrast, for the Fp-preonditioner, it is neessarythat the matries Fp and Ap be onstruted. In prinipal this an be done using aode similar to the one that produes F , but it must be done. It is also neessary tomake deisions on how boundary onditions a�et the de�nitions of Fp and Ap.5. Experimental results. In this setion, we show some representative experi-mental results on performane of the preonditioners desribed in the previous setion.We used two benhmark problems:1. The two-dimensional driven avity problem on the domain 
 = [�1; 1℄ �[�1; 1℄. Boundary onditions are u � 0 on �
 exept u1(x; 1) = 1 at the topof 
.2. Flow over a bakward-faing step. 
 is the L-shaped domain [�1; 0℄� [0; 1℄[[0; 5℄�[�1; 1℄, with paraboli inow onditions u1(�1; y) = 1�y2, u2(�1; y) =0, natural boundary onditions � �u1�x �p = 0, �u2�y = 0 at the outow boundaryx = 5, and u � 0 otherwise.Steady solutions of these problems for Reynolds number 200 are depited in Figure5.1. Details onerning the experiments are as follows. Spatial disretization was doneusing the stable Q2-Q1 �nite element disretization onsisting of biquadrati elementsfor the veloities and bilinear elements for the pressures, on a uniform grid. Streamlineupwinding [2℄ was used in ases where the ell Reynolds number jujh2� is greater thanone. Rather than perform a full transient iteration, we simulated time disretizationas follows. For most of the tests, we performed a Piard iteration for the steadyproblem, saved the oeÆient matrix J arising from the seond Piard step, and thenomputed F = 1�tM + J (5.1)where �t is to be viewed as a pseudo-time step. For bakward Euler disretization,�t is the value of the time step. For higher order time disretizations, there areother saling fators involved. For example, the Crank-Niolson disretization wouldhave time step equal to �t=2. In these experiments, one F is de�ned by (5:1), we9



Fig. 5.1. Steady state solutions of the driven avity (top) and bakward step (bottom) problemsfor Re = 200.
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solve solve Fu = f where f is the right hand side that arises from the steady Piarditeration.To speify the operators Ap and Fp used in the Fp-preonditioner, it is neessaryto assoiate boundary onditions with them. In these tests, for the driven avity(enlosed ow) problem, Ap and Fp are de�ned as though derived from Neumannboundary onditions. For the steady version of the bakward step problem, it isneessary to use a Dirihlet ondition at the inow boundary x = �1. For thetransient step problem, we found a Neumann ondition for Fp at the inow to beslightly more e�etive and this hoie was used in the experiments. We note thatalthough this issue is similar to what is often faed for projetion methods [19℄, hereit is only an aspet of the solution algorithm and it has no e�et on disretization ofthe pressure, for whih no boundary onditions are spei�ed.Representative results are shown in Figures 5.2 and 5.3 for the driven avityproblem, and in Figures 5.4 and 5.5 for the bakward step. We show results for10



Fig. 5.2. Iterations of preonditioned gmres at sample time and Piard steps, for driven avityproblem, Re = 200 and Q2-Q1 �nite elements. Left: 32� 32 grid, right: 64 � 64 grid.
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Fig. 5.3. Iterations of preonditioned gmres at sample time and Piard steps, for driven avityproblem, Re = 1000 and Q2-Q1 �nite elements. Left: 32 � 32 grid, right: 64 � 64 grid, bottom:128� 128 grid.
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Fig. 5.4. Iterations of preonditioned gmres at sample time and Piard steps, for bakwardfaing step, Re = 200 and Q2-Q1 �nite elements. Left: 32� 96 grid, right: 64� 192 grid.
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�t = 1=100, 1=10, 1 (in one example), and 1. The last value, whih orresponds tothe steady problem, gives an idea of what the maximal solution osts (per time step)would be in the ase of very large CFL numbers.The main points to observe onerning the transient problem are as follows:� For �xed �t, the iteration ounts required for onvergene are essentiallyindependent of both the Reynolds number and the disretization mesh size.� Iteration ounts are dereasing as a funtion of the time step size. This is aonsequene of the fat that the term 1�tM beomes more dominant in thede�nition of both the disrete operator and the preonditioner as �t! 0.� The BFBt-preonditioned solvers require fewer iterations (typially on theorder of 10 or fewer for the driven avity problem and 20 or fewer for thebakward step) than the Fp-preonditioned solvers. Although the omputa-tions for the BFBt operator are more expensive at any step (requiring twoPoisson solves at eah step instead of one), there is typially at least a 50%savings in iterations, whih makes the BFBt-preonditioner more eÆient inthese examples.� Note that the �rst and third assertions do not arry over to the steady prob-lem, where only the Fp-preonditioner is mesh independent and the perfor-mane of both methods depends on Re.The problems arising from the bakward faing step are onsiderably more diÆultthan those arising from driven avity ow. Although this is not neessarily unex-peted, there is no obvious explanation that an be seen purely from the propertiesof the algebrai systems.Table 5.1 gives estimates for the CFL numbers kuk�t=h for these tests, derivedfrom the empirially observed values kuk � 17 (in the vetor Eulidian norm) for thedriven avity problem and kuk � 29 for the bakward step. It is evident that thisapproah enables the use of large CFL numbers when it is feasible, i.e., when auraterepresentation of short time-sale physis is not the goal.Finally, Figure 5.6 shows a few results for the ase where the nonlinear iterationis based on Newton's method instead of the Piard iteration (2.7). As above, theexperiments were done for oeÆient matrix F = 1�tM + J where J is now the Jao-bian of the nonlinear system obtained after two Newton iterations. These oeÆient12



Fig. 5.5. Iterations of preonditioned gmres at sample time and Piard steps, for bakwardfaing step, Re = 1000 and Q2-Q1 �nite elements. Left: 32� 96 grid, right: 64� 192 grid.
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∆t=1/100 ∆t=1/10Table 5.1Estimated CFL numbers for test problems.Driven avity mesh Bakward step mesh�t 32� 32 64� 64 128� 128 32� 96 64� 1921=10 27 54 109 46 931=100 2.7 5.4 10.9 4.6 9.3matries have a more omplex struture, and in partiular, F is no longer a blokdiagonal matrix. In this ase, the Fp-preonditioner is de�ned using the veloity fromthe previous step for the onvetion oeÆient. These graphs should be omparedwith the �rst ones from Figures 5.2 and 5.4; they show that the osts to solve theseproblems are roughly twie those inurred for Piard iteration.6. Conluding remarks and generalizations. The goal of developing theseapproahes for preonditioning is to enable the development of exible and easilyimplemented solvers for the Navier-Stokes equations. This is ahieved in part bybuilding on e�orts to develop eÆient solvers for simpler subsidiary problems suhas the onvetion-di�usion and Poisson equations. The resulting algorithms an beapplied diretly to both evolutionary and steady problems and enable the use of timedisretization with large CFL numbers.We onlude with the observation that they also o�er the potential to handlemore general systems. Consider the ase where heat transport is ombined with theNavier-Stokes equations, giving rise to the Boussinesq equations�ut �r � (�uru) + (u � grad)u+ grad p = f(T )�Tt �r � (�TrT ) + (u � grad)T = g(T )�divu = 0 on D � Rd; d = 2 or 3: (6.1)Linearization and disretization (impliitly in time in the ase of transient problems)leads to a sequene of linear systems of equations now having the form0� Fu G BTH FT 0B 0 0 1A0� Æ�� 1A = 0� fg0 1A : (6.2)13



Fig. 5.6. Iterations of preonditioned gmres at sample time and Newton steps, for Re = 200and Q2-Q1 �nite elements Left: driven avity problem on a 32 � 32 grid. Right: bakward faingstep on a 32� 96 grid.
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