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Multi-armed bandit problem is a classic example of the exploration vs. ex-

ploitation dilemma in which a collection of one-armed bandits, each with unknown

but fixed reward probability, is given. The key idea is to develop a strategy, which

results in the arm with the highest reward probability to be played such that the

total reward obtained is maximized. Although seemingly a simplistic problem, solu-

tion strategies are important because of their wide applicability in a myriad of areas

such as adaptive routing, resource allocation, clinical trials, and more recently in

the area of online recommendation of news articles, advertisements, coupons, etc.

to name a few.

In this dissertation, we present different types of Bayesian Inference based

bandit algorithms for Two and Multiple Armed Bandits which use Order Statistics

to select the next arm to play. The Bayesian strategies, also known in literature

as “Thompson Method” are shown to function well for a whole range of values, in-

cluding very small values, outperforming UCB and other commonly used strategies.

Empirical analysis results show a significant improvement in both synthetic and real



datasets.

In the second part of the dissertation, two types of Successive Reduction (SR)

strategies - 1) Successive Reduction Hoeffding (SRH) and 2) Successive Reduction

Order Statistics (SRO) are introduced. Both use an Order Statistics based Sampling

method for arm selection, and then successively eliminate bandit arms from con-

sideration depending on a confidence threshold. While SRH uses Hoeffding Bounds

for elimination, SRO uses the probability of an arm being superior to the currently

selected arm to measure confidence. The empirical results show that the perfor-

mance advantage of proposed SRO scheme increasing persistently with the number

of bandit arms while the SRH scheme shows similar performance as pure Thompson

Sampling Method.

In the third part of the dissertation, the assumption of the reward probability

being fixed is removed. We model problems where reward probabilities θ are drifting,

and introduce a new method called Dynamic Thompson Sampling (DTS) which

adapts the rewarad probability estimate, θ̂, faster than traditional schemes and

thus leads to improved performance in terms of lower regret. Our empirical results

demonstrate that DTS method outperforms the state-of-the-art techniques, namely

pure Thompson Sampling, UCB-Normal and UCBf , for the case of dynamic reward

probabilities. Furthermore, the performance advantage of the proposed DTS scheme

increases persistently with the number of bandit arms.

In the last part of the dissertation, we delve into arm space decomposition and

use of multiple agents in the Bandit process. The three most important characteris-

tics of a multi-agent systems are 1) Autonomy – agents are completely or partially



autonomous, 2) Local views – agents are restricted to a local view of information,

and 3) Decentralization of control – each agent influences a limited part of the over-

all decision space. We study and compare Centralized vs. Decentralized Sampling

Algorithm in Multi-Armed Bandit problems in the context of common payoff games.

In the Centralized Decision Making, a central agent maintains a global view of the

currently available information and makes a decision to choose the next arm just

as the regular Bayesian Algorithm. In Decentralized Decision Making, each agent

maintains a local view of the arms and makes decisions just based on the local

information available at its end without communicating with other agents. The

Decentralized Decision Making can be modeled as a Game Theory problem. Our

results show that the Decentralized systems perform well for both the cases of Pure

as well Mixed Nash equilibria and their performance scales well with the increase in

the number of arms due to reduced dimensionality of the space.

We thus believe that this dissertation establishes Bayesian Multi-Armed bandit

strategies as one of the prominent strategies in the field of bandits and opens up

venues for new interesting research in the future.
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Chapter 1

Introduction

To introduce the problem, let us consider a Bernoulli distribution having out-

comes {0, 1} with a probability θ. If θ is unknown, then we can obtain an estimate

of θ by observing the samples of Bernoulli trials. After N samples with ns successes,

θ̂ is given by

θ̂ =
ns
N

(1.1)

Std.Dev(θ̂) =

√
θ(1− θ)
√
N

(1.2)

As we increase the number of trials, the standard deviation of θ̂ approaches 0, and

hence the accuracy of θ̂ increases. We can consider this problem of estimating

unknown θ from the Bernoulli trials as a “one-armed bandit” problem.

Now, suppose we are given two bandits with probabilities θ1 and θ2. At each

trial, only one arm can be pulled, and we need to maximize the rewards obtained

from the observations of the output. The decision of pulling the arms can be made

in several ways. We can observe a few samples of θ1 and θ2 and then only select the

arm whose θ̂ is higher for the future pulls. In this case, we explore the arms first and

then exploit the “optimal arm”. Although the accuracy of this estimate will depend

on the number of past observations made since as the number the past observations

reduces, the standard deviation increases. But if there is a cost associated with each

1



pull of an arm and the total reward of the arms needs to be maximized, then the

exploration of the “optimal arm” needs to be done together with the ”exploitation”.

This dilemma of exploration vs. exploitation can be addressed by the Multi-Armed

Bandit problem.

The bandit problem has been considered hard to solve in general. According

to Whittle [7] — “the problem is a classic one; it was formulated during the war,

and efforts to solve it so sapped the energies and minds of Allied analysts that the

suggestion was made that the problem be dropped over Germany, as the ultimate

instrument of intellectual sabotage.”

1.1 Importance of Topic

The dilemma of “exploration vs. exploitation” is applicable in many differ-

ent areas of research not only in the field of computer science, but in electrical

engineering and business as well.

In the Multi-Armed setting, there could be different types of rewards obtained

from playing the arms - rewards could be stochastic or deterministic, they could be

based on a parametric model such as Gaussian, Poisson, etc; rewards could also be

dynamic in nature. Although the application areas are many, below we only discuss

two application areas in the field of computer science.
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1.1.1 Optimization in the Internet Domain

Earlier, the trend was that the Internet publishers hand-picked information

items for a website based on their knowledge of their readers. But with increasing

number of information items as well as a large variety of users, hand-picking in-

formation which serves a huge user base, is no longer feasible. A recent trend has

been the use of algorithmic optimization for showing information items dynamically

based on the likelihood of users to pay attention or respond to an information item

by clicking on it, engaging (reading, doing a mouse over) with it, visiting a related

webpage, etc. to name a few. These information items could be advertisements,

news articles, coupons, etc. to name a few. This problem of Internet optimization

can be directly mapped to the problem of MAB with each information item being

an arm and each impression being a trial.

1.1.2 Networks - Routing

The role of a router in a wireless network is to find the fastest route for the

packets as sending a packet on a congested route can lead to an unnecessary delay,

hence low performance of the network. The router has to explore a number of traffic

paths and at the same time exploit the information it has for sending the packets

across through the minimum delay route. Thus, the problem of choosing an optimal

route by a router can be mapped to the bandit problem.
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1.2 Background

1.2.1 Reinforcement Learning

Reinforcement learning addresses the question of how an autonomous agent

having the ability to sense the feedback (reward) obtained from the environment

can learn to choose the options available to him and achieve its goals [19]. The

agent must discover the optimal action using the scalar reward from each selected

action, also referred to as reinforcement. Since the goal of the agent is to maximize

the long term rewards, the agent tries to learn and identify the optimal action by

trying several different options.

In a stochastic environment the feedback will typically be distributed in ac-

cordance to a probability distribution with the parameters of the probability distri-

bution being unknown to the agent. To obtain knowledge about these parameters,

the agent needs to perform a sequence of trials, and obtain a view of the probability

distribution of the rewards. Reinforcement learning is different from traditional su-

pervised learning in many ways, most important being 1) In Reinforcement Learning,

the agent receives the immediate reward on the current action but does not receive

the total reward. Thus, the agent needs to learn about different possible states and

actions of the system before deciding which actions to take in order to maximize

his total reward. 2)In Reinforcement Learning, learning is done concurrently with

applying the current learning which means exploring along with exploitation.

In Reinforcement learning, the environment consisting of a system and agent,

is usually modeled as a Markov Decision Process (MDP).
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1.2.2 Markov Decision Process

Markov Decision Process is a discrete time, stochastic, control process in which

the state and reward of the agent depends probabilistically on the actions the agent

has taken at each step. The process can be defined in terms of:

• discrete set of states S.

• discrete set of actions A.

• set of transition probabilities P(s, s′) of going from any state s to s′ and cor-

responding rewards Ra(s, s′).

At each time step, the system is in some state s, and the decision maker chooses

one of the actions, say a, available in state s which changes the system to another

state s′ and gives the agent a corresponding reward Ra(s, s′). Thus, the next state

s′ depends on the current state s and the agent’s action a. But given s and a, s′ and

Ra(s, s′) are conditionally independent of all previous states and actions; in other

words, the state transitions of an MDP possess the “Markov property”.

The problem of Multi Armed Bandits is a single state Markov Decision process

in which the state of the system remains the same, but the agent has to learn the

system parameters using multiple trials based on the stochastic rewards obtained

from the environment.
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1.2.3 Classic Multi Armed Bandits - Performance Evaluators

In the MAB setting, each pull of an arm can be considered as a Bernoulli

trial with output in the set {0,1} and defined by a single parameter θk which is the

probability of success denoted by {1}. The goal is to maximize the rewards and

minimize the regret. The key performance evaluators for the Multi-Armed Bandit

settings are as follows:

Let θ̂k denote the estimated reward probability of arm k and θ∗ denote the

reward probability of the best arm, n being to number of plays so far then,

• % Best Arm Played: The % of times the best arm is played.

• Expected Reward is defined as:

ΣK
k=1θ

kE[T k(n)] (1.3)

• Expected Regret defined as:

θ∗n− ΣK
k=1θ

kE[T k(n)] (1.4)

where E[T k(n)] is the expected value of the number of times kth arm is played.

The strategies which ensure no pulls of the suboptimal arms asymptotically are

called zero-regret strategies.

1.3 Contributions

Below we describe the important contributions made in this thesis:
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I The most commonly used algorithms for solving MAB problems have been the

different variants of the UCB algorithm [2]. However, the UCB algorithms do

not scale well for small values of reward probabilities (< 0.01). In this work,

we present two main types of Bayesian Bandit algorithms – “Beta Geometric

Probabilistic”, and “Beta Sampling” (“Thompson Sampling”) for the case of

Two and Multiple Armed Bandits which use Order Statistics for selecting the

next arm to play. The Bayesian Thompson Method based strategies are shown

to function for non-rare as well as rare reward probabilities, outperforming

UCB and other commonly used strategies. Empirical analysis done in this

dissertation shows that a significant improvement in the results is obtained by

using Bayesian algorithms for both synthetic and real datasets.

II In the second part of this dissertation, we present two types of Successive Re-

duction (SR) strategies - 1) Successive Reduction Hoeffding (SRH) and 2) Suc-

cessive Reduction Order Statistics (SRO). Both use an Order Statistics based

Thompson Sampling method for arm selection, and then successively eliminate

bandit arms from consideration based on a confidence threshold. While SRH

uses Hoeffding Bounds for elimination, SRO uses the probability of an arm

being superior to the currently selected arm to measure confidence. A compu-

tationally efficient scheme for pairwise calculation of the latter probability is

also presented in this dissertation. Using SR strategies, sampling resources and

arm pulls are not wasted on arms that are unlikely to be the optimal one. To

demonstrate the scalability of our proposed schemes, we compare them with
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two state-of-the-art approaches, namely pure Thompson Sampling and UCB-

Tuned. The empirical results show that the performance advantage of proposed

SRO scheme increasing persistently with the number of bandit arms while the

SRH scheme shows similar performance as base Thompson Method. We thus

believe that SR algorithms will open up for improved performance in Internet

based on-line optimization where it is common to have a few hundred trials,

and tackling of larger problems.

III The most common assumption made when solving such MAB problems is that

the unknown reward probability θ of each bandit arm is fixed. However, this

assumption rarely holds in practice simply because real-life problems often in-

volve underlying processes that are dynamically evolving. In the next part of

this dissertation, we model Multi-Armed Bandit in the framework where re-

ward probabilities θ are drifting, and introduce a new method called Dynamic

Thompson Sampling (DTS) that facilitates Order Statistics based Thompson

Sampling for dynamically evolving MAB problems. The DTS algorithm adapts

the success probability estimate, θ̂, faster than traditional Thompson Sampling

schemes and thus leads to improved performance in terms of lower regret. Our

experiments demonstrate that DTS method outperforms current state-of-the-

art approaches, namely pure Thompson Sampling, UCB-Normal and UCBf ,

for the case of dynamic reward probabilities. Furthermore, the performance

advantage of the proposed DTS scheme increases persistently with the number

of bandit arms.
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IV The presence of multiple agents has risen in the present day systems, with the

rise in the system complexity and tasks, for which a single agent has become

increasingly incapable. These multiple agents are typically autonomous, main-

tain local view of information, and have a finite cost of communication. In this

dissertation, we study and compare Centralized vs. Decentralized Thompson

Sampling Algorithm in Multi-Armed Bandit problems in the context of common

payoff games. In the Centralized Decision Making for Thompson Sampling, a

central agent maintains a global view and makes a decision to choose the next

arm just as the regular Thompson Sampling Algorithm. While in Decentral-

ized Decision Making, each agent maintains a local view of the arms and makes

decisions just based on the local information available without communicating

with other agents. The Decentralized Decision Making is modeled as a Game

Theory problem. Our results show that the Decentralized systems perform well

for both the cases of Pure as well Mixed Nash equilibria and their performance

scale well with the increase in the number of arms due to reduced dimensionality

of the space in the same.
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Chapter 2

Related Work: Non-Bayesian Techniques in Multi-Armed Bandits

2.1 Introduction

Seminal work on Multi-Armed Bandit policies was done by Lai and Robbins

[20]. They proved that for certain reward distributions, such as Bernoulli, Poisson,

and uniform, there exists an asymptotic bound on regret (the loss experienced due

to playing the suboptimal arms) that only depends on the logarithm of the number

of trials and the Kullback-Leibler value of each reward distribution. The main idea

behind the strategy is to calculate an upper confidence index for each arm, which

only depends on the previous rewards of that arm. At each trial the arm which

has the maximum upper confidence value is played, thus enabling a deterministic

play. Agrawal [1] improved the results obtained by Lai and Robbins by proposing

strategies that are independent of the reward distributions. Auer et al. [2] further

proved that instead of an asymptotic logarithmic upper bound, an upper bound on

the regret could be obtained in finite time for algorithms such as UCB-1, UCB-2

and some variants. The pioneering Gittins Index based strategy [7], for instance,

performs a Bayesian look ahead at each step in order to decide which arm to play.

This look ahead makes the Gittins technique intractable in practice, however it

enables an optimal performance. We will discuss these algorithms one by one in

detail. We first start with Confidence bound based algorithms.
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2.1.1 UCB Algorithms

Upper Confidence Bound based algorithm is a deterministic algorithm in which

at each step an index number is calculated which is used to select the next arm to

play. The UCB-1 [2] algorithm computes an Upper Confidence Bound (UCB) for

each arm: (θ̂kn+
√

2ln n
nk ) as shown in Alg. 1. Here, θ̂kn is the average reward obtained

from the arm k when the number of times arm k has been played is nk and n is the

overall number of plays so far. In this algorithm, the arm which has the maximum

UCB value is played and the confidence bounds are updated at each trial.

UCB-2 is a similar strategy in which the picked arm is played for a certain

periods which are calle “epochs”. The upper bounds of UCB-2 is calculated by the

formula
√

(1+γ)ln(en/τ(r))
τ(r)

, where γ is a constant, r denotes the current epoch of the

machine and τ(r) = d(1 + γ)re as shown in Alg. 2.

UCB-Normal is a modification of UCB algorithm for the case of Gaussian

reward probabilities and is shown in Alg. 3. The bounds for the UCB-Normal

becomes (θkn+

√
16. q

k
n−nk(θ̂kn)2

nk−1
ln (n−1)

nk ) where qkn is the squared sum of rewards of arm

k.

UCB-tuned [2] is also a slight modification of UCB-1 that uses an upper bound

of
√

ln n min(1/4,Vk(n))
n

, where Vk(n) denotes the estimated variance of arm k. There

are no theoretical proofs supporting UCB-tuned, but in empirical results, its per-

formance turns out to be better than that of UCB-1, UCB-2.
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Algorithm 1 Algorithm: Upper Confidence Bound (UCB-1)

Play each arm once.

loop

Compute the Upper Confidence Bound (UCB) for each arm: (θ̂kn +
√

2ln n
nk ).

Play the arm with the highest value of the Upper Confidence bound.

end loop

Algorithm 2 Algorithm: Upper Confidence Bound (UCB-2)

Set rk = 0 for k = 1, 2, 3, ..., K. Play each arm once.

loop

Select machine k maximizing θ̂kn +
√

(1+γ)ln(en/τ(r))
τ(r)

Play the arm k exactly τ(rk + 1)− τ(rk) times.

Set rk = rk + 1.

end loop

Algorithm 3 Algorithm: Upper Confidence Bound - Normal (UCB-Normal)

loop

If there is an arm which has been played less than d8logne times, play the arm.

Select machine k having the maximum value (E(θ̂kn) +

√
16. q

k
n−nk(θ̂kn)2

nk−1
ln (n−1)

nk ).

end loop
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2.1.2 Greedy Algorithms

ε-greedy algorithms are one of the simplest strategies in solving bandit prob-

lems and is shown in Alg. 4. The key idea behind the algorithm is that with

probability ε within the range [0,1], any random arm is pulled from the set of arms

and with probability 1−ε the best arm is pulled. There are several different variants

of the epsilon greedy strategy. One of the ε-strategies is described in [2] as εn-greedy

strategy (EP-n). EP-n uses a factor εn = min(1, cK
d2n

) where c, d are constants and

0 ≤ d ≤ min(θk−θ∗). Second, form of ε strategy is the ε-decreasing (EP-d) strategy

[31], where the probability ε is a function of n and decreases asymptotically with

the number of trials such that εn = ε0
n

where ε0 > 0.

Algorithm 4 Algorithm: ε-greedy

loop

With probability ε, play any arm at random and with probability 1 − ε, play

arm k = argmax(θ̂k), k ∈ K

end loop

2.2 Dynamic (Restless) Bandits

The most common assumption made when solving such MAB problems is

that the unknown reward probability θ of each bandit arm is fixed. However, this

assumption may not hold true in all cases and the bandit arms may change with

time, or in other words be dynamic. Dynamic Bandits are also called Restless

Bandits [32] . Restless Bandits were introduced by Whittle and are considered to be
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PSPACE-hard. Guha et al. [12] introduced approximation algorithms for a special

setting of the Restless Bandit problem. Below we discuss some of the techniques

used to solve the problem of “Dynamic Bandits”.

2.2.1 Adaptive Restless Bandits with Brownian Motion

UCBf algorithm [26] is a more general form of UCB − 1 algorithm which

includes the case of reward probabilities varying as Brownian motion with reflecting

boundaries. In UCBf , an extra confidence interval term is introduced, σk
√

8N log N

where σk is the known standard deviation of the Brownian motion of arm k. The

algorithm is shown in Alg. 5.

Algorithm 5 Algorithm: Upper Confidence Brownian Motion (UCBf )

Play each arm once.

loop

Compute the Upper Confidence Bound (UCB) for each arm: (θkn +
√

2ln n
nk

) +

σk
√

8N log N .

Play the arm with the highest value of the Upper Confidence bound.

end loop

2.2.2 Adversarial Bandits - Exp3.

Auer et al. [3] also introduced another version of restless bandits called the

Adversarial Bandits but the technique introduced was designed to perform against

an all powerful adversary and hence let to very loose bounds for the rewards. The

algorithm is shown in Alg. 7.
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Algorithm 6 Algorithm: Hedge

Parameter: A real number η > 0.

Initialization: Set Gi(0) := 0 for i = 1, 2, 3, ..., K.

loop

Choose action it according to the distribution p(t), where

pi(t) =
exp(ηGi(t− 1))

ΣK
j=1exp(ηGj(t− 1))

Receive the reward vector x(t) and score gain xi(t).

Set Gi(t) = Gi(t− 1) + xi(t) for i = 1, 2, ...., K.

end loop

Algorithm 7 Algorithm: Exp3

Parameter: A real number η > 0 and γ ∈ (0, 1].

Initialization: Initialize Hedge(η) as in Alg. 6.

loop

Get the distribution p(t) from Hedge.

Select action it to be j with probability p̂j(t) = (1− γ)pj(t) + γ
K

.

Receive reward xi(t) ∈ [0, 1].

Feed the simulated reward vector x̂(t) back to Hedge, where x̂j(t) = xi(t)
p̂i(t)

end loop
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2.3 Bandits with separate Exploration and Exploitation phases

Some versions of the bandits have been proposed in literature in which the

exploration phase is considered separate from the exploitation phase. We discus few

of them below, which handle similar problems as discussed in this dissertation.

2.3.1 Best Arm Identification Bandits

In [18], an algorithm for best arm identification by successively rejecting the

sub-optimal arms has been proposed for the problem of pure exploitation. The

problem of finding the best arm by doing pure exploitation is different from the

problem discussed in this dissertation. In the later exploration and exploitation have

to be done together, to maximize the objective function which is the total reward

obtained, while in the former the objective function is to find the arm closest to the

“optimal” arm.

2.3.2 Multi-Agent Systems for Bandits

Multi agent systems have been studied for a long time [27, 4, 30, 29]. The prob-

lem discussed in [30] is of particular interest in context of this work since it deals

with common payoff games. Verbeeck et al. introduce a Learning Automata based

algorithm for Common Interest Games which consist of two phases – exploration

phase and synchronization phase. In the exploration phase, the agents indepen-

dently optimize using the learning automata based algorithm and the objective is

to converge to the best arm. In the synchronization phase, the agents compare the
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best arm obtained in the current exploration phase to the best arm obtained in the

previous exploration phase. If the current best arm is better than the previous best

arm, the former is removed temporarily from the next exploration phase so that the

system can converge to another better arm, if one exists. If the current best arm is

worse than the previous best arm, than the former is removed permanently from the

system as it is sub-optimal. This technique works for scenarios in which exploration

and exploitation are done in separate phases but not for the techniques in which

exploration and exploitation have to be performed together as in the current setting

of this dissertation.

17



Chapter 3

Bayesian Inference and Order Statistics

3.1 Statistical Inference

The process of drawing conclusions based on data is called Statistical Inference.

There could be two major assumptions made about the data depending on which

there are two types of Statistical models - 1) Parametric Models — in which data is

assumed to be generated from a certain distribution family, the members of which

are distinguished by parameter values. The Normal distribution family is the most

commonly used in parametric models. 2) Non-parametric Models — in which no

prior assumptions are made about the process generating the data.

Also, there are two major school of thoughts regarding the type of inferencing

1) Classical /Frequentist Inference – is based on the principle that the parameter

of a distribution are constants. 2) Bayesian Inference - is an approach in which all

forms of uncertainty are expressed in terms of a subjective probability distribution

called prior distribution. A prior distribution over the unknown parameters of the

model is formulated, which is meant to capture the beliefs about the situation before

seeing the data. After, each data is observed the Bayes’ Rule is applied to obtain a

posterior distribution for these unknowns using both the prior and the data.

p(θ|y) =
p(θ, y)

p(y)
(3.1)
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3.2 Bayes Theorem and parameter estimation

As shown in the previous section, the Bayes Theorem [5] forms the basis of

Bayesian Inference. Using the Bayes theorem, the prior distribution of the unknown

parameter θ is updated on observing data y leading to a posterior distribution.

The posterior distribution of θ given y is :

p(θ|y) =
p(θ, y)

p(y)
(3.2)

p(y) acts like a normalization constant since its value is independent of θ.

Thus,

p(θ|y) ∝ p(θ)p(y|θ) (3.3)

The probability p(y|θ) is called the likelihood, p(θ) is the prior and p(θ|y) is the

posterior.

posterior ∝ prior× likelihood (3.4)

3.2.1 Types of Priors

3.2.1.1 Informative Priors

If some prior knowledge is available about the distribution of the parameter θ,

then it could be incorporated in the prior y to get a better estimate of the posterior.

Such priors are called informative priors.
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3.2.1.2 Non-informative Priors

“Let the data speak for themselves” seems to imply that it would be a viola-

tion of scientific objectivity to be influenced by other considerations such as prior

knowledge about a hypothesis. Hence, non-informative priors which typically as-

sume equal probabilities for the occurrence of all events are very commonly used.

3.2.1.3 Conjugate Priors

Conjugate Priors are the priors having the same functional form as the likeli-

hood, which leads to the posterior distribution being of the same form as the prior.

For example, Gaussian distribution is a conjugate prior to itself, Beta distribution

is a conjugate prior to Bernoulli, Binomial and Geometric distributions.

3.3 Possible Distributions for Bernoulli MAB

In the MAB setting, each pull of an arm can be considered as a Bernoulli

trial with output in the set {0,1} and defined by a single parameter θ which is the

probability of success denoted by {1}. We use conjugate priors to model the MAB

reward probabilities θ.

3.3.1 Binomial Distribution

In the MAB setting, each pull of an arm can be considered as a Bernoulli

trial with output in the set {0,1} and defined by a single parameter θ which is the

probability of success denoted by {1}. The probability distribution of the number of
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successes, denoted by S, obtained in n Bernoulli trials is known to have a Binomial

distribution, S ∼ Binomial(n, θ).

p(S = s|θ) =

(
n

s

)
(1− θ)n−sθs (3.5)

(3.6)

3.3.2 Geometric Distribution

The probability distribution of the number of Bernoulli trials needed to get

one success is known to have a geometric distribution. If θ is the probability of

success of the bernoulli trial, then the probability of getting (k − 1) failures before

getting a success at the k-th trial is given by,

p(X = k|θ) = (1− θ)k−1θ (3.7)

E(X) =
1

θ
(3.8)

V ar(X) =
1− θ
θ2

(3.9)

It is known that Beta distribution is a conjugate prior for the Binomial and

Geometric distribution [13], hence we assume θ to be a Beta distribution with pa-

rameters (α0, β0):

p(θ;α0, β0) =
θα0−1(1− θ)β0−1

B(α0, β0)
(3.10)

If a success is received at the nth trial, α and β are updated as,

αn = αn−1 + 1, βn = βn−1 (3.11)

or if a failure is received at the nth trial, α and β are updated as,

αn = αn, βn = βn−1 + 1 (3.12)

21



After s successes and r failures, the parameters of Beta distribution become

(α0 + s, β0 + r).

θ ∼ Beta(α0 + s, β0 + r) (3.13)

The estimated mean and variance after n trials become,

θ̂n =
αn

αn + βn
(3.14)

σ̂2
n =

(αnβn)

(αn + βn + 1)(αn + βn)2
(3.15)

3.3.3 Properties of Bayesian Inferences in Beta-Distribution

Property 1 (Estimate of Mean) Irrespective of the estimate of initial value of

θ, the expected value of θ will become unbiased and will converge to the true value.

Proof 3.1 Let θ be beta-distributed random variable with prior parameters (α0, β0).

After n samples of the random variable suppose we get r successes, hence new pa-

rameters (α0 + r, β0 + n− r) are obtained.

E[θprior] =
α0

α0 + β0

ER[θpost] =
α0 + r

α0 + β0 + n

ER[θpost] = ξn
r

n
+ (1− ξn)

α0

α0 + β0

where

ξn =
n

α0 + β + n
(3.16)

Hence,

ER[θpost] = ξn
r

n
+ (1− ξn)E[θprior] (3.17)
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Thus, the posterior estimate of θ is the weighted average of the prior mean

and the likelihood estimate. The average depends on ξn and the value of (1 − ξn)

converges to 0 as n tends to infinity. Hence, irrespective of the initial values of α0

and β0, θ will converge to the true value.

Property 2 (Estimate of Variance) In a single series, estimate of the variance

converges to 0 as the number of trials go to infinity.

Proof 3.2 The following equation describes the relationship between the prior and

the expected value of the posterior variance in beta distribution [13].

ER(V arpost
(n,r)) =

α0 + β0

α0 + β0 + n
V arprior (3.18)

The above equation clearly verifies that as n tends to infinity, the variance will

converge to 0.

3.4 Order Statistics

Order statistics refers to statistical methods that depend only on the or-

dering of the data and not on its numerical values. Given any random variables

X1, X2, . . . , XK , the order statistics X(1), X(2), . . . , X(K) are also random variables,

defined by sorting the values of X1, X2, . . . , XK in increasing order. Although the

average of the data is an important estimate of its central value, it is not an order

statistic. However, the median is an order statistic parameter.

In the current setting of exploration vs. exploitation, order statistics plays a

very important part. At each point in the trials, a decision has to be made regarding
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Figure 3.1: Computation of Probability(θA > θB) for one value of θA.

the next arm to pull in order to optimize the objective function. But the current

estimates of θ may not be accurate, hence a deterministic decision solely based on

the current values may lead to sub-optimal values in the long term.

To solve this dilemma of exploration vs. exploitation in a two-armed bandit

setting, let us assume that we are given a two arms reward probabilities – θA and

θB. P (θA > θB) is the probability of the random variable θA being greater than θB

based on the current samples.

The formula for P (θA > θB) when θA and θB are beta-distributed is shown

below.

P (θA > θB)
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=
∫

0

1

p(θA)
∫

0

θA

p(θB)dθBdθA

=
∫

0

1 θA
αA−1

(1− θA)β
A−1

B(αA, βA)

∫
0

θA θB
αB−1

(1− θB)β
B−1

B(αB, βB)
dθBdθA

Fig. 3.1 shows two graphs corresponding to p(θA), p(θB) with θA > θB. The

shaded area represents the area under curve for
∫

0
θAp(θB)dθB, the internal integral,

for single sample of θA.

We prove the following for the case of symmetric distributions of random

variable θA and θB with expected values of θ̂A and θ̂B.

Property 3 (Values of P (θA > θB)) If θ̂A = θ̂B, then P (θA > θB) = 0.5 , If

θ̂A > θ̂B , then P (θA > θB) > 0.5, else θ̂A < θ̂B , then P (θA > θB) < 0.5.

Proof 3.3 We prove the above results for symmetric distributions since the beta

distribution converges to normal distribution for large values of n. θ̂A denotes the

expected value of θA.

Case: αA = αB and βA = βB => θ̂A = θ̂B.

P (θA > θB)

=
∫ 1

0
p(θA)[PθB(θ < θA)]dθA

=
∫ θ̂A

0
p(θ̂A − θA)[PθB(θ < θ̂A − θA) + PθB(θ < θ̂A + θA)]dθA

=
∫ θ̂A

0
p(θ̂A − θA)[PθB(θ > θ̂A + θA) + PθB(θ < θ̂A + θA)]dθA

=
∫ θ̂A

0
p(θ̂A − θA)× 1dθA

=
1

2

25



Hence, when

θ̂A = θ̂B => P (θA > θB) = 0.5 (3.19)

Case: θ̂A > θ̂B

P (θA > θB)

=
∫ 1

0
p(θA)[PθB(θ < θA)]dθA

=
∫ θ̂A

0
p(θ̂A − θA)[PθB(θ < θ̂A − θA) + PθB(θ < θ̂A + θA)]dθA

=
∫ θ̂A

0
p(θ̂A − θA)× (value > 1)dθA

>
1

2

Case: θ̂A < θ̂B

P (θA > θB)

=
∫ 1

0
p(θA)[PθB(θ < θA)]

=
∫ θ̂A

0
p(θ̂A − θA)[PθB(θ < θ̂A − θA) + PθB(θ < θ̂A + θA)]dθA

=
∫ θ̂A

0
p(θ̂A − θA)× (value < 1)dθA

<
1

2

Hence, this probability of P (θA > θB) could be used for deciding the next arm

to pull leading to a randomized strategy for the case of two-armed bandit which is

discussed in detail in the following chapters.
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Chapter 4

Two armed Bandit

4.1 Introduction

Multi-armed bandit (MAB) problem [2, 7, 20, 1] is the problem in which a

collection of one armed bandits, each with unknown but fixed reward probability

θ, is given. The key idea is to develop a strategy which results in the arm with

the highest reward probability to be played such that the total reward obtained is

maximized. This problem is a classic example of the exploration vs. exploitation

dilemma.

In order to develop effective solutions for the MAB problem, we first develop

techniques for the problem of two arms i.e two armed bandits (TAB), and then extend

them to address the MAB problem. In this chapter, we focus on the TAB problem

for the case of non-rare as well as rare events. We define rare events as the events

whose success probabilities are < 0.01. Such situations naturally arise in the domain

of display advertising where clicks (rewards) are rare, and are also common in areas

such as reliability engineering, environmental sciences, genomics, etc. To address

the TAB problem, in this work, we present a set of Bayesian algorithms -Beta-

Geometric Probabilistic (BGP), Beta (Geometric) Sampling (BGS) and

Beta-Geometric Deterministic (BGD) which are based on the Order Statistics

based Thompson Method [28].
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The main idea behind Thompson Method is the use of Bayesian inferences

and subjective probabilities to compute the probability of one random variable be-

ing greater than the other (P (θA > θB)) to select an arm to play, where θA, θB are

the reward probabilities. Wyatt [33] used factorial look up tables for the evalua-

tion of the function P (θA > θB) based on the Beta-Binomial model. In this work,

we use the Beta-Geometric model and present an efficient technique for computing

P (θA > θB) which reduces the computation complexity and makes the algorithm

practically feasible. We also introduce a deterministic form of the Thompson Method

called BGD algorithm which shows better performance than the randomized algo-

rithms BGP and BGS. Note that the real time computation of P (θA > θB) is not

only useful for TAB but many other areas. A way to utilize this approach is to

draw samples from the subjective probability distributions of θA, θB and select an

arm corresponding to the larger outcome [9, 8, 24], which is known as Thompson

Sampling.

The key advantages of Thompson Method based Beta Bayesian algorithms

are: 1) Unlike many other algorithms, Beta Bayesian algorithms yield good results

over whole range of reward probabilities including very low probabilities of the order

of 0.001 or less. 2) Beta Bayesian algorithms are less sensitive to the prior parameters

initialized during the start of the experiment.
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4.2 Two armed Bandit Policy

In this section, we present three different types of two armed bandit strategies

which use the Bayesian inference based Beta distribution, two of them are random-

ized strategies while the third one is deterministic.

We assume that we are given two arms with reward probabilities θA and θB.

Suppose after n trials, each arm has been played a certain number of times such

that rA successes are received in arm A and rB successes are received in arm B

and the trials at which these successes are received are XA = k1, k2, k3, ...., krA and

XB = k1
′
, k2

′
, ...., krB

′
respectively. We could express these series of Bernoulli trials

in two forms: 1) Geometric Distribution 2) Binomial Distribution.

In terms of Geometric distribution, we express θA and θB in the following

form. Here α0 and β0 are the prior parameters.

θA ∼ Beta(αA, βA) (4.1)

θB ∼ Beta(αB, βB) (4.2)

where,

αA = α0 + rA (4.3)

αB = α0 + rB (4.4)

βA = β0 + ΣrA
i=1(ki − 1) (4.5)

βB = β0 + ΣrB
i=1(ki

′ − 1) (4.6)

In terms of Binomial distribution, we say that if a success is received at nth
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trial, α becomes,

αn = αn−1 + 1 (4.7)

or if a failure is received at nth trial, β is updated to,

βn = βn−1 + 1 (4.8)

For both the above distributions, after s successes and r failures, the parame-

ters of Beta distribution become (α0 + s, β0 + r).

θ ∼ Beta(α0 + s, β0 + r) (4.9)

Below we describe how we use the above model to formulate three strategies

- BGP, BGS, BGD.

4.2.1 Beta Geometric Probabilistic (BGP)

BGP algorithm is described in Alg. 11. According to the algorithm, at the

start of the experiment, we play both arms A and B with equal probabilities (0.5)

until a success is received in any of the arms. We select Arm A with probability

P (θA > θB) and arm B with 1 − P (θA > θB). If an arm k (either A or B) is

the selected arm, then arm k is played, and on receiving a success αk = αk + 1 is

updated whereas on receiving failure βk = βk + 1. BGP algorithm only computes

P (θA > θB) for the arms after a success is received which makes it computationally

less intensive.
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Algorithm 8 Algorithm: BGP

Initialize α0, β0, P (θA > θB) = 0.5.

loop

Select arm A with probability P (θA > θB) and arm B with probability 1 −

P (θA > θB).

Play the selected arm i.

if success is received in arm i then

Update the values for αi = αi + 1.

Recompute the P (θA > θB).

else

Update the values for βi = βi + 1.

end if

end loop
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4.2.2 Beta Geometric Sampling (BGS)

BGS algorithm is also known in literature as Thompson Sampling and has

been discussed in [9, 24]. It is described in Algo. 12. Instead of actually computing

the values of P (θA > θB), we samples the values πA and πB from the probability

distributions of θA and θB, and play the arm with higher value of the sample.

Algorithm 9 Algorithm: BGS

Initialize α0, β0.

loop

Draw a value of πk randomly from Beta(αk, βk)∀k ∈ {A,B}.

Arrange the samples in decreasing order.

Select the arm i s.t πi = maxk(πk), ∀k ∈ {A,B}.

Pull arm i.

if success is received in arm i then

Update the values for αi = αi + 1.

else

Update the values for βi = βi + 1.

end if

end loop

4.2.3 Beta Geometric Deterministic (BGD)

BGD algorithm is a deterministic form of the Beta-Geometric algorithms and

is described in Alg. 10 . In the algorithm, nA and nB represent the number of
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times arm A and B have been pulled respectively. At the start of the algorithm, we

initialize nA and nB as 1 for both arms. The basic idea used in this algorithm is the

same as in the BGP and BGS algorithms with the key difference being the use of

the ratio nA

nA+nB
, which makes it deterministic. If P (θA > θB) ≥ nA

nA+nB
, the arm we

pull arm A, otherwise arm B.

In Fig. 4.1, 4.2 and 4.3, we plot the values of P (θA > θB) and nA

nA+nB
against

the number of trials for a single experiment for different sets of probabilities, (θA

θB) = (0.4,01), (0.009,0.006) and (0.004, 0.001) respectively. In Fig. 4.1, (θA, θB) =

(0.4, 0.1), the plot shows convergence to 1 for P (θA > θB), however it is not the

case in Fig. 4.2 and 4.3. In Fig. 4.2, it can be seen that although the value of

probability P (θA > θB) does not reach 1 but still towards the end, the best arm is

tried deterministically which is different from the case of the random algorithm in

which the best arm would have been tried with probability less than 1. The graph

also depicts the self-correcting nature of the algorithm.

4.2.4 Computation of P (θA > θB)

Below we show how to compute the value of P (θA > θB) in real time for Beta-

Geometric distributions. We do this computation at each success using the current

values of distribution parameters {(αA, βA), (αB, βB)}.

P (θA > θB) (4.10)

=
∫

0

1

p(θA)
∫

0

θA

p(θB)dθBdθA (4.11)
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Figure 4.1: Plot for P (θA > θB) vs. trials and nA

nA+nB
vs. trials for one experiment

consisting of 1000 trials for θA = 0.4 and θB = 0.1 with % best arm played=99.5%.
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Figure 4.2: Plot for P (θA > θB) vs. trials and nA

nA+nB
vs. trials for one experi-

ment consisting of 10000 trials for θA = 0.009 and θB = 0.006 with % best arm

played=80.61% and regret = 14 .
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Algorithm 10 Algorithm: BGD

Initialize α0, β0, P (θA > θB) = 0.5, nA = 1, nB = 1.

loop

if (P (θA > θB) ≥ nA

nA+nB ) then

Pull arm A.

if arm A receives success then

Update the values for αA = αA + 1 and compute P (θA > θB).

else

Update the values for βA = βA + 1.

end if

else

Pull arm B.

if arm B receives success then

Update the values for αB = αB + 1 and compute P (θA > θB).

else

Update the values for βB = βB + 1.

end if

end if

end loop
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Figure 4.3: Plot for P (θA > θB) vs. trials and nA

nA+nB
vs. trials for one experi-

ment consisting of 10000 trials for θA = 0.004 and θB = 0.001 with % best arm

played=86.38% and regret =1.

=
αA + βA − 1

αA + βA + αB + βB − 2
× ΣαB+βB−1

j=αB

(
αB+βB−1

j

)(
αA+βA−2
αA−1

)
(
αB+βB+αA+βA−3

αA+j−1

) (4.12)

=
αA + βA − 1

αA + βA + αB + βB − 2
× Σj

(
m
j

)(
n
k

)
(
m+n
j+k

) (4.13)

m = αB + βB − 1, n = αA + βA − 2, k = αA − 1 (4.14)

Each term in the summation can be simplified as,(
m
j

)(
n
k

)
(
m+n
j+k

) = (
∏
i

j + k − i
k − i

)× A×B (4.15)

where

A =
n

(n+m)

(n− 1)

(n+m− 1)
....

(n− k + 1)

(n+m− k + 1)
(4.16)

B =
m

(m+ n− k)

(m− 1)

(m+ n− k)
...

(m− j + 1)

(m+ n− k − j + 1)
(4.17)
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Further, each term in the summation can be computed from its previous term,(
m
j+1

)(
n
k

)
(
m+n
j+k+1

) =
m− j
j + 1

× k + 1

m+ n− j − k
×

(
m
j

)(
n
k

)
(
m+n
j+k

) (4.18)

Simplifying the formula in the above manner ensures that the number of terms in

the numerator and denominator are equal. To ensure that overflow does not occur

in the above computation, instead of multiplying the numerators and denominators

separately, we first divide on a term by term basis and then multiply each result. The

above simplifications ensure a real time computation of the quantity P (θA > θB),

thereby eliminating the need of factorial look-up suggested in [33].

4.3 Comparative Analysis

We perform comparative analysis on two types of events - rare and non-rare

events. Table 4.1 shows the parameter settings for different experiments on 5 simu-

lated datasets. We compare our Beta Bayesian algorithms - BGD, BGP and BGS

with UCB-tuned, EP-d and EP-n, for both rare and non-rare events for simulated

dataset as well as for rare events for datasets obtained from real advertisements.

Note that these models require the prior parameters, α0 and β0 The priors α0

and β0 can be initialized depending on the problem domain. Fig. 4.4 shows the

Beta-distribution curves for different priors. As seen, the priors can be initialized

in multiple ways, however in the absence of any domain knowledge we initialize as

α0 = 2 and β0 = 2 so that the curve is unimodal and spreads from 0 to 1 with mean

at 0.5 (non-informative case). But on the other hand, if the domain knowledge is

available then the priors can be initialized to be of the same order as θA and θB.
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4.3.1 Non-rare Events

Non-rare events are defined as events when probability of success (> 0.01). For

non-rare events, we compare the performance for (θA, θB) = ((0.7, 0.3), (0.4, 0.1)).

Each experiment is performed using independently generated random variables

and averaged over 100 runs. For each experiment, we show a plot of % Best arm

played and regret on a semi-logarithmic scale. Figs. 4.5 and 4.6 for (θA, θB) =

(0.4, 0.1), UCB-tuned shows the highest percentage of best arm played with Beta

Bayesian algorithms performing slightly worse. EP-d algorithm performs the worst.

All algorithms except EP-d perform nearly same on regret.

Figs. 4.7, 4.8 for (θA, θB) = (0.7, 0.3), BG-d performs the best with UCB-

tuned performing slightly worse. EP-d algorithm performs the worst and shows

unstable behavior. All algorithms except EP-d perform same on the regret. EP-d

and EP-n are amongst the bottom performers.

4.4 Rare Events

In display advertising and many other applications clicks are rare events. In

this section of my dissertation, we discuss as to why the theoretical bounds in the

algorithms UCB-1 and UCB-2 will not work at low probabilities. Theorem 1 in [2]

proves that the expected value of the number of times the suboptimal arm is played

is bounded by

E[Ti(n)] ≤ 8lnn

∆2
i

+
π2

3
+ 1 (4.19)
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θ̂A θ̂B BGD BGP BGS UCB-T EP-d EP-n

0.7 0.3 α0=2,β0=2;

α0=2,β0 =

8

α0=2,β0=2 α0=2,

β0=2

NA ε0 = .30 c=0.15,

d=0.4

0.4 0.1 α0=2,β0=2;

α0=2,β0 =

8

α0=2,β0=2 α0=2,

β0=2

NA ε0 = .30 c=0.15,

d=0.3

0.001 0.004 α0=2,β0=2 α0=2,

β0=2

α0=2,

β0=2

NA ε0 = 20 c=10,

d=0.003

0.009 0.006 α0=2,

β0=2

α0=2,

β0=2

α0=2,

β0=2

NA ε0 = 20 NA

0.0055 0.0045 α0=2,

β0=2

α0=2,

β0=2

α0=2,β0=2 NA ε0 = 20 NA

Table 4.1: Table shows the initial parameters for all algorithms used in the simulated

dataset. UCB-T (UCB-tuned) does not require any prior.
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∆i n E[Ti(n)] UCB-1 n E[Ti(n)] UCB-2

0.009 10K 395K 500K 3.360E+8

0.008 10K 500K 500K 4.253E+8

0.007 10K 653K 500K 5.555E+8

0.006 10K 889K 500K 7.561E+8

0.005 10K 1280K 500K 1.0888E+9

0.004 10K 2000K 500K 1.70126E+9

0.003 10K 3555K 500K 3.02445E+9

0.002 10K 8000K 500K 6.80502E+9

0.001 10K 32000K 500K 2.72201E+10

Table 4.2: Expected Number of times sub optimal arms are played

∆i = θ̂∗ − θ̂i (4.20)

Table 4.2 shows the expected value of the number of times suboptimal arms

will be played for probabilities ranging from 0.001 - 0.009. The above numbers

clearly show that for rare events the upper bound on the expected number of times

suboptimal arms are played are very very weak.

Similarly, the formula for the expected number of trials for the suboptimal

arm of UCB-2 algorithm as proved in [2] is,
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E[Ti(n)] ≤ (1 + α)(1 + 4α)ln(2en∆2
i )

2∆2
i

+
cα
∆2
i

(4.21)

where

n ≥ max(
1

2∆2
i

) (4.22)

and

cα = 1 +
(1 + α)e

α2
+

1 + α

α

(1+α)

[1 +
11(1 + α)

5α2ln(1 + α)
] (4.23)

Table 4.2 shows the expected value of the number times the suboptimal arms will

be played ∆i for a two-armed case UCB-2. The value of n is to be taken according

to Eqn. 4.22, hence we choose the value 500K which is suitable for all ∆i in the

range 0.001 − 0.009 and we set α to 0.001. The above computations clearly show

that for the reward probabilities of the order of 1 in 100 the above bounds are very

weak, and they get worse as the values of ∆i is further reduced since E[Ti(n)] ∝ 1
∆2

i

in both cases.

4.5 Experiments- Rare Events

In this section, we present an extensive set of experiments to show that the

Beta Bayesian algorithms show a good performance for rare events. We perform

experiments on simulated datasets for probabilities ranging from 0.001-0.009. We

set the values of c, ε0, d according to Table 4.1.

We also evaluate the performance of our methods on two real datasets obtained

from the logs of a dynamic display advertising company. These datasets were col-

lected from the data of real advertisements, hence specific information cannot be
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Figure 4.9: %Best Arm Played when θA=0.004 and θ̂B = 0.001

made public, we call these two datasets as dataset1, dataset2. In our setting, the

publishing urls of the advertisements are changed on a daily basis hence to ensure

stationary distribution over the reward, we only use one day worth of data consisting

of around 300, 000− 400, 000 total impressions.

Each experiment on simulated dataset is run 100 times, and the average &

standard deviation obtained are reported in the graphs on a semi-logarithmic scale

(base 10).
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4.5.1 Simulated Dataset for Rare Events

We simulate the data for rare events using the bernoulli trials for 3 distribu-

tions as shown in table. 4.1.

The first set of experiment was performed for probabilities (θA, θB) = (0.001, 0.004).

The graphs for regret and % best arm played are shown in Figs.4.9 and 4.10 respec-

tively. Fig. 4.11 shows the standard deviation in the regret and % best arm played

for the above case.

The graphs show that the Beta Bayesian algorithms perform the best both in

regret obtained and % of times the best arm is played. UCB-Tuned algorithm does

not perform well for rare-events and EP-d shows unstable behavior. EP-n performs

poorly due to the d2 factor in the denominator ck
d2n

[2] , where 0 ≤ d ≤ min(θ̂i− θ̂∗),

which makes it try the worst arm more than the best arm. Hence we do not consider

EP-n in our future experiments [2]. The standard deviation of the Beta Bayesian

algorithms is higher initially but start decreasing rapidly after about 10, 000 trials

for the best arm played. The standard deviation in regret is the similar for all but

EP-d and EP-n.

The second experiment is performed for (θA, θB) = (0.009, 0.006) is shown in

Fig. 4.12, 4.13. Beta Bayesian algorithms show the best performance in this case

also. Moreover, the standard deviation for Beta Bayesian algorithms both in regret

and best arm played is much less as compared to EP-d algorithm as shown in Fig.

4.14.

In the third experiment, the probabilities (θA, θB) = (0.0055, 0.0045) are used
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Figure 4.18: % Best Arm Played and Total Reward Obtained for dataset1

to evaluate the performance of the algorithms as shown in Figs. 4.15, 4.16 and 4.17.

It is considered a weak case since the two probabilities are very close. The results

obtained are similar to the previous two cases and BG-algorithms perform better

other algorithms. Since the probabilities are very close, regret is almost same in all

cases.

4.5.2 Real Dataset : Online Display Advertising

We use the real datasets available from 2 advertisers for our experiments.

The first dataset is called dataset1 where we use one day worth of log for an ad-

vertiser and use click probabilities as the measure of performance. The total number
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Figure 4.19: % Best Arm Played and Total Reward Obtained for dataset2
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of impressions for both the advertisements was around 350K, with advertisement 1

having 150K and advertisement 2 having 200K impressions. Fig. 4.18 shows the

plots of the graphs for 5 different algorithms.

For EP-d and Beta Bayesian algorithms, we took different starting points for

dataset1 such as first 10k values ignored, 20K ignored, ..., etc. and notice a flip-

flop behavior in EP-d algorithm. This shows that EP-d algorithm is sensitive to the

initial values of the samples while the BGD algorithm is stable. BGD algorithm leads

in the total reward obtained. The second set of experiments was done using dataset2

is shown in Fig. 4.19. The total number of impressions for both the advertisements

was around 280K, with advertisement 1 having 180K and advertisement 2 having

100K impressions. Beta Bayesian algorithms outperforms UCB-tuned algorithm

both in the total reward obtained and the % of times the best arm is played. EP-

d algorithm performs the best but again EP-d is an unstable algorithm and has a

tendency to converge based on the initial samples leaving no scope for self-correction.

4.6 Conclusion

Multi-armed bandit has been a problem of great interest in the Internet do-

main. Recently, a lot of attention has been given to the application of UCB algo-

rithm in the area of online advertising and Internet news article recommendation

[25, 6, 21]. This chapter brings attention to the Bayesian learning based Thompson

methods which work better for all range of reward probabilities.

The work presented here is the study of Two Armed Bandit problem using
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Thompson Method and applying the solution to the problem of Online Display Ad-

vertising for which the probabilities of success are rather small. The empirical results

show that the Beta Bayesian algorithms - BGD, BGP, BGS perform better

than all other commonly used algorithms including UCB-tuned and epsilon-greedy

for solving this problem.
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Chapter 5

Multi armed Bandit

5.1 Introduction

In the previous chapter, we have presented variants of the Beta Bayesian Mod-

els for the case of Two-armed bandits. In this chapter, we advance our work to the

problem of generalized case of K-armed Bandits and change the previously intro-

duced algorithms BGP and BGS (TS) for the case of K-arms.

5.1.1 Beta Geometric Probabilistic (BGP)

The generalized form of BGP algorithm for the case of K-arms is presented in

Algo. 11. As per the algorithm, at the start of the experiment each of the K arms

are played with equal probabilities of success until a success is received in any of

the arms. The estimate of reward probabilities of each arm k, after n total trials,

is modeled as p(θ̂kn) ∼ Beta(αkn, β
k
n) and the state of the system after n trials is

denoted by {(α1
n, β

1
n), (α2

n, β
2
n), ...(αKn , β

K
n )}.

The probability of any arm k being played at trial n is P (θk > θ1 ∧ θk >

θ2 ∧ θk > θ3...θk > θK).

P (θk > θ1 ∧ θk > θ2 ∧ θk > θ3...θk > θfK) (5.1)
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=
∫

0

1

p(θk)
∫

0

θk

p(θ1)dθ1
∫

0

θk

p(θ2)dθ2...
∫

0

θk

p(θK)dθKdθK (5.2)

(5.3)

∫
0

θk

p(θ1)dθ1 (5.4)

=
∫

0

θk θ1α
1−1

(1− θ1)β
1−1dθ1

B(α1, β1)
(5.5)

= Σα1+β1−1
j=α1

(
α1 + β1 − 1

j

)
(θk)j(1− θk)α

1+β1−1−j
(5.6)

Similarly,

∫
0

θk

p(θ2)dθ2 (5.7)

=
∫

0

θk θ2α
2−1

(1− θ2)β
2−1dθ2

B(α2, β2)
(5.8)

= Σα2+β2−1
j=α2

(
α2 + β2 − 1

j

)
(θk)j(1− θk)α

2+β2−1−j
(5.9)

P (θk > θ1 ∧ θk > θ2 ∧ θk > θ3...θk > θK) = (5.10)∫
0

1 Γ(αk)Γ(βk)

Γ(αk + βk)
(θk)α

k−1(1− θk)β
k−1 × (5.11)

Σα1+β1−1
j=α1

(
α1 + β1 − 1

j

)
(θk)j(1− θk)α

1+β1−1−j × (5.12)

Σα2+β2−1
j=α2

(
α2 + β2 − 1

j

)
(θk)j(1− θk)α

2+β2−1−j × ... (5.13)

ΣαK+βK−1
j=αK

(
αK + βK − 1

j

)
(θk)j(1− θk)αK+βK−1−j

dθk (5.14)

The above form leads to an exponential growth in the number of summation terms

which makes the above formula intractable.
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Figure 5.1: Plot comparing Beta and Normal distributions for different parameter

values. The curves are overlapping for large (α, β) values.

To make the above computation tractable, Beta distribution is approximated

to Normal distribution for calculating the value P (θk > θ1 ∧ θk > θ2 ∧ θk > θ3...θk > θK).

Fig. 5.1 shows the curves for Beta and Normal distributions for two different values

of (α, β). For the first case, when (α = 2, β = 4), the two curves look slightly

different, but for the case of (α = 10, β = 15) and (α = 30, β = 40), the curves are

almost the same (overlapping). Hence, Normal Distributions could be used as for

Beta approximations.

In case of Normal distribution, the incomplete integral can be easily computed

using the error function. The error function (erf) is available as a direct look-up, in

most programming languages.

∫
0

θ1

p(θ2)dθ2 =
1

2
[1 + erf(

θ1 − θ̂2

σ̂2

√
2

)] (5.15)
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P (θ1 > θ2) =
∫

0

1 1√
2πσ̂2

1

e(θ1−θ̂1)/(2σ̂2
1) 1

2
[1 + erf(

θ1 − θ̂2

σ̂2

√
2

)]dθ1 (5.16)

θ̂1 =
α1

α1 + β1

, θ̂2 =
α2

α2 + β2

, ... (5.17)

σ̂1 =

√
α1β1

(α1 + β1)2(α1 + β1 + 1)
, σ̂2 =

√
α2β2

(α2 + β2)2(α2 + β2 + 1)
, ... (5.18)

A generalized case for K-arms can be written as,

P (θk > θ1 ∧ θk > θ2 ∧ θk > θ3...θk > θK) = (5.19)

=
∫

0

1 1√
2πσ̂2

k

e(θk−θ̂k)/(2σ̂2
k) 1

2
[1 + erf(

θk − θ̂1

σ̂2
1

√
2

)] (5.20)

1

2
[1 + erf(

θk − θ̂2

σ̂2
2

√
2

)] (5.21)

1

2
[1 + erf(

θk − θ̂K

σ̂2
K

√
2

)]dθk (5.22)

5.1.2 Beta Geometric Sampling / Thompson Sampling (TS)

Beta/ Thompson Sampling is a randomized algorithm based on Bayesian mod-

eling of the random distributions of the reward probabilities of the arms in the MAB

setting. The algorithm is shown in Algorithm. 12. The estimate of reward proba-

bilities of each arm k, after n total trials, is modeled as p(θ̂kn) ∼ Beta(αkn, β
k
n) and

the state of the system after n trials is denoted by {(αn1 , βn1 ), (αn2 , β
n
2 ), ...(αnK , β

n
K)}.

For arm selection at each trial, one sample per arm is drawn fromBeta(αnK , β
n
K)

and the arm with the maximum value for the sample is played. The probability of

an arm k being played is P (θk > θ1 ∧ θk > θ2 ∧ θk > θ3...θk > θK) but there is no

need to explicitly compute this value. Theoretical proofs of this method have been

discussed in [10, 24].
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Algorithm 11 Algorithm: BGP

Initialize αk0, βk0 = 2, P (θk > θ1 ∧ θk > θ2 ∧ θk > θ3...θk > θK) = 1/K, ∀k ∈ K

loop

Select an arm k with probability P (θk > θ1 ∧ θk > θ2 ∧ θk > θ3...θk > θK), ∀k ∈

K

Play the selected arm i.

if success is received in arm i then

Update the values for αi = αi + 1.

Recompute the values of P (θk > θ1 ∧ θk > θ2 ∧ θk > θ3...θk > θK),∀k ∈ K.

else

Update the values for βi = βi + 1.

end if

end loop
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Algorithm 12 Algorithm: Beta Geometric / Thompson Sampling (TS)

Initialize αk0=2, βk0 = 2.

loop

Draw a value of πk randomly from Beta(αk, βk)∀k ∈ K.

Arrange the samples in decreasing order.

Select the arm i s.t πi = maxk(π
k), ∀k ∈ K.

Pull arm i.

if Arm i is successful then

Update the values for αin = αin−1 + 1.

else

Update the values for βin = βin−1 + 1.

end if

end loop
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Experiment/Arms 1 2 3 4 5 6 7 8 9 10

1 0.9 0.8 0.8 0.8 0.7 0.7 0.7 0.6 0.6 0.6

2 0.9 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6 0.6

3 0.009 0.008 0.008 0.008 0.007 0.007 0.007 0.006 0.006 0.006

4 0.009 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006 0.006

Table 5.1: Table shows the values of reward probabilities for both non-rare and rare

events for the experiments done in this dissertation.

The main differences between Thompson Sampling and Beta Geometric Prob-

abilistic Algorithms are 1) In Thompson Sampling, there is no need to explicitly

compute the value of P (θk > θ1 ∧ θk > θ2 ∧ θk > θ3...θk > θK). 2) Beta Geometric

Algorithm is a more passive form since the value of P (θk > θ1 ∧ θk > θ2 ∧ θk >

θ3...θk > θK) is computed only after each success, although the values of α, β are

updated at each step as in the case of Thompson Sampling, hence the selections

are made with the same probability until the next success. While in the Sampling

algorithm, since a sample is drawn from a new distribution of Beta every time, it a

more active technique.

5.2 Comparative Analysis

We perform comparative analysis on two types of events - rare as well as non-

rare events. Table. 5.1 shows the different experiments run on 4 simulated datasets.

We compare our Bayesian algorithms - BGP and TS with UCB-tuned, EP-d and
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EP-n for both non-rare and rare events for simulated datasets and show the results

in terms of regret obtained and the % Best arm played.

5.2.1 Experiments Non-rare Events

Non-rare events are defined as events when probability of success (> 0.01).

For non-rare events, we compare the performance when the reward probabilities are

as shown in rows 1 and 2 Table. 5.1.

Each experiment is performed using independently generated random variables

and averaged over 100 runs. For each experiment we show a plot of % Best arm

played and regret on a semi-logarithmic scale. Fig. 5.4 and Fig. 5.5 show the results

for Experiment 1. Thompson Sampling shows the highest percentage of best arm

played and lowest regret with BGP algorithm performing slightly worse. EP-d and

UCB-Tuned algorithms performs the worst.

In Fig. 5.2 and Fig. 5.3 for the case of Experiment 2, Thompson Sampling

performs the best with BGP performing slightly worse. EP-n algorithms performs

the worst and shows a lot of unstable behavior.

5.2.2 Experiments Rare Events

We simulate the data for rare events for two sets of reward probabilities as

shown in Table. 5.1.

The first set of experiment was performed for probabilities shown in Experi-

ment 3 in Table 5.1 in which the optimal and sub-optimal arms are very close to
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Figure 5.2: Regret for the case of Experiment 1
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Figure 5.3: % Best Arm Played for the case of Experiment 1
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Figure 5.4: Regret for the case of Experiment 2
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Figure 5.5: % Best Arm Played for the case of Experiment 2
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Figure 5.7: % Best Arm Played for the case of Experiment 3
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Figure 5.9: % Best Arm Played for the case of Experiment 4
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each other (∆opt−subopt = 0.001). The graphs for the regret and the % best arm

played are shown in Fig. 5.6 and Fig. 5.7 respectively. The graphs show that the

Beta Bayesian algorithms perform the best both in regret obtained and % of times

the best arm is played. UCB-Tuned algorithm does not perform well for rare-events

and EP-d shows unstable behavior.

The second experiment is performed for reward probabilities given in Exper-

iment 4, and the results are shown in Fig. 5.8 and 5.9. Beta Bayesian algorithms

show the best performance in this case also.

5.3 Conclusion

In this chapter, we analyzed and demonstrated the Bayesian inferencing based

BGP and BGS (TS) methods which use Order Statistics to decide an arm to play.

The empirical results show that the Beta Bayesian algorithms - BGP and TS

perform better than all other commonly used algorithms including UCB-tuned and

epsilon-greedy for solving this problem for a wide range of probabilities. Both BGP

and BGS (TS) perform almost equally well. While in BGP we need to explicitly

compute the value of P (θk > θ1 ∧ θk > θ2 ∧ θk > θ3...θk > θK), we do not need to

do so in the Sampling Algorithm. Hence, we use the BGS (TS) algorithm for future

comparisons. Since the sampling algorithm came from the Thompson Method, we

will call it “Thompson Sampling” in the work further.
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Chapter 6

Successive Reduction in Multi-Armed Bandits

6.1 Introduction

In the previous chapter, we showed that Bayesian based solution strategies are

top performers when it comes to solving MABs with Bernoulli distributed rewards.

For every arm, there is a chance that exactly that arm is the one with the largest

reward probability, and thus being the optimal choice. By pulling the available

arms with frequencies that are proportional to their probabilities of being optimal,

Thompson Methods gradually moves from exploration to exploitation, converging

towards only selecting the optimal arm. Unfortunately, an inherent limitation of

Thompson Method emerges when the number of arms grows large. In order for the

optimal arm to be chosen in Thompson Methods, it has to ”beat” all of the inferior

arms in a pair-wise manner. As the number of inferior arms grows, the probability

of the superior arm winning thus deteriorates. The effect of this deterioration is

easily seen in large scale real life applications, such as those found in the Internet

domain, where it is common with several hundreds arms in a single MAB problem.

In this dissertation, we introduce a rather radical strategy — the Successive

Reduction (SR) strategy — that addresses the above weakness directly. We propose

two kinds of SR strategies: 1) Successive Reduction Hoeffding (SRH) and 2) Suc-

cessive Reduction Order Statistics (SRO) [14]. Both use an Order Statistics based
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Thompson Sampling Method method for arm selection, and then successively elim-

inates bandit arms from consideration based on a confidence threshold. While SRH

uses Hoeffding Bounds for elimination, SRO uses the probability of the arms being

superior to the currently selected arm to measure confidence. In effect, the Thomp-

son Methods is focused strictly on the arms that still are promising candidates for

being the optimal choice. The gains are two-fold: 1) the total number of reward

increases since the eliminated sub-optimal arms are not considered in future trials,

and 2) the number of arms are reduced, hence information stored and managed are

reduced too.

6.2 Successive Reduction using Hoeffding Bounds (SRH)

Hoeffding Bounds [17] are important theoretical bounds and have been applied

to a large number of areas such as algorithmic and learning theory, networking,

machine learning. Maron et al. used Hoeffding Bounds to quickly discard bad

models in order to accelerate model selection search for classification and function

approximation [23]. In this dissertation, we apply Hoeffding Bounds as one of the

measures for arm elimination in the Thompson Sampling based MAB strategy. The

bound states that for θk ∈ [0, 1]with confidence δ,

P (|θktrue − θkn| > ε) < 2e−2nkε
2

(6.1)

Hence, for the estimated mean to be within ε of the true mean with confidence

(1− δ), ε becomes

εkn =

√
log(2/δ)

2nk
(6.2)
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In the SRH algorithm, we first do Thompson Sampling Method and select an arm

to play. But at the end of each trial, we eliminate the arms whose best possible

mean (upper bound) is less than the worst (lower bound) of the best arm.

6.3 Successive Reduction using Order Statistics (SRO)

In order statistics based SRO algorithm, we select arm i according to Thomp-

son Sampling Method but to reduce the arms, we compare all the other arms in the

set with the selected arm i and compute on a pairwise basis the probability of arm

i being greater than an arm k by computing P (θi > θk). If this value is greater

than a threshold say 99% then arm i is removed as shown in Algo. 14. Next, we

illustrate how given two arms A and B we compute the P (θ1 > θ2) in real-time.

The value of P (θ1 > θ2) depends on distance between the means of the two

random distributions given by ∆12 = θ1− θ2 and the variance of the random distri-

butions. Fig. 6.1 shows the plot for the Beta distributions for four different sets of

values for the case of two arms. In the top-left figure, P (θ1 > θ2) = 0.99 ∼ 1

since θ1 > θ2 and the variance is small while in top right figure, the value of

P (θ1 > θ2) = 0.791 due to high variance leading to high overlap. In the bot-

tom figures, P (θ1 > θ2) = 0.806 due to high overlap whereas in the bottom-right

corner P (θ1 > θ2) = 0.001 since θ1 < θ2 with very little overlap. We have shown

earlier that the value of P (θA > θB) in two ways by using - Beta distribution and

Normal approximation. The equations and derivations are given in Chapter 5.

Setting the priors: Beta distribution can take many different forms de-

80



Algorithm 13 Algorithm: Successive Reduction Method based on Hoeffding

Bounds (SRH)

Initialize all αk0=2, βk0 = 2,∀k ∈ K, set the threshold equal to δ .

loop

Do Thompson Sampling Method as given in Algo. 12

Identify the arm i which has the highest lower bound, i = {k : maxk(θkn − εkn)}.

for all arms k excluding arm i do

if (θin − εin) > (θkn + εkn) then

Remove arm k.

end if

end for

end loop
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Algorithm 14 Algorithm: Successive Reduction Method based on Order Statistics

(SRO)

Initialize all αk0=2, βk0 = 2,∀k ∈ K, set the threshold equal to P ∗ .

loop

Do Thompson Sampling Method as given in Algo. 12 and play arm i.

for all arms k excluding arm i do

Compute p = P (θi > θk).

if p > P ∗ then

Remove arm k.

end if

end for

end loop
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Figure 6.1: Plots for Beta distributions for two examples for the case of two arms

with mean values denoted by θ1, θ2
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Figure 6.2: Plots for Beta distribution curves comparing the selected and the sub-

optimal arm at the trial when the suboptimal arm is eliminated.

pending on the values of the parameters α, β. When α, β ≥ 2, the curve becomes

unimodal. For a better approximation to normal distribution, it is desirable to have

unimodal curves. Hence, we initialize the priors to be α0 = 2, β0 = 2.

Example SRO algorithm

To illustrate the working of the SRO algorithm, we take a case of 3 armed ban-

dits with reward probabilities equal to (θ1 = 0.9, θ2 = 0.6, θ3 = 0.3) as an example.

As per the algorithm, arms are selected according to Thompson Sampling Method,

but are discarded based on the Order statistics method with a threshold value of

99.5%. Initially, the state of the system is Φ0 = ((2, 2), (2, 2), (2, 2)). Fig. 6.2 repre-

sents probability distributions at the trials when the suboptimal arms are eliminated.

The first curve plots the Beta distribution curves for ((α1 = 51, β1 = 9), (α3 =

2, β3 = 4)) when θ3 is eliminated at 71st trial at Φ71 = ((51, 9), (12, 5), (2, 4)).
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At this point, P (θ1 > θ3) = 0.99652. Since, the second arm has a higher value

of the reward probability, it is removed much later at 167th trial when Φ167 =

((141, 13), (13, 6), (−,−)) and P (θ1 > θ2) = 0.995. So, at the end of 167th trial,

only the optimal arm is left in the set and only that is tried henceforth, thereby

maximizing the rewards.

6.4 Empirical Analysis

In this section, we evaluate the performance of SRO and SRH algorithms

by comparing them with Thompson Method and UCB-Tuned algorithms. Each

experiment is repeated 100 times from independent random streams and average

values and standard deviations are reported in the results. We report the total

reward obtained as the measure of performance of the MAB strategies. Reward is

defined as:

ΣK
k=1θ

kE[nk] (6.3)

where E[nk] is the expected value of the number of times kth arm is played.

6.4.1 Experiment 1: Varying Threshold

In the first experiment, we vary the threshold values for SRH and SRO algo-

rithms to analyze its effect on the performance of the SR strategies. We consider a

total of 50 arms, θopt = 0.6, and all the other 49 arms are generated from Bayesian

distribution U(0.6, 0). Table. 6.1 shows the reward obtained by using different

thresholds for the SR method for 10K trials. The different values of threshold are
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90%, 95%, 99%, 99.5%. We see that the SRH algorithm does not show any improve-

ment over the Thompson Sampling Method algorithm for any value of the thresholds

while the SRO algorithm gives a significant improvement over the Thompson Sam-

pling Method and UCB-T algorithms.

In the variable threshold V arT experiment for SRO algorithm, we vary the

threshold based on the number of times an arm considered for elimination has been

played. The intuition behind the variable threshold is that the larger the number of

plays of an arm, the lower is its variance and more closer is it to it’s actual value,

hence more risk could be taken while eliminating the arm. The values for variable

threshold V arT are 99.5% when nk ≤ 10, 99% when nk lies in range (10, 50) and

95% otherwise, where nk is the number of times arm k has been tried. These values

of nk work well for Uniformly distributed probabilities θk ∈ [0, 1].

Table. 6.1 also reports the standard deviations in the total reward obtained

and we see that the variable threshold has the least standard deviation. The stan-

dard deviation obtained in the SRO algorithm with threshold = 90% is vey high

while its reward is the one of the highest, hence it is a high risk threshold.

The number of arms left in the set at the end of the 10K trials is also shown

in the column Final Arms. We see that out of 100 arms, less than 5 arms remain at

the end of 10K trials for the case of SRO algorithm in Table 6.1 while for the case

of SRO algorithm more than 20 arms remain. The average number of trials after

which only a single optimal arm is left are also given in the column Trial End.
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Table 6.1: The results obtained by varying threshold for a range of probabilities

from (0.6,0) where θopt = 0.6. for Experiment 1

Method Threshold % Reward Std Dev Final Arms Trial End

SR -Order Stats. 90 5814.57 218.51 1.03 1242.86

SR -Order Stats. 95 5861.82 97.91 1.3 4487.06

SR -Order Stats. 99 5764.56 83.99 3.14 9663.09

SR -Order Stats. 99.5 5744.77 75.39 3.97 9945.72

SR -Order Stats. V arT 5781.96 58.23 1.65 6867.33

SR -Hoeffding 90 5539.26 63.09 21.92 10000

SR -Hoeffding 95 5534.59 69.08 26.93 10000

SR -Hoeffding 99 5560.1 55.308 49.03 10000

SR -Hoeffding 99.5 5541.78 70.22 49.98 10000

Thompson - 5540.22 63.76 - -

UCB-T - 5640.78 74.90 - -
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Figure 6.4: Reward when ∆opt−subopt is varied for Experiment 3.

6.4.2 Experiment 2: Increasing Number of Arms

We perform this experiment to show the effect of increasing the number of

arms on the reward obtained. We set θopt = 0.5 and initially randomly generate a

set of 9 arms with reward probabilities in interval (0.5, 0) using Uniform distribution,

and add four arms from the same set U(0.5, 0) for a total of 10K trials. We use V arT

threshold for SRO algorithm and 99% threshold for the SRH algorithm. As shown

in Fig. 6.3, the SRO algorithm performs significantly better than the Thompson

Sampling Method and UCB-Tuned algorithm. Also for the SRO algorithm, we notice

that the total number of arms remaining at the end of 10K trials has an average

value of < 5 even when the initial number of arms are > 100. SRH algorithm does

not show any improvement in the reward values relative to Thompson Sampling
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Method and also the number of arms eliminated at the end of the experiment is

almost null.

6.4.3 Experiment 3: Increasing ∆opt−subopt

In this experiment, we systematically vary the difference in the optimal and

the suboptimal arm and compare the performance of SR algorithms with UCB-

Tuned and Thompson Sampling Method. We take a total of 100 arms and increase

the difference in the optimal and sub-optimal arms denoted by ∆opt−subopt. The

optimal arm is set to θopt = 0.9 and different values of θsubopt are chosen from the

set {0.8, 0.7, 0.6, 0.5, 0.4, 0.3, 0.2} such that ∆opt−subopt varies from (0.1− 0.7). Rest

other arms are generated from a Uniform random distribution between U(θsubopt, 0).

We use V arT as threshold for SRO algorithm and a constant 99% threshold for the

SRH algorithm. The results in Fig. 6.4 show that the SRO algorithm performs

significantly better than Thompson and UCB-T algorithms. SRH algorithm does

not show any improvement over Thompson Sampling Method.

6.5 Conclusion

From the experimental results and analysis done in this dissertation we con-

clude that current state-of-art methods such as UCB, Thompson Sampling Method

do not work well for large number of arms, hence new schemes need to be de-

veloped to handle the challenge of scalability in the multi-armed bandit setting.

Towards this direction, we presented SR strategies, SRO and SRH, for solving large
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scale multi-armed bandit problems in the scenario where no prior information was

available about the arms. Our experiments reveal that SRO strategy significantly

outperforms Thompson Sampling Method, UCB-Tuned and SRH algorithms and

the performance increase is more significant with increasing number of arms. Ho-

effding Bounds are loose bounds which Thompson Sampling Method already takes

care of, hence no improvement in performance is noticed in the SRH algorithm.

Although this dissertation discusses Bernoulli bandits with Beta distributions, the

SR algorithms are applicable for all forms of random distributions.

91



Chapter 7

Dynamic Multi-Armed Bandits

7.1 Introduction

Bayesian Method based MAB strategies have been established as top perform-

ers when it comes to solving Bernoulli distributed rewards. For every arm, there

is a chance that exactly that arm is the one with the largest reward probability,

and thus being the optimal choice. By pulling the available arms with frequencies

that are proportional to their probabilities of being optimal, Thompson Sampling

gradually moves from exploration to exploitation, converging towards only selecting

the optimal arm. This behavior is ideal when the reward probabilities of the bandit

arms are fixed. However, in cases where the reward probabilities are dynamically

evolving, one would instead prefer schemes that explore and track potential reward

probability changes. Apart from the Kalman filter based scheme proposed in [11],

the latter problem area is largely unexplored when it comes to Thompson Sampling

based schemes. Another obstacle in solving the problem is due to the fact that we

cannot sample noisy instances of θ directly, as done in [11]. Instead, we must rely

on samples obtained from Bernoulli trials with reward probability θ, which makes

the problem unique and one not studied before.

In this dissertation, we introduce a novel strategy — Dynamic Thompson

Sampling. Order Statistics based Thompson Sampling is used for arm selection, but
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the reward probability θ is tracked using an exponential filtering technique, allow-

ing adaptive exploration. In brief, we explicitly model changing θ as an integrated

part of an Order Statistics based sampling and arm selection method, considering

changes in reward probability to follow a Brownian motion – one of the most pop-

ular stationary process which has been extensively used in many fields including

economics to model stock markets, commodity pricing, etc.

In this dissertation, we look at the problem of dynamic bandits in which the re-

ward probabilities of the arms follow bounded Brownian motion. In [26], the authors

consider a similar scenario of Brownian bandits with reflective boundaries assum-

ing that a sample from the current distribution of θ itself is observed at each trial.

Granmo et al. introduced the Order Statistics based Kalman Filter Multi-Armed

Bandit Algorithm [11]. In their model, reward obtained any arm is affected by

Gaussian noise ∼ N(0, σ2
ob) and an independent Gaussian perturbations ∼ N(0, σ2

tr)

at each trial. A key assumption in [11] is that at each trial a noisy sample of the

reward is observed. In our work, estimation of the reward probability θ is done

by only using the Bernoulli outcomes r ∼ Bernoulli(θ). Our work is well suited

for modeling of reward probabilities in the Internet domain where, when an item

such as a newspaper article, advertisement, etc. is shown, the system receives a

{0, 1} reward in the form of a click/engagement, using which it has to estimate θ,

which is the click/engagement rate in this situation. Also, instead of using reflective

boundaries we consider absorbing and simple boundaries, which are more suited to

the Internet domain.
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7.2 PROBLEM DEFINITION

7.2.1 Constant Rewards

In the MAB setting, each pull of an arm can be considered as a Bernoulli

trial with output in the set {0,1} and defined by a single parameter θ which is the

probability of success denoted by {1}. The probability distribution of the number of

successes, denoted by S, obtained in n Bernoulli trials is known to have a Binomial

distribution, S ∼ Binomial(n, θ).

p(S = s|θ) =

(
n

s

)
(1− θ)n−sθs (7.1)

Bayesian estimation may be used for estimating θ by considering its estimate

θ̂ to have a defined probability distribution. When the distribution of θ̂ is a conju-

gate distribution to the actual distribution of θ and the observation, the Bayesian

estimate simplifies significantly. As it is known that Beta distribution is a conjugate

prior for the Binomial distribution [13]. Thus, when providing a Bayesian estimate

for θ, it is natural to assume that θ̂ possesses a Beta distributed prior, fully specified

by the parameters (α0, β0):

p(θ̂;α0, β0) =
θα0−1(1− θ)β0−1

B(α0, β0)
(7.2)

If a success is received at the nth trial, α and β are updated as,

αn = αn−1 + 1, βn = βn−1 (7.3)

or if a failure is received at the nth trial, α and β are updated as,

αn = αn, βn = βn−1 + 1 (7.4)
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After s successes and r failures, the parameters of Beta distribution become

(α0 + s, β0 + r).

θ̂ ∼ Beta(α0 + s, β0 + r) (7.5)

The estimated mean and variance after trial n become,

θ̂n =
αn

αn + βn
(7.6)

σ̂2
n =

(αnβn)

(αn + βn + 1)(αn + βn)2
(7.7)

7.2.2 Dynamically Changing Rewards

The key assumption made in static MAB algorithms is that the value of reward

probability remains constant. In practical situations, it is rare to have constant

reward probabilities and the problem we address here explicitly takes into account

changing reward probabilities.

Brownian motion is a simple stochastic process in which the value of a random

variable at step n is the sum of its value at time n − 1 and a Gaussian noise term

∼ N(0, σ2). In this dissertation, we consider that the reward probability θ to follow

a simple Brownian motion in the range [0, 1].

System Equation : θn = θn−1 + νn (7.8)

νn ∼ N(0, σ2) (7.9)

As θ is a probability, it must be between [0, 1], as a consquence we need to used

bounded Brownian motion to model the changes in it. We define two types of

boundary conditions:
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• Simple Bounded : The reward probability is bounded between [0, 1] and once

it reaches boundaries it remains there until the next outcome moves it out of

the boundary.

θn =



θn−1 + νn

1 if θn ≥ 1

0 if θn ≤ 0

• Absorbing Boundary : In absorbing boundaries, when θn reaches any boundary

at trial n, it remains there forever.

θn =



θn−1 + νn

1 ∃i ≤ n : θi ≥ 1

0 ∃i ≤ n : θi ≤ 0

The performance of the estimation technique is measured in terms of the

Regret which is defined as,

Regret = ΣN
n=0(r∗n − rkn)

whereN is the total number of trials, r∗n is the Bernoulli output received after playing

an arm with the highest θkn at trial n and rkn is the reward obtained after sampling

the kth arm according to the applied algorithm. Note that the arm corresponding

to r∗n may change as the values of θkn evolves. Hence, regret is a measure of the loss

occurred when using an algorithm as compared to the optimal algorithm.

7.2.3 Dynamic Thompson Sampling Algorithm (DTS)

Unlike the static MAB problems, the goal of the DTS algorithm is to minimize

the regret by tracking the changing values of θkn at trial n as closely as possible [15].
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The Dynamic Thompson Sampling algorithm proposed here dynamically estimates

the changing values of θkn for each arm k and at each step with the goal of minimizing

the regret. Note that in our model θkn changes according to Eqn. 7.8 whether arm

k is played or not. In DTS algorithm, unlike the update rules of Eqn. 7.3 and 7.4,

we propose to use the update rules for α and β as follows:

If αn + βn ≤ C,

αn = αn−1 + rn (7.10)

βn = βn−1 + (1− rn) (7.11)

But if αn + βn > C,

αn = (αn−1 + rn)
C

C + 1
(7.12)

βn = (βn−1 + (1− rn))
C

C + 1
(7.13)

Hence,

αn + βn = (αn−1 + βn−1 + 1)
C

C + 1
(7.14)

= (C + 1)
C

C + 1
(7.15)

= C (7.16)

Updating the values of αn, βn in the above form, leads to estimates of αn, βn which

give more weight to the more recent values of the reward as compared to the old

values. If we further substitute the value of αn−1 in the above expression, we get

αn = ((αn−2 + rn−1)
C

C + 1
+ rn)

C

C + 1
(7.17)

= αn−2(
C

C + 1
)2 + rn−1(

C

C + 1
)2 + rn

C

C + 1
(7.18)
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In the same way, we could express βn as a discounted sum of previous outputs of

the Bernoulli trials and priors. According to the Beta distribution, the estimated

mean θ̂n at time step n is,

θ̂n =
αn

αn + βn
(7.19)

=
αn−1 + rn

C
× C

C + 1
(7.20)

=
αn−1

C

C

C + 1
+ rn

1

C + 1
(7.21)

=
C

C + 1

αn−1

αn−1 + βn−1

+
1

C + 1
rn (7.22)

= ∆θ̂n−1 + (1−∆)rn (7.23)

where ∆ = C
C+1

Clearly, this approach yields exponential filtering( smoothing) of θ̂n [22]. Note

that the estimated variance is,

σ̂2
n =

(αnβn)

(αn + βn + 1)(αn + βn)2

The product of αn and βn is maximum when αn = βn = C/2 and will be minimum

when one of them is equal to the prior(α0, β0 = 2). In Thompson Sampling, initial

priors are set to 2 to ensure unimodal distribution. Hence,

2(C − 2)

C2(C + 1)
≤ σ̂2

n ≤
1

4(C + 1)
(7.24)

The DTS algorithm is described in Algorithm. 15 for the generalized case

of K-arms having reward probabilities (θ1, θ2, θ3, .., θK) which vary using Brownian

motion. The algorithm starts by initializing same priors for all the arms and then

gradually changing the values of α, β parameters of the selected arms as shown in
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Algorithm 15 Algorithm: Dynamic Thompson Sampling (DTS)

Initialize αk0=2, βk0 = 2.

loop

Draw a value of πk randomly from Beta(αk, βk)∀k ∈ K.

Arrange the samples in decreasing order.

Select the arm A s.t πA = maxk(π
k), ∀k ∈ K.

Pull arm A.

if Arm A is successful then

if αAn−1 + βAn−1 ≤ C then

Update the values for αAn = (αAn−1 + 1), βAn = βAn−1.

else

Update the values for αAn = (αAn−1 + 1) C
C+1

, βAn = (βAn−1) C
C+1

.

end if

else

if αAn−1 + βAn−1 > C then

Update the values for αAn = αAn−1, βAn = βAn−1 + 1.

else

Update the values for αAn = (αAn−1) C
C+1

, βAn = (βAn−1 + 1) C
C+1

.

end if

end if

end loop
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Algorithm. 15. The algorithm adapts the values of the θ based on the exponential

updates and leads to a better approximation to the drifting reward probabilities

which in turn lead to a better performance.

7.3 Experiments

In this section, we primarily evaluate the performance of DTS algorithm by

comparing it with UCBf , TS and UCB-Normal algorithms. Though we performed

significant experiments over several values of the reward distributions, we only re-

port the most important and relevant experiments in this dissertation due to limited

space. We report the regret obtained as the measure of performance of the different

strategies. As DTS is a randomized algorithm, the regret becomes a random vari-

able. The expected value of the regret is calculated by repeating each experiment

400 times.

7.3.1 Varying value of standard deviation σ

To get an insight into the Brownian motion of the reward probability θ, we

performed experiments in which we simulated the dynamics of θ for different values

of standard deviation. In Fig. 7.1, we show a sample plot of the curves for 4 values of

σ = {0.05, 0.01, 0.005, 0.001}. The curve with standard deviation σ = 0.05 is cutting

across the boundaries 0 and 1 very often and any kind of learning seems impossible

in this situation. The other graphs with standard deviations σ = {0.01, 0.005, 0.001}

are more stable and seem more appropriate for learning.
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Figure 7.1: Typical variations of the reward probability θ for different values of

standard deviations. θ0 = 0.5 in all cases.

7.3.2 Estimation vs. Actual

We perform these experiments to show how closely the estimated values of θ̂

are to the actual value of θ for the case of TS and DTS algorithms for a single arm.

The two graphs, Fig. 7.2 and Fig. 7.3, show the results for the estimated and actual

values of θ. We see that the DTS algorithm makes a much closer estimate of θ by

using exponential filtering technique in the formulation of θ̂ as compared to the TS

algorithm.

7.3.3 Tuning parameter C for DTS algorithm

Fig. 7.4 shows a plot of the root mean square error (RMSE) obtained for

different values of C and standard deviation σ for 10, 000 trials in the DTS and TS
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Figure 7.2: Plot shows the estimated and actual values of θ for the case of a single

arm. Estimated values are calculated based on TS algorithm.
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Figure 7.3: Plot shows the estimated and actual values of θt for the case of a single

arm. Estimated values are calculated based on DTS algorithm.
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Figure 7.4: Plots for RMSE for two different values of θ, 3 different values of standard

deviation σ and with/without the exponential filtering for θ

algorithm for a single arm. RMSE is measured as :

RMSE =

√
ΣN
n=1(θn − θ̂n)2

N
(7.25)

Note here that RMSE values averaged over 400 runs are reported in the graph.

In this experiment, we take two different values of θ = {0.8, 0.5} and choose the

standard deviation in the set {0.005, 0.01, 0.05}. We notice that the graphs for

different values of θ but same standard deviation are overlapping. We also notice

that the value at which the RMSE is minimum reduces with the increasing value

of σ since higher the value of σ, the more dynamic the arms are, hence lesser past

history is required for a better estimation of θ.

We next present an empirical evaluation of the different MAB algorithms using

tuned values of the model parameters.
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Figure 7.5: Plots of Regret comparing DTS with UCBf , UCB-Normal and TS

algorithms for the case of Simple Boundaries
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Figure 7.6: Plots of Regret comparing DTS with UCBf , UCB-Normal and TS

algorithms for the case of Absorbing Boundaries
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Figure 7.7: Plots of Regret comparing DTS with UCBf , UCB-Normal and TS

algorithms for the case of Simple Boundaries

7.3.4 Varying Standard Deviation

In the first experiment to evaluate the performance of different MAB strategies,

we vary the standard deviation σ of θ. We consider a total of 10 arms, θopt = 0.6,

and all the other 9 arms are generated from Uniform distribution U(0.6, 0). Fig.

7.5, 7.6 show the regret obtained by using different standard deviations for the SR

method for 10, 000 trials for the case of simple and absorbing boundaries. The

different values of threshold are {0.001, 0.005, 0.008, 0.01}. We see that the DTS

algorithm shows the least regret as compared to other MAB strategies for both the

cases of absorbing as well as simple boundaries.
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Figure 7.8: Plots of Regret comparing DTS with UCBf , UCB-Normal and TS

algorithms for the case of Absorbing Boundaries
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7.3.5 Changing the number of arms

We perform this experiment to show the effect of increasing the number of

arms on the regret obtained for the case of Brownian bandits. We set θmax = 0.6

and initially randomly generate a set of 9 arms with reward probabilities in interval

(0.6, 0) using Uniform distribution, and add four arms from the same set U(0.6, 0) for

a total of 10K trials. We use σ = 0.005 as standard deviation for the DTS algorithm.

As shown in Fig. 7.7, 7.8, the DTS algorithm performs much better than the UCBf ,

Thompson Sampling and UCB-Normal algorithm. The difference between UCBf

and DTS algorithm grows as the number of arms increase which shows that the

UCBf algorithm is not scalable with the number of arms for both absorbing and

simple boundaries. We do not show the results of UCB-Normal algorithm in Fig.

7.8 as it consistently shows poor results for the case of absorbing boundaries also.

7.4 Conclusion

In this dissertation, we presented Dynamic Thompson Sampling (DTS) algo-

rithm which uses Order Statistics based Thompson Sampling framework but extends

it using exponential filtering to track the dynamic changes in the reward probabili-

ties and minimizes the total regret. The experimental results and analysis presented

in this dissertation show that the DTS algorithm significantly outperforms current

state-of- art methods such as UCBf , Thompson Sampling and UCB- Normal for the

case of dynamic reward probabilities following bounded Brownian motion. We also

observe an increasing performance improvement as the number of arms increases,
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which demonstrates the usefulness of our proposed algorithm to large-scale MAB

problems. The DTS strategy can be further extended to include variations such as

playing the top-k arms instead of a single arm, and adding immunity from elimina-

tion for some arms. We are working on proving the theoretical bounds of the DTS

algorithm and exploring the possibilities of extending it in other dimensions such as

mortal bandits, and hierarchical bandits.

109



Chapter 8

Centralized vs. Decentralized Decision Making in Multi-Armed

Bandits for Common PayOff Games

8.1 Introduction

In this chapter, we study the case of Decentralized vs. Centralized decision

making for MAB for the case of two Samplers whose rewards depend on the decisions

of each other. Instead of having a single Thompson Sampler pulling K arms, suppose

we take two Thompson Samplers {A,B} each being responsible for
√
K “virtual”

arms. Let sampler A govern the virtual arms (a1, a2, ..., a√K) while sampler B

governs the virtual arms (b1, b2, ..., b√K). The rewards received by each then depend

on their joint pulling of virtual arms since this joint choice is mapped into one of

the K original arms. This, in turn, means for instance that the rewards for both

samplers will be different for arm pull combinations (a1, b1) and (a1, b2), even though

A pulls the same virtual arm in both cases. The problem that we address in this

dissertation is to find the best joint choice (ai, bj) in a decentralized manner, with

each sampler maximizing its own rewards, without communicating with the other

sampler. As we will see in the following sections, this formulation can be mapped

to a multi-agent system modeled in terms of a common pay-off game from game

theory.
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8.2 Problem Definition

8.2.1 Game Theory

Thompson Sampling decomposed as a pair of agents can be modeled as a game

theory [16] problem and below we discuss the pertinent aspects of game theory used

in this dissertation.

• Dominated vs. Dominant Strategies: A strategy is dominated if it never

is the best response, whatever the choice of the opposition. Conversely, a

strategy is dominant if it is the best strategy regardless of the opposition

strategy. The fact that one of the two players have a dominant strategy

enables the players to pinpoint a single outcome which is the best for both.

• Nash Equilibrium: An outcome is in equilibrium if it is brought about by

strategies that agents have good reason to follow. A set of rationalizable

strategies (one for each player) are in a Nash Equilibrium if their implemen-

tation confirms the expectations of each player about the others choice. Nash

strategies are the only rationalizable strategies, that if implemented, confirm

the expectations on which they are based.

Common pay-off games are a special class of common interest games with

identical payoffs as exemplified by Matrix-I and Matrix-II in Table 8.1. In common

interest games, the rationality of the group is aligned with the rationality of each

player and a Pareto Optimal Nash Equilibrium exists. An outcome of a game is

Pareto optimal if there is no other outcome that makes every player at least as well
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Matrix-I Matrix-II

A/B b1 b2 b3 b1 b2 b3

a1 0.25 0.5 1.0 0.25 0.275 0.4375

a2 0.125 0.25 0.5 0.35 0.25 0.275

a3 0.0625 0.125 0.25 0.625 0.35 0.25

Table 8.1: An example of common interest game with Pure and Multiple Nash

Equilibria. Game Matrix -I has pure Nash equilibrium at (a3, b1) and Matrix-II has

mixed Nash equilibrium at (a3, b1) and (a1, b3).

off and at least one player strictly better off. Matrix-I in Table 8.1 has a single Nash

equilibrium at (a1, b3) and Matrix-II shows a game with two Nash equilibria (a3, b1)

and (a1, b3) with (a3, b1) being the Pareto Optimal Nash equilibrium.

8.2.2 Multi-Armed Bandit Strategies

8.2.2.1 Decentralized Thompson Sampling (DeTS)

In Decentralized Thompson Sampling, each of the samplers A and B main-

tains its own local view of information. First of all, each agent maintains its own

state space: {(αnA1, β
n
A1), (αnA2, β

n
A2), . . . , (αn

A
√
K
, βn

A
√
K

)} for A, and

{(αnB1, β
n
B1), (αnB2, β

n
B2), . . . , (αn

B
√
K
, βn

B
√
K

)} for B. Furthermore, at each trial, each

sampler selects an arm from his local set of virtual arms (a1, a2, ..., a√K) using

Thompson Sampling as shown in Alg. 16. After the samplers has selected a pair
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A/B b1 b2 ... b√K

a1 q/2
√
K−1 q/2

√
K−2 ... q/20

a2 q/2
√
K q/2

√
K−1 ... q/21

a3 q/2
√
K+1 q/2

√
K ... q/22

... ... .. ...

a√K q/22
√
K−2 q/22

√
K−4 ... q/2

√
K−1

Table 8.2: Common Interest Game matrix used in the experiments section.

(ai, bj) of virtual arms, the pair is mapped to the corresponding arm k in the K-

dimensional space, which is pulled to obtain a reward. Accordingly, the rewards

that each sampler receives are dependent on the decisions of the other sampler too.

In this way, each agent has to decide only amongst
√
K decisions as compared to

the K arms available to the Pure Thompson Sampling algorithm.

Algorithm 16 Decentralized Thompson Sampling (DeTS)

For each agent, A and B, initialize α0
A1, ..., α

0
A
√
K

= 2, β0
A1, ..., β

0
A
√
K

= 2 ,

α0
B1, ..., α

0
B
√
K

= 2, β0
B1, ..., β

0
B
√
K

= 2.

loop

for i = 1→ 2 do

Select an arm ik based on Thompson sampling for each agent i.

end for

Play arm (ak, bk).

end loop
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A/B b1 b2 b3 b4 b1 b2 b3 b4

G′0 (r = 0) G′1 (r = 0.1)

a1 0.125 0.0625 0.03125 0.015625 0.125 0.081 0.078 0.11

a2 0.25 0.125 0.0625 0.03125 0.23 0.125 0.081 0.078

a3 0.5 0.25 0.125 0.0625 0.45 0.23 0.125 0.081

a4 1 0.5 0.25 0.125 0.90 0.45 0.23 0.125

G′2 (r = 0.2) G′3 (r = 0.3)

a1 0.125 0.1 0.125 0.2125 0.125 0.12 0.17 0.31

a2 0.2125 0.125 0.1 0.125 0.19 0.125 0.12 0.17

a3 0.40625 0.2125 0.125 0.1 0.3125 0.175 0.125 0.138

a4 0.803125 0.40625 0.2125 0.125 0.70 0.36 0.19 0.125

G′4 (r = 0.4) G′5 (r = 0.5)

a1 0.125 0.1375 0.21875 0.409375 0.125 0.156 0.27 0.508

a2 0.175 0.125 0.1375 0.21875 0.156 0.125 0.15625 0.26

a3 0.3125 0.175 0.125 0.1375 0.265 0.156 0.125 0.156

a4 0.606 0.313 0.175 0.125 0.508 0.266 0.156 0.125

Table 8.3: Matrix G′ for common interest game r = 0, 0.1, 0.2, 0.3, 0.4, 0.5 starting

from top left used in the experiment for the case of K = 4. The Nash equilibria are

shown in bold.
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Figure 8.1: Regret and Processing time for the case of 4 × 4 arms for TS, DeTS,

SR algorithms. (-.) line represents TS algorithm, (- -) line represents SR algorithm

and (-) solid line represents DeTS algorithm.
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Figure 8.2: Regret and Processing time for the case of 10× 10 arms for TS, DeTS,

SR algorithms. (-.) line represents TS algorithm, (- -) line represents SR algorithm

and (-) solid line represents DeTS algorithm.
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Figure 8.3: Regret and Processing time for the case of 14× 14 arms for TS, DeTS,

SR algorithms. (-.) line represents TS algorithm, (- -) line represents SR algorithm

and (-) solid line represents DeTS algorithm.
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8.3 Comparative Analysis

In the section below, we report the experiments done to study and compare

Decentralized Thompson Sampling with Successive Reduction and Pure Thompson

Sampling algorithms. Though we performed significant experiments over several

values of the reward distributions, we only report the most important and relevant

experiments in this paper. Each experiment is repeated 100 times, and average

values are reported in the results.

The performance of the estimation technique is measured in terms of the

Regret which is defined as,

Regret = ΣN
n=0(rn∗ − rnk )

where N is the total number of trials, rn∗ is the Bernoulli output received after

playing an arm with the highest θkn at trial n and rnk is the reward obtained after

sampling the kth arm according to the applied algorithm. Hence, regret is a measure

of the loss occurred when using an algorithm as compared to the optimal algorithm.

We also report the processing times of the experiments which becomes an important

factor when applying the algorithms to real-time applications.

The processing time is the measure of the time taken in seconds for a single

iteration of the process to complete a given number of trials. All the experiments

are performed on the same machine running Mac OSX 2.8 Ghz, 8 GB memory.
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8.3.1 Stochastic Exponential Game Matrix

To show the performance results of our algorithm for a number of different sce-

narios occurring due to the presence of two different Samplers, we take a generalized

√
K×
√
K game matrix G as shown in Table 8.2. We systematically vary the Game

matrix to change from a dominant strategy game with Pure Nash Equilibrium to

multiple Nash Equilibria game to see the effect of this change on the performance

of different algorithms.

G in its current form is a dominant strategy game with a1 being the dominant

strategy for agent A and b√K being the dominant strategy for agent B.

We slowly modify the matrix G to G′ by applying the function G′ = r ×

G + (1 − r) × transpose(G) where r ∈ {0.0, 0.1, 0.2, 0.3, 0.4, 0.5} and q = 1. The

corresponding values of the probabilities for arms K = 16 are shown in Table 8.3.

We see that the matrix G′0 and G′1 have dominant strategies at (a4, b1) with highest

reward probabilities being 1.0 and 0.9. But the matrices G′2, G′3, G′4 and G′5 have

two Nash equilibria at (a1, b4) and (a4, b1). (a4, b1) is the Pareto Optimal solution

for G′2, G′3 and G′4 while both (a1, b4) and (a4, b1) are both Pareto Optimal solutions

for G′5. We start our first experiment with small number of arms at K = 16 (Table

8.3) and then we increase the number of arms to K = 100, 196 to show the effect of

increased number of arms on the results.
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8.3.1.1 Experiment 1: K = 16

We perform the experiments for each algorithm - DeTS, SR and TS when the

number of arms are K = 16. We see that the regret values are minimum for DeTS

algorithms for all values of r except when r = 0.4 as shown in Fig. 8.1. For the

case of r = 0.4 in matrix G′4, the two Nash equilibria are very close to each other

at 0.606 and 0.409, which leads to the agents converging to either in the case of

decentralized decision making leading to lower performance.

We also notice that the processing time taken by the DeTS algorithm is the

minimum while the time taken by the SR algorithm is the maximum. The reason of

which is that in the DeTS algorithm the dimensionality of the state space reduces

to
√
K and hence the time taken to select the next arm to play becomes sublinear.

Although in the case of SR algorithm the number of arms are getting succes-

sively reduced, it still takes time to compute the probability P (θi > θk) for each arm

k, which is the basis for elimination of arms. We did not show the complete graph

of the processing time for SR algorithm as it shoots beyond 7 seconds for a single

processing of 6,000 trials, which is much higher as compared to the DeTS and TS

algorithms.

8.3.1.2 Experiment 2: K = 100

In experiment 2, we use the same matrix G′ but increase the number of arms

to 100, thus each agent has 10 “virtual” arms. For the case of K = 100, Matrix

G′0 for r = 0 has a single Nash equilibrium at (a10, b1) = 1 and G′1 for r = 0.1
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has a Nash equilibria at (a10, b1) = 0.90. G′2, G′3, G′4, G′5 have two Nash equilibria

at (a10, b1) and (a1, b10) with values (0.80, 0.20), (0.70, 0.30), (0.60, 0.40), (0.50, 0.50).

The results for this experiment are shown in Fig. 8.2, the decentralized solution con-

sistently outperforms the other two solutions both in terms of regret and processing

times as the number of trials increase to 10,000 similar to the previous result.

8.3.1.3 Experiment 3: K = 196

Since in the real world scenarios, it is common to have large number of arms,

we do the third experiment with K = 196. The matrix is similarly formulated but as

we can see the total number of arms is increased to almost double to that of matrix

in Experiment 2. The results are shown in Fig. 8.3. The performance increase is

much more as the number of arms have increased, thus making the sub-linear DeTS

algorithm the best performer for large scale MABs.

8.4 Conclusion

In this chapter, we studied centralized and decentralized decision making for

Multi-Armed bandit problems for Thompson Sampling methods. Although, in cen-

tralized systems the agents make joint decisions, the performance seem to deteriorate

significantly as the number of arms increase. The Decentralized systems converge

very quickly to the optimal arm in case of Pure Nash Equilibrium. In case of multi-

ple Nash Equilibria, their performance may deteriorate, but decentralized algorithms

are very scalable and perform much better when the number of arms increase. The
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presence of two agents independently pushes the system towards higher performance

in the decomposed arm space, thereby accelerating the learning process.
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Chapter 9

Conclusion and Future Work

9.1 Conclusion

Multi-Armed bandit problem, a classic dilemma of “exploration vs. exploita-

tion”, has intrigued researchers for about fifty years now. The solution to the

multi-armed bandit problem can be broadly divided into two categories - 1) Non-

Bayesian 2) Bayesian Techniques. In this dissertation, we have explored multiple

aspects of the Bayesian techniques, which is also known as “Thompson Method” for

Multi-Armed bandit problems. We introduced several different algorithms – Beta

Geometric Probabilistic, Beta/ Thompson Sampling, Beta Geometric Determinis-

tic, Successive Reduction Hoeffding, Successive Reduction Order Statistics, Dynamic

Thompson Sampling, and Decentralized Thompson Sampling which handle different

aspects of the Multi-Armed Bandit problem and have performed thorough empirical

analysis of the algorithms.

We start with a case of Two-armed bandit and present Beta Geometric Prob-

abilistic, Beta/ Thompson Sampling, Beta Geometric Deterministic algorithms as

solutions in the Bayesian framework. We then propose, Beta Geometric Probabilis-

tic and Beta/Thompson Sampling, to handle the generalized case of k-armed bandit

and perform empirical analysis for the case of rare as well as non-rare events.

With the emergence of online recommendation systems in the Internet domain,
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it is not uncommon to have a few hundred arms, hence algorithms need to be

designed for large scale Multi-Armed Bandits. In this dissertation, we introduced a

rather radical strategy the Successive Reduction (SR) strategy that addresses the

above weakness directly. Successive Reduction algorithms use Thompson Method

for arm selection, however, concurrently, successively eliminate bandit arms from

further consideration. We investigated two elimination criteria, one based on so-

called Hoeffding Bounds and another one based on Order Statistics. The purpose

was to increase reward probability by not considering inferior arms, and at the same

time reduce information storage and management needs.

In the next part of the dissertation, we removed the assumption of θ being

static and introduced a Dynamic Thompson Sampling method which modifies the

estimate of the θ̂ based on exponential filtering. The only other solution which exists

in this field is the UCBf solution. The Dynamic Thompson Sampling method tracks

θ very closely and is able to provide better solutions as compared to the UCBf .

The presence of multiple decision makers is very common in current day sys-

tems, these decentralized systems with multiple agents are typically autonomous,

maintain local view of information, and have a finite cost of communication. In last

part of this dissertation, we compare centralized vs. decentralized systems in the

Multi-Armed Bandit setting. The Decentralized Decision Making can be modeled as

a Game Theory problem. Our results show that the Decentralized systems perform

well for both the cases of Pure as well Mixed Nash equilibria and their performance

scales well with the increase in the number of arms due to reduced dimensionality

of the space.
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9.2 Future Work

There are immense possibilities of extending the Bayesian Multi-Armed Ban-

dits in the future.

One of the directions in which the bandits can be extended is the case of mortal

and finite horizon bandits. The knowledge of finite horizon N can be helpful in

deciding the online strategy as exploration and exploitation can be done dependent

upon N . Moreover, it is also possible to have a non permanent set of arms which can

become alive and dead in the middle of the trials. For example, in the case of Online

advertising, the budget of an Internet advertiser can be limited which determines

the total number of impressions, if the advertiser pays per impression. Hence, this

problem can be directly mapped to the problem of finite horizon. Moreover, new

advertisements can be introduced in the middle of the campaign and advertisements

may be removed during the course of the campaign.

It would be interesting to see how Bayesian algorithms can be modified to

incorporate finite- horizon mortal bandits. In literature, we have seen papers in this

area using variants of confidence bound based and epsilon greedy algorithms [6].

We would like to extend Bayesian Algorithms towards this direction and perform

empirical analysis to see how they perform.

Another interesting direction of future work will be to try the Decentralized

Thompson Algorithm for other types of games such as common-interest games,

zero-sum games, to name a few.
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