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Current trends in processor architectures increasingly include more cores on a 

single chip and more complex memory hierarchies, and such a trend is likely to 

continue in the foreseeable future. These processors offer unprecedented 

opportunities for speeding up demanding computations if the available resources can 

be effectively utilized. Simultaneously, parallel programming languages such as 

OpenMP and MPI have been commonly used on clusters of multicore CPUs while 

newer programming languages such as OpenCL and CUDA have been widely 

adopted on recent heterogeneous systems and GPUs respectively. The main goal of 

this dissertation is to develop techniques and methodologies for exploiting these 

emerging parallel architectures and parallel programming languages to solve large 

scale irregular applications such as the construction of inverted files. 

The extraction of inverted files from large collections of documents forms a 



  

critical component of all information retrieval systems including web search engines. 

In this problem, the disk I/O throughput is the major performance bottleneck 

especially when intermediate results are written onto disks. In addition to the I/O 

bottleneck, a number of synchronization and consistency issues must be resolved in 

order to build the dictionary and postings lists efficiently. To address these issues, we 

introduce a dictionary data structure using a hybrid of trie and B-trees and a high-

throughput pipeline strategy that completely avoids the use of disks as temporary 

storage for intermediate results, while ensuring the consumption of the input data at a 

high rate. The high-throughput pipelined strategy produces parallel parsed streams 

that are consumed at the same rate by parallel indexers. 

The pipelined strategy is implemented on a single multicore CPU as well as on a 

cluster of such nodes. We were able to achieve a throughput of more than 262MB/s 

on the ClueWeb09 dataset on a single node. On a cluster of 32 nodes, our 

experimental results show scalable performance using different metrics, significantly 

improving on prior published results. 

On the other hand, we develop a new approach for handling time-evolving 

documents using additional small temporal indexing structures. The lifetime of the 

collection is partitioned into multiple time windows, which guarantees a very fast 

temporal query response time at a small space overhead relative to the non-temporal 

case. Extensive experimental results indicate that the overhead in both indexing and 

querying is small in this more complicated case, and the query performance can 

indeed be improved using finer temporal partitioning of the collection. 

Finally, we employ GPUs to accelerate the indexing process for building inverted 



  

files and to develop a very fast algorithm for the highly irregular list ranking problem. 

For the indexing problem, the workload is split between CPUs and GPUs in such a 

way that the strengths of both architectures are exploited. For the list ranking problem 

involved in the decompression of inverted files, an optimized GPU algorithm is 

introduced by reducing the problem to a large number of fine grain computations in 

such a way that the processing cost per element is shown to be close to the best 

possible. 
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Chapter 1 Introduction 

The continuously growing computational powers of multicore CPUs and 

manycore graphic processing units (GPUs) offer unprecedented opportunities for 

speeding up demanding large scale applications. To make use of the powerful 

underlying architectures, novel algorithms are often required to exploit the substantial 

available resources while avoiding the overhead due to communication, 

synchronization, and data transfers. In this dissertation, we consider a number of 

platforms: a single node multicore CPU; a heterogeneous node consisting of a 

multicore CPU and multiple GPUs; and a cluster of such nodes, and develop 

techniques for mapping irregular applications on such platforms. 

1.1 Overall Background 

Challenges in power and thermal constraints and in increasing the throughput of 

the traditional microprocessor architectures prohibit higher performance from single-

core processors. Hence current high-end processor designs have switched to 

integrating more cores on a single chip [21]. Meanwhile more advanced features such 

as shared L2 or L3 caches between different cores and integrated memory controllers, 

have been introduced to increase the high memory throughput. While the 

architectures of current and emerging multiprocessors vary significantly, they all 

include several levels of memory hierarchy, SIMD or vector type operations, and 

multithreading. Such multicore processors offer unprecedented opportunities for 

speeding up demanding computations even on a single machine if the available 

resources can be effectively used.  
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Simultaneously, GPUs have substantially gained in popularity as accelerators for 

large scale data parallel computations. First appeared in the early and middle 1990s to 

relieve CPUs from heavy duty 2D/3D graphics workloads, GPUs have been pursuing 

highly parallel architectures consisting of many simple cores designed to operate in a 

streaming processing style. Modern GPUs are orders of magnitude faster than CPUs 

on a variety of applications [20, 34, 62, 82] due to the integrated hundreds or 

thousands of cores running in parallel and due to high memory bandwidth. With the 

introduction of the CUDA programming language, GPUs can now be programmed to 

handle any application. A number of works [18, 67, 81] have been published for 

handling the inverted files on GPUs, which are related to this thesis. 

On the other hand, parallel programming models and languages have also been 

evolving to take full advantage of the underlying parallel hardware components as 

well as to relieve programmers from low level details thereby simplifying software 

development and debugging [35, 65]. Within a single multicore CPU in which the 

main memory is shared among the cores, programming languages such as POSIX 

Threads (Pthreads) and OpenMP [16] have been commonly used where concurrent 

processes and threads communicate by accessing the shared memory [1]. OpenMP 

provides a simple programming model for parallelization at a coarse-grained level 

while Pthreads support multithreading through a number of integrated primitives [15]. 

On a cluster where the nodes are interconnected via an interconnection network, the 

Message Passing Interface (MPI) is widely used as an effective communication 

protocol to move data between the memories on different machines. The situation is 

more complicated when it comes to programming GPUs. Compute Unified Device 
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Architecture (CUDA) is the graphics processing programming model that is tailored 

for the NVIDIA GPUs. Low level explicit management such as deciding on the 

numbers of blocks and threads, conflict-free shared memory accesses as needed, and 

coalesced on-board memory accesses require knowledge of relatively low-level 

details of the GPUs. The parallel programming languages mentioned above may need 

to be combined together to handle applications running on clusters of heterogeneous 

multicore nodes. For example, three of the top five most powerful supercomputers as 

of November 2011 [66] exploit large clusters of heterogeneous platforms including 

both multicore CPUs and GPUs. 

1.2 Web Search 

Today we find local restaurants, sports game schedules, news feeds, current 

weather, and stock prices by simply typing the right terms on a device followed by 

launching a web search engine, which collects and organizes information over the 

internet to answer our queries in real time. Web searches are indeed becoming an 

integral part of our daily lives, and it was reported that over 570 million queries were 

carried out per day in April 2012 [69]. 

In the early 1990s, search tools emerged to provide catalogues of web pages [60] 

and after nearly 20 years of evolution, the modern web search engine consists of three 

major components: the web crawler, the indexer and the query processer. 

The web crawler downloads web pages from the internet and stores copies on 

some large scale repositories. It normally starts with a manually selected set of 

uniform resource locators (URLs), fetching the pages that correspond to these URLs, 
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extracting the URLs that appear on these web pages which are then added to the 

existing URL set. In such an iterative way, web crawlers are expected to capture a 

good fraction (up to 70% in 2005 [22]) of the web. For example, starting with 18,000 

URLs from over 60 countries, the Heritrix web crawler completed a unique global 

snapshot of the web with two billion pages [29]. However, a 100% coverage of the 

entire web is impractical since some websites are not publicly available and some 

web pages are fairly isolated. In May 2012, Google captured about 50 billion web 

pages in its index and Bing crawled 16 billion ones in its search engine [75].  

The naïve way to process a query is to scan all the crawled web pages to 

determine the matching ones, but such an approach is clearly impractical, especially 

when considering the billions of documents and Petabytes of data involved for 

today’s major web search engines. The inverted files, introduced much earlier for 

document retrieval, constitute an appropriate data structure to speedup web search. 

The indexer is responsible for constructing the inverted files from the collections of 

crawled web data. The documents (web pages in our case) processed by the indexer 

are in the form of {Document Doc_ID: a sequence of tokens}, where an integer 

Doc_ID is assigned here to identify the document. These documents are then 

transposed into the form of {Term T: a list of Doc_IDs that contain T}. Such list is 

called the postings list of a term T. Web pages also incorporate elements like HTML 

tags, which are intended to display the pages properly but these elements will not be 

inserted into the inverted files. In order to filter out such useless elements, extract 

only textual contents and find word boundaries, a process called parsing is performed 

just before indexing. The indexers build, in general, a dictionary to quickly locate the 
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postings list of a term. Incremental updating is a highly desirable feature of indexers 

[13, 14, 36], especially for the document collections archived from the fast changing 

web. Creation, modification or deletion of web pages all can happen many times 

every second on the internet, especially those involving news or social networking.  

To provide up to date information, newly crawled web pages or their most recent 

versions are added into the inverted files as soon as possible so that they can become 

searchable immediately. 

In addition to the steps described above, web search engines have to quickly serve 

queries. A typical query consists of several terms connected by Boolean operations 

[41, 64, 84]. The inverted files generated from the indexers help search engines find 

the accurate search results by merging the postings lists corresponding to all the query 

terms. The average query length in the publicly available AOL query log is 2.34 

terms [5] and such a few query terms are expected to appear in millions of web pages. 

As a result, it is highly desirable that searching results be somewhat ranked in order 

of importance to the users. This is accomplished through a scoring function that 

attempts to capture the relevance between a query and a document. One of the 

popular metrics is the TF-IDF weighing function, where both the term frequency (TF) 

and inverse document frequency (IDF) are taken into consideration based on the 

observation that a document is highly relevant for a certain term if this term occurs 

many times in the document (large TF) but rarely shows up in others (large IDF). 

Such weights (TF and IDF) are usually accommodated within the postings lists or 

dictionary and thus can directly be used during query processing.  

In this dissertation, we mainly focus on the inverted files construction problem 
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from a given collection of documents and develop extremely high-throughput 

algorithms that are tested and evaluated on well-known benchmarks.  

1.3 Indexing Strategies and MapReduce 

The indexing process can also be viewed as a sparse matrix transposition problem 

if the document collection is represented by a document-term matrix as it is 

commonly done in the field of natural language processing. In this scenario, the 

postings list of each term is easily obtained by traversing each column of the matrix. 

However, at the internet scale the numbers of web pages and terms easily reach tens 

of billions and hence such a matrix is extremely hard to create or update efficiently. 

Sort based indexing is an approach to get around this problem. Such a strategy 

consists of generating <term, Doc_ID> tuples during the parsing stage followed by 

sorting all these tuples by the term field, after which all tuples corresponding to the 

same term are grouped together to represent the postings list of this term. Normally in 

the postings lists, Doc_IDs are also in sorted order to achieve quick seeking by binary 

search and good compression ratio. A dictionary is also constructed in such a way 

that, given a term, we can quickly find a pointer to its postings list as well as 

collection statistics such as the inverse document frequency of a term. Since the size 

of <term, Doc_ID> tuples is very close to the size of the original document 

collection, it is impossible to fit these tuples into memory and hence an external 

sorting algorithm is required. As a consequence, the complexity of this problem is 

mainly disk I/O bound. 

A significant number of parallel and distributing computing strategies have been 
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used to generate the inverted files. The current prevalent programming model is 

MapReduce introduced by Google in 2004 [17]. MapReduce is designed for large 

scale data processing and is scalable on large clusters of commodity computers. More 

specifically, the Mappers generate <key, value> pairs from the input, then the run-

time system automatically sort these pairs to aggregate all values for the same key 

and the corresponding partitioned results are then handled by different Reducers for 

further processing. Many large scale problems like sorting, machine learning and 

graph computations can be expressed in this model and hence solved by MapReduce 

on large clusters. To apply MapReduce on the construction of inverted files, the 

sorting tasks are automatically handled by the underlying MapReduce framework. 

Therefore in a simple case Mappers will carry out the document parsing and yield 

<term, Doc_ID> pairs and Reducers are guaranteed to directly receive the postings 

lists of terms, sort them by Doc_ID if necessary and write them onto disks. 

The parallel and shared-nothing architecture of MapReduce hides the 

complexities of low-level parallel programming details and hence reduces software 

development time. However, this comes at some performance cost. Also, the 

applications of MapReduce are somewhat limited by the lack of global 

synchronization or communication within and between different Mappers and 

Reducers [37]. What’s more, modern heterogeneous platforms combining both 

computing powers from CPUs and GPUs are not fully utilized under the current 

MapReduce framework. 
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1.4 Temporally Anchored Web Contents and Inverted Files 

The web is gradually capturing almost every facet of human activities. From a 

certain perspective, the web captures a detailed picture of today’s world, including 

what people are thinking (blog), chatting (social network) and what’s happening in 

various countries (news sites). However, the web has been evolving rapidly since its 

advent and many old web pages are replaced by new versions. Such digital contents 

over time constitute an important part of our cultural heritage and hence a critical part 

of this content need to be preserved [2, 7]. There exist many efforts to archive 

different types of web contents. The most well known related project is the Wayback 

machine [72], which was created and maintained by the Internet Archive. Since 1996, 

the Wayback machine has archived over 150 billion web pages and, given one URL, 

it is able to retrieve all the versions of this URL which have been captured and 

preserved in its storage. From this type of records, answers can be provided for 

questions such as what statements showed up on a particular web page at a specific 

time in the past and how this web page has changed over time. Such temporal 

archives not only provide evidence for legal issues [31] but also trigger new research 

in fields such as sociology and linguistics.  

However, full text search is currently missing on web archives including the 

Wayback machine. As in the case of patent examination, locating the prior art with its 

time stamp is only possible if the URL is already given. However, in most cases these 

URLs are unknown in advance and are in fact what the users are trying to find in the 

first place. On the other hand, leading commercial search engines display highly 

relevant results based on a  few keywords, but the postings lists are built based on the 
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most up to date (last time crawled) versions of the web pages. 

The temporal inverted files which insert the time dimension into the indexing 

structure can handle temporal queries with both query terms and time constraints. A 

number of web pages crawled from the same URL at different times will all be 

included in the temporal inverted files. For example, matching results for the query 

“Iraq War in 2002” are the web pages that contain terms “Iraq” and “war” which 

were alive during year 2002, but not other pages that still contain Iraq and war. 

Adding the temporal dimension to web search significantly complicates the problem 

of building the appropriate inverted files as well as temporally anchored scores to 

determine an appropriate ranking of the matched pages. 

1.5 Major Contributions of this Thesis 

In this dissertation, we focus on deriving parallel and high performance 

algorithms for large scale irregular computations such as the construction of inverted 

files. More specifically, we start by tackling the general inverted files construction 

problem on a single node with multicore processors, then discuss a fast solution on a 

cluster of multicore processors. A new approach to handle the temporally archived 

document collections is developed. We also explore the use of GPUs to accelerate the 

indexing process as well as to solve the list ranking problem. 

Our inverted files construction algorithm for a single node is based on the shared 

memory model. A number of novel techniques are introduced to implement a high-

throughput pipelined strategy; including a hybrid trie and B-tree dictionary data 

structure, and dynamic work allocation to parallel CPU threads. Given a collection of 
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documents residing on a disk, the new algorithm is developed for processing these 

documents and building the inverted files extremely fast. The high throughput 

pipeline strategy produces parallel parsed streams, which are immediately consumed 

at the same rate by parallel indexers. We have performed several tests of our 

algorithm on a single node (two Intel Xeon X5560 quad-core CPUs), and were able to 

achieve a throughput of more than 280MB/s on the ClueWeb09 dataset. Similar 

results were obtained for widely different datasets. The throughput of our algorithm is 

comparable to the best known algorithms reported in the literature running on large 

clusters. 

Based on the algorithm on a single node, the high-throughput pipelined strategy is 

modified and optimized for a cluster of multicore processors, under either the 1Gb/s 

Ethernet or the 10Gb/s interconnect, and under either the distributed storage model or 

the centralized storage pool model. Besides, a number of new techniques are 

introduced to partition the indexing workload while minimizing the communication 

overhead and ensuring load balancing. We have generated extensive experimental 

results to illustrate the scalability of our strategy relative to the optimized single node 

algorithm. In particular, even with the MPI communication overhead, each node still 

achieves a throughput of 272MB/s, leading to over 6GB/s for the 32-node cluster 

when the 10Gb/s InfiniBand interconnect is used and over 5GB/s when the 1Gb/s 

Ethernet is used. The performance results seem to be substantially better than the best 

previous published results that adopt the MapReduce framework. 

We develop a new approach to deal with the problem of temporally-anchored 

search of web archives. Our approach guarantees that the dictionary and postings lists 



 

 

11 

 

remain exactly the same as before. Additional temporal indexes are built to capture 

the lifespan of each document version with little overhead. The lifespan of the entire 

collection is partitioned into multiple time segments in such a way that each query is 

localized into one time segment so that the query response time is fast. Such 

partitioning is conducted by separate threads in a new pipelined strategy and is well 

hidden by the existing parsing and indexing stages. Several experiments have been 

performed with real world data at significant scale, showing that the new temporal 

algorithm still maintains the high and scalable throughput on the cluster which is over 

3.7GB/s. What’s more, the test results indicate that with our collection partitioning 

strategy the query performance is not traded in for high indexing throughput and is 

quite stable independent of the query time constraint. 

Finally, we explore the possibility of solving the indexing problem and the list 

ranking problem fast on GPUs. The parallel indexing approach is tailored for a 

heterogeneous platform consisting of both multicore CPUs and high multithreaded 

GPUs. Particular features of CPUs and GPUs are taken into consideration to split 

workloads between these two types of processing units. By doing so, they are both 

assigned computations that better fit into their architecture and the combined 

throughput is even better than the simple sum of their individual ones. The list 

ranking primitive can be used to decompress the inverted files and we introduce an 

optimized multithreaded GPU algorithm through a randomization process that 

reduces this problem to a large number of fine-grain tasks. These small tasks are then 

mapped onto the multithreaded GPU in such a way that the processing cost per 

element is shown to be close to the best possible. The experimental results show 
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scalability for a wild range of list sizes and significant improvement on the previously 

published parallel implementations. The performance also compare favorably to the 

one of the best known CUDA algorithm for the scan operation on the same GPUs. 
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Chapter 2 Fast Construction of Inverted Files on a Single Node 

In this chapter, we address the traditional inverted files construction problem on a 

single multicore node. Our approach involves a hybrid dictionary data structure 

consisting of a trie and B-trees, and a pipelined strategy that includes parsing and 

indexing stages, both of which are implemented using parallel threads. 

2.1 Overview 

A critical component of all information retrieval systems including web search 

engines is the set of inverted files generated typically from a very large collection of 

documents. A considerable amount of research has been conducted to deal with 

various aspects related to inverted files. In this chapter, we are primarily concerned 

with methods to generate the inverted files as quickly as possible. All the recent fast 

indexers use the simple MapReduce framework on large clusters, which enables 

quick development of parallel algorithms dealing with internet scale datasets without 

having to deal with the complexities of parallel programming. Such framework leaves 

the details of scheduling, processor allocation, and communication to the underlying 

run time system, and hence relieves programmers from all the extra work related to 

these details. However such an abstraction comes at a significant price in terms of 

performance, especially when using the emerging multicore processors. In this 

chapter, we take the different approach that exploits common features present on 

current multicore processors to obtain a very fast algorithm for generating the 

inverted files.  

Our testbed consists of two Intel Xeon X5560 quad-core CPUs with 24GB of 
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main memory and each quad-core shares an 8MB L3 cache. The multicore processor 

offers a multithreaded environment with a shared memory programming model. In 

this model, communication is carried out through the shared memory, and hence a 

careful management of the shared memory and the workloads among the cores is 

critical to achieve good performance.  

The rest of the chapter is organized as follows. In the next section, we provide a 

brief background about the typical strategy used to build inverted files and a summary 

of the work that is most related to ours. Section 2.3 provides a detailed description of 

our algorithm, including our new dictionary data structure and the organization of the 

parallel parsers and parallel indexers. Section 2.4 provides a summary of our test 

results on three very different benchmarks, and we conclude in Section 2.5. 

2.2 Related Work 

We start by giving a brief overview of the process of building inverted files given 

a collection of documents residing on a disk. The overview will be followed by a 

summary of previous work on parallel and distributed implementations of this 

strategy. 

The overall process essentially converts a collection of documents into inverted 

files consisting of a postings list for each of the terms appearing in the collection as 

follows. The strategy starts by parsing each document into a “bag of words” of the 

form <term, document ID> tuples, followed by constructing a postings list for each 

term such that each postings contains the ID of the document containing the term, 

term frequency, and possibly other information. Parsing consists of a sequence of 



 

 

15 

 

simple steps: tokenization, stemming, and removal of stop words. Tokenization splits 

a document into individual tokens; stemming converts different forms of a root term 

into a single common one (e.g. parallelize, parallelization, parallelism are all based on 

parallel); and removal of stop words consists of eliminating common terms, such as 

“the”, “to”, “and”, etc. The overall parsing process is well understood, and follows 

more or less the same linguistic rules, even though there exist different stemming 

strategies.  

The next phase consists of constructing the inverted index. All <term, document 

ID> tuples belonging to the same term are combined together to form the postings list 

of that term. During the construction, a dictionary is usually built to maintain the 

location of the postings list of each term and to collect some related statistics. 

Postings on the same list are usually organized in a sorted order of document IDs for 

faster look up. Indexing is a relatively simple operation—group tuples for the same 

term together and then carry out sorting by document IDs—but it is always by far the 

most time consuming part given the typical size of the collection to be indexed. 

In [23], postings lists are written as singly linked lists to disk and the dictionary 

containing the locations of the linked lists remains in main memory; however, another 

run is required as post-processing to traverse all these linked lists to get the final 

contiguous postings lists for all terms. Moffat and Bell proposed sort-based indexing 

in [47] for limited memory. Their strategy builds temporary postings lists in memory 

until the memory space is exhausted, sorts them by term and document ID and then 

writes the result to disk for each run. When all runs are completed, it merges all these 

intermediate results into the final postings lists file. The dictionary is kept in memory; 
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however as the size grows, there may be insufficient space for temporary postings 

lists. Heinz and Zobel [28] further improved this strategy to a single-pass in-memory 

indexing version by writing the temporary dictionary to disk as well at the end of 

each run. Dictionary is processed in lexicographical term order so adjacent terms are 

likely to share the same prefix and front-coding compression is employed to reduce 

the size. 

We now turn to a review of the major parallel strategies that appeared in the 

literature. In [45], the indexing process is divided into loading, processing and 

flushing; these three stages are pipelined by software in such a way that loading and 

flushing are hidden by the processing stage. The Remote-Buffer and Remote-Lists 

algorithm in [58] is tailored for distributed systems. In the first run, the global 

dictionary is computed and distributed to each processor and in the following runs, 

once a <term, document ID> tuple is generated, it is sent to a pre-assigned processor 

where it is inserted into the destination sorted postings list. Today, MapReduce based 

algorithms are prevalent. First proposed in [17], the MapReduce paradigm provides a 

simplified programming model for distributed computing involving internet scale 

datasets on large clusters. The Map workers emit <key, value> pairs to Reduce 

workers defined by the Master node, and the runtime would automatically group 

incoming <key, value> pairs received by a Reduce worker according to key field and 

pass <key, list of values associated with this key> to the Reduce function. A 

straightforward MapReduce algorithm for indexing is to use term as key and 

document ID as value, in which case the Reduce workers can directly receive 

unsorted postings lists. Since there is no mechanism for different Map workers to 
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communicate with each other, creating a global dictionary is not possible. McCreadie 

et.al let Map worker emit <term, partial postings list> instead to reduce the number of 

emits and the resultant total transfer size between Map and Reduce since duplicate 

term fields are less frequently sent. Their strategy has achieved a good speedup 

relative to the number of nodes and cores [42, 43]. Their algorithm seems to achieve 

the best known throughput rate for full text indexing. Around the same time, Lin et.al 

[19, 39] developed a scalable MapReduce Indexing algorithm by switching <term, 

posting{document ID, term frequency}> to <tuple{term, document ID}, term 

frequency>. By doing so, there is at most one value for each unique key, and 

moreover it is guaranteed by the MapReduce framework that postings arrive at 

Reduce worker in order. As a result, a posting can be immediately appended to the 

postings list without any post processing.  

We note that almost all the above strategies perform compression on the postings 

lists for otherwise the output file would be quite large. Because document IDs are 

stored in sorted order in each postings list, a basic idea used is to encode the gap 

between two neighbor document IDs instead of their absolute values combined with a 

compression strategy such as variable byte encoding, γ encoding and Golomb 

compression. 

2.3 Description of Our Algorithm 

Our main goal in this chapter is to present a very fast indexing algorithm on 

multicore processors. To evaluate the actual performance of our algorithm, we use the 

Intel Processor Xeon X5560 consisting of two quad-core CPUs. These eight cores are 
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divided into two groups dedicated for parsing threads and indexing threads 

respectively. These two types of threads are running concurrently. In our 

implementations, we use Pthreads and their programming environment. 

2.3.1 Overall Approach 

Briefly, a number of parsers run in parallel on the multicore CPU, where each 

parser reads a fixed size (typically 1GB WARC files [71]) block from the disk 

containing the documents, executes the parsing algorithm, and then writes the parsed 

results onto a buffer. A number of indexers pull parsed results from the buffer as soon 

as they are available and jointly construct the postings lists, which are written into a 

disk as soon as they are generated. The dictionary remains in main memory until the 

whole process is completed. Such a pipelined data flow avoids writing intermediate 

results onto disks unlike the Map workers used in the MapReduce framework, which 

typically transfer data to Reduce workers via disks [17, 19, 39, 42, 43]. 

There are many details that need to be carefully worked out for this approach to 

achieve optimal throughput. Before providing details about the parsing and indexing 

tasks and how they are allocated to the available cores, we describe the dictionary 

data structure used since it plays a central role through which the various tasks 

coordinate their work. This will be followed by a description of the parsing and 

indexing tasks allocated to the various cores available on our parallel platform. 
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Figure 2.1: Dataflow of Pipelined and Parallel Indexing 

2.3.2 Dictionary Data Structure 

The structure of the dictionary plays a critical role in the performance of our 

indexing algorithm since multiple concurrent threads have to access the dictionary 

and hence conflicts among the corresponding parallel threads must be properly 

resolved in such a way to ensure correctness and achieve high performance. The B-

tree is the typical data structure used in many information retrieval systems due to its 

balanced structure and small height. In particular, the height of any n-key B-Tree is at 

most 
1

log
2

t

n 
 where t is the degree of the tree. Such a structure is not in general 

suited for operations such as multiple threads attempting to insert a new term into the 

same node or any other operations with similar conflicts. Locks can be used to 

prevent such hazards but the overhead is extremely high since many threads may 

have to wait until a thread completes its modification of the B-Tree. In our 

implementation, we introduce a combination of a trie at the top level and a B-Tree 

attached to each of the leaves of the trie. A similar data structure was used in [27] to 

achieve compact size and fast search; however in our case we will exploit this hybrid 

data structure to achieve a high degree of parallelism and load balancing among the 

multiple cores. 
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2.3.2.1 A Hybrid Data Structure 

Our hybrid data structure for the dictionary is shown in Figure 2.2. Essentially, 

terms are mapped into different groups, called trie collections, followed by building a 

B-tree for each trie collection. 

 

Figure 2.2: Hybrid of Trie and B-Tree Structure of Dictionary 

The main reason we use a trie at the top level is to generate many independent B-

trees instead of a single B-tree. Each B-tree is then handled by a single thread, 

independently of the other B-trees. In our case, we fix the height of the trie to three, 

which means that the first three letters in a term are used to determine the 

corresponding the index of the trie collection. We observe that there are still a 

significant number of terms with less than four letters or have at least one letter 

outside range [a-z] in the first three letters. To accommodate such terms, we create 

additional 1024 trie collections indexed 0-1023 and use a hash function for a balanced 

distribution. In fact, the index category of each leaf of the trie is specified in Table 

2.1. Clearly, the number of terms belonging to different trie collections varies 

significant; for example, there are many words with prefix “the” and hardly any terms 
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with prefix “zzz”. The height of three for the trie seems to work best since a smaller 

height will lead to a wide variety of trie collections, some very large and some very 

small, which will be hard to allocate to the different core processors in such a way as 

to achieve a good load balance. A larger value for the trie height will generate many 

small trie collections, which will be again hard to manage. Since the trie height is 

constant here, we don’t need to actually build the trie structure but we use a table to 

map a trie index directly into the root location of the corresponding B-tree. 

Table 2.1: Trie-Collection Index Definition 

Index Term Category Example 

Terms not 

Falling in to the 

Next Categories 

(1024 entries) 

0 Terms with less than 

four letters or contain 

one or more symbol 

outside [a-z] in the first 

three letters 

“-80”, “3d”, “Česky” 

“01”,“0195” 

“9”, “954” 

“a”, “at”, “act”, “añonuevo” 

“z”, “zoo”, “zoé” 

1 

… 

1023 

Terms with >3 

letters and no 

special letter in 

the first 3 letters 

(26*26*26=17576 

entries) 

1024 
Terms with >3 letters 

and starting with ‘aaa’ 
“aaat”, “aaaé” 

1025 
Terms with >3 letters 

and starting with ‘aab’ 
“aabomycin” 

… … … 

18599 
Terms with >3 letters 

and starting with ‘zzz’ 
“zzzy” 

 

In addition to allowing a high degree of parallelism through the independent B-

trees, our hybrid data structure achieves two more benefits. Since we replace a big B-

tree by many small B-trees, the heights of the B-trees are smaller, implying that the 

time to search or insert a new term is reduced as well. Another advantage of the trie 

lies in the fact that terms belonging to the same trie index share the same prefix 

(except trie indices 0-1023) and hence we can eliminate such common prefix, save 

memory space for term strings and reduce string comparison time in B-tree 

operations. The average length of a stemmed token is between 6.6 and 6.7 in all the 
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datasets used in this dissertation and hence removing the first three letters results in 

almost doubling the string comparison speed. An alternative option to the trie is to 

use a hash function, but a hash function will still require comparisons and searches on 

full strings and hence won’t be as effective as the trie. 

2.3.2.2 Special Node Structure in B-tree 

The structure of a B-tree node is illustrated in Table 2.2. The degree of B-tree is 

16, that is, each node can hold up to 31 terms, and this number is selected from 

experiments as well as to match the CUDA warp size which will be later described in 

Chapter 5. Since the length of a term string is not fixed but varies over a wide range, 

it is impossible to store the strings within a fixed B-tree node; instead, pointers are 

used to indicate the memory location of the actual strings. During a search or insert 

operation into one of the B-trees, strings are accessed through these pointers, and 

such operations can be quite expensive. To get around this problem, we include 31 

four-byte caches in each node. Since the average length of a stemmed token is 

between 6.6 and 6.7 and the trie at the top level takes care of the first three bytes, four 

bytes will be sufficient to hold the remaining bytes in most cases. These caches are 

used to store the first four bytes of the corresponding term strings. Consider for 

example the term “application”—the first 3-byte “app” is not needed since it is 

already captured by the trie, so we only have to store the term string “lication” into 

the B-Tree, and hence “lica” is stored in the cache, and the remaining string is stored 

in another memory location indicated by the term string pointer. 

 



 

 

23 

 

Table 2.2: Data Structure of One B-Tree Node 

Field Number Data Size (Byte) 

Valid term number 1 4 

Pointer to term string 31 124 

Leaf indicator 1 4 

Pointer to postings lists 31 124 

Pointer to children 32 128 

4-Byte Cache for term string 31 124 

Padding 1 4 

Total Size  512 

 

Occasionally some memory space will be wasted when caches are not fully 

occupied. However the advantages of our scheme are substantial because: 

 Short strings can be fully stored within the B-tree node; 

 For long strings, even though only the first four bytes are stored, it is highly 

likely that the required comparison between two term strings can be done with 

only these four bytes since it is a rare case that two arbitrary terms share the 

same long prefix. 

A padding space of 4-byte is also added such that the total size of a B-tree node is 

exactly 512 bytes. In addition, the order of the digits is organized in such a way that a 

B-tree node is partitioned into four 128-byte chunks so as to match the CPU cache 

line or the GPU shared memory width. 

2.3.3 Structure of Parallel Parsers 

As shown in Figure 2.1, we will have M parsers running in parallel on a single 

node. Each parser processes a segment of documents independently after reading the 

segment from disk as illustrated later in Figure 2.8. The number M of parsers depends 

on the number of CPU cores and overall resources available, to be discussed later. 



 

 

24 

 

Here we describe the sequence of operations executed by each parser, illustrated 

in Figure 2.3. Each such sequence will be executed by a single CPU thread. The 

corresponding steps are briefly described next. 

 

Figure 2.3: Data Flow of One Parser Thread 

 Step1 reads files from disk, decompresses them if necessary, assigns local 

document ID to each document, and builds a table containing <document ID, 

document location on disk> mapping. 

 Step2 performs tokenization, that is, parses each document into tokens and 

determines the trie index of each resulting term. 

 Step3 performs Porter stemmer. 

 Step4 removes stop words using a stop word list. 

 Step5 rearranges terms with the same trie index so that they are located 

contiguously. In addition, the prefix of each term captured by the trie index is 

removed. 

The first four steps are standard in most indexing systems. Step5 is special to our 

algorithm. Essentially, this step regroups the terms into a number of groups, a group 

for each trie collection index as defined by our dictionary data structure. We note that 
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the overhead of this regrouping step is relatively small, about 5% of the total running 

time of the whole parsing process. This is due to the fact that tokenization scans input 

document character by character and hence a trie collection index can be calculated as 

a by-product using a minimal additional effort.  

This regrouping is needed for our parallel indexing algorithm. More specifically, 

when indexing is carried out by a serial CPU thread, regrouping results in 

approximately 15-fold speedup based on our tests. The improved performance is due 

to improved cache performance caused by the additional temporal locality. Now we 

are processing a group of terms falling under the same trie collection index, which are 

inserted into the same small B-tree whose content stays in cache for a long time.  

Therefore, after processing a number of documents (contained in a 1GB file in our 

case), the parsed results organized according to trie index values will be passed to the 

indexers. For each trie collection, the parsed results will look like: 

Trie Collection corresponding to index i: (Doc_ID1, term1, term2, …), (Doc_ID2, 

term1, term2, …), ….. 

Doc_IDs in the lists are local ones within this parser. A global document ID offset 

will be calculated by the indexer; thus the global document ID can be obtained by 

adding Doc_ID and the global offset. 

2.3.4 Structure of Parallel Indexers 

The purpose of an indexer is to construct all the B-trees and the postings lists 

corresponding to each input term as shown in Figure 2.4. To ensure load balancing, a 

CPU thread will take care of the B-trees of several trie collections as we explain later. 
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Figure 2.4: A B-tree Corresponding to a Single Trie Collection Index 

An indexer is executed by a single CPU thread, which follows the commonly used 

procedures for building the B-tree and the corresponding postings lists. The only 

difference is to make use of the fact that a cache is included within each B-tree node. 

Hence, when a new term is inserted into a B-tree, the first 4-bytes of the string are 

stored in the string cache field in the appropriate B-tree node. The remaining bytes, if 

any, are stored in another memory location, which can be reached via the string 

pointer for this term. 

We observe that two tokens, appearing close to each other in a single document 

and belonging to the same trie collection, are likely to be the same term. For example, 

“that” is a commonly used term and hence the next term with prefix “tha-” is also 

likely to be “that”; on the other hand, an unusual term such as “zooblast” has the 

same implications since there are few terms with prefix “zoo-”. We can mine such 

linguistic facts here because of the trie structure that groups terms with common 

prefix together. Therefore, we use a special cache to store the last term inserted into 

B-Tree and the location of its postings list. Then we compare the next term with the 

term stored in the cache and if they match we skip the B-tree operations and 
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immediately update the corresponding postings list. We enable such cache only 

within a single document because different documents will behave differently in 

which case caching is ineffective in general. 

We now address the issue of assigning the 18,600 trie collections among the 

parallel indexer threads so that the load will be distributed almost equally among the 

threads.  

  

Figure 2.5: Work Assignments among Multiple Threads 

 A sampling strategy is used to allocate parsed streams to indexers. Sampling 

refers to extracting a sample from the document collection at the very beginning, for 

example a random 1MB out of every 1GB, and run several tests on the sample to 

determine the best partitioning strategy of the trie collections. In this case, once a trie 

collection is assigned to a certain indexer, it will always be processed by the same 

indexer throughout the lifetime of the algorithm, that is, there is a persistent binding 

between a trie collection and the indexer thread ID.  

In addition to the main indexing step, pre-processing delivers input from buffer to 

multiple indexers and post-processing combines postings lists from all indexers, 

compresses them with variable byte encoding and then writes the compact results to 
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disk. These two steps are serialized. Each iteration, beginning with the data in a 

parser buffer and ending in postings lists is referred to as a run illustrated in Figure 

2.6. 

 

Figure 2.6: Data Flow of One Single Run on Parallel Indexers 

2.3.5 Overall Pipelined Data Flow 

In our setting, the input document data collection is stored on a centralized storage 

connect to our machine via a 1Gb/s Ethernet and is processed through our multicore 

CPU platform to generate the postings lists and store them on either a local disk or the 

centralized storage. The dictionary is kept in main memory until the last batch of 

documents is processed, after which it is moved to the disk. The number of parsers 

and the number of indexers are determined depending on the physical resources 

available. In Section 2.4.1, we determine the best values of these parameters for our 

platform.  

 

Figure 2.7: Pipelined Data Flow of Overall Indexing System on a Single Node 
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To avoid several parsers from trying to read from the same storage at the same 

time, a scheduler is used to organize the reads of the different parsers, one at a time. 

On the other hand, an output buffer is allocated to each parser to store the 

corresponding parsed results. The indexers in the next stage will read from these 

buffers in order, that is, (buffer of Parser 0, buffer of Parser 1, …, buffer of Parser M-

1, buffer of Parser 0, …). Such read sequence is enforced to ensure that document 

first read from disk will also be indexed first so the postings lists are intrinsically in 

sorted order of assigned document IDs. A parser has to also wait until buffer is 

cleared to start the parsing of the next block of documents to ensure that it has the 

space to write the parsed results. When these constraints are applied, the timing 

sequence of parallel parsers looks like the example shown in Figure 2.8. 

 

Figure 2.8: Timing Sequence of Parallel Parsers 

We note that a separate output file is created for the postings lists generated 

during a single run, whose header contains a mapping table indicating the location 

and length of each postings list. This mapping table is indexed by the pointers to 

postings lists stored in the dictionary as shown in Table 2.1. To retrieve a postings list 

for a certain term string, we look it up in the dictionary and use the corresponding 
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pointer to determine the location of the partial postings list in each of the output files. 

This output format has some additional benefits including: 

  faster search when narrowed down to a range of document IDs since we can 

fetch only those partial postings lists that overlap with this range. This is 

possible since we include an auxiliary file containing the mapping of document 

IDs to output file names; and 

 the possibility of parallel reading of the postings lists because the output files 

can be written onto multiple disks. 

Although a postings list is divided into partial lists and stored in separate files, the 

index is still monolithic for the entire document collection. We can also see later that 

such output format is critical in the temporal case in Chapter 4. If necessary, we can 

combine the partial postings lists of each term into a single list in a post-processing 

step, with an additional cost of less than 10% of the total running time. 

2.4 Experimental Results 

Our parallel and pipelined indexing system is tested on a single machine that 

holds two Intel Xeon X5560 quad-core CPUs. We use three document collections to 

test the performance of our algorithm. We start with the first English segment of the 

ClueWeb09 collection, which has been heavily utilized by the information retrieval 

community. Crawled between January and February 2009 by Language Technologies 

Institute at Carnegie Mellon University, this dataset includes 50,220,423 web pages 

packed into 1,492 files with a total size of 230GB compressed and 1.389 TB 

uncompressed. The second dataset is the Wikipedia01-07 data, which is derived from 
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a publicly available XML dump of Wikipedia articles [74] created on January 3th 

2008 with 83 monthly snapshots between February 2001 and December 2007. The 

third is the dataset from the Library of Congress, which includes weekly snapshots 

of selected news and government websites crawled between May 2004 and 

September 2005 by the Internet Archive. Overall statistics about the three are given in 

Table 2.3. The number of terms and tokens may vary with different implementations 

due to the choice of tokenization and stemming procedures. These document 

collections are stored on a disk connected to our platform via a 1Gb/s Ethernet. The 

generated output, postings lists and dictionary, are written to either a remote disk 

(with 1Gb/s connection) or to a local disk (resulting performance differences are very 

small and insignificant). We report results averaged over three trials and in all our 

tests the differences between the fastest and slowest execution times have been less 

than 5%. 

Table 2.3: Statistics of Document Collections 

 ClueWeb09 1
st
 

Eng Seg 

Wikipedia 01-

07 

Library of 

Congress 

Compressed Size 230GB 29GB 96GB 

Uncompressed Size 1422GB 79GB 507GB 

Crawl Time 01/09 to 02/09 02/01 to 12/07 05/04 to 09/05 

Document Number 50,220,423 16,618,497 29,177,074 

Number of Terms 84,799,475 9,404,723 7,457,742 

Number of Tokens 32,644,508,255 9,375,229,726 16,865,180,093 

 

In what follows, we start by determining the best values on our platform for the 

following parameters: the number of parallel parsers and the number of parallel 

indexers. Then we look at the scalability of parallel indexers and dictionary growth. 

This will be followed by summarizing the overall performance of our algorithm on 
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the three document collections. We end by comparing our performance to the best 

reported results in the literature. 

2.4.1 Optimal Number of Parallel Parsers and Indexers 

In this section we focus on determining the best number of parallel parsers and 

indexers. Note that our goal is not only to speed up the parsing of the documents but 

also to match it with the speed at which indexers are able to consume the parsed data. 

The performance of our single node algorithm on the ClueWeb09 first English 

segment as a function of the number M of parsers is shown in Figure 2.9 under two 

scenarios: (1) M parsers and 8-M indexers; and (2) M parsers without any indexers. 

The value of M varies from 1 to 7 since there are only eight cores on each node. The 

second scenario illustrates the best possible throughput achieved by just parsing the 

document collection.  

When the number of parsers is within the range 1 through 6, we observe similar 

performance in both scenarios, including an almost linear scalability as a function of 

the number of parsers. This indicates that the indexers are keeping up with the data 

generated by the parsers and hence, within this range, the parsers constitute the slow 

stage of the pipeline. The major limitations to speeding up the parsers include the 

sequential access to the single disk and the contention on cache and memory 

resources. Beyond 6 parsers, when the number of indexers decreases, the indexing 

pipeline stage is not able to catch up with the parsing stage, indicating that a ratio of 

6:2 between parsers and indexers is the best possible on our 8-core CPUs. When all 

eight cores are executing the parsing program, the overall throughput is 341MB/s, 

which indicates the maximum possible throughput of the parsing stage on a single 
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node. Our algorithm has reached 82% of this maximum throughput with 6 parsers and 

2 indexers. On the other hand, over 47% of the disk bandwidth has been consumed 

during the parsing and indexing process, which means that the throughput of our 

algorithm is near the peak I/O throughput of the underlying hardware. 

 

Figure 2.9: Optimal Number of Parallel Parsers and Indexers 

Before proceeding, we examine the format of the input data to be processed by 

the parsers. A typical file of the ClueWeb09 data set is about 160MB compressed and 

1GB uncompressed. On average, it takes about 1.6 seconds to read such a compressed 

file from either a local disk or the storage pool, and 3.2 seconds to decompress it. On 

the other hand, it takes about 10 seconds to read the uncompressed file. Therefore we 

load the compressed files and then decompress them in memory before parsing. There 

are two possible options to proceed: decompression can be folded into either the file 

read stage or can be performed as a separate step after reading. The advantage of the 

former is that decompression can be partially hidden by file reading time if 

decompression starts whenever partial data becomes available in memory, so the 

overall time for reading and decompressing a file takes 3.8 seconds on average, which 

translates into 263MB/s intake bandwidth. The disadvantage of this method is that the 

file access right cannot be released to another parser until reading and decompression 
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are both completed. This causes a mismatch between the data generated by the 

parsers and the data consumed by the indexers. Hence we choose the second scheme 

in which decompression starts after the file is fully transferred to memory. In this 

case, the average time to read a compressed file is (1.6+3.2/M) seconds where M is 

the number of parallel parsers. When M=6, the intake bandwidth reaches as high as 

467MB/s. 

2.4.2 Indexing Throughput and Dictionary Growth 

Given that we have already determined that the best overall performance on a 

single node is achieved by using six parsers, we now take a closer look at the 

indexing throughput of parallel indexers, not including the pre-processing and the 

post-processing steps. We track the time of the parallel indexers spent on each file in 

the ClueWeb09 first English segment and compute the throughput for each file as 

shown in Figure 2.10. Note that starting with file index 1,201, we can see a 

significant drop in performance. This can be explained by the fact that the files with 

indices from 1,201 to 1,492 all belong to Wikipedia.org, and hence they exhibit a 

totally different behavior than the earlier documents. This portion of the Wikipedia 

files is relatively small within the ClueWeb09 first English segment, and hence the 

parameters determined by the sampling process do not effectively reflect the 

characteristics of this small subset. 

The overall slope consists of a sharp decrease near the beginning followed by a 

trend that approaches a horizontal line. This pattern correlates well with the inverse of 

the depth of B-tree because as the B-trees grow deeper, it takes more time to perform 

insert or search operations.  
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Figure 2.10: Scalability of Parallel Indexers 

2.4.3 Performance of our Algorithm on Different Document Collections 

We show in Table 2.4 the overall throughput of our algorithm on our three 

document collections. For all tests, six parsers and two indexers are used to achieve 

the best performance. The throughput achieved on the ClueWeb09 and Library of 

Congress datasets is within the same ballpark. For the Wikipedia01-07 collection, the 

HTML tags were removed, and the remainder is just pure text. As we can see from 

Table 2.4, the uncompressed size is only 1/18th of ClueWeb09 first English segment, 

yet the numbers of documents and tokens are about a third compared to those of the 

ClueWeb09 first English segment. Hence the slower than 100MB/s throughput 

achieved on Wikipedia01-07 actually amounts to a very high processing speed given 

the large numbers of documents and tokens. 
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Table 2.4: Performance Comparison on Different Document Collection 

 
ClueWeb09 

1st Eng Seg 

Wikipedia 

01-07 

Library of 

Congress 

Throughput (MB/s) 280.12 78.29 223.76 

 

2.4.4 Comparison with Fastest Known Algorithms 

In this section, we compare the performance of our algorithm with the best known 

MapReduce algorithms that appeared in the literature, namely Ivory MapReduce [19, 

39] and Terrier MapReduce [43] on exactly same ClueWeb09 first English segment 

data set. Both of these algorithms are implemented using the MapReduce framework, 

and hence the comparison is somewhat unreasonable since these are high level 

algorithms that do not exploit the underlying architectures. The Ivory MapReduce 

tests are conducted using a cluster of either 99 or 280 nodes, each node having two 

cores. Positional postings lists are generated by the Ivory MapReduce algorithm, 

which will add an extra overhead. For a better comparison, we also modified our 

software to include positional information and in this case our algorithm is 7% slower 

while the resulting postings lists are about 1.6 times larger. According to [38], their 

Ivory MapReduce implementation with positional indices is about 1.2 times slower 

compared to non-positional indices, which is very close to the 1.6 times increase in 

postings lists size. We believe that this result is due to the fact that under the 

MapReduce framework, intermediate results are written to disks and shuffled in 

between Map and Reduce, a process that is more sensitive to the increase in data size. 

In our algorithm, dictionary lookup or B-tree search operation consumes the majority 

of CPU cycles and as a result structural changes in postings lists should not introduce 

a significant overhead. Parsing and indexing times are reported separately in [19], 
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54.3 minutes for parsing and 29.6 minutes for indexing with 280 nodes, and the 

throughput is calculated by dividing uncompressed size by the sum of the these two 

numbers. On the other hand, the Terrier MapReduce algorithm uses a cluster of 30 

nodes with a total of 240 cores on the same ClueWeb09 collection. Originally while 

computing the throughput they used compressed data size and we’ve translated that 

into our metric using uncompressed data size. The main features of the platforms are 

captured in Table 2.5.  

Table 2.5: Platform Configuration Comparison 

 This Thesis 
Ivory 

MapReduce 

Terrier 

MapReduce 

System 

Details 

Processors per 

Node 

Two Intel Xeon 

2.8GHz Quad-

core CPUs 

Two Intel 

Single-core 

2.8GHz 

CPUs 

Two AMD 

Quad-core 

Opteron 

CPUs 

Memory per 

Node 
24GB 4GB 16GB 

File System 

 File System 

via 4Gb/s 

Ethernet or 

local disks 

Hadoop 

Distributed 

File System 

Hadoop 

Distributed 

File System 

Throughput 

(MB/s) 

1 Node 

(8 cores) 
280 — 33 

30 nodes 

(240 cores) 
— — 460 

99 Nodes 

(198 cores) 
— 167 — 

280 Nodes 

(560 cores) 
— 289 — 

 

It is clear that our pipelined and parallel indexing algorithm implemented on a 

single node achieves the performance comparable to the ones from MapReduce on 

larger clusters. A number of factors contribute to the superior performance of our 

algorithm including: 
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 The pipelined and parallel strategy that matches maximum possible parsing 

throughput with parallel indexing on available resources. 

 The hybrid trie and B-tree dictionary data structure, in which the logical trie is 

implemented as a table for fast look-up and each B-Tree includes character 

caches to expedite term string comparisons; 

 Parallel parsers that scale well with the number of threads, in addition to the 

fact that the file reading and decompression are carefully optimized to boost 

the I/O bandwidth; 

 The regrouping operation that is integrated into the parsing stage with little 

overhead but that noticeably increases CPU cache performance; 

2.5 Conclusion 

In this chapter, we presented a high performance pipelined and parallel indexing 

system based on a single node of multicore CPUs. We have shown how to optimize 

the performance of the pipeline by using parallel parsers and indexers in such a way 

that the streams produced by the parsers are consumed by the indexers at the same 

rate, and that rate is optimized. Several new techniques were introduced including a 

hybrid trie and B-trees data structure. The experimental tests reveal that our 

implementation on a single multicore processor shows scalable parallel performance 

in terms of the number of cores with a resulting throughput comparable to the most 

recent published algorithms on large clusters. 
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Chapter 3 Fast Construction of Inverted Files on a Cluster 

The starting point of our cluster algorithm is the pipelined strategy on a single 

node with multicore processors presented in the last chapter. We generalize this 

strategy to a cluster environment, under either the distributed storage model or the 

centralized storage pool model, to develop a high-throughput, scalable algorithm that 

ensures that all the parallel parsed streams on all the nodes are immediately consumed 

at the same fast rate by the distributed, parallel indexers. As for our communication 

model, we use the standard MPI primitives to manage the communications between 

the different nodes. 

3.1 Overall Approach on a Cluster 

We start by exploring different ways to map our pipelined algorithm onto a 

cluster of multicore processors. Our main goal is to be able to build a global 

dictionary and generate the postings lists stored on external storage with the 

maximum possible throughput. There are two reasonable approaches to extend the 

algorithm. 

 Divide-and-Merge. Each node processes an equal portion of the document 

collection following the single node algorithm, after which the local 

dictionaries and postings lists from all the nodes are merged. This method 

follows the standard divide-and-conquer strategy and hence its effectiveness 

depends on the merging phase.  

 Partition-and-Index. At the end of each parsing stage, parsed streams are 
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distributed among the cluster nodes in such a way that parallel indexers 

complete the indexing process with no need to communicate. This strategy 

includes a sampling preprocessing step that creates a persistent mapping 

between the trie collection indices and the IDs of the indexers, which is used to 

distribute the parsed streams to the nodes. 

 

Figure 3.1: Data Flow of Partition-and-Index Strategy 

It is clear that the divide-and-merge strategy will achieve excellent performance 

during the first stage of parsing and indexing because every node will work 

independently on its portion of the document collections with no communication 

required between the nodes. However the merge stage is quite complex since all the 

different tries and their trie collections have to be combined into a single global 

indexing structure, a task that seems to require a substantial amount of 

communication and coordination overhead.  

On the other hand, the partition-and-index approach requires a careful fixed 

(regardless of the block of documents being processed) assignment of trie collections 

to indexer thread IDs so that the generated output (trie, B-trees, and postings listings) 

will always be distributed almost equally among the nodes. This strategy incurs some 

communication overhead up front immediately after a block of documents are parsed. 

However, at any time, our approach ensures that the dictionary is a coherent, global 
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dictionary, stored on multiple nodes, and the postings lists will contain global 

document IDs. To handle the inter processor communication between the parsing and 

indexing phases of the pipelined algorithm, we insert a separate communication phase 

into the original pipeline. The latency of the pipeline increases but we will introduce 

techniques to ensure that the throughput will stay more or less the same. 

The data flow of the partition-and-index approach is illustrated in Figure 3.1. 

Unlike the case of a single node where all parsing or indexing threads share the same 

main memory, the parsers and indexers are now spread across the cluster and 

communicate through the interconnect fabric (in our case, either 10Gb/s InfiniBand or 

1Gb/s Ethernet). This will be described in more details shortly. 

3.2 Our Extended Approach 

3.2.1 Storage Model 

Every node of our cluster has two disks attached to it; in addition, the cluster also 

has a 4Gb/s link to a remote file server managing hundreds of terabytes of storage. 

Therefore two storage models for handling the input and output files are possible: (i) 

all files reside on the remote storage pool; or (ii) the files will be distributed to the 

disks attached to the nodes. The remote storage pool model seems more appealing for 

realistic scenarios since documents are usually deposited in a centralized storage pool, 

processed on a cluster, and then the inverted files are transferred to another cluster for 

search and retrieval. In our case, our storage pool model has a serious drawback, 

namely the 4Gb/s bandwidth that cannot keep up with the necessary throughput when 

we use more than 8 nodes on our cluster. The distributed storage model is similar to 
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the storage model used in MapReduce since a distributed file system is used on the 

nodes of the cluster. Moreover, this model can provide scalable I/O bandwidth as a 

function of the nodes available. The output, including dictionary and postings lists, is 

stored on local disks. We will test our algorithm using both models. 

3.2.2 Load Balancing among the Nodes 

As in the case of the single node algorithm, the document collection is divided 

into fixed-sized segments (typically 1GB WARC files [71]) which are assigned to 

parallel parsers. In both centralized and distributed storage models, read requests of 

parallel parsers from the same node are serialized to avoid contention on network 

interface or local disks. Note that, under the centralized storage model, read requests 

from different nodes have to compete for the 4Gb/s connection to the storage pool. In 

both cases, parallel parsers work independent of each other except when reading the 

data from external storage.  

We now address the critical issue on how to assign the workloads to the indexers. 

Prior to parsing, we collect a document sample (specifically, a random 1MB from 

each 1GB file) from the collection, parse it, and use the parsed stream to determine an 

almost equal-size partition of the trie collections into k=N*P partitions, where N is the 

number of indexers per node and P is the number of nodes. We then use the k 

partitions to create a mapping between trie collections and indexers, which will create 

a binding that will persist throughput the processing of the document collection. As a 

result, the postings lists associated with a certain trie collection will all be written to 

the same local disk of the node where the corresponding indexer is running.  

Another more elaborate strategy consists of a combination of sampling and 
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dynamic round robin scheduling, where trie collections are first assigned to the nodes 

rather than indexers using the sampling method, followed by a dynamic round robin 

scheduling to allocate the work among the indexers on each node. This strategy 

achieves a better load balance than just sampling but the overall throughput is not as 

good, due to cache locality that is clearly enhanced when there is a persistent binding 

between trie collections and indexers.  

 

Figure 3.2: Data Flow of Parallel Indexers on One Node in the Cluster 

Once the parsers on a node process their documents, the trie collections (each 

consisting of a document ID, followed by the corresponding bag of words, another 

document ID followed by its bag of words, and so on in sorted order by document 

IDs) will be distributed to the nodes according to the assignment determined by the 

sampling method. Indexers on a node will start indexing at the same time once the 

previous load is consumed and the next message load arrives. Note that indexers from 

different nodes will not necessarily start indexing at the same time because messages 

may reach their destinations at different times. Our main goal is to ensure that all 

parsers and indexers are kept busy so as to achieve the maximum possible throughput. 

3.2.3 Communication between Parsers and Indexers 

A straightforward way to manage the communication between parsers and 
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indexers is to let each parser thread construct and send P MPI messages after each 

segment is parsed. This strategy does not work well when the number of nodes is 

large due to the presence of many very small messages as P increases. For example, 

consider the ClueWeb09 collection, for which a segment is of size 1GB and the 

corresponding parsed stream is of size 130MB. In this case, the size of a message is 

about 4MB when P=32, which only takes about 8 ms time to send it from one node to 

another using the 10Gb/s InfiniBand and about 60 ms using the 1Gb/s Ethernet while 

the overhead to initialize such message is comparable to the transmission time. We 

can increase the collection segment size but we are limited by the memory size of 

each node as we have to be able to accommodate the segments for all the M parsers at 

the same time. 

 

Figure 3.3: Message Construction by Distributor 

To address this problem, we introduce the notion of a distributor to manage 

communication in the pipeline. The job of a distributor on each node is to collect 

parsed results from the parsers running on the node over several segments, and then 

build the corresponding messages to the P nodes. The size of each parsed stream is 

much smaller than the original collection segment, and hence the memory can 

accommodate the parsed results of tens of segments. No changes are required for the 
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parsers, except that the parsed results are now consumed by the distributor. 

Another task of the distributor is to update the document IDs before the messages 

are constructed. Document IDs appearing in the parsed streams are local to each 

collection segment; therefore these need to be modified into Doc_IDs relative to the 

corresponding batch of parsed results. The total number of documents is also included 

in the messages distributed to indexers so that indexers can calculate global offsets 

for Doc_IDs from the history of document numbers. 

3.2.4 Overall Data Flow 

 

Figure 3.4: Overall Data Flow in the Cluster 

Putting all the pieces together, we get the overall data flow shown in Figure 3.4 

for a cluster of multicore processors. Similar to the single node case, we use 
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synchronous communication to enforce the sequence of messages processed by 

indexers, that is, each node sequentially receives messages from node 1 through node 

P. 

The data sizes or segment numbers processed by different parsers in the cluster 

are not necessarily the same. For example, in the distributed storage model data are 

not split evenly among local disks on all nodes. In this scenario, some parsers exit 

earlier than others (i.e., when all assigned segments are processed), but all indexers 

stop when the last batch is completed. 

3.3 Experimental Results 

We test the performance of our algorithm on a cluster with 32 nodes, each node 

holding two Intel Xeon X5560 quad-core CPUs and 210GB disk. We use the same 

three collections in Chapter 2 plus the entire ClueWeb09 English collection. 

Table 3.1: Statistics of the ClueWeb09 English Document Collections 

 ClueWeb09 English 

Compressed Size 1,936GB 

Uncompressed Size 12,453GB 

Crawl Time 01/09 to 02/09 

Document Number 503,903,810 

Number of Terms 447,373,242 

Number of Tokens 281,794,398,151 

 

The generated output, postings lists and dictionary, are written to local disks. We 

report results that are averaged over three trials but we note that, in all our tests, the 

differences between the fastest and slowest execution times have been less than 5%. 

We first report the results on the cluster using the 10Gb/s InfiniBand interconnect, 
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and later report the results for the case for the 1Gb/s Ethernet interconnect. Disk 

cache in memory is carefully cleared prior to every experiment. The throughput 

numbers correspond to the uncompressed collection size divided by the 

corresponding total running time.  

In what follows, we start by showing that our cluster algorithm is scalable, 

relative to the optimized single node algorithm, up to the largest number of available 

nodes, using several scalability metrics. This will be followed by examining 

performance with two types of interconnect. We end by comparing the performance 

of our algorithm to the best known results in the literature. 

3.3.1 Scalability of the Cluster Algorithm 

We use three metrics to evaluate the scalability of our cluster algorithm on a 

cluster with 32 nodes with multicore processors—we measure throughput scalability 

by (1) increasing the number of nodes with the same overall input data; (2) increasing 

the number of nodes while keeping the data size fixed per node; and (3) increasing 

the size of the data on 32 nodes. 

3.3.1.1 Scalability Relative to the Number of Nodes over the same 

Document Collection 

Due to the limited size of local disks on each node, we can’t store the first English 

segment of ClueWeb09 locally on less than four nodes for the distributed storage 

model and hence we measure performance on four or more nodes. In this case, Table 

3.2 shows the overall throughput and speedup calculated relative to the best 

performance of the single node algorithm, with six parsers and two indexers on each 
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node. Notice that the cluster implementation of our algorithm running on a single 

node has almost the same performance as the version tailored for a single node on the 

storage pool model in Chapter 2. When the number of nodes is less than or equal to 

eight, we achieve almost linear scalability in both storage models. With more than 

eight nodes, there is limited improvement under the storage pool model since a large 

number of nodes have to compete for the 4Gb/s external link to data server; however, 

the throughput of the distributed storage model continues to improve up to the 

maximum number of nodes available to us. In particular, the throughput on 32 nodes 

increases by a factor over 22 relative to the throughput of the best single node 

algorithm; this translates into 6.12GB/s throughput over 32 nodes.  

Table 3.2: Scalability over the Number of Nodes with Same Input Data 

Number 

of 

Nodes 

Distributed Storage 

Model 

Centralized Storage 

Model 

Throughput 

(GB/s) 
Speedup 

Throughput 

(GB/s) 
Speedup 

1 N/A N/A  0.27 0.97 

2 N/A N/A  0.53 1.92 

4 1.06 3.87 0.98 3.56 

8 2.10 7.66 1.69 6.17 

16 3.69 13.49 1.70 6.22 

32 6.12 22.38 1.82 6.64 

 

 

Figure 3.5: Scalability over the Number of Nodes with Same Input Data 
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We now take a closer look at the performance of our algorithm when the 

centralized storage model is used. We conduct tests that simulate the I/O behaviors of 

the storage using 1 to 32 nodes, and compare the execution times with those obtained 

by running our algorithm on the same document collection (first English segment of 

ClueWeb09). Two concurrent threads, one for input and the other for output, are 

used. Since there is a scheduler in our case to ensure that at any time at most one 

parser thread is reading from the disk, only a single input thread is included in the 

tests to just read the same document collection. After this thread reads a segment (the 

same 1GB as in our algorithm), the output thread will write to disk certain data of the 

same size as that of the postings lists produced by our algorithm. Reading and writing 

may occur at the same time, and hence such tests reflect the I/O pattern of our 

algorithm and as a result they are able to capture the peak I/O throughput of the 

underlying file system.  

Table 3.3: Ratio of the Throughput of Our Algorithm and Peak I/O Throughput 

Number 

of Nodes 

Distributed Storage  

Model 

Centralized Storage 

Model 

1 — 0.46  
2 — 0.43  
4 0.56  0.74  
8 0.60  0.96  

16 0.52  0.97  
32 0.43  0.95  

 

The numbers in Table 3.3 show that in the centralized storage model our 

algorithm is processing the input at almost the same rate at which the input can be 

read when using 8, 16 and 32 nodes. This confirms the fact that the throughput of our 

algorithm on the storage pool model is limited by the link bandwidth when using 
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more than 8 nodes. Note that the peak reading throughput is 350MB/s (or 2.8GB/s), 

which achieves near 70% of peak performance of the 4Gb/s pipe. 

On the other hand, the throughput for reading from the local disks scales linearly 

under the distributed storage model. However, the throughput of our algorithm is able 

to catch up with at least 43% of the reading throughput. Note that in our algorithm the 

pipeline may stall as illustrated in Figure 2.8, and there exist additional costs such as 

sampling time, and therefore it would be difficult to achieve better ratios.  

In some cases, web crawling and indexing processes may run concurrently in a 

streamed fashion, where a crawled document collection is expected to be immediately 

processed by parsers and indexers. In this streamed or incremental updating model, 

our algorithm has a clear advantage over MapReduce because in both centralized and 

distributed storage models, the throughput of our algorithm is close to the peak I/O 

bandwidth and hence document collections can be processed as fast as they are 

streamed. 

We next examine the best combination of the number of parsers and the number 

of indexers for our cluster algorithm. Note that we have found that 6 parsers and 2 

indexers achieve the best performance on a single multi-core node in Section 2.4.1. 

Figure 3.6 shows the overall throughput of seven potential combinations of (Number 

of Parsers, Number of Indexers) using 4, 8, 16 and 32 nodes in distributed storage 

model. It is clear that the combination 6:2 achieves the best performance in all cases, 

and the streams are consumed at the same rate as they are produced in this case. 
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Figure 3.6: Optimal Parameters on the Cluster in Distributed Model 

We now shed additional light on the extent of load balancing by comparing the 

relative numbers of inverted files generated on each of the 32 nodes of our cluster. On 

the first English segment of ClueWeb09 processed by 32 nodes, we set the average 

size of inverted files on a node to 1. Then the maximum size of inverted files on any 

node is 1.128 and the minimum is 0.834 with a standard deviation of 0.0678. This 

indicates a very good load balance between the 32 nodes. 

3.3.1.2 Scalability Relative to the Number of Nodes with Fixed Data Size 

per Node 

After placing 45GB of uncompressed document collection (part of the first 

English segment of ClueWeb09) on each node, we examine the scalability of our 

algorithm as the number of nodes increases from 1 to 32. The performance results are 

listed in Table 3.4. The execution time degrades slightly as the number of nodes 

increases. This degradation is to be expected since the size of document collection 

grows linearly with the number of nodes, and hence the dictionary becomes much 
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larger when P=32 compared to the case when P=1. 

Table 3.4: Scalability over the Number of Nodes with Fixed Data Size per Node 

Number of Nodes Time (second) 

1 177.40 

2 183.22 

4 186.19 

 8 195.95 

16 203.90 

32 232.2 

3.3.1.3 Scalability over Data Size 

Figure 3.7 shows the scalability as a function of the input size with the algorithm 

running on 32 nodes. We start with the first English segment of ClueWeb09, then add 

the second English segment, and continue until all the ten English segments are there. 

The running time is a linear function of the input size with a variance of R
2
=0.9985. 

This implies that our algorithm has stable throughput regardless of the collection size. 

Since we transfer postings lists to disks after each single run and the buffer size 

required by parsers is fixed, the only growing part of our pipelined algorithm is the 

dictionary size. As long as each local part of the dictionary can fit in the node’s main 

memory, our algorithm is linear as a function of the input size since the dictionary 

size grows very slowly after the first few runs.  

 

Figure 3.7: Scalability over the Size of Input Documents 
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3.3.2 Performance with Different Types of Interconnect 

So far we have determined how to achieve balanced performance between parsers 

and indexers using the 10Gb/s InfiniBand as the interconnection fabric. However, 

such expensive network interface is not used on MapReduce clusters. To conduct a 

fair comparison, we perform experiments using the 1Gb/s Ethernet interconnect on 

our cluster. 

 

Figure 3.8: Impact of Distribute Time in the Ideal Pipeline 

Let’s first take a look at the impact of network speed in an ideal parsing pipeline 

where each pipeline stage takes constant time with no idle time for each parsing 

thread. In our implementation we enforce that the buffer containing the parsed result 

must be cleared by the distributor before the parsing thread could start processing the 

next segment. After collecting all the parsed results from parser 1 to parser M, the 

distributor will send the parsed data to the appropriate destination nodes. Before this 

type of communication is executed, the distributor cannot collect any parsed results 

and hence if at this time a parser finishes the next parsing round, it has to wait until 

the distributor has completed its data exchange task. An example is shown in Figure 
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3.8, where parser 1 becomes idle since it finishes its second parsing round before the 

end of the data exchange of the previous round. 

To prevent such stalls in the pipeline, the following equation must be satisfied: 

TP - (M - 2)TD ≥ TN 

where TP is the parsing time, M is the number of parsers on one node, TD is the 

time to read the compressed segment from disk, and TN is the time to distribute the 

parsed results over the network. On average, the processing of 1GB uncompressed 

ClueWeb09 data, we have TD = 1.6 seconds, TP = 16 seconds, and TN = 1.9 seconds 

when the Ethernet interconnect is used, or TN = 0.26 second when the InfiniBand is 

used. As a result, we obtain that the number of parsers on each node has the following 

upper bound: M ≤ 5 with Ethernet and M ≤ 10 with InfiniBand. This argument 

presents an analysis of the impact of the network characteristics assuming that we 

have to achieve an ideal pipeline. 

 

Figure 3.9: Performance on 32 nodes using the 1Gb/s Ethernet  

From the experimental results with 32 nodes shown in Figure 3.9, we have the 

following results: 

 The optimal combination when using Ethernet is four parsers and three 
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indexers, which is very close to the bound M ≤ 5 limit we calculated above; 

 When the number of parsers varies from four to six, better throughput is 

obtained from fewer parsers when the number of indexers is fixed to either two 

or three; 

 With four or five parsers, increasing the number of indexers from two to three 

leads to higher throughput because more indexers can consume data streams 

faster and therefore the indexing stage is less likely to impede the speed of the 

pipeline; 

 There is no benefit from using more than three indexers and in fact it is better 

to let the remaining CPU cores serve the operating system and network 

processes rather than trying to consume non-existent parsed data. 

 The optimal throughput with Ethernet is about 89% of that achieved with 

InfiniBand assuming the same parameter configuration and 82% of the best 

throughput possible with InfiniBand. 

3.3.3 Comparison with Fastest Known Algorithms 

In this section, we compare the performance of our algorithm again with the Ivory 

MapReduce [19, 39] and Terrier MapReduce [43] on the same ClueWeb09 first 

English segment dataset. As mentioned earlier, the Ivory MapReduce algorithm 

employs positional postings lists and our algorithm about 10% slower on the cluster 

with the same output format. The slowdown here is slightly higher on the cluster than 

the 7% on a single node in Section 2.4.4 because we have to transfer more 

intermediate results over the cluster interconnect. 
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Table 3.5 Platform Configuration and Performance Comparison 

 This Thesis 
Ivory 

MapReduce 

Terrier 

MapReduce 

System 

Details 

Processors per Node 

Two Intel Xeon 

2.8GHz Quad-

core CPUs 

Two Intel 

Single-core 

2.8GHz 

CPUs 

Two AMD 

Quad-core 

Opteron 

CPUs 

Memory per Node 24GB 4GB 16GB 

File System 

 File System via 

4Gb/s Ethernet or 

local disks 

Hadoop 

Distributed 

File System 

Hadoop 

Distributed 

File System 

Throughput 

(MB/s) 

1 Node (3 cores) — — — 

1 Node (8 cores) 280 — 33 

8 Nodes (24 cores) — — — 

8 nodes (64 cores) 
2148 (InfiniBand) 

1616 (Ethernet) 
— — 

30 nodes (240 cores) — — 460 

32 nodes (256 cores) 
6271 (InfiniBand) 

5145 (Ethernet) 
— — 

99 Nodes (198 cores) — 167 — 

280 Nodes (560 cores) — 289 — 

 

It is clear that the throughput of our pipelined and parallel indexing algorithm 

using the 1Gb/s Ethernet is substantially higher even when compared to the two 

algorithms running on larger clusters. The scalability of Ivory MapReduce does not 

seem to be linear since the throughput only increases by 73% when the number of 

nodes is tripled, but the improvement is still significant given the fact that hundreds 

of nodes are involved. On the other hand, Terrier MapReduce scales almost linearly 

within the range of 30 nodes. 

We note that this comparison has its shortcomings. First, the overall performance 

may be affected by details such as different compression and stemming schemes. 

Second, the goal of MapReduce is for simplified processing on large data stored on 

the disks of the nodes of a cluster with the programming efforts focused on 

determining the operations of the Map and Reduce workers and their numbers 
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without taking an in-depth look at the underlying hardware architecture. The same 

MapReduce program is also portable to other parallel platforms with little effort. On 

the other hand, our goal in this dissertation is to exploit the potential powers from the 

emerging multicore processors with reasonable memory size and interconnect 

network. We optimize our algorithms by carefully exploiting the hardware details of 

our current cluster; however, such algorithm can also be adapted to different 

hardware configurations. For example, we can change the combination of parsers and 

indexers to 12-4 or 13-3 with sixteen CPU cores per node, and re-define the size of 

the document segment in each single run if the size of the main memory changes. As 

a conclusion here, such comparison still provides a clear indication of the 

effectiveness of the approach described in this thesis. 

3.4 Conclusion 

We introduced a new pipelined strategy for constructing inverted files on a cluster 

of multicore processors, which can process documents near the peak I/O rate of the 

cluster. Several key elements were developed to achieve the optimized throughput, 

including: 

 Assignment of parsed sub-streams to distributed indexers using a random 

sampling preprocessing step; 

 Development of a fully parallelized scheme that makes efficient use of 

available cores across the cluster; 

 Careful management of communication resulting in hiding the inter-processor 

communication overhead. 
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Our strategy significantly outperforms the best known MapReduce algorithms in 

the literature and achieves a throughput that is close to the peak I/O of the underlying 

system. This work sheds some light on the potential performance cost incurred in 

using the higher-level MapReduce programming model. 
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Chapter 4 Construction of Temporal Inverted Files 

We consider in this chapter the information retrieval problem over a collection of 

time-evolving documents such that the search has to be carried out within a temporal 

context. A solution to this problem is critical for a number of emerging large scale 

applications such as web archiving and the exploration of time-stamped web objects 

generated through information feeds. 

4.1 Overview of Temporal Inverted Files 

A number of critical emerging applications require the organization and 

management of an extremely large number of time-evolving objects, such that these 

objects can be interactively explored through content based search within a temporal 

context. Such applications include web archiving and time-stamped web objects 

generated through information feeds. Our main goal in this chapter is to develop an 

effective approach for tackling such applications using and extending information 

retrieval technologies. More specifically, we develop an efficient strategy for building 

the inverted files, supplemented by new indexing structures, such that a temporal-

based search can be carried out as efficiently as in the traditional non-temporal case. 

The overhead required for building the extra indexing structures is shown to be 

minimal relative to the traditional approach of processing the documents without 

taking the time stamps into consideration. 

Information retrieval technologies do not typically include the temporal 

dimension. For example, major web search engines such as Google and Bing support 

queries on the web pages that are currently available on the web. Their basic 
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approach is not tailored to handle temporally-anchored searches such as locating the 

most important news about Barack Obama before year 2005. While the internet is by 

far the largest library that ever existed, its contents are always changing, and hence 

old valuable contents can be lost forever if not archived and preserved properly. 

Major library and archiving organizations are constantly crawling the web to capture 

and archive particular contents of interest. Such contents constitute a collection of 

time-evolving documents; each document corresponds to a specific uniform resource 

identifier (URI) with its corresponding document versions time stamped by the crawl 

times. Such organizations include the Internet Archive [32], the Library of Congress 

[46], UK Web Archiving Consortium [68], the National Library of Australia [55] and 

the California Digital Library [73]. In particular, over 5.8 petabytes of web data have 

been captured by the Internet Archive Petabox project as of December 2010 [56], 

which continues to grow at a rate of more than 100 terabytes per month since 2009 

[44]. The Internet Archive uses its WayBack [72] machine to search such contents 

where the user supplies a URL and the engine responds with a chronological list of 

the dates when the corresponding page was crawled. Our work includes the temporal 

dimension as an integral component of the strategy to build the inverted files so that 

queries containing text and a time specification can be handled efficiently.  

The rest of the chapter is organized as follows. In the next section, we provide a 

brief background about a summary of the previous work on temporally anchored 

information retrieval that is most related to this thesis. In section 4.3 we formally 

define the problem and introduce the new indexing structures needed for managing 

the temporal dimension. In Section 4.4, the query performance is examined with our 



 

 

61 

 

new indexing structures. The parallel algorithms for constructing the temporal 

inverted files are developed in Section 4.5 and the experimental results are presenting 

in Section 4.6. We conclude in Section 4.7. 

4.2 Related Work 

We assume that each document, which refers to a time-evolving object in this 

chapter, is uniquely identified by a global identifier such as a URI. In the temporal 

case, a document may have many versions over time, each of which includes a time 

stamp that indicates the start time of this document version. Only one version of a 

document can exist at any time. The start time could be the time when the document 

version was created or the time when the document was first seen. For example, in 

web archiving, a time stamp is assigned whenever the corresponding web page is 

crawled, and the versions correspond to the crawled distinct pages all of which belong 

to the same URL, which is the URI in the case of web content. Our problem is more 

general than the standard web search problem discussed in Chapters 2 and 3. In the 

following we summarize prior work on construction of inverted files for time-

evolving documents.  

In the temporal case, previous work has been limited. A temporal document 

database first developed in [51] introduced a solution with a hybrid of document 

name index, version database and text index. The document name index maps a URI 

to its list of global Version IDs since one document may have several versions. The 

version database assigns global Version ID to versions of documents according to the 

start time, but two contiguous global Version IDs may refer to two versions of 
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different documents. The list of document versions that a term appears in can be 

found in the text index (or the inverted files in our definition). In [50], the global 

Version ID is replaced by <Document ID, Document Version ID> tuple, thereby if a 

term appears in several consecutive versions of a document its postings could be 

shrunk into <Document ID, Document Version ID range> tuples for space efficiency. 

Time Index+ is then incorporated for frequent terms for large document databases 

[53]. However, similar to [26, 70]  their main target is a database for versioned 

documents instead of an information retrieval system. As a result, temporal query has 

very high cost with the text index since the whole postings list has to be scanned and 

critical elements such as term frequency or term positions in a document are not 

available for scoring [52]. Berberich et. al. [9, 10] extended the content of traditional 

postings to <Document ID, score, time_start, time_end>. Postings with the same 

Document ID and similar scores are merged to reduce the space requirement as a 

lossy compression strategy. To reduce search cost, postings lists are split into sublists 

by valid time intervals so only the sublists valid in the time range in the query will be 

traversed. Based on this, Anand et. al. [4] further proposed the sharding approach for 

efficient temporal inverted files in both space and query processing time. In [63] an 

analytical model is proposed to effectively choose the time span of sublists to 

optimize the search cost and the model is shown to be very close to the actual 

experimental results. 
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4.3 Problem Definition and Temporal Strategy 

4.3.1 Problem Definition 

Following standard information retrieval terminology, we refer to our objects 

(typically, web pages) as documents, each document is uniquely identified by a URI. 

In our case, each document evolves over time and hence many versions of the 

document may exist. A document version Doci,j is the j
th

 version of the document 

identified by URIi , which was first created or detected at time ti,j and hence can be 

defined by: 

 

where T
ij
 is a term that occurs in Doci,j and Ni,j is the total number of terms of 

Doci,j. By definition, the start time of a document version is equal to ti,j, but the end 

time is not defined until a new version Doci,j+1 occurs in which case it is equal to ti,j+1. 

The lifetime of the document version Doci,j is then defined as [ti,j, ti,j+1). 

A query in the temporal case contains a set of query terms {Qk}, possibly 

connected by Boolean operators, and a query time tQ. A document version Doci,j 

matches the query if it contains some or all the terms in {Qk} (depending on the query 

Boolean operator) and is alive at tQ, that is, tQ ≥ ti,j and, if ti,j+1 exists, tQ ≤ ti,j+1. The 

result of the search is a ranked set of document versions based on a scoring function 

used to determine similarity scores between the query and the document versions. 

Note that the computation of the scoring function typically requires some global 

statistics at tQ such as the number and average length of live document versions and 

the number of live document versions containing Qk (i.e. document frequency of Qk). 
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As in the non-temporal case, we assign a monotonically increasing global Version 

ID (VID) to each document version and use this VID in the postings lists to identify 

the appropriate document version in our collection. From now on, we use the unique 

identifier VIDi,j to represent the document version Doci,j. Note that we are implicitly 

assuming that our collection consists of document versions over discrete time steps 

called the elementary time steps. An elementary time step captures the time 

granularity of the document collection as well as the granularity at which queries can 

be answered. For example, the Wikipedia collections used in our tests are monthly 

snapshots of Wikipedia generated at the end of a month. Hence in this case, an 

elementary time step is a month which constrains tQ to be within a month such as 

February 2004. Within an elementary time step, there is at most one document 

version per URI and the global statistics remain the same. All time values defining 

start and end times correspond to elementary time steps. As a result, if snapshots of 

document versions are read by the chronological order of increasing elementary time 

step, it is guaranteed by our VID assignment strategy that the start time of a higher 

VID is later than or equal to the start time of a lower VID. Given that in our algorithm 

the postings lists are in sorted order of VIDs as described in Section 2.3.5, the 

postings are also in sorted order of document version start time in a postings list. 

4.3.2 Overall Strategy for Temporal Indexing and Searching 

Our overall strategy is similar to the traditional strategy of using postings lists, 

each posting consists of the VID and the term frequency within that document 

version, sorted according to the VIDs on the list. However to carry out temporal 

indexing and searching effectively, we introduce two new indexing structures, in 
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addition to the usual global dictionary indexing structure. The new data structures are 

two temporal tables defined as follows:  

 VID table, which maps a VID to its unique URI, start and end times, document 

length and possibly other document version information. 

 URI hash table, which maps each URI in our collection to all the VIDs 

corresponding to this URI. Note that, in addition to its role in building the VID 

table, this data structure will enable a user to quickly receive, if desired, all the 

document versions of a particular document once a version satisfying the 

temporal query is found. 

Accordingly the format of a posting changes from the traditional <Document ID, 

term_freq> to <VID, term_freq>. Note that in the work reported in [4, 9], each 

postings includes the life time of a document such as <Document ID, time_start, 

time_end, term_freq>. Such approach returns the lifetime of a document version 

directly from the postings list at a very significant space cost since the same start and 

end times have to be duplicated in the postings lists for all the terms that appear in 

this document version. Moreover, with our approach previous well-known schemes 

can be extended to generate the new postings lists such that the postings are sorted in 

ascending order of VID, and hence can be easily compressed.  

Let us now consider how a query with a query time tQ can be handled using our 

indexing structures and the postings lists. A straightforward approach would be to 

start by retrieving all the matching VIDs from the postings lists of query terms and 

then determine the temporal validity of each VID by looking up its lifetime using the 

VID table. This strategy can be easily implemented as effectively as in the traditional 
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case. However, as mentioned in [9, 63], the postings lists can grow very large, which 

can introduce a very high overhead when determining the valid VIDs matching the 

time constraint tQ of the query. To tackle this problem, the authors of [9, 63] propose 

an approach based on splitting each postings list into many segments after the 

postings lists are constructed. Our approach will be very different. As we are building 

the temporal inverted files, we will partition each postings list into different segments 

on the fly such that each segment belongs to a certain time span determined 

dynamically and all the postings lists will have the same temporal partition. We refer 

to the time span covered by a segment as a time window, which is somewhat similar 

to the time window notion introduced in [63]. A time window [TW_start, TW_end) 

consists of one or more elementary time steps such that each valid elementary time 

step belongs to a time window and no two time windows overlap. A document 

version VIDij is considered alive in this time window if there is an overlap between 

[ti,j, ti,j+1) and [TW_start, TW_end], i.e. VIDij is alive for some time within this time 

window.  

In our approach, each time window has its separate postings lists (segments) and 

VID table corresponding to all the document versions that are alive within this time 

window. Query can now be localized to a single time window, which substantially 

reduces the search time of the retrieval algorithm. However, this comes at the cost of 

storing some duplicate postings in consecutive time windows due to the fact that 

some document versions will be alive across a time boundary. This implies that the 

postings of a document version will be replicated through all the time windows in 

which this document version stays alive. Therefore a long-live document version may 
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appear in many time windows and hence will generate multiple copies of the same 

postings in the output. However as we will see later, this overhead is relatively small 

overall while, on the other hand, the search time is dramatically improved. 

 

Figure 4.1: An Example of Temporal Indexing 

Let us consider a small example to fix the ideas. A collection with five documents 

is illustrated in Figure 4.1, where all documents contain term Term_t and time stamp 

∞ means it is still alive. Time t2 and t4 are the starting points of new time window and 

document version VID4 is alive in all time windows, so it has footprints in the 
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postings lists in all three segments of postings lists.  

At one extreme, we can set each time window to be the same as an elementary 

time step, and hence a search will be immediately localized to the corresponding 

postings lists and the VID table at an elementary time step, which can be carried out 

quite fast (best possible search time). However this will come at an extremely large 

space cost for the output files. The other extreme is to have a single time window 

covering all the elementary time steps, which will correspond to the smallest possible 

output file, but with generally unacceptable search time through very large postings 

lists. Therefore we need to strike a compromise between these two extremes and try 

to reach a balance between the query response time and output inverted index size. 

We consider three possible strategies for determining the appropriate window 

size. 

 Even-Time, which splits the document collection into several time windows 

such that every time window covers the same length of time period;  

 Even-Size, which monitors the total uncompressed size of input files such that 

a new time window starts when the collection size managed under the current 

time window exceeds a threshold; 

 Output-Oriented, which forces an upper bound on the size of the output 

postings lists. 

The first strategy was used in [63]. For example, the 36-month Congressional 

document collection (to be introduced in Table 4.1) is divided into three 12-month 

time windows. The second strategy attempts to ensure that the collection size 

processed during each time window is about the same, and hence the output postings 
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lists from different time windows are expected to be of similar size. Note, however, 

that the final postings lists for a time window also include those inherited from earlier 

time windows and hence even with the second strategy, the total output size for a time 

window is only weakly controlled. The third strategy presents the best option, which 

is similar to the performance-guaranteed and space-bound approach derived in [9]. In 

practice, this strategy incurs the largest overhead and its implementation is not 

straightforward.  

4.3.3 Query Strategy 

In this section, we take a look at the temporal query strategy details. Given all the 

necessary temporal inverted files residing on disks, we can handle a temporal query 

with query terms {Qk} and query time tQ through the execution of the following steps: 

 Step 1: Initialization of Search engine 

 Step 2: For each temporal query <Qk , tQ>, do: 

o Step 2.1: Determine the corresponding time window TW and retrieve the 

average document length at tQ; 

o Step 2.2: Parse the query string into individual query terms; 

o Step 2.3: Search all the query terms in the dictionary to locate their 

postings lists; 

o Step 2.4: Fetch data of all query terms from disks: 

 Step 2.4.1: Fetch the document frequency of each query term at tQ; 

 Step 2.4.2: Fetch and decompress the postings list of each query 

term in TW; 

o Step 2.5: Merge the postings lists to find all matching documents and 
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compute scores; 

 Step 2.5.1: Merge the postings lists of all query terms to find out 

common VIDs; 

 Step 2.5.2: Check the validity of VIDs at tQ; 

 Step 2.5.3: Fetch the document lengths of the valid VIDs from the 

VID table; 

 Step 2.5.4: Compute scores for the valid VIDs; 

 Step 2.6: Find the top K document versions with highest scores and display 

their URIs; 

In Step 1, we load the dictionary from disk into memory and the time span of each 

time window and elementary time step (ETS) such that given a query time tQ, we can 

immediately find which time window and ETS this  tQ  falls into. We also assume that 

the VID table is pre-loaded into memory in this step for a fair comparison with the 

query performance in non-temporal case. It is because in order to retrieve the 

document length in Step 2.5.3 and the document title, URI or file location of the 

searching results in Step 2.6, a similar data structure is accessed in non-temporal case 

as well. As a result, we apply the setting that in either temporal or non-temporal cases 

such data structure (VID table in our temporal case) resides in the main memory, just 

as the dictionary. 

Steps 2.1, 2.4.1 and 2.5.2 are unique to the temporal query scenario. Step 2.1 is 

trivial in general because the total number of elementary time steps is typically not 

large, for example, 1M elementary time steps means over 20 years of hourly 

snapshots. Steps 2.5.2 and 2.5.3 involve accessing the VID table but as we explained 
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in the last paragraph that the document length and file location still has to be obtained 

from some data structure in the non-temporal case and hence we consider these two 

steps as not introducing any extra cost. The overhead of Step 2.4.1 will be fully 

analyzed later. 

We use the well-known Okapi BM25 function [59] to compute the scores in Step 

2.5.4: 

 

 

where N is the total number of documents, n(qi) is the number of documents with 

term qi, f(qi, D) is the term frequency in D, |D| is the length of D, avgdl is the average 

document length in the collection, k1 and b are two parameters and we use k1 = 2.0 

and b = 0.75. 

No approximation or lossy compression is used in our algorithm, and hence the 

scores and ranking results of the temporal query reflect the exact scores given the 

collection of documents that are live at time tQ. 

4.4 Experimental Evaluation 

We use two significant collections that exhibit different characteristics to evaluate 

our strategy. The first collection is the Congressional dataset from the Library of 

Congress, which includes 36 monthly snapshots of selected news and government 

websites crawled between January 2004 and December 2006. The second dataset is 

the Wikipedia01-07 data we already used in Chapter 2. The overall characteristics of 

the two benchmarks are given in Table 4.1. 
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The generated output, dictionary, two temporal tables and postings lists, are 

written onto local disks.  

Table 4.1: Statistics of Document Collections 

 Congressional Wikipedia 01-07 

Compressed Size 314GB 29GB 

Uncompressed Size 1,672GB 79GB 

Crawl Time 01/04 to 12/06 02/01 to 12/07 

Document Number 28,731,237 2,077,745 

Document Version Number 80,092,737 16,618,497 

Average Versions per Document 2.788 7.998 

Number of Terms 12,229,793 9,404,723 

Number of Tokens 41,356,310,380 9,375,229,726 

 

To evaluate our approach, we estimate the space overhead due to the introduction 

of the new indexing structures, the URI hash table and the VID table, and then query 

response time relative to the time windowing strategy used. We note that we will 

show later in Section 4.6 that the processing time to create the inverted files with the 

extra indexing structures is very close to the traditional strategy for processing the 

same collection while ignoring the temporal information.  

We start by taking a close look at our implementation of the new indexing 

structures. 

4.4.1 URI Hash Table and VID Table: Implementation Details 

At any time during the initial processing of the document collection, the URI hash 

table is used to map a URI into a list of VIDs representing all the versions 

encountered thus far of the specific document identified by the unique URI. If 

multiple URIs hash to the same value, then a singly linked list is created to store these 

URIs in a sorted order for fast insertion of new URI since we can determine if a URI 



 

 

73 

 

exists in the linked list or not before traversing the entire list. 

On the other hand, the VID table stores, for each valid VID, specific information 

pertaining to that document version such as: start time t_start, end time t_end, 

document length, pointer to the corresponding URI string, and the location of this 

document version within the underlying file system. In the non-temporal case, a 

similar data structure is typically constructed as well to fetch this type of information 

pertaining to a document except for the temporal information. A significant difference 

is that during the indexing process an entry of the VID table can be written twice 

since the end time of a VID has to be updated in the future and be read multiple times 

whenever we need to check the validity of the VIDs. On the other hand in the non-

temporal case, such entry is completely built during its creation and will not be read 

or written any more during the indexing process.  

When a document version is processed given its {URIi, VIDij, tij, Doc_Length}, 

the URI hash table is first visited to fetch most recent VID corresponding to this URI, 

that is, VIDi,j-1  which belongs to the latest document version processed just before 

this newer version. In the VID table, the t_end of VIDi,j-1 can now be set to tij. Then, 

VIDij is inserted at the end of the list in the URI hash table indicating that this is now 

the most recent version. The VID table also stores the information regarding VIDij 

except t_end which cannot be determined until a newer one VIDi,j+1 is encountered. 

In the temporal inverted files construction process, the URI hash table assists to find 

the VIDi,j-1 for the VIDij; during query processing, the URI hash table helps us find all 

the versions for a specific document. In practice, we only store the last and most 

recent VID of the list in main memory and flush older ones onto disks because only 
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this one is accessed during the indexing process. 

As time moves forward, we will only be interested in those document versions 

that are still alive, i.e. the VIDs whose t_end fields are blank (set to ∞) in the VID 

table. With a simple table consisting of consecutive VIDs, it is expected to see that 

most of the lower VIDs are not alive while most of the most recently assigned higher 

VIDs are still alive. To keep the size of the VID table small, residing in memory, we 

split the table into two parts, where Part I contains the consecutive VIDs for higher 

VIDs and Part II contains nonconsecutive VIDs for lower VIDs. 

The Part I can be indexed directly by the VID so that the lookup time is very 

small, but it will contain more and more VIDs that will never be accessed as time 

moves forward. On the other hand, Part II is stored in a more compact fashion, in 

such a way that binary search can be used to look up an entry corresponding to a VID. 

In our current setting, if the size of Part I exceeds 8M at regular check points (for 

every 100GB input data or at the end of a time window in our case), only the highest 

(also the most recent) 8M VID entries stay in Part I and the remaining entries are 

migrated to Part II followed by a scan on Part II to remove the useless VIDs which 

are written onto disks (and hence the size of Part II shrinks considerably). 

 

Figure 4.2: Example of the VID Table Data Structure 
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An example on the data structure of the VID table is shown in Figure 4.2. In Part I, 

VIDs are implicit and can be calculated by the sum of an offset and table index; on 

the other hand, Part II stores the VIDs inside the table memory space explicitly. After 

the check point mentioned above, both Part I and Part II are reorganized in order to 

achieve a balance between memory space and table search time. 

4.4.2 Growth of URI Hash Table and VID Table 

 

Figure 4.3: Growth of URI Hash Table and VID Table 

We now take a closer look at how the dynamic data structure of the VID table 

contributes to saving space. The VID tables are checked periodically in such a way 

that invalid VIDs are written onto disks and some VIDs are migrated from the VID 

table Part I to Part II. As a result, after each checkpoint the size of the VID table Part 

II increases and the size of the VID table Part I shrinks back to 8M entries as shown 

in Figure 4.3. On the other hand, the number of VIDs stored in the URI hash table 

grows steadily over time. The total number of VIDs remaining in the VID table is 
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always larger than the number of valid VIDs, which is due to some invalid VIDs that 

are kept in Part I. The top line in Figure 4.3 shows the total number of assigned VIDs, 

which also reflects the size of the entire VID table in the temporal case and the size of 

corresponding data structure of document information in the non-temporal case. The 

difference between this top line and the second top line indicates the memory space 

saved by our VID table data structure. 

4.4.3 Relationship between Query Performance and the number of Time 

Windows 

In this section, we explore the effects of different strategies for selecting time 

windows on the sizes of the postings lists and query performance. We will also 

compare these strategies to the traditional strategy when the temporal component of 

the document collection is ignored. We use the Even-Size strategy to evaluate the 

impact of the number of time windows in this section. 

4.4.3.1 Size of Postings Lists Relative to the Number of Time Windows 

We start by considering the compressed output size as a function of the number of 

windows for the Library of Congress Congressional dataset. For the extreme case of a 

single time window, the generated postings lists are exactly the same as those that 

would be generated had we treated the document collection without paying attention 

to the temporal information. The output size is minimal in this case since no duplicate 

documents have to be considered. As the number of time windows increases, we 

expect the output size to increase since the number of duplicate document versions 

across the time windows is expected to increase. This is illustrated in the next table. 
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Note that since we only have 36 monthly snapshots, i.e. 36 elementary time steps, 

with 36 time windows we actually have one time window for each elementary time 

step, the same as with the Even-Time strategy. 

 Table 4.2: Throughput and Output Size over the number of Time Windows 

Number of 

Time Window 

Compressed Output 

PL Size (GB) 

1 33.7 

3 42.0 

9 88.6 

18 136.6 

36 248.1 

 

4.4.3.2 Detailed Query Processing Time 

We now take a close look at the detailed query processing time. To conduct our 

tests, a thousand queries are tested, each query having a random query time between 

01/2004 and 12/2006, with three terms chosen randomly from the dictionary. The 

search program runs on a CPU with a single thread such that the one thousand queries 

are processed sequentially. We filter out the 10% slowest query batches and calculate 

the average of the remaining 90% data. Such filtering is carried out due to two 

reasons: (1) queries that consist of very popular terms map onto very long postings 

lists resulting in millions of matching results, which will significantly slow down the 

speed; (2) the first few queries are generally slower because of the empty caches 

(including CPU cache, virtual memory and disk cache) are still empty but will later 

be filled up to accelerate memory and disk accesses. The same approach is used to 

represent the query processing time in this chapter.  

We use the Even-Size strategy to split the entire collection into three time 
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windows. Table 4.3 lists the average processing times from Step 2.1 to Step 2.6 as 

well as the overall time cost in Step 2 of the search algorithm presented in Section 

4.3.3. We note that the most time consuming part is Step 2.4, in which the postings 

lists and the document frequencies of the query terms are read into memory. As we 

have mentioned in Section 4.3.3, the extra cost to processing a temporal query lies in 

the execution of Step 2.4.1, which is about 105ms for three query terms or 35ms for 

one query term, which is close to the 25ms random disk seek time from our 

experiments. Over 98% of the time is spent in executing Steps 2.4 and 2.5, and hence 

in the sections below we focus on these two steps. 

 Table 4.3: Query Process Time in Step 2 

Step 
Time 

(millisecond) 

Step 2.1 Find ETS and TW 0.018 

Step 2.2 Query Parse 0.010 

Step 2.3 Search Dictionary 0.073 

Step 2.4 Fetch Doc_Freq and PL 648.052 

Step 2.4.1 Fetch Term Doc_Freq 105.905 

Step 2.4.2 Fetch PL 540.517 

Step 2.5 Merge and Score 80.539 

Step 2.6 Display Top 100 Results 10.036 

Total 741.894 

 

4.4.3.3 Query Performance Relative to the Number of Time Windows 

The main reason for introducing multiple time windows is to reduce query 

response time by localizing the search into a small time frame that generates 

relatively short postings lists. We expect the number of time windows to primarily 

influence the execution of Steps 2.4 and 2.5 since these steps process the postings 

lists corresponding to the query terms. The size of the VID table decreases as well 
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with the number of time windows, which makes possible for the VID table to fit into 

the CPU cache and thereby accelerate the execution of Steps 2.5.2 and 2.5.3. 

 Table 4.4: Query Performance as a Function of the Number of Time Windows 

Number 

of Time 

Windows 

Step 2.4 Fetch 

Doc_Freq and PL 

(millisecond) 

Step 2.5 

Merge and 

Score 

(millisecond) 

Average Size of 

Compressed 

PLs for One 

Time Window 

(GB) 

1 2383.81 126.91 33.7 

3 648.05 80.54 14.0 

9 372.66 28.07 9.8 

18 310.21 21.79 7.6 

36 300.64 21.35 6.9 

 

 

Table 4.4 shows the execution times of Steps 2.4 and 2.5. When the number of 

time windows is larger than 9, very limited performance gain is obtained because the 

average size of postings lists for a time window decreases very slowly beyond. The 

size of postings lists from newly arrived document versions is roughly proportional to 

the length of the current time window so when new time windows are created 

frequently resulting in many short time windows,  the new postings generated within 

a time window are relatively few and the dominating factor will be the postings lists 

passed from the previous time window. Consequently, the average size of postings 

lists in a time window decreases slowly with a large number of time windows. On the 

other hand, the total size of postings lists from all time windows grows quickly with a 

large number of time windows (from 9 to 36) with limited improvement on query 

performance. Therefore, based on these experimental results, choosing three or nine 

time windows achieves a balance between space and performance for this 

Congressional dataset. 
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4.4.3.4 Summary 

Figure 4.4 shows the relationship between the overall query response time, the 

sizes of postings lists, and the size of the additional temporal indexes as a function of 

the number of time windows, assuming the Even-Size strategy. Comparing the non-

temporal case and the temporal case with a single time window, we can see that only 

a small increase in query response time is introduced the temporal case, and hence the 

query performance does not suffer due to the additional temporal indexing structures 

even though it can now handle the temporal queries. In fact it can be improved using 

finer temporal partitioning of the collection. 

 

Figure 4.4: Impact of Time Window Numbers on Index Size and Query Performance 

4.4.4 Relationship between Query Performance and Different Time 

Window Strategies 

In this section, we compare the query performance under the two distinct 

strategies introduced earlier, the Even-Size strategy and the Even-Time strategy. By 

the Even-Size strategy, the resultant three time windows for the Congressional dataset 
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cover respectively 19 months (01/2004 to 07/2005), 10 months (08/2005 to 05/2006) 

and 7 months (06/2006 to 12/2006), and each time window consists of about 560GB 

of input. On the other hand, the Even-Time strategy splits the 36 monthly snapshots 

into three time windows, each of which covers 12 months. Table 4.5 shows the sizes 

of the generated postings lists after compression. Under the Even-Size strategy, the 

number grows slowly because of the increasing size of postings lists inherited from 

previous time window is increasing relatively slowly. Since the web is steadily 

increasing in size, it is natural to find that each monthly snapshot in 2006 is much 

larger than the one in 2004 and hence the Even-Time strategy results in fast 

increasing size of output postings lists. 

 Table 4.5: Size of Output Size with Different Time Window Splitting Strategies 

Time Window 
Compressed Size of Output PLs (GB) 

Even-Size Even-Time 

1 12.6 5.4 

2 13.9 13.2 

3 15.5 22.3 

 

As for the query performance, the average query response time remains almost 

the same in either strategy if we randomly choose a query time between 01/2004 and 

12/2006. However, if we look deeper and capture the average time required to 

process a query during Steps 2.4 and 2.5 with query time in year 2004, 2005 or 2006 

separately, some interesting but expected results emerge as shown in Table 4.6. Since 

the size of output postings lists grows quickly from 2004 to 2006 with the Even-Time 

strategy, the resultant execution time of Step 2.4 and Step 2.5 also increase at a 

similar rate. This leads to a query response time that fluctuates drastically. In practice, 

this trend is likely to get worse if we assume that users will be more interested in 
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recent document versions and more temporal queries fall into year 2006. On the other 

hand, the Even-Size strategy yields much more stable results for both Steps 2.4 and 

2.5. The time cost is still growing as the size of output postings lists is increasing as 

indicated in Table 4.5. 

 Table 4.6: Query Performance with Different Time Window Splitting Strategies 

Query Time 

Range 

Step 2.4 Fetch Doc_Freq and PL 

(millisecond) 

Step 2.5 Merge and Score 

(millisecond) 

Even-Size Even-Time Even-Size Even-Time 

2004 580.59 336.12 76.92 37.37 

2005 614.21 655.24 81.39 76.02 

2006 748.95 1124.66 84.30 99.78 

4.5 Parallel Algorithms for Constructing the Inverted Files in 

the Temporal Case 

Our goal is to build the dictionary, the URI hash table and the VID table, as well 

as the postings lists stored on external storage with the maximum possible throughput 

without sacrificing latency and throughput of query processing. What’s more, the 

algorithm should have the property of incremental updating, which means that more 

data are available for newer time windows as time goes by and our algorithm is able 

to update the existing temporal inverted files with minimal overhead. 

4.5.1 Algorithm on a Single Multicore Node 

The starting point of our algorithm on a single node of multicore processors is an 

extension to the algorithm presented in Chapter 2. To accommodate temporal 

information from the archived data collection, some new components and techniques 

are added into the pipeline described in Chapter 2. 
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4.5.1.1 Overall Approach 

In the temporal case, parsers also pass the URI and crawl date of each VID to the 

indexers to build the temporal inverted files. In the indexing stage, the main thread 

pulls parsed results from the buffer as soon as they are available, builds the URI hash 

table and the VID table before spawn a number of indexers which jointly construct 

the dictionary and postings lists. The extra workload here is trivial compared to the 

one of non-temporal indexers since for one document version the above two temporal 

tables are updated only once but there are hundreds of tokens need to be inserted into 

the dictionary and postings lists. Therefore the main indexing thread carries out this 

task instead of creating a separate thread. 

Similar to the dictionary, the URI hash table and the VID table remain in main 

memory until the entire data collection has been processed; however the two temporal 

tables are checked periodically such that only a small portion of VID entries are kept 

in main memory as described in Section 4.4.1; the postings lists are kept in memory 

first and written into a disk as temporary files before the memory is full. When the 

current time window is closed, a number of parallel temporal mergers read these 

temporary files as well as the postings lists inherited from previous time window 

from the disks, and generate the postings lists for both current time window and next 

time window. The number of parsers, indexers and temporal mergers are determined 

depending on the physical resources available later in Section 4.6.1.  
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Figure 4.5: Overall Data Flow on a Single Node 

4.5.1.2 Temporal Merging Stage 

The temporal merging stage is invoked only at the time window boundary, where 

the current time window closes and a new one starts.  

 

Figure 4.6: Data Flow in the Temporal Merging Stage 

The input data to temporal mergers are one temporary file passed from time 

window TWk-1 and several temporary files generated in this time window TWk. A 

temporal merger processes one term at a time such that the postings list of this single 

term can fit into memory. It starts by reading out all the partial postings lists from the 
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above temporary files. These postings lists are then combined into the complete 

postings list of this term in TWk, which contains all postings that are alive within time 

[Tj, Tj+S). From this complete list, we can get useful global statistics at each 

elementary time step for this term. For example, the document frequency of this term 

at Tj+2 can be obtained by counting the number of postings that are alive at Tj+2. These 

postings lists of all terms are written to disks which can be used to handle the queries 

within TWk. For one elementary time step there is only one value of average 

document length but the document frequency is per term and thereby requires certain 

amount of space on disks. In Section 4.4.3 we already saw the cost in the querying 

process  from accessing the document frequencies of query terms. 

In the next step, we check the postings in this complete list of this term to find out 

all postings which are still alive at the end of TWk, that is, time Tj+S. The temporary 

file containing such shortened lists of all terms is therefore passed to the next time 

window TWk+1, just as the one passed from TWk-1 to construct the postings lists in 

TWk. 

Even though temporal mergers are reading and writing multiple files at the same 

time, each file is accessed contiguously. It is because when the postings list of Term i 

is finished the temporal merger moves onto Term i+1 whose file locations are in 

neighboring spaces of Term i in both input and output files. Awareness of this point, 

we use buffered file read and write (a typical buffer size is 10MB) to alleviate disk 

read/write conflicts. 

When the entire data collection is ingested and the last time window is completed 

by temporal mergers, similar to [51] we will have two types of postings lists 
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generated:  

 postings lists for each time window: postings lists containing all the document 

versions that are alive in this time window, which are enough to serve the 

query that falls into this time window. 

 postings lists of still alive VIDs: the temporary file of postings lists containing 

still alive postings, as the byproduct from the last time window, is also useful to 

search the most up to date version of a document if it still exists. Such results 

are the ones used by today’s search engines which are only interested in web 

pages from valid URIs. 

The first ones are unique to temporal inverted files. The second type of postings 

lists is the one used by today’s major search engines and critical component of 

versioned documents database. In the scenario of incremental updating, when the 

current time window is still open to take in more elementary time steps, the still alive 

or most recent document versions may appear in both the temporary file passed from 

last time window or the ones generated from elementary time steps within current 

time window. Therefore there exists some overhead to process the queries for still 

alive document versions but such extra costs are well controlled once we close the 

current time window. 

4.5.2 Algorithm on a Cluster 

We now extend our single node strategy to a cluster of multicore processors, 

similar to the approach in Chapter 3. There are several possible strategies for such 

extension: 

 Partition-by-Time-Window. Each node fetches the input files corresponding to 
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one time window, builds the local dictionaries and postings lists for this time 

window. The merging phase is not needed for temporal queries because we 

only search within one time window for a query.  

 Partition-by-URI. At the end of each parsing stage, each indexer processes an 

equal portion of the documents by hashing on their URIs following the single 

node algorithm, after which the local dictionaries, local URI hash table, local 

VID table, and local postings lists from all the nodes are merged. This method 

follows the standard divide-and-conquer strategy and hence its effectiveness 

depends on the merging phase.  

 Partition-by-Trie-Collection. This strategy includes a sampling preprocessing 

step that creates a persistent mapping between the trie collection indexes and 

the IDs of the indexers, which is used to distribute the parsed streams to the 

nodes. On the other hand, temporal information for building the URI hash 

table and the VID table is distributed to indexers by hashing on the URIs and 

each indexer builds local URI hash table and local VID table on its assigned 

portion of URIs. A synchronization of VID tables is needed to obtain the global 

VID table when a time window is closed. 

It is clear that the first strategy will achieve excellent performance during the each 

batch of one time window because every node will work independently on its portion 

of the time windows with no communication required between the nodes. However 

the temporal mergers can’t finalize the current time window until they receive the still 

alive postings from previous time window, which are required to build the complete 

postings lists of the current time window. As a result, the lower bound of the running 
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time is ∑(time in the merging stage in each time window) which is not inversely 

related to the cluster size. Such temporal dependency stops us from getting speedups 

on the cluster. 

The bottleneck of the second strategy lies in the global merging stage. Such 

merging is required otherwise for a given query term we have to search the same term 

in all the local dictionaries and the local postings lists to find all matching results. 

And if newer data are ingested in the future, we have to carry out such merging over 

and over again, which doesn’t meet our requirements. 

The last approach is extended from the partition-and-index approach described in 

Section 3.1 with the advantage of a coherent, global dictionary and the global VIDs 

stored in the postings lists on all nodes. The global synchronization of VID tables will 

bring in some overhead but it is well hidden in our pipeline design. As a result, we 

choose this one to move forward. 

 

Figure 4.7: Data Flow of Partition-by-Trie-Collection-and-URI Strategy 

The data flow of the third approach is illustrated in Figure 4.7. The indexers and 

temporal mergers still share the same disks so the temporary files in Figure 4.6 will 

be written and read locally; however, at time window boundaries the temporal 
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mergers on different nodes have to exchange their local VID tables to obtain the 

global VID table. 

Our algorithm on the cluster distributes the building of URI hash table and VID 

table evenly among the nodes by hashing on the URIs. This is applicable because 

only VIDs crawled from the same URI will have temporal relations. However, when 

a time window closes these distributed VID tables of all nodes are synchronized to 

reflect the complete and global view of all VIDs. It is a required step because the 

postings lists generated by the indexers on different nodes are not partitioned by 

URIs. Consequently, the postings handled by a temporal merger on one node may 

contain any VIDs occurred on any node, not necessarily restricted to the VIDs 

assigned to this node by the URI hashing function. On the other hand, the local URI 

hash tables are not synchronized since they are not used in the temporal merging 

stage due to the fact that they contain neither the start time nor the end time of VIDs 

which are required by temporal mergers to check if a posting is still alive or not. 

One alternative implementation is to let all nodes build their own copies of the 

global URI hash table and VID table from the parsed results. Such approach 

eliminates synchronization by duplicating computation on every node. If the average 

time to build these two temporal tables is T1 and the average indexing time is T2 for 

each batch, then the processing time of the indexers with P nodes becomes T1 + T2/P. 

When P is over eight in our experiments, T1 will be dominating so the indexing speed 

hardly increases with larger P. In out algorithm, the processing time is (T1 + T2)/P, 

which is scalable. The temporal mergers are responsible for this synchronization so 

parsers and indexers will not be stalled due to this communication operation. 
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Putting all the pieces together, we get the overall data flow shown in Figure 4.7 

for a cluster of multicore processors. Similar to the single node case, we use 

synchronous communication to enforce the sequence of messages processed by 

indexers, that is, each node sequentially receives messages from node 1 through node 

P to guarantee the order of VIDs in the postings lists. Indexers on different nodes start 

indexing once the parsed results are received via the interconnect and they don’t 

necessarily communicate with other indexers; on the other hand, all the temporal 

mergers will begin at the same time once the VID table synchronization is done. 

We also believe that our extension from non-temporal indexing case to temporal 

indexing case can be applied to other indexers running on the clusters with minor 

adjustment since both the dictionary and the postings lists remain the same. The two 

MapReduce implementations in [43] and [19, 39] also distribute different terms to 

different Reduce workers, similar to the Partition-by-Trie-Collection approach in this 

chapter. The URI hash table and VID table can be directly constructed by the 

MapReduce framework by letting each Map worker send out <{URI, t_start}, VID}> 

tuples to every node. Because the MapReduce runtime will sort all these tuples first 

by URI and then by t_start, Reduce workers will directly receive [{t_start1, VID1}, 

{t_start2, VID2}…] for each URI and t_start2 is actually the end time of VID1. 

Thereby the complete VID table is obtained by simple computation. Then the Reduce 

workers can partition the postings list of a term into several time windows as our 

algorithm by referring to the VID table.  
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4.6 Experimental Results of Our Algorithm 

In what follows, we start by exploring the values of the numbers of parsers, 

indexers and temporal mergers for the single node algorithm (described in Section 

4.5.1). We then show that our cluster algorithm is scalable relative to the optimized 

single node algorithm, up to the largest number of available nodes, as well as the 

performance of our single node algorithm on the two document collections in Table 

4.1. 

4.6.1 Number of Parallel Parsers, Indexers and Temporal Mergers on a 

Single Node 

For simplicity we use the triplet <M, N, L> to represent the combination of M 

parsers, N indexers and L temporal mergers in the temporal case and the tuple <M, 

N> for the combination of M parsers and N indexers in the non-temporal case. To 

determine this parameter with the new temporal mergers, we conduct tests based on 

the following rules: 

 1) the total number of parsers and indexers is at most eight beyond which these 

parsers and indexers will compete for the available cores and hence hurt the 

overall performance instead; 

 2) the tasks of temporal mergers are mainly disk I/Os, so we let indexers and 

temporal mergers share the same cores if the total number of running threads 

exceed eight; 

 3) two indexers are fast enough to keep up with up to six parsers but one 

indexer will play as the bottleneck as shown in Section 2.4.1, so we fix the 
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number of indexers to two; 

 4) in the indexing stage, each indexer generates its own portion of postings 

lists and it is very hard to have multiple temporal mergers process one 

indexer’s output, thus the postings lists from one indexer will only be processed 

by one temporal merger, which means L must be less than N. 

Then we have five reasonable combinations of parsers, indexers and temporal 

mergers: <6, 2, 2>, <6, 2, 1>, <5, 2, 2>, <5, 2, 1>, <4, 2, 2>. The Congressional 

dataset is used and three time windows are created under the Even-Size strategy to 

split the inverted files. To show the extra cost from temporal processing, the 

throughput in the non-temporal case using <6, 2> is also included, where we use the 

algorithms in Chapter 2 and treat every document version in the collection as a new 

and independent document. Figure 4.8 illustrates that with <6, 2, 2> our temporal 

algorithm reaches over 60% of the throughput from non-temporal algorithm with <6, 

2>. This means that we have developed the temporal algorithm with reasonable 

overhead and this efficiency mainly attributes to the careful design of the three-stage 

pipeline and two effective temporal tables. 

 

Figure 4.8: Throughput on A Single Node 
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Figure 4.9: Detailed Timeline in the Pipeline with Three Time Windows 

Now let’s take a deeper look at what happens in the pipeline in Figure 4.9. In the 

non-temporal case, the parsing and indexing speed is the fastest one in all the three 

time windows, followed by the temporal case using <6, 2, 1>, which is due to the 

extra work of building two temporal tables and the impact of the new temporal 

merging thread. The parsing and indexing speed is slowest when using <6, 2, 2>, 

however, the overall throughput is higher than the one by using <6, 2, 1> where the 

much slower temporal merging stage plays as the bottleneck such that parsers and 

indexers have to wait for temporal mergers to catch up. 

4.6.2 Throughput on the Cluster 

Now we switch to the algorithm on the cluster and calculate the scalability 

relative to the number of nodes. The speedup is calculated based on the algorithm on 

a single node, so the speedup from one node with algorithm on the cluster is less than 

1 due to the overhead like MPI communication operations. Please note here the 

optimal combination of parsers, indexers and temporal mergers is not <6, 2, 2> in all 

scenarios. For example the combination of <5, 2, 2> yields a throughput 6% better 
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than the combination of <6, 2, 2> on 32 nodes. Such optimal choice also changes 

with different time window numbers and splitting methods, but in general the result 

from <6, 2, 2> is very close to the best possible (within 10%). Our main focus is to 

study the extra cost of temporal processing and for a straightforward comparison with 

the non-temporal case (where <6, 2> is applied) we only choose <6, 2, 2> in this 

section. Again, three time windows are generated under the Even-Size strategy. 

4.6.2.1 Scalability over the Number of Nodes 

From Table 4.7 and Figure 4.10, we can see that both of our temporal and non-

temporal algorithms scale almost linearly with the number of nodes involved. The 

speedup values in the temporal and non-temporal cases are relatively close and the 

ratio is around 0.70. In Chapter 3 we have already shown the balanced load between 

the 32 nodes with the non-temporal indexing algorithm and the stable ratio here 

indicate the good load balancing with our temporal indexing algorithm. 

 Table 4.7: Throughput Over the Number of Nodes 

Number 

of Nodes 

Temporal (6, 2, 2) Non-Temporal (6, 2) 
Throughput 

Ratio 
Throughput 

(MB/s) 
Speedup 

Throughput 

(MB/s) 
Speedup 

1 172 0.95 249 0.94 0.69 

2 312 1.72 480 1.81 0.65 

4 619 3.41 935 3.54 0.66 

8 1226 6.76 1717 6.50 0.71 

16 2382 13.14 3176 12.02 0.75 

32 3796 20.93 5401 20.44 0.70 
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Figure 4.10: Scalability over the Number of Nodes 

4.6.2.2 Detailed Running Time of the Pipeline 

Figure 4.11 shows the running time for each time window. Similar to Figure 4.9, 

it takes longer to parsing and indexing the document versions in each time window 

when indexers and temporal mergers share the same physical CPU core. Compared to 

the running time on a single node, the VID table synchronization time is also 

significantly larger because of the all-to-all communication between 32 nodes. 

Another interesting fact is the temporal merging time, which is over 40 times faster 

than the one with a single node. This is because that with P nodes, the sizes of input 

and output files in Figure 4.6 are only 1/P of the ones with single node, in which case 

the file accessing caches better assist the file reading and writing throughput to a great 

extent and disk access conflicts are less likely to happen. In Table 4.8, we list the 

speedup over the number of nodes by summing up the total running time spent in the 

temporal merging stage. It’s obvious that the super-scalability doesn’t show up until 

the number of nodes reaches eight in which case the size of a temporary file in Figure 
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4.6 is as low as about tens of MBs, which is close to the 10MB memory buffer size 

we mentioned in Section 4.5.1.2 for each temporary file. 

 

Figure 4.11: Detailed Timeline on the Cluster 

 Table 4.8: Speedup in the Merging Stage 

Number of Nodes 
Speedup of Temporal 

Merging Stage 

1 1.00 

2 1.63 

4 3.75 

8 9.41 

16 20.29 

32 43.76 

4.6.2.3 Throughput over the Number of Time Windows 

In this section we test the overall running time and throughput with different 

number of time windows on the cluster with 32 nodes. With only one time window, 

the process of temporal merging won’t start until all parsing and indexing tasks have 

finished and hence the temporal merging time is not hidden by the parsing and 

indexing time at all. When the number of time windows increases, the time cost by 

the last batch of temporal merging (the right most temporal merging time in Figure 

4.11) is also reduced, that’s why the running time decreases when the number of time 

window grows from 1 to 9. Beyond that, VIDs that are alive across time window 
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boundaries are more likely to be duplicated in the postings lists of several time 

windows, which can be verified by the drastically inflated size of output postings 

lists. Writing such duplicates onto disks consumes a significant amount of CPU 

cycles and as a result the overall running time climbs back to even a higher value 

when there are 18 or 36 time windows. 

Table 4.9: Throughput over the Number of Time Windows 

Number of 

Time 

Window 

Running Time 

(second) 

Throughput 

(MB/s) 

Compressed Output 

PL Size (GB) 

1 538 3185 33.7 

3 451 3796 42.0 

9 408 4196 88.6 

18 550 3110 136.6 

36 612 2797 248.1 

 

4.6.2.4 Performance Comparison with Fastest Known MapReduce Non-

Temporal Indexers 

The best way to examine the efficiency of our algorithm on construction of the 

temporal inverted index is the comparison with other temporal indexers on the same 

document collection. However, to the best of our knowledge such literature is not 

available and we instead compare our performance with fastest known non-temporal 

indexers. The two MapReduce implementations in [19, 43] use the first English 

Section of ClueWeb09 data collection on which our non-temporal algorithm has a 

throughput of 6,271MB/s with 32 nodes. Such throughput is close to the 5,401MB/s 

on the Congressional data collection with the same algorithm. As a result, these two 

different data collections are considered to have similar statistics and hence it is still 
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fair to perform the comparison as shown in Table 4.10. 

Table 4.10: Platform Configuration and Performance Comparison 

 
Our Temporal 

Approach 

Ivory 

MapReduce 

Terrier 

MapReduce 

System 

Details 

Processors per 

Node 

Two Intel Xeon 

2.8GHz Quad-

core CPUs 

Two Intel 

Single-core 

2.8GHz CPUs 

Two AMD 

Quad-core 

Opteron CPUs 

Memory per 

Node 
24GB 4GB 16GB 

File System Local disks 

Hadoop 

Distributed File 

System 

Hadoop 

Distributed File 

System 

Data Collection Congressional 
ClueWeb09 

first English 

ClueWeb09 

first English 

Through

put 

(MB/s) 

1 node 

(8 cores) 
181 — 33 

30 nodes 

(240 cores) 
— — 460 

32 nodes 

(256 cores) 
3796 — — 

280 Nodes 

(560 cores) 
— 289 — 

 

It’s clear that even though our algorithm carries out extra steps and generates 

much larger and complicated inverted indexes, the throughput is still superior to the 

ones from MapReduce non-temporal indexers. 

4.6.2.5 Performance of our Algorithm on Different Document 

Collections 

We show in Table 4.10 the overall throughput of our algorithm on our two 

document collections with the parameter <6, 2, 2>. For the Wikipedia01-07 

collection, the HTML tags were removed, and the remainder is just pure text. As we 

can see from Table 4.1, the uncompressed size is only 1/21th of the Congressional 
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collection, yet the number of tokens is about a fourth compared to the one of the 

Congressional collection. Hence the 50MB/s throughput achieved on Wikipedia01-07 

actually amounts to a very high processing speed given the large numbers of tokens. 

Since the size of Wikipedia01-07 is too small, we can’t get any meaningful speedup 

beyond four nodes and hence those results are not included in Table 4.11. The 

scalability from single to four nodes is as good as the one on Congressional data and 

we believe that should we have much larger Wikipedia document version collection, 

similar speedups as in Table 4.7 can be achieved from 8 to 32 nodes. 

 Table 4.11: Throughput on Different Document Version Collections 

 

Throughput (MB/s) 

Congressional Wikipedia 01-07 

Temporal Non-Temporal Temporal Non-Temporal 

Single Node 181.35 264.26 51.33 78.29 

Four Nodes 618.54 935.08 192.12 242.05 

4.7 Conclusion 

In this chapter, we introduced a new parallel and pipelined strategy for 

constructing temporal inverted files on a cluster of multicore processors, which is 

extended from our previous algorithm in the non-temporal case. New temporal 

indexing structures are developed in such a way that the previous dictionary, postings 

lists and parsing and indexing strategies all remain the same. Low level parallelism in 

the underlying hardware is carefully studied to achieve load balancing within parallel 

thread in each pipeline stage as well as among three pipeline stages. The overall 

throughputs on two document version collections reach around 70% of the ones with 

our non-temporal algorithm and are also substantially faster than best know 
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MapReduce non-temporal implementations. Meanwhile, our query processing time is 

carefully examined with the more complicated temporal indexing algorithm and time 

window partitioning approach, showing that our high-throughput indexing algorithm 

does not come at a cost of slower query performance but actually improve it by finer 

temporal partitioning of the collection. 
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Chapter 5 Applications Accelerated by GPU 

Compared to CPU, GPU exhibits different architecture characteristics that include 

hundreds to thousands of much simpler cores that execute in a SIMD fashion, 

extremely high memory bandwidth between the cores and the GPU global memory, 

and a small shared memory on each streaming multiprocessor for fast inter-processor 

communication. The peak computing powers of GPUs are very impressive but in 

general the algorithms need to be redesigned to make good use of the available 

resources. In this chapter, we start by briefly introducing the NVIDIA CUDA GPU, 

and then develop fast GPU algorithms for the inverted files indexing and list ranking 

problems. 

5.1 GPU and CUDA Overview 

A surprising facet of the recent evolution of multicore processors is the continued 

appearance of extremely powerful GPUs that have much better performance to power 

ratio than the standard multicore CPUs, and that offer increasingly more flexible 

general purpose programming environments. Examples of such co-processors include 

the IBM Cell Broadband Engine (Cell BE), the NVIDIA GT200 and Fermi series, 

and the Intel Larrabee. These multicore processors provide flexible general-purpose 

programming environments with impressive peak performance. In this chapter, we 

are primarily concerned about optimization techniques for the NVIDIA CUDA 

programming model [48] and hence we devote the rest of this section to briefly 

summarize that programming model and related features. 

The basic architecture of the NVIDIA GT200 series consists of a set of Streaming 
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Multiprocessors (SMs), each of which containing eight Scalar Processors (SPs or 

CUDA cores) executing in a SIMD fashion, 16,384 registers, and a 16KB of shared 

memory. The 16KB shared memory is organized into 16 banks. Threads running on 

the same SM can share data and synchronize limited by the available resources on the 

SM. Each SM has small constant and texture caches. All the SMs have access to a 

very high bandwidth global memory; such a bandwidth is achieved only when 

simultaneous accesses are coalesced into contiguous 16-word lines. However the 

latency to access the global memory is quite high and is around 400-800 cycles [48].  

In our work, we have used the NVIDIA Tesla C1060 that has 30 SMs coupled to 

a 4GB global memory with a peak bandwidth of 102GB/s. Figure 5.1 and Figure 5.2 

illustrate the overall architecture of the Tesla C1060 [40]. 

 

Figure 5.1: Architecture of the Tesla C1060 
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Figure 5.2: Architecture of the TPC in the Tesla C1060 

The characteristics of the memory organization of the Tesla C1060 are 

summarized in Table 5.1. 

Table 5.1: Overall memory organization of the Tesla C1060. 

 
Global 

Memory 

Shared 

Memory 

Constant 

Cache 

Texture 

Cache 

Size 4GB 16KB per SM 8KB per SM 6-8KB per SM 

Accessibility 
All 

threads 

All threads in 

the same block 
All threads All threads 

Other 

Properties 

High 

latency 
Low latency 

Only 

readable by 

thread 

Only readable 

by thread 

 

For the newly released Fermi series, several improvements of the GPU 

architecture have been introduced to provide superior performance. Table 5.2 lists the 

major changes that are relevant to the works reported in this chapter. The on-chip 

memory size per SM is increased to 64KB and can be configured as 16KB L1 cache 

and 48KB shared memory or 48KB L1 cache and 16KB shared memory. The 

architecture of a single SM in a Fermi GPU can be found in Figure 5.3 [49]. 
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Table 5.2: Comparison between GT200 and Fermi 

 GT200 Fermi 

Number of SPs per SM 8 32 

Warp Scheduler per SM 1 2 

Shared Memory per SM 16KB 16KB/48KB 

Shared Memory Banks 16 32 

L1 cache None 16KB/48KB 

Global Memory L2 Cache None 768KB 

Global Memory Coalescing Size 16-word 32-word 

 

 

Figure 5.3: Architecture of one SM in Fermi GPU 

The CUDA programming model envisions phases of computations running on a 

host CPU and a massively data parallel GPU acting as a co-processor. The GPU 

executes data parallel functions called kernels using thousands of threads. Each GPU 

phase is defined by a grid consisting of all the threads that execute some kernel 
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function. Each grid consists of a number of thread blocks such that all the threads in a 

thread block are assigned to the same SM. Several thread blocks can be executed on 

the same SM, but this will limit the number of threads per thread block since they all 

have to compete for the resources (registers and shared memory) available on the SM. 

Programmers need to optimize the use of shared memory and registers among the 

thread blocks executing on the same SM. 

Each SM schedules the execution of its threads into warps, each of which consists 

of 32 parallel threads. In GT200 and earlier series, half-warp (16 threads), either the 

first or second half of a warp, is introduced to match the 16 banks of shared memory. 

When all the warp’s operands are available in the shared memory, the SM issues a 

single instruction for the active threads. All cores in a SM will be fully utilized as 

long as operands in the shared memory reside in different banks of the shared 

memory (or access the same location from a bank). If a warp stalls, the SM switches 

to another warp resident on the same SM.  

Optimizing performance of multithreaded computations on CUDA requires 

careful consideration of global memory accesses (as few as possible and should be 

coalesced into multiple of contiguous 16-word lines on the GT200 series and 32-word 

lines on the Fermi series); shared memory accesses (threads in a warp should access 

different banks); and partitioning of thread blocks among SMs; in addition to 

carefully designing highly data parallel implementations for all the kernels involved 

in the computation. 
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5.2 GPU Indexers on a Single Node 

In this section, we explore the possibility of GPU acceleration of the algorithm 

presented in Chapter 2. The parsing process involves mainly finding word boundaries 

and shortening terms to their root forms, both of which involve complicated sets of 

branch instructions and hence they are very hard to map onto the GPU. As a result, 

we only include GPUs in the indexing stage and optimize the throughput by carefully 

considering hardware features of both CPUs and GPUs. 

5.2.1 Heterogeneous Implementation of Indexing 

The cores on the CPU offer opportunities for a limited amount of parallelism on 

highly irregular computations. On the other hand, the streaming cores on the GPU are 

ideally suited for a very high number of fine grain data parallel computations each of 

which follow the same execution paths. Our approach attempts to exploit both 

capabilities simultaneously, carefully orchestrating which tasks are assigned to the 

CPU cores and which are assigned to the GPU streaming cores. More specifically, 

besides the two Intel Processor Xeon X5560 quad-core CPUs we also use two 

NVIDIA Tesla GPUs each consisting of 240 streaming cores and 4GB of device 

memory. The data structure remains the same as the one described in Chapter 2 but 

the indexing approach is modified and optimized according to the CUDA GPU 

programming guidelines. Our heterogeneous algorithm can easily be adapted to any 

other such heterogeneous configuration. 

5.2.1.1 GPU Indexer 

In the CUDA architecture, 32 threads form a warp and they are executed in a 
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SIMD fashion. Note that some of the processor cores have to idle if the corresponding 

threads follow different execution paths. Therefore, we allocate the work to build a 

single B-tree and the related postings lists corresponding to a single trie collection to 

a thread block consisting of one warp and coordinate these 32 concurrent threads to 

jointly build the B-tree. 

At this stage, we assume that our term strings are already moved into the device 

memory and are represented as indicated in Figure 5.4. Without loss of generality, we 

also assume that no term is longer than 255 bytes and hence one byte will be 

sufficient to hold the length of the corresponding string. We read these term strings in 

contiguous chunks (512 bytes) and store them into the shared memory corresponding 

to the thread block handling this particular trie collection. Hence we are making use 

of coalesced memory accesses to move the data into the streaming multiprocessor 

shared memory. The GPU threads will then access the shared memory to process the 

corresponding terms instead of accessing the device memory. 

 

Figure 5.4: String Representation: Term Length in the First Byte 

Each term is now inserted into the B-tree using the 32 threads as follows. Starting 

from the root and as we go down the B-tree, we move the next B-tree node to be 

examined into the shared memory using coalesced memory access. We use the 

available threads to perform a comparison between the term to be inserted and each of 

the terms stored in the node in parallel. This parallel comparison operation followed 
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by a parallel reduction step [25] will enable us to identify the location of the new term 

as indicated in Figure 5.5. If this term needs to be inserted in the current position of 

term (i+1), then term (i+1) up to the current last term in the node must be shifted to 

the right, which is achieved by a number of parallel threads.  

 

 Figure 5.5: Parallel Comparison in One GPU Thread Block 

During B-tree insertion, three major operations inside a B-Tree node can take 

place and they are all carried out in parallel using coalesced device memory accesses. 

 Searching: the algorithm compares the new term with existing terms inside the 

current B-Tree node and then do one of the following: (1) if this term is 

already present, we update the postings lists; (2) if this term is not there and 

this node is not a leaf, we proceed to the corresponding child node for 

searching; (3) if this term is not there and this node is a leaf, we insert this 

term into this node. 

 Inserting: in order to insert a new term, we must first shift those existing terms 

which are “larger” than the new term so that a blank location is created to 

accommodate this new term. 

 Splitting: before accessing a B-Tree node, we check to determine whether this 

node is full or not and if yes, the node will be split into two nodes. 
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We now address the issue of how the trie collections assigned to the GPU will be 

handled. Since the trie collections are of different sizes and depend on the input 

documents, any static allocation of these collections to the available thread blocks is 

likely to incur a serious load imbalance. In our algorithm we use a dynamic round-

robin scheduling strategy such as whenever a thread block completes the processing 

of a particular trie collection, it starts processing the next available trie collection.  

5.2.1.2 Load Balancing between the CPU and GPU Indexers 

In deciding how to allocate the trie collections among the CPU and GPU, we 

exploit the strength of each architecture—a large cache on the CPU and a high degree 

of data parallelism on the GPU. We divide the trie collections into two major groups. 

The first group, to be called popular trie collections, consists of the trie collections 

containing the most frequently occurring terms. In this group, a few common terms 

dominate the entries in each corresponding trie collection (by Zipf’s law [83]). In this 

case, the B-tree nodes on the path from the root to these common terms will be 

accessed frequently and hence it makes sense to store such paths in cache, which 

would indeed happen if we process such collections on the CPU. 

The second group consists of the remaining collections. Unlike the popular trie 

collections, this group contains primarily infrequent terms and, again according to 

Zipf’s law, the differences in their frequencies are relatively very small. This means 

that every time we perform a B-tree operation for a new term, the path taken is likely 

to be very different than the previous one, and hence caching won’t be so useful. 

However exploiting data parallelism in processing each node (to perform all the 

comparisons in parallel) speeds up the computation significantly, and this is exactly 
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what we do using CUDA thread blocks. 

Therefore, we assign the popular trie collections to a number of CPU indexers and 

unpopular ones to the GPU indexers. To determine which collections belong to which 

group, we extract a sample from the document collection, e.g. 1MB out of every 

1GB, and run several tests on the sample to determine membership. Since there are 

many trie collections in this group and we have multiple GPUs, say N (N=2 on our 

platform), we use a simple method of splitting the unpopular trie collections among 

the N2 GPUs by assigning the trie collection TCi with index i to the GPU whose index 

is given by i mod N2. For example, if unpopular trie collections have indices (0, 13, 

27, 175, 384, 5810, 10041, 17316) and there are two GPU, then (0, 384, 5810, 17316) 

are assigned to GPU indexer 0 and (13, 27, 175, 10041) to GPU indexer 1. The 

overall data flow of the indexing stage is shown in Figure 5.6. 

 

Figure 5.6: Data Flow of One Single Run on Parallel CPU and GPU Indexers 

However there are relatively very few popular trie collections (around one 

hundred), and hence we split these trie collections into N1 independent sets such that 

each contains almost the same number of tokens, where N1 is the number of CPU 

threads used. 
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5.2.2 Experimental Results 

Our new heterogeneous algorithm is tested on a single machine that holds two 

Intel Xeon X5560 quad-core CPUs and two NVIDIA Tesla C1060 GPUs each with a 

4GB device memory. The first English segment of the ClueWeb09 collection is used 

and the details can be found in Table 2.3. In what follows, we first examine possible 

acceleration from GPUs and later compare the performance on five different GPUs. 

5.2.2.1 GPU Accelerated Indexing Throughput 

 

Figure 5.7: Optimal Number of Parallel Parsers and Indexers 

We first focus on determining the best throughput generated by using GPUs. 

Figure 5.7 illustrates the performance of our algorithm on the ClueWeb09 dataset as a 

function of the number of parsers under three scenarios: (1) M parsers and 8-M CPU 

indexers without GPU indexers; (2) M parsers and 8-M CPU indexers with 2 GPU 

indexers; and (3) M parsers without any CPU or GPU indexers. The value of M varies 

from 1 to 7 since there are only eight physical cores available. 
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From Figure 5.7 we observe that the best overall performance is achieved by 

using six parsers, and we now proceed to examine the scalability of CPU and GPU 

indexers in combination with the six parser threads. We test the performance of our 

algorithm using three configurations: (i) no CPU indexer and two GPUs; (ii) two 

CPU indexers and no GPUs; and (iii) two CPU indexers and two GPUs. However we 

start by discussing the best possible strategy for indexing on a single GPU (Tesla 

C1060). As mentioned earlier we use thread blocks each with 32 threads to match the 

number of keys in each B-tree node and load each such node into shared memory 

using the 32 threads to achieve coalesced access. After extensive testing using a wide 

range of values for the number of thread blocks, it turns out that the best performance 

is achieved by using 480 thread blocks per GPU. From now on, whenever we refer to 

a GPU indexer we mean 480 thread blocks are running on a single GPU, each with 32 

threads.  

Table 5.3: Performance Comparison on Different Indexers with Six CPU Parsers 

Type of Indexers GPU Only CPU Only CPU+GPU 

Sampling Time (second) 0 67 60 

Parallel Parsers (second) 4990 5101 4998 

Parallel Indexers (second) 14185 4017 2884 

Indexing Throughput (MB/s) 103 362 505 

Dictionary Combine (second) 3 3 3 

Dictionary Write (second) 18 18 19 

Overall Time (second) 14227 5195 5103 

Overall Throughput (MB/s) 102 280 285 

 

Detailed running times of various steps are shown in Table 5.3. The major part of 

the overall running time is MAX{parsing time, indexing time} plus some overhead 

like sampling time at beginning and dictionary handling time at the end. The indexing 
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time includes the pre-processing time, post-processing time and the time to transfer 

input and output data between main memory and GPU memories. 

We now focus on the indexing throughput using the four configurations 

mentioned above. First, we notice an extra 39.5% performance gain is achieved 

through the acceleration from the two GPU indexers. Second, we notice that the 

throughput from CPU+GPU combination in scenario (iii) is higher than the 

throughput of CPU in scenario (ii) plus the throughput of GPU in scenario (i) 

separately. This super-linear scalability comes from our specific task partitioning 

strategy between CPU and GPU so both processors are doing computation that they 

are good at. Note that the performance of multiple GPU indexers is limited by the 

time it takes to transfer the parsed input to the GPU device memory and the time it 

takes to move the output postings lists back to main memory at the end of each single 

run. Another issue is the possibility of load imbalance among the CUDA threads, 

which is hard to fully control. 

Now let’s take a look at the contents processed by the CPU and the GPUs during 

indexing when the configuration consists of two CPU indexers and two GPU 

indexers. The GPU indexers process roughly the same number of tokens compared to 

those processed by the CPU, while the numbers of terms and characters are 

respectively 4.17 times and 3.52 times as those performed by the CPU. This shows 

that the effectiveness of the way we split the work load between CPU and GPU. 

Table 5.4: Work Load between CPU and GPU 

 CPU Indexers GPU Indexers 

Token Number 15,823,992,395 16,820,515,860 

Term Number 16,408,505 68,390,970 

Character Number 130,607,685 437,891,240 
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5.2.3.2 Shedding Light on the Performance of the GPU Indexers 

The indexing problem by its nature consists of a large numbers of irregular 

memory accesses with relatively few complex operations. The 400-800 cycles due to 

the memory access latency are an integral part of the GPUs, and hence we can only 

resort to memory coalescing or caching to improve performance. To get deeper 

insights into the performance of the GPU indexers, we compare the throughput of five 

different GPUs on indexing 1GB segment of ClueWeb09 data. For a clean 

comparison, we set the throughput achieved on the Tesla C1060 to one and normalize 

the throughputs of the other GPUs relative to it. 

Let’s first look at the GT200 series GPUs, where the GTX260, the GTX280 and 

the Tesla C1060 are selected. Generally speaking, these three GPUs generate almost 

the same throughput as shown in Table 5.5. With the highest global memory 

bandwidth, the GTX280 achieves slightly higher performance. On the other hand, the 

GTX260 has many fewer CUDA cores but its performance is very close to the 

GTX280 or the Tesla C1060. The conclusion here is that the overall indexing 

throughput is not related to the number of CUDA cores. For the indexing algorithm, 

most of the memory accesses on the GT200 series GPUs are not coalesced and hence 

the memory bandwidth utilization rate is very low. It follows that higher memory 

bandwidth does not help a lot. The numbers of global memory reads and writes are 

obtained from the CUDA Profiler. 
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Table 5.5: Comparison between Five Different GPUs on Processing Same Data 

GPU Series GT200 Fermi 

GPU Model GTX260 GTX280 Tesla C1060 Tesla C2050 GTX480 

SM Number 27 30 30 14 15 

CUDA Core 

Number 
216 240 240 448 480 

Memory 

Bandwidth (GB/s) 
111.9 141.7 102 144 177.4 

Number of Global 

Memory Reads 

(million) 

284.21 290.4 290.97 27.18 27.31 

Number of Global 

Memory Writes 

(million) 

54.23 56.71 54.52 66.92 66.74 

L1 Miss Rate N/A  N/A  N/A  0.35 0.33 

L2 Miss Rate N/A  N/A  N/A  0.25 0.25 

Normalized 

Throughput 
1.02 1.03 1 1.3 1.64 

 

When the newest Fermi series GPUs are considered, we observe a significant 

drop (over 90%) in the number of global memory reads as shown in Table 5.5 

because of the incorporation of L1/L2 caches. However, the number of global 

memory writes increases by about 20% when compared to the GT200 series GPUs. 

The additional writes should come from the underlying caching policy because we 

observe that the number of write requests from our program remains the same (about 

52 million) as in the cases of all three GT200 series GPUs. Caching has very limited 

effect on memory writes because most of writes come from updating the postings lists 

of terms where hardly any locality can be exploited. 

We also see that the performance of the GTX480 is 26.5% faster than that of the 

Tesla C2050. To verify that such performance gain comes from the 40.7% higher 

memory bandwidth rather than one more Streaming Multiprocessor, we also include 

the performance of a single SM on all the GPUs in Table 5.6, where the throughput of 
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the Tesla C1060 is set to one and the remaining GPUs are normalized 

correspondingly. With a single SM, the GTX480 is still 22% faster than the Tesla 

C2050, for which the only reason should be the difference in memory bandwidth. So 

in this scenario with L1/L2 caches, higher memory bandwidth in fact results in 

significant improvement on the overall throughput. On the other hand, for the GT200 

series GPUs the throughput with a single SM is not very sensitive to the memory 

bandwidth and all three GPUs, regardless of the number of SMs, achieve almost the 

same speedup when all available SMs are used. 

Table 5.6: Normalized Throughput with Single Multiprocessor 

GPU 

Series 

GPU 

Model 

SM 

Number 

CUDA 

Core 

Number 

Memory 

Bandwidth 

(GB/s) 

Normalized 

Throughput 

w/ Single 

SM 

Speedup 

w/ All 

SMs 

Over 

Single 

SM 

GT200 

GTX260 27 216 111.9 1.01  60.40 

GTX280 30 240 141.7 1.04  59.32 

Tesla C1060 30 240 102 1.00  59.84 

Fermi 
Tesla C2050 14 448 

126 (ECC 

on) 
1.62  47.85 

GTX480 15 480 177.4 1.98  49.58 

 

It’s hard to justify the performance difference between the GT200 and the Fermi 

GPUs because they also have different CUDA cores on each SM. However, using 

comparisons between the GT200 GPUs and between the Fermi GPUs, neither the 

compute power nor the number of CUDA cores is closely related to the overall 

throughput. Therefore we believe that the Fermi GPUs perform better than the GT200 

GPUs because of small but very effective L1/L2 caches. 

As a result, the major bottleneck of GPU indexers is in the overhead introduced 
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by global memory accesses. A small amount of cache will significantly help by 

decreasing the number of global memory accesses; moreover, high memory 

bandwidth is only useful when L1/L2 caches are present. However, the Tesla C1060 

GPU has the largest global memory which is large enough to process the entire 

ClueWeb09 first English segment, and hence we only use this GPU for the other tests 

in previous sections. 

5.2.3 Conclusion 

It is clear that our heterogeneous indexing approach achieves a higher indexing 

throughput than just using a multicore CPU even though the process of building 

inverted files involve irregular computations. A number of factors contribute to the 

superior performance of our algorithm including: 

 The allocation of unpopular trie collections to the GPU where cache sensitive 

computations remain on the CPU; and  

 The careful organization of memory accesses on the GPU in such a way as to 

exploit coalesced memory accesses and shared memory. 

The architecture features which are critical to the throughput are well studied by 

comparing the detailed performance with five different GPUs. The small caches in 

Fermi GPUs are proved to be very effective in reducing global memory accesses and 

higher global memory bandwidth is only helpful when such caches exist in the 

indexing problem. However, the speedup in the indexing stage doesn’t contribute 

significantly to the overall throughput since the bottleneck is the parsing stage and as 

a result GPUs are not included in the cluster indexing and temporal indexing 

algorithms in Chapter 3 and Chapter 4. 
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5.3 Optimized List Ranking Algorithm on GPUs 

5.3.1 Overview 

It has been widely recognized that the scan operation on an array of elements 

plays a fundamental role in parallel processing [11, 12, 61]. This operation amounts 

to computing all the prefix sums of the elements stored in an array, and was 

recognized early on to be solvable by a fast and work-optimal data parallel algorithm. 

In this case, a fast parallel algorithm refers to O(log n) parallel time assuming an 

unlimited number of processing elements. By work optimal, we refer to the fact that 

the data parallel algorithm asymptotically employs the same total number of 

operations as the best sequential algorithm. A fast and work-efficient implementation 

of the scan operation on the NVIDIA GPU was recently reported in [24]. The 

computation of prefix sums on the elements contained in a linked list also plays an 

important role in parallel processing of irregular applications involving linked 

structures such as trees and graphs [33] and postings list decompression during the 

construction of temporal inverted files or query processing [3, 18]. Given that the 

successor of each node of a linked list can appear anywhere in the memory, this 

computation can be dominated by fine-grain irregular memory accesses and as such it 

represents a challenging problem for parallel computing. It is worth noting that the 

list ranking problem is a special case in which all the values stored in the linked list 

are equal to the identity element. In such a case, the prefix sum of a node (called its 

rank) is equal to the distance of the node from the head of the list. In this section, we 

will tackle the general prefix sums problem but sometimes refer to it as list ranking.  
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5.3.2 Problem Definition and Related Work 

Let L be a singly linked list in which each node contains two fields, one 

containing a data element and the second containing a pointer to the successor. The 

last node on the list is distinguished by a negative value in the successor field. The 

computation of prefix sums on L amounts to updating the value in the data field of a 

node by the sum of the values stored in the data fields of all the predecessor nodes, 

including the node itself. In other words, it is identical to the scan operation when it is 

carried out on an array A such that A[i] holds the value of the node of rank i. We 

assume that our list L is represented by an array X such that X[i].prefix and X[i].succ 

represent respectively the data and successor fields. Note that X[i].succ could be any 

arbitrary index in the array X. In our case, we assume that the head of L is not known, 

and hence has to be identified by the algorithm before prefix computations can take 

place. The main reason for making this assumption is to explore the impact of the 

presence of significant caches (as in CPUs) since the initial step that determines the 

head of the list will fill the cache with some of the input data thereby rendering the 

execution of later steps faster on such processors.  

The list ranking problem admits of a simple and effective sequential algorithm 

involving two passes through the array X. The first pass identifies the head of the list, 

and the second pass traverses the list, starting from the head, and following the 

successor field while accumulating the prefix sums in the traversal order. This 

sequential algorithm performs extremely well in practice, especially if the processor 

contains a large enough cache, and hence it is somewhat of a challenge to develop a 

work-optimal, data parallel version that scales linearly. 
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The development of parallel algorithms for prefix sum has received significant 

attention in the literature dating back to the work of Wyllie [80] in which he 

introduced the pointer jumping technique for the PRAM model. More recently, the 

emergence of many internet applications that involve extremely large amounts of data 

with linked structures has rekindled interest in list ranking. Recent work on parallel 

algorithms for list ranking is reported in [6, 57], which will later be compared to the 

approach developed in this section. 

We now quickly review the best known CUDA implementation of the scan 

operation on an array X in [24], a considerably simpler problem. The array is 

partitioned into subarrays, each group of whose prefix sums is computed separately 

by a block of threads using a data parallel algorithm that is a slight variation of 

Blelloch’s [11]. The prefix sums of the last element of each subarray are then written 

into another array Y, followed by applying the same scan procedure on Y. Each prefix 

sum of Y is then added to each element of the corresponding block of X. This strategy 

can be viewed as a divide-and-conquer strategy in which the conquer steps involve 

the use of data parallel algorithms. As is, this strategy will not be appropriate for the 

prefix sum problem. In particular, each subarray resulting from the initial partition 

may contain many sublist fragments of the initial list, whose head nodes have to be 

identified before any useful work can be done. Such a process seems to require 

almost as much work as the initial prefix sum problem. 

5.3.3 CUDA Implementation of Prefix Sum Computation 

Our approach for prefix sum is also based on a divide-and-conquer strategy but 

the initial partitioning is randomized. We randomly select s nodes (called splitters) 
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from L and use these nodes to decompose the list into sublist fragments (or just 

sublists), each of which begins with a random node and consists of the successor 

nodes until we reach a node whose successor is a splitter. As we will see later, the 

choice of s is critical for optimal performance; the larger s the better the load balance 

among the streaming processors but the more the overhead will be incurred in 

combining the partial results. We divide these fragments equally between CUDA grid 

blocks, and use highly data parallel algorithms to process the fragments within each 

block. This is followed by a prefix sum algorithm applied on the list L’ consisting of 

these s random nodes, where the successor of a random node Z is the first random 

node encountered upon the traversal of L starting from Z. The last merge step is 

similar to that of the scan operation and involves adding each prefix sum of L’ to each 

element of the corresponding sublist fragment. 

5.3.3.1 Detailed Description of Prefix Sums Algorithm 

The prefix sums problem is formally defined as follows. We are given a singly 

linked list L of n elements stored in an array X such that X[i] contains two fields, 

X[i].prefix holding a data value and X[i].succ holding the array index of its successor. 

The successor of the last element of L contains a negative integer indicating the end 

of the list. We make the assumption that the index of the head of the list is not known. 

The prefix sum of the i
th

 node (assuming not the head of the list) is defined by:  

X[i].prefix = X[i].prefix   X[pre].prefix, 

where pre is the index of the predecessor of X[i] and   can be any binary 

associative operator. For the head of the list, the corresponding prefix sum is equal to 

the value of the data stored there. Figure 5.8 illustrates a simple example of a list and 
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the corresponding prefix sums. 

 

Figure 5.8: Input array and the corresponding output for list ranking 

Our algorithm will follow the strategy outlined in the previous section using in 

particular many of the details developed in [30]. More specifically, our algorithm 

consists of the following five steps: 

 Step 1: Compute the location of the head of the list.  

 Step 2: Select s random locations of X to split the list into s random sublists, 

where each random location provides a pointer to the head of a sublist. As we 

will see, the value of s will be selected to guarantee load balancing with high 

probability. 

 Step 3: Using the standard sequential algorithm, compute the prefix sums of 

each sublist separately. All the sublists can be handled in parallel. 

 Step 4: Compute the prefix sums of the list consisting exclusively of the 

splitters, where the successor of a splitter is the next splitter encountered when 

traversing the initial list.  

 Step 5: Update the prefix value of each element of the array X by using the 
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prefix sum values computed in Step 4. 

5.3.3.2 Implementation Details and Analysis 

The list ranking algorithm in [30] was designed for symmetric multiprocessors 

with caches. In our heterogeneous CPU and GPU platform, we partition the work so 

that few specialized tasks that can substantially benefit from caches are allocated to 

the CPU. The remaining tasks are handled by thousands of threads on the GPU in 

such a way as to hide memory access latency and make effective use of the shared 

memory. The implementation details of each step are described next.  

Step 1 can be implemented as follows. Since each of the indices between 0 and n-

1, except for the index of the head node, must occur exactly once in the successor 

fields, the index of the head node can be computed by the formula:  

( 1)
_

2

n n
HEAD SUM SUCC


 

 

where SUM_SUCC is the sum of the all indices in the successor fields, except for 

the negative index. Hence this step amounts to a sum operation, which can be 

performed by a data parallel CUDA algorithm built around a balanced binary tree 

[25]. The resulting algorithm is work optimal and makes effective use of global and 

shared memory accesses. The details can be found in [25]. 

Step 2 is implemented as follows. For every subarray of X of size n/s, we select a 

random location as a splitter, and record it in an array Sublist_head. Then the 

successor field of splitter i in the original list is first copied into array 

Sublist_scratch[i] and then changed into –i in X to indicate the fact that it is now the 

head of sublist i. Hence Step 2 involves highly data parallel computations that are 
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independent of each other. 

Step 3, the most computationally demanding step of our algorithm, is 

implemented as follows. The s sublists are allocated equally among the CUDA 

blocks, which in turn are allocated equally among the threads of each block. Each 

thread will then compute the prefix sums of each of its sublists and copy the prefix 

value of the last element of sublist i into Sublist_prefix[i]. Note that the head location 

of sublist i can be found in Sublist_head[i], and its successor index in 

Sublist_scratch[i]. The end of a sublist can be identified by the negative successor 

index, indicating the head of another sublist. Also, once a node is traversed, its 

successor is changed into –j if it belongs to sublist j.  

Using Lemma 1 of [30], the total number of nodes handled by a thread is about 

the same as any other thread with high probability if the number of sublists is at least 

lnp n  and the number of processors p is 
n

n

ln
, where n is the total number of nodes 

in the original list. We will later determine the best combination of the values of the 

number of blocks, the number of threads per block, and the number of sublists per 

thread, which will clearly satisfy these conditions. 

Step 4 uses the standard sequential algorithm to carry out the prefix computations 

on the list of splitters. In our case, this step is executed on the CPU since the amount 

of data involved is quite small. As we will see, the amount of time taken by this step 

(including the time to move the list of splitters from the GPU global memory to the 

main memory and back into the GPU global memory) is less than 3% of the total 

execution time of the algorithm.  

Step 5 updates the values of the prefix sums computed in Step 3 using the 
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splitters prefix sums of Step 4. Hence we have to identify the sublist of X[i] for each 

i. This can easily be done by checking the value of X[i].successor, which was set to 

the negative index of the corresponding sublist. Therefore, all the elements of X can 

be updated as follows: 

for all i between 1 and n do in parallel 

X[i].prefix= X[i].prefix Sublist_prefix[-X[i].successor] 

We perform this operation using coalesced memory accesses to the array X. We 

store Sublist_prefix into the constant memory of the GPUs and then each SM can use 

its constant memory cache to load Sublist_prefix instead of always fetching it from 

global memory. 

5.3.3.3 Comparison with Recent Parallel Prefix Sum Algorithms 

While both [6] and [57] use the algorithm of [30] as the basis of their prefix sum 

algorithms for CUDA and the Cell Processor respectively, there are a significant 

number of differences between their implementations and ours. We focus here on the 

main differences with [57] and ours since they use the same CUDA programming 

model. The main differences are: 

 The algorithm in [57] uses n/logn or n/(2log
2
n) as the number of splitters, 

which tends to generate too many sublists for very large n. As a result, 

handling the list of splitters and combining the results incur a very significant 

overhead. In our implementation we strike an optimal balance between the 

desirability of a large number of sublists (for fine-grain data parallel 

computations and load balancing) and the splitting/merging costs.  

 The algorithm of [57] recursively computes the prefix sum of Sublist_prefix, 
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which will incur a very significant overhead. We simply perform this step using 

a sequential algorithm on the CPU. In our case, the execution time of this step 

is at most 3% of the total time. 

 It is not clear how the splitters in [57] are selected. Unless they are selected 

carefully, the longest sublist can be very long in which case no load balancing 

will be possible. In our algorithm, we select the splitters in such a way as to 

guarantee load balancing with high probability.  

 Another difference is the fact that [57] assume that they already know the head 

of the list, which makes their problem slightly easier than ours. 

5.3.4 Experimental Results 

Our prefix sums algorithm is primarily tested on the NVIDIA Tesla C1060 

graphic card as a co-processor to two Intel Xeon X5560 quad-core processors, 

because it has the largest global memory thereby accommodating lists with up to 

256M nodes. In Section 5.3.4.5, we illustrate similar (improved) performance results 

achieved on the NVIDIA Tesla C2050 and the GTX480 graphic cards. Each of the 

input arrays consists of 64-bit entries such that 32 bits are reserved for the data field 

and the remaining 32 bits are reserved for the successor field. We select addition as 

our associative   operation. As in [30], we consider three main types of input: (i) 

random, in which the successor is selected randomly from among the indices of the 

array; (ii) ordered, in which the successor node is the next consecutive node in the 

array; and (iii) stride of size d, in which the successor of each node is d indices away 

from the node, with wrapping around as necessary, and where d is some integer 

constant. We typically run each test hundreds of times, and report the average times 



 

 

127 

 

over all these runs. 

5.3.4.1 Performance as a Function of Various Parameters 

We conduct extensive tests to determine the performance of our algorithm as a 

function of: (i) type of list (random, ordered, stride); (ii) number of random splitters 

(i.e. number of sublists). In the rest of this section, we give a summary of the results 

of these tests. 

1) Performance as a Function of the types of lists 

Typical execution times of our algorithm on ordered, random, and stride (with 

different stride values) lists with 64M (1M = 2
20

) nodes on the Tesla C1060 are 

shown in Figure 5.9. Tests run using different list sizes show a very similar pattern. 

Parameters (number of sublists, number of blocks, number of threads per block, and 

number of sublists per thread) are selected to yield the best performance for each 

type. The values of these parameters turn out to be the same for all list types. The 

results show a slightly faster performance on ordered lists, and show performance on 

stride lists which ranges from that of ordered lists to that of random lists depending 

on the size of the stride. However, overall the difference in execution times is at most 

10%.  

Given the overall memory architecture of the Tesla C1060, these results are not 

surprising. Note that since parallel accesses to contiguous locations can be coalesced, 

we see a slightly improved performance on ordered lists, or stride lists with small 

strides. However memory coalescing is limited once parallel threads process different 

sublists that are relatively far apart. An important observation is that when the stride 

value is large enough (>100), the performance on stride lists is almost identical or 
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worse to that on random lists. Given this fact, we use stride lists with different stride 

values (typically stride value = 1,001) to report on the performance of our algorithm 

since it is much easier to generate such lists. 

  

Figure 5.9: Performance on different types of lists with 64M nodes on the Tesla 

C1060 

2) Performance as a Function of the number of sublists 

We focus our attention here in determining the best value of s, the number of 

sublists. This issue is somewhat intertwined with the choices of other parameters such 

as number of blocks, number of threads per block, and number of sublists per thread. 

Since the head of each sublist is randomly selected, the length of each sublist may 

vary over a large range. To achieve the best performance, we must try to balance the 

work load (number of nodes processed) among all the SMs and the SPs, which is in 

particular critical for the most computationally demanding Step 3 of our algorithm. In 

fact, the running time of Step 3 is dominated by the execution time of the SM that has 

to process the maximum number of nodes. 
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Figure 5.10: Performance of Step 3 and overall algorithm as a function of s on 64M 

stride list (stride = 1001) on the Tesla C1060. Upper curve represents the maximum 

load on an SM as a function of s 

For a fixed value of s, it is clear from the randomization performed in Step 2 that 

the more sublists are assigned to each thread, the more load balanced the work of the 

threads will be. This is intuitively clear and also follows from the proof of the main 

lemma in [30]. Hence this implies that a smaller number of threads will yield better 

performance. We can make the same argument regarding the number of blocks. For 

our Tesla C1060 processor, the number of blocks has to be a multiple of 30 (including 

30 itself) and the number of threads per block has to be a multiple of 64. It turns that, 

for a fixed size list, the best performance is achieved when the number of blocks is 

equal to 30 and the number of threads per block is set equal to 64. Fixing these two 

parameters, we now take a close look at the execution time of Step 3 and overall 

execution time of the algorithm as a function of the number of sublists for a list of 

size 64M in Figure 5.10 
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As expected, the execution time of Step 3 decreases as the number s of sublists 

increases. However the overhead to create these lists (Step 2) and to combine the 

partial results (Step 4) will eliminate any gain beyond the valued of s=61,440, 

resulting from the combination of 30 blocks, 64 threads per block, and 32 sublists per 

thread. It turns out that these values are consistent for all lists of sizes larger than 16M 

(up to 256M in our tests). Also, note that in the same graph we show that the 

maximum number of nodes handled by any SM, which decreases as we increase the 

number of splitters.  

3) Performance as a Function of the number of blocks 

In this section, we report on the performance of our algorithm as we vary the 

number of blocks from 1 to 120. The NVIDIA scheduler allocates each block to an 

SM, and may allocate up to eight blocks to a single SM as necessary. Figure 5.11 

shows that the performance of our algorithm is almost linear in the number of blocks 

whenever the number is less than or equal to 30. In our tests, we have used a stride 

list of 64M nodes with stride value 1001, 64 threads per block, and 61,440 sublists. 

This combination yields the best performance for any number of blocks. The 

performance stays about the same as we increase the number of blocks from 30 to 

120, indicating that load balancing and memory accesses do not improve as we 

increase the number of blocks beyond 30. 
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Figure 5.11: Performance of our algorithm on a 64M stride list (stride = 1001) as a 

function of thethe number of blocks on the Tesla C1060 

5.3.4.2 Migration of the computations in Step 4 to CPU 

In Step 4, the sequential prefix sums algorithm is executed on the splitters, a 

process that can be carried out on the CPU or the GPU. If this task is migrated to the 

CPU, we have to pay the additional cost of moving the data from the GPU global 

memory to main memory and then copying the results back into the GPU to complete 

the execution of the algorithm. A reason to do this is that all the splitters can fit into 

CPU cache, which can speed up the computation. In our tests on 64M lists with 

61,440 splitters, the GPU sequential algorithm takes 56.72 milliseconds to finish this 

task, which is about 16.57% of the total running time. On the other hand, this step 

only takes 2.016 milliseconds if migrated to the CPU: 0.335 milliseconds to copy 

these splitters from the GPU memory to main memory, 1.348 milliseconds to perform 

the computation, and 0.337 milliseconds to copy the results back to the GPU. This 

amounts to 0.70% of the total running time and the percentage is even lower for 
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larger lists. 

5.3.4.3 Overall Performance of our Algorithm and its Scalability 

We now report on the overall performance of our algorithm as a function of the 

list size using stride lists whose sizes range from 1M to 256M. Table 5.7 shows the 

detailed execution times of each of the steps for different list sizes. We have used the 

number of blocks to be 30 and the number of threads per block to be 64 based on the 

discussion above. The number of sublists per thread increases linearly with list size 

until it reaches 32, after which the running time spent on dividing and conquering 

increases faster than the time saved in fine tuning the loads among the threads. The 

overall running time scales linearly with the size of the list as illustrated by the graph 

in Figure 5.12. 

Table 5.7: Detailed Running Times of Our Algorithm as a Function of the List Size 

List Size 

Sublists 

per 

Thread 

Step 1 

(secs) 

Step 2 

(secs) 

Step 3 

(secs) 

Step 4 

(secs) 

Step 5 

(secs) 

Total 

(secs) 

1M 30*64*2 0.000220 0.000342 0.003812 0.000108 0.000754 0.005511 

2M 30*64*4 0.000381 0.000737 0.007046 0.000455 0.001680 0.010214 

4M 30*64*8 0.000657 0.000641 0.014247 0.000462 0.003137 0.019945 

8M 30*64*16 0.001244 0.001121 0.028098 0.000960 0.005967 0.037931 

16M 30*64*32 0.002437 0.001908 0.056801 0.001697 0.011157 0.075175 

32M 30*64*32 0.004850 0.002126 0.110164 0.001895 0.023580 0.146189 

64M 30*64*32 0.011498 0.003519 0.221761 0.002016 0.048346 0.296590 

128M 30*64*32 0.019204 0.002129 0.443050 0.001997 0.097861 0.574119 

256M 30*64*32 0.038354 0.002654 0.930460 0.002003 0.199643 1.175801 
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Figure 5.12: Scalability to list sizes on Stride lists (stride = 1001) on the Tesla C1060 

5.3.4.4 How much Can our Algorithm be Improved? 

We now take a close look at the processing time per node achieved by our 

algorithm as a function of the list size ranging from 1M to 256M. Based on our 

extensive tests, the processing cost per node ranges between 4.28ns to 5.26ns, as long 

as the stride value is not extremely large. However, and surprisingly, the processing 

cost per node seems to increase significantly when the stride value is extremely large. 

To better understand this unexpected phenomenon and to determine whether our cost 

per node can theoretically be improved, we develop an optimized CUDA program 

whose main goal is to only access the device global memory at a very fine 

granularity, and compare its execution time per element to that of our prefix sums 

algorithm. It turns out that the performance of our algorithm is very close to the 

optimized global memory testing algorithm, both for extremely large strides and for 

moderate/small strides. We provide the details next. 

Let Y be an array such that each entry consists of 64 bits. We develop a trivial 

CUDA algorithm such that each of its threads reads a location of Y (dependent on the 
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thread ID), and then successively reads N locations which are at a certain stride d 

from the initial location. Our goal is to develop such a CUDA algorithm that results in 

the best possible performance per single access. Let B be the number of blocks and Th 

be the number of threads of our program. We conduct tests based on the following 

224 possible combinations of the values of B, Th, and N:  

B   = { 8, 15, 16, 30, 32, 60, 64, 128 }; 

Th = { 8, 16, 32, 64, 128, 256, 512}; 

N  = { 1024, 2048, 4096, 8192}. 

The ranges above seem to cover all reasonable values to achieve the best possible 

access cost per element. After exploring all the combinations, the values achieving 

the best access time per element turn out to be: B = 16, Th = 64 and N = 4096. Some 

other combinations came close but not as good as this combination. The typical time 

per access is 4.04ns for many of the tested sizes for the array Y (varied from 1M to 

256M entries – that is, actual size of array Y varies from 8MB to 2GB). 

We now compare the performance of the global memory testing algorithm with 

that of our prefix sums algorithm focusing on stride lists, starting with the case of 

stride value d =1001. A summary of the results is shown in Table 5.8, which is also 

illustrated in the graph shown in Figure 5.13. These results clearly demonstrate that 

the performance of our prefix sum program is very close to the performance achieved 

by the optimized global memory testing program. 
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Table 5.8: Time per element comparison between prefix sum and global memory 
testing program on the Tesla C1060 (Stride = 1001) 

List Size 

(1M = 1,048,576) 
1M 2M 4M 8M 16M 32M 64M 128M 256M 

File Size (MB) 8 16 32 64 128 256 512 1024 2048 

Test Program (per 

64-bit integer) (ns) 
3.70 3.84 3.93 3.97 4.00 4.04 4.06 4.13 4.19 

Prefix Sum (per 64-

bit node) (ns) 
5.26 4.87 4.76 4.52 4.48 4.36 4.41 4.28 4.38 

 

 

Figure 5.13: Time per element comparison between prefix sum and global memory 

testing program on the Tesla C1060 (Stride = 1001) 

We now consider the case of extremely large stride values which are close to the 

size of lists. In this case, the performance degrades substantially when the stride value 

is 64M or larger (and hence list sizes are larger than 64M nodes) both by the global 

memory testing program as well as our prefix sums algorithm. However the 

performance per element still matches for both algorithms. Table 5.9 and Figure 5.14 

illustrate the performance of both algorithms for extremely large stride values. 

However, this problem does not seem to show up on the Fermi series GPUs. On both 

Tesla C2050 and GTX480, we have run the largest possible stride lists with stride 

value larger than 64M as constrained by the global memory size and could not 
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observe this kind of degraded performance with large strides. 

Table 5.9: Performance comparison of cost per element between prefix sum and 
global memory testing program using extremely large strides on the Tesla C1060 

List Size 

(1M = 1,048,576) 
1M 2M 4M 8M 16M 32M 64M 128M 256M 

File Size (MB) 8 16 32 64 128 256 512 1024 2048 

Test Program (per 

64-bit integer) (ns) 
3.74 3.86 3.95 3.99 4.03 4.06 4.07 8.70 13.40 

Prefix Sum (per 64-

bit node) (ns) 
5.32 5.14 4.82 4.54 4.49 4.42 4.40 9.27 14.02 

 

 

Figure 5.14: Time per element comparison between prefix sum and global memory 

testing program with extremely large strides on the Tesla C1060 

5.3.4.5 Performance Comparison on the Newer GPUs 

The new Fermi architecture introduces significant changes and adds a number of 

attractive features such as L1/L2 caches. In this section, we compare the performance 

of our prefix sum algorithm on three different NVIDIA GPUs, Tesla C1060, Tesla 

C2050 and GTX480 using the three types of lists with 64M nodes (largest possible 

list on our GTX 480). The hardware configurations of the above three GPUs are 

illustrated in Table 5.10. 
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Table 5.10: Configuration comparison of Tesla C1060, Tesla C2050 and GTX480 

 Tesla C1060 
Tesla C2050 

(with ECC) 

GTX 

480 

Clock Speed (GHz) 1.296 1.147 1.401 

Number of SMs 15 14 15 

Total Number of SPs 240 448 480 

Memory Size (GB) 4 2.6 1.5 

Peak Memory Bandwidth (GB/s) 102 126  177 

 

 

Figure 5.15: Performance comparison on Tesla C1060, Tesla C2050 and GTX480 

Figure 5.15 shows the running times of our algorithm on ordered, stride and 

random lists with 64M nodes on the three GPUs. In each case, we optimized the 

values of the parameters such as number of blocks, number of threads per block, and 

number of sublists per thread so as to achieve the best possible performance. As 

mentioned in Section 5.3.4.3, the optimal parameters for Tesla C1060 on 64M list are 

30 blocks, 64 threads per block and 32 sublists per thread. Due to the particular 

features on Fermi, we make the following changes that can be shown to yield the 

optimal performance: (1) change the number of blocks to 30 for the GTX480 and 28 

for the Tesla C2050, which are equal to twice the number of SMs respectively 

because two warps can be scheduled concurrently onto SMs on Fermi; (2) increase 

the number of threads per block to 256 since the number of SPs per SM is 
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quadrupled; (3) reduce the number of sublists per thread to 4 in order to retain the 

same total number of sublists as suggested in Figure 5.10. 

Table 5.11: Performance comparison of Three Different GPUs on 64M Random List 

 C1060 C2050 GTX480 

Memory Bandwidth (GB/s) 102 126 177 

Random List Throughput (GB/s) 1.68 1.89 2.40 

Ratio of the above Two 0.0165 0.0150 0.0136 

 

Let’s first look at the performance comparison on 64M random list. In Figure 

5.15, GTX480 performs best, followed by Tesla C2050 and then Tesla C1060. To 

find out the underlying reason, we compute in Table 5.11 the throughput by dividing 

list size by the running time to approximate its ratio to peak memory bandwidth. The 

ratios almost remain the same for three GPUs, a fact that shows that the performance 

improvement actually comes from the increase in global memory bandwidth. We note 

that this ratio number is not the global memory bandwidth utilization because we 

have several rounds of reading and writing over the input, output and temporal data in 

global memory. This is to be expected because the major bottleneck in prefix sum 

computation on GPUs is its highly irregular memory access pattern and hence more 

cores won’t contribute much. The resulting superior performance also illustrates that 

our algorithm can exploit any improvement in the global memory bandwidth. 

The effect of caching available on the Fermi cards is significant for stride and 

ordered lists as shown in Figure 5.15. The L1 and L2 cache sizes are small on the 

Fermi GPUs, but they still have a large impact when processing regular data such as 

ordered lists. While the running time decreases slightly from random list to ordered 

list on the Tesla C1060, it reduces by almost 50% on either Tesla C2050 or GTX480. 
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We use NVIDIA Visual Profiler to monitor the number of global memory accesses 

occurred and the results indicate half the number of global memory accesses on 

ordered lists when compared to random lists on Fermi cards. On Tesla C1060, the 

number of global memory accesses remains almost the same. 

5.3.4.6 Performance Comparison on Different Machines 

In this section, we compare the performance of our prefix sums algorithm on the 

Tesla C1060 GPUs and the two Intel quad-core X5560 CPUs, as well as, to the 

performance of other recently reported prefix sum algorithms on the Cell Processor, 

the MTA-8 (eight 220MHz Cray MTA-2 processors) [6], and the NVIDIA GTX280 

[57].  

  

Figure 5.16: Comparison of different platforms on Random List with 8M nodes 

Figure 5.16 provides a summary of the overall performance of our prefix sums 

algorithm on the Tesla C1060, Tesla C2050, GTX480 and two Intel X5560 quad-core 

CPUs, and the best performance numbers reported on other machines for the prefix 

sum problem on random list with 8M nodes. It is clear that our algorithm achieves the 

best raw performance even when compared to the Cray MTA-8 machine. The high 

performance of our algorithm can be attributed to the following facts: 
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 Our implementation uses thousands of active threads to make effective use of 

the hundreds of processors available and to hide memory access latency; 

 Cache sensitive computations are migrated to the CPU while the Cell has a 

small local cache and the MTA-8 has no local cache; 

 The tradeoff between balanced workload for each processor and a small 

overhead of merging parallel results is well addressed and as a result the 

power of the underlying GPU hardware is fully utilized; 

 Shared memory with one clock cycle access time among eight SPs from the 

same SM is used whenever applicable to reduce the inter-processor 

synchronization and communication overhead of parallelism; on the other 

hand, processors on either the Cell or the MTA-8 are interconnected by 

networks with relatively high latency; 

 Global memory accesses are coalesced to exploit the high bandwidth of the 

GPU whenever possible. 

 

Figure 5.17: Performance of the scan operation and our prefix sum algorithm on 64M 

ordered list 
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We now compare the performance of our algorithm to that of the scan operation 

on the Tesla C1060 and GTX480, as well as to that of the CPUs on ordered lists. 

Clearly we expect the CPU performance to improve significantly on ordered lists 

because of the large L2 cache. On the other hand, the scan operation is specifically 

designed for sequential lists, and hence optimized coalescing of global memory 

accesses and optimized access to the shared memory (that is, avoiding bank conflicts) 

are reported in the CUDA implementation of [24]. A summary of the results is 

illustrated in Figure 5.17 for the case of 64M nodes. When both the scan algorithm 

and our algorithm are run on the Tesla C1060, the performance ratio 7-8 of our 

algorithm compared to the scan operation seems to hold independent of the list size. 

Such ratio reduces to 4 in the case of the GTX480 because of the improved 

performance on ordered lists due to L1/L2 caches, but the ratio still remains the same 

regardless of the list size. 

5.3.5 Conclusion 

In this section, we presented an optimized CUDA algorithm for performing prefix 

sums on linked lists. Such computation amounts to highly irregular, fine-grain global 

memory accesses, and hence is usually considered to be unsuitable for the stream 

based, data parallel CUDA programming model. The algorithm creates randomized 

sublists that are handled by parallel threads in such a way that the merging operation 

is organized to exploit the CUDA architecture. We have conducted extensive tests of 

our algorithm on the Tesla C1060, Tesla C2050 and GTX480 using different types of 

linked lists of sizes ranging from 1M nodes to 256M nodes. The results show scalable 

performance with the cost of processing a node close to the best possible for the Tesla 
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C1060 processor. Our algorithm also ports very well onto the newest Fermi GPUs, 

with significant improvement on stride and ordered lists due to the L1 and L2 caches 

available on the Fermi GPUs. A byproduct of our tests is the discovery of significant 

memory performance degradation whenever the consecutive locations accessed by a 

thread become far apart on the GT200 GPU. A recent work adopted our 

randomization strategy and applied a slightly modified algorithm of ours on a 

heterogeneous platform with both CPUs and GPUs and achieved better performance 

than just using GPUs [8]. 

5.4 Conclusion 

In this chapter, we explored a number of techniques to accelerate highly irregular 

computations using GPUs. For the indexing problem, we develop an effective 

strategy to partition the tasks between the CPU and the GPU in such a way that each 

is focusing on the computations that are best suited for. For the list ranking problem, 

we partition the task into a large number of fine-grain computations through a 

randomization process and achieve scalable performance that is comparable to the 

scan operations on the same GPU. In both applications, several GPUs of different 

series are used to illustrate the effectiveness of small cache on newer Fermi GPUs. 
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Chapter 6 Concluding Remarks and Future Perspectives 

In this dissertation, we developed techniques and methodologies for exploiting the 

emerging parallel architectures of modern processors to solve large scale irregular 

applications including the construction of inverted files and computation of prefix 

sums on linked lists. 

First, we introduced a novel pipelined strategy with a new dictionary data 

structure to build the inverted files on a single node of multicore processors. The 

dictionary data structure is built using a hybrid of trie and B-trees in such a way that 

parallel threads can read and write the dictionary simultaneously without conflicts. In 

addition, a high-throughput pipeline is implemented that avoids using disks as 

temporary storage for intermediate results and ensures that the generated parsed 

stream are immediately consumed at the same high rate by parallel indexers. Our 

resulting algorithm achieves a throughput of more than 280 MB/s on the ClueWeb09 

dataset when tested on a node consisting of two Intel Xeon X5560 Quad-core CPUs 

and a centralized storage pool via a 1Gb/s Ethernet connection. Note that such 

performance is comparable to the currently best known algorithms on large clusters. 

Second, we developed the approach to generalize the single-node inverted files 

construction algorithm to a cluster of multicore processors. The pipeline is carefully 

modified taking into consideration the communication overhead, where nodes 

communicate through an interconnection network, and load balancing between cores 

distributed across the cluster. We have generated extensive experimental results to 

illustrate the scalability of our strategy relative to the optimized single node 

algorithm. The experimental results show scalable performance using different 
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metrics on a cluster of 32 nodes with either 10 Gb/s InfiniBand or 1 Gb/s Ethernet. 

Overall, our throughput improves significantly on the previous best known algorithms 

on large clusters. 

Third, we extended existing traditional information retrieval algorithms to 

develop new methodologies for searching collections of time stamped documents, 

such that the new inverted files include now the necessary extra temporal indexing 

structures. Our strategy ensures that the postings lists and the dictionary remain the 

same as in the non-temporal case but with the addition of relatively small temporal 

indexing structures. To guarantee a fast query response time, the lifetime of the 

collection is split into multiple time windows and an extra pipeline stage is inserted to 

take care of the additional work. Our strategy is well suited for incremental temporal 

updating of the document collection. Extensive experimental results indicate that the 

throughput in this more complicated case includes only a small overhead relative to 

treating the collection without considering the temporal dimension. Query 

performance is also verified to be very competitive to the non-temporal case, and can 

indeed be improved using finer temporal partitioning of the collection. 

Last, we show how to make use of the latest NVIDIA GPUs to accelerate 

computations related to two highly irregular applications. For the indexing problem, a 

sampling strategy is employed to partition terms into popular and unpopular groups 

and deliver them to CPUs and GPUs separately such that the strengths of both 

architectures are taken advantage of. For the list ranking problem, an optimized 

multithreaded GPU algorithm is introduced through a randomization process that 

reduces the problem to a large number of fine grain computations in such a way that 
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the processing cost per element is shown to be close to the best possible. Our overall 

performance results are significantly superior to those reported in papers published 

prior to our work. 

A number of additional research questions are worth pursuing. 

In Chapters 2 and 3, we looked at the basic form of postings consisting of 

document ID and term frequency and briefly mentioned positional postings. A more 

practical implementation is to include other document information that is critical for 

ranking search results. For example, a term appears in the title should receive more 

weight. By analyzing URLs and building the connectivity graph between web pages, 

the additional information can be used to improve the relevance of the returned 

results, and the most famous technique to accomplish this is the PageRank first 

introduced by Google [54]. Such additional information will require new algorithms 

to maintain the high throughput of our pipelined strategy.   

The construction of temporal inverted files was addressed in Chapter 4 and the 

experimental tests conducted on the hardware platform available to us. The major 

bottleneck of the newly added temporal merging stage is the disk I/O latency and 

bandwidth. However, with the widely used solid-state drives (SSDs) used as another 

layer in the memory hierarchy between main memory and traditional magnetic disks, 

the random access time and throughput can be both significantly improved. Should 

we have used SSDs on all nodes of the cluster, we believe that we would be able to 

access intermediate results much faster leading to a significantly reduced overhead 

due to the processing of temporal time windows. To better illustrate the strength of 

our approach, one might build the extra temporal indexing structures as well as the 
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postings lists using the MapReduce, and conduct experiments to determine the 

overhead with this totally different framework relative to treating the collection 

without considering the temporal dimension. 

GPUs have shown their effectiveness in Chapter 5; however, their contribution to 

the overall throughput in real-world applications such as constructions of inverted 

files is not quite satisfactory. Newer GPU architecture designs and programming 

models are evolving fast to enable more flexibility.  Meanwhile, parallel algorithms 

must be developed to make full use of hundreds or even thousands of cores inside one 

chip and of special memory resources such as the small shared memory and L1/L2 

caches.  
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