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Hyperspectral imaging is a non-destructive detection technology and a powerful 

analytical tool that integrates conventional imaging and spectroscopy to get both 

spatial and spectral information from the objects for food safety and quality analysis. 

A recently developed hyperspectral imaging system was used to investigate the 

wavelength between 530nm and 835nm to detect defects on Red Delicious apples. 

The combination of band ratio method and relative intensity method were developed 

in this paper, which using the multispectral wavebands selected from hyperspectral 

images. The results showed that the hyperspectral imaging system with the properly 

developed multispectral method could generally identify 95% of the defects on apple 

surface accurately. The developed algorithms could help enhance food safety and 

protect public health while reducing human error and labor cost for food industry. 
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Chapter 1 Introduction 
 

1.1 Introduction 
 

The United States produces over 9.48 billion pounds of apples annually (Knopf, 

2010), and 148.7 million boxes of apples are packed for the fresh fruit market. 

(USDA ERS, 2009). In the apple packing industry, fruits are checked either visually 

by human or sorting machines for quality control before shipping to consumers.  In a 

typical apple packing house, workers are placed along an apple conveyor to inspect 

the passing apples and remove the ones that are injured, rotten, diseased, bruised or 

with other defects. After defect inspection, apples are transferred to another line for 

cleaning, waxing and drying. The final grading lines sorts the apples by their size, 

color, and shape, and then pack them into different boxes based on the grade.  

 

Some of the sorting procedures have already been automated; however, some others 

are still carried out manually.  After working at the packing line for many hours, even 

the most experienced workers may feel tired, thus their efficiency may reduce 

dramatically. Because many apple defects such as bruises, cuts, sooty blotch, and 

other physical damage cannot be easily found by eyes, finding a reliable, accurate, 

and efficient apple defect sorting system will be very valuable and has been very 

challenging(Xing and Baerdemaeker, 2005).  

 

Automated defect detection system has the advantages of overcoming the drawbacks 

of manual inspections in reducing the subjectivity and reducing tediousness.  Optical 
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imaging techniques are one of the major non-destructive fruits inspection methods 

that are used in machine vision systems.  Spectral reflectance imaging has been 

widely used for assessing quality aspects of agricultural products (Kavdir and Guyer, 

2002). However, the development of a practical system for automated defect 

detection sorting still encounters limitations in accuracy. 

 

Hyperspectral line-scan imaging techniques combine conventional imaging 

techniques and spectroscopy to acquire both spatial and spectral information from an 

object, which show discrete spectral features of the target objects. However, 

hyperspectral image data is too complicated for processing because it has high 

volume of data; therefore, practical multispectral techniques are used in real life 

applications. Moreover, the combination of multiple bands with spectral information 

leads to better classification than using single band. In this research, we developed a 

novel approach that combines band ratio method and relative intensity method for 

defect detection. 

 

1.2 Thesis Organization 

 
The overall objective of this research is to develop multispectral algorithm derived 

from hyperspectral line-scan images for automatic defect apple inspection. The 

optimal band selection and band combination are applied to differentiate the defect 

area from the normal apple skins, the calyx and the stem end.  The main goals of this 

study are:  
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1. To evaluate the potential of a hyperspectral imaging in detection of the defects 

on apples by the use of a visible/NIR technique.  

2. To select the optimal band wavelengths to use for a band ratio algorithm, then 

to compare the single band ratio and intensity classification results with the 

combined classification results. 

 

Experiments and empirical studies were conducted during the period of 2008 -2011 in the 

Environmental Microbial and Food Safety Laboratory to demonstrate that the proposed 

method meets these objectives.   

 

This thesis contains six chapters. Chapter 1 gives the introduction to the existing 

apple sorting limitations, hyperspectral imaging system use for apple sorting and 

defect detection; lists the general objectives and methods to solve the existing 

manually apple defects detection drawbacks; Chapter 2 reviews literatures to our 

research work and identifies how current approaches can be improved; Chapter 3 

elaborates our multiple-band spectral combination method with visible and near-

infrared bands information for apple defect detection; Chapter 4 discusses the results 

of apple defects detection experiments; Chapter 5 gives the conclusion of the thesis 

results derived by our experiments and researches; Chapter 6 is the future study plan. 

The appendix reports the results of Principal Component Analysis (PCA) on 

hyperspectral image and the image results using proposed method 
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At EMFSL, I have also conducted a study on principal component analysis on 

hyperspectral image. This study focuses on apple defects detection, the key 

contribution is that I found that PCA method is more complex in computation and 

time-consuming in processing, even though its defect detection rate is less than the 

proposed method in this thesis. This helps to choose the simple and effective 

classification method for future online processing. 
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Chapter 2 Literature Review 
 

2.1 Background 

2.1.1 Importance of Food Safety and Quality in Fresh Produce 
 
Fresh fruits and vegetables provide a variety of health benefits to our daily life. They 

contain vitamins, minerals, and many elements that help prevent illnesses such as 

cancer, heart disease, and stroke. A daily diet of fresh produce is highly 

recommended by health and nutrition authorities. For the past decade, American’s 

consumption of fresh vegetables and fruits has been increased every year. 

Consequently, this increase has no doubt raised the public concerns regarding the 

potential safety and quality issues of the fresh produce. 

 

Quality and safety are among the most important criteria for the evaluation of 

consumable fresh fruits and vegetables. Generally, quality includes external factors 

such as appearance (size, shape, color, gloss, and consistency), texture (firmness, 

crispness and toughness), and flavor (sweetness, sourness).  These quality aspects are 

important because consumers are susceptible to produce contamination and cross-

contamination that may occur during the packing process.  Poor quality of the fresh 

produce will have a negative effect on peoples’ health; thus, the development of 

effective fruit inspection technologies to ensure the quality of fruits and vegetables is 

essential for competition in the marketplace (Wikipedia). 



 

6 
 

 
2.1.2 Fresh Sorting and Grading 

 
The quality of fruits is affected by various factors such as conditions of growing, 

storage, and handling. In a typical apple processing factory, workers are employed to 

inspect and remove defective apples, such as those with rots, bruises, injuries, and 

other defects must be removed at the first stage to prevent cross-contamination and 

reduce subsequent processing cost.  .  At the final stage, apples are sorted according 

to their size, color and shape, and then packed into boxes according to their grades. In 

some large packing house operations, sorting machines using machine vision 

technologies are installed to sort apples into different grades based on weight, size, 

shape, color, defects and other parameters.  Storage can keep freshness of apples such 

as Red Delicious, and Golden Delicious for several months (Tao, Buchanan, Song, et 

al. 2002).  

 

“The United States Department of Agriculture defines the quality standard of apples 

into several grades: “U.S. Extra Fancy”, “U.S Fancy”, “U.S. No.1”, “U.S.No.1 Hail” 

and “U.S. Utility”. The “U.S. Extra Fancy” consists of apples of one variety which 

are mature but not overripe, clean, fairly well formed, and are free from decay, 

internal browning, internal breakdown, soft scald, scab, freezing injury, visible water 

core, and broken skins.  These apples are also free from injury caused by bruised, 

brown surface discoloration, smooth net like russeting, sunburn or spray burn, limb 

rubs, hail, drought spots, scars, disease, insects, or other defects.“U.S. Fancy” consists 

of apples of one variety (except when more than one variety is printed on the 
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container) which are mature but not overripe, clean, fairly well formed, and free from 

decay, internal browning, internal breakdown, soft scald, freezing injury, visible 

water core, and broken skins. “U.S. No. 1” consists of apples which meet the 

requirements of U.S. Fancy grade except for color, russeting, and invisible water core. 

“U.S.No.1 Hail” consists of apples which meet the requirements of U.S No. 1 grade 

except that hail marks where the skin has not been broken and well healed hail marks 

where the skin has been broken, are permitted, provided the apples are fairly well 

formed. “U.S. Utility” consists of apples of one variety (except when more than one 

variety is printed on the container) which are mature but not overripe, not seriously 

deformed and free from decay, internal browning, internal breakdown, soft scald, and 

freezing injury. The apples are also free from serious damage caused by dirt or other 

foreign matter, broken skins, bruises, brown surface discoloration, russeting, sunburn 

or spray burn, limb rubs, hail, drought spots, scars, stem or calyx cracks, visible water 

core, bitter pit or Jonathan spot, disease, insects, or other means.” (USDA, 2002) 

 
  

2.1.3 Quality Inspection using Non-destructive Methods 
 
 
It is essential for food factory and large market to reduce disease-causing hazards 

before fresh produce reaches the consumer. In order to guarantee a safe and 

wholesome product, fruit and vegetable producers are using various methods to 

improve safety and quality of their products. Since pathogens from fresh products 

cannot be completely removed using current washing/sanitization methods, the most 

effective way to minimize food safety risks is to identify and remove contaminated 
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raw materials from the product stream, prior to processing or fresh-cut preparation, 

using noninvasive on-line inspection methods that can identify fecal contamination 

and reduce human errors (Tao, Buchanan, Song, et al. 2002).  

 

Non-destructive inspection methods have been widely used in research to monitor 

quality and safety attributes of fresh produce. The ability of detecting and classifying 

fecal contamination and physical damage in fresh produce could highlight produce 

with a high risk of contamination and alert producers before the product reaches 

consumers.  

 
2.1.3.1 Apple Inspection 
 
A method that incorporates a near-infrared (NIR) camera and a mid-infrared camera 

was developed for simultaneous imaging the fruit being inspected (Wen and Tao, 

2000).  The NIR camera is in the wavelength range of 700-1000 nm and the MIR 

camera is in the range of 3.4-5µm.  The final image was obtained by subtracting the 

MIR image from the NIR image. This image shows true defects such as bruises, rots, 

and limb rubs.  A 98.86% recognition rate for stem-ends and a 99.34% recognition 

rate for calyxes were achieved using such dual-camera NIR/MIR machine vision 

defect sorting system. However, the high cost of NIR cameras still limits its practical 

implementation for apple packing house applications to date.  

 

Another research group (Kim, Chen, Mehl, et al. 2001) developed a laboratory–based 

hyperspectral imaging system which is capable of performing both reflectance and 

fluorescence imaging. It uses dual illumination sources where fluorescence emissions 
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are measured with ultraviolet (UV–A peaked at 365nm) excitation.  The spectra 

imaging range is from 430nm to 930nm with spectral resolution of approximately 

10nm. This system provided the capability of assessing quality and safety attributes 

of food products.  One group (Kim, Chen, Lefcourt, et al. 2007) has integrated an 

online line-scan system with a commercial apple-sorting machine and used it to 

evaluate and to inspect apples with fecal contamination and defects.  An NIR band 

ratio (BR) classification method is used to achieve 99.5% apple defect classification 

accuracy with a false positive rate of only 2%.  Besides, the NIR processing regime 

overcomes the presence of stem/calyx on apples that typically has been a problematic 

source for false positives in the detection of defects. 

 

A systematic approach with Partial Least Squares (PLS) regression as well as 

stepwise Discrimination Analysis (DA) based on a spectral region between 400 and 

1,000nm was used by ElMasry (2007).  Three effective wavelengths in the near 

infrared region (750, 820, 960 nm) were selected to realize multispectral imaging 

tests.  In comparison with other similar research, the results of this investigation 

indicated that this technique could be used to detect bruises on apple surfaces in the 

early stage of bruising. 

 
2.1.3.2 Inspection on Other Fruits, Meat and Vegetables 

 
Liu (Liu, Chen, Wang, et al. 2006) suggests the large spectral differences between 

good-smooth skins and chilling injured skins of cucumbers occurred in the 700 to 

850nm visible/NIR region. Results revealed that using either a dual-band ratio 



 

10 
 

algorithms (R811/756) or PCA model from a narrow spectral region of 733 to 848nm 

could detect chilling injured skins with a success rate of over 90%.  

 

Light scattering is related to the structural characteristics of fruit and hence is 

potentially useful for estimating fruit firmness. A hyperspectral imaging system was 

used to acquire 153 scattering profiles from ‘Red Haven’ and ‘Coral Star’ peaches 

between 500 and 1000nm.  A combination of 10 or 11 wavelengths was used to 

obtain best predictions of fruit firmness, and it was obtained with values for r2 of 0.77 

and 0.58 for ‘Red Haven’ and ‘Coral Star’ peaches (Lu and Peng, 2006).  

 

Hyperspectral imaging in the visible and near-infrared (400-1000nm) regions was 

tested for nondestructive determination of Moisture Content (MC), Total Soluble 

Solid (TSS), and acidity in strawberry (ELMasry, Wang, Elsayed, et al. 2007).  By 

using the Partial Least Squares  analysis, a correlation coefficient was calculated to 

predict MC, TSS, and acidity using Multiple Linear Regression (MLR) model. A 

classification accuracy of 89.61% was achieved.  

 

Spectral Angle Mapper (SAM) supervised classification method for hyperspectral 

poultry imagery was performed for classifying fecal and ingesta contaminants on the 

surface of broiler carcasses. The SAM classifier using reflectance of hyperspectral 

data with 512 narrow bands from 400nm to 900nm to get the overall mean accuracy 

was 90.13%. (Park, Windham, Lawrence, et al. 2007).  
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2.2 Machine Vision Systems 

2.2.1 Machine Vision Introduction and Future Trend 

 
Machine vision is the ability of a computer to “see”. A machine-vision system 

employs one or more video cameras, analog to digital conversion, and digital signal 

processing. As an integrated mechanical-electronic-optical-software system, machine 

vision has many applications, such as quality assurance, sorting, material handling, 

robot guidance, and calibration.  Machine vision processes target at “recognizing” the 

actual objects in an image and assigning properties to those objects by understanding 

what they mean (Giraldo, 2006).  

 

One major challenge to machine vision that uses in natural product inspection is the 

product variability because natural products have different shapes, sizes, textures and 

colors in the image data, and also the defects or attributes of the products vary in term 

of the environment conditions.  Therefore, all the factors related to the mechanical, 

electronic, optical and software should be considered in the design of a machine 

vision system (Giraldo, 2006). 

2.2.2 Machine Vision as Real-Time System 

 
The speed of machine vision system used for fruits and vegetables inspection 

becomes more important in a real-time machine vision system.  Real-time capability 

includes two aspects: at high speed and in real-time.  The meaning for high speed is 

that the vision system can take image data at a high rate.  Real-time means the system 

will be timely (the results will be provided when they are needed). In a typical 
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machine application where the part stops for viewing and is not advanced until the 

vision system has made its decision, there is a signal value to the vision system 

making a decision by a certain time so that it is not the slowest element of the 

production process.  If the vision system is earlier than this time, its value is not 

increased because the production line cannot go any faster. If the vision system is 

always on time, but very occasionally a litter slower, its value might be diminished 

only slightly, however, as the vision system becomes slower on average or more 

frequently, it becomes a bottleneck, and its value declines eventually becoming 

negative, such a system would be called soft real time.  Although high-speed and real-

time are technically different criteria, they are most often found together (Perry West, 

Automated Vision System, Inc).  

 

2.3 Hyperspectral and Multispectral Imaging and Sensing Techniques 
 
Hyperspectral imaging collects and processes information from across the 

electromagnetic spectrum. Unlike other methods that only capture one single 

spectrum image (monochromatic) or multiple discrete spectral images (multispectral), 

hyperspectral imaging records a volume of data that contains a complete spectral 

range for each point in the sample image.  As a result, hyperspectral data offers more 

detailed information about the sample object.  

 

Hyperspectral sensing is used in a wide array of real-life applications. Although 

originally developed for mining and geology, it has now spread into fields such as 

ecology and surveillance. This technology is continually becoming more available to 
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the public, and has been used in a wide variety of ways.  Although the cost of 

acquiring hyperspectral images is typically high, hyperspectral remote sensing is used 

more and more for monitoring the development and health of agricultural products 

(Wikipedia).  

 

A Hyperspectral Imaging System (HIS) generally includes an illumination device, a 

Charge-Coupled Device camera (CCD), a spectrograph, and a computer that controls 

data acquisition and processes the data. The spectral region selected depends on the 

characteristics that the system can indentify. A few optical wavelengths are selected 

to provide useful information about the characteristics of target of interest.  These 

selected wavelengths are used to form the multispectral imaging analysis. 

 

Figure 1 Hyperspectral Cube. This cube presents the data as a volume, composed of 
the spatial resolution(x, y) and the number of contiguous spectral bands (λ).  (Kim, 
2001) 
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2.4 Line-Scanning Hyperspectral Imaging System 

 
The USDA Environmental Microbial and Food Safety Laboratory (Kim, Chao, Chan 

et al. 2009) developed a new spectral-imaging technique that combines the 

advantages of spectroscopy and machine vision in addressing food quality and safety 

problem. Figure 2 shows the critical components of our line-scan imaging platform.  

The EMCCD camera is suitable for imaging with very short exposure time, while its 

hardware performs image binning, waveband selection, and fast pixel readout. 

 

The line-scan imaging platform was used for apple inspection, and also  for freshly 

slaughtered chickens that was tested on processing lines in commercial poultry plants, 

which helps to develop a multi-tasking inspection system. 

 
 

 
 

 

Figure 2 The critical components of the line-scan imaging platform (Kim, 2009) 
 
 

http://spie.org/x34189.xml?ArticleID=x34189#fig1
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2.5 Hyperspectral and Multispectral Imaging Data Analysis Methods 
 
Hyperspectral imaging techniques are widely used in food processing and inspection 

field recently. Many classification approaches have shown their potentials in food 

safety area such as fecal contamination detection, bruise detection and defects 

identification in the literature. 

To analyze the hyperspectral image data, because the hyperspectral imaging data 

provide large amount of information, thus we need to extract the useful information 

that are needed in experiment. A general strategy contains two steps, which are: 

feature extraction and pattern classification. The most useful classification approaches 

such as BR, PCA, PLS, SAM, General Discriminant Analysis-- Fisher Discriminant 

Analysis (FDA) and Linear Discriminant Analysis (LDA) and Artificial Neural 

Network (ANN) are employed in the literature.  

Different mathematical operations provide ground to further enhance the detection in 

the spectral images.  Linear and non-linear combinations of images such as ratios can 

be used to increase the intensity difference between the object of interest and the 

background. 

 

2.5.1 Band Ratio Method 
 
Calibrations and data correlation for hyperspectral images is complex due to a 

multitude of spectral bands.  The hyperspectral images were first corrected to remove 

the effect of dark current of the CCD imager, followed by correction using a standard 
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white reference measurement, thus the reflectance image was calculated using the 

following equation (1): 

I= (I0-D) / (W-D)       (1) 

Where I0 is the sample hyperspectral image, D is the dark current image, and W is the 

white reference image. The corrected images will be the basis for hyperspectral image 

analysis to the extracted spectral information for band ratio algorithm to detect the 

defects of apple data.  

Kim (Kim, Chen, Cho, et al 2007) found a two-reflectance band ratio to be an 

efficient multispectral image fusion method for detecting defects on apples.  Based on 

the spectral response, an NIR two-band ratio may provide the greatest difference in 

ratio values between the normal apple surfaces and defect portions (Liu, Chen, Kim, 

et al 2007). Large spectral differences between good-smooth skins and chilling 

injured skins occurred in the 700 to 850nm visible/NIR region. Simple spectral band 

algorithms was attempted to discriminate the ROI spectra of good cucumber skins 

from those of chilling injured skins.  Results revealed that using the dual-band ratio 

algorithm (R811/756) can detect the chilling-injured skins with a success rate of over 

90%. 

A band ratio method was applied for fecal contamination detection. Region of interest 

spectral features of fecal contaminated areas showed a relatively low reflectance 

compared to normal skin area.  Larger spectral differences between contaminated and 

un-contaminated skins occurred in the 675-950nm visible/NIR region, a dual band 
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ratio (R725/811) algorithm could be used to indentify fecal contaminated skins (Liu, 

Chen, Kim, et al, 2007). 

 

2.5.2 Other Classification Methods with Hyperspectral Data 

2.5.2.1 Principal Component Analysis  

 
In hyperspectral imaging processing, the primary goal for researchers is to extract the 

useful information among the large amount of data volume, and to evaluate the 

features from the hyperspectral data.  By evaluating these features, they select the 

most differentiable ones compared with the rest. It is also needed to do dimension 

reduction through transforming the data to a new set of axes in a new coordinate. The 

PCA (Campbell, 2002) and LDA (Fukunaga, 1990) are the most commonly used 

methods to do this transformation.  

The PCA method can be formulated by the following equation. The scatter matrix can 

be expressed as: 

  T
k

n

k
kT xxS )()(

1

µµ −−=∑
=

      (2) 

 

Where ST is the covariance matrix,  µ  is the corrected sample data’s mean vector, xk 

is N2 dimensional sample vector and n is the total number of collected spectral band 

images.  Since the covariance matrix is square, we can calculate the eigenvectors and 

eigenvalues.  In PCA, the projection optW  is chosen to maximize the determinant of 

the total scatter matrix of the projected samples. That is: 
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  ]...[maxarg 21 mT
T

opt wwwWSWW ==
η

          (3) 

 
 

Where { }miwi ,...,2,1| =  is the set of N-dimensional eigenvector of ST corresponding 

to the m largest eigenvalues.  

 

By checking the weight coefficient matrix (known as loading), six wavebands were 

selected among all the spectral bands of the sample data combined with normalized 

principal component images  to detect the defects of apples (Xing and Baerdemaeker, 

2005).  

 

An experiment using a hyperspectral imaging system for bruise detection on ‘Golden 

Delicious’ apples using the wavelength region between 400 and 1000nm with 

classification algorithms based on PCA and PLS-DA respectively were conducted by 

Xing’s group. Classification algorithms based on PCA and PLS-DA results were 

developed, and their performance with respect to the classification accuracy and 

feasibility to implement on-line sorting were compared (Xing, Bravo, Jancsok, et al 

2005).   

 

Separating stem-end/calyx region from true bruises is a big problem in apple defects 

inspection research. Based on PCA of hyperspectral images, multiple effective 

wavebands were selected to distinguish the stem-end/calyx region from the cheek 

surfaces by analyzing the contour features of the first principal component score 
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images (Xing, Jancsok, Baerdemaeker, 2007).  A near-infrared hyperspectral imaging 

system with spectral region of 900-1700nm was developed; the system consisted of 

an imaging spectrograph attached to an InGaAs camera with line-light fiber bundles 

as an illumination source. Principal component analysis, band ratio, and band 

difference were applied in the image processing to segregate bruised cucumbers from 

normal cucumbers (Ariana, Lu, Guyer, 2006).  Bruised tissue had consistently lower 

reflectance than normal tissue and the former increased over time. Best detection 

accuracies from the PCA were achieved when a bandwidth of 8.8 nm and the spectral 

region of 950–1350 nm were selected.  

 

The results developed by (Roggo, Edmond, Chalus, et al. 2007) showed that the band 

ratio method and band difference method had similar performance, but better than the 

PCA.  

 

2.5.2.2 Other Classification Methods  

 
Hyperspectral image contains large amount of image, some useful information should 

be extracted for analysis. Therefore, a general strategy contains feature extraction and 

pattern classification. In addition to the most useful classification approaches such as 

Band Ratio, Principal Component Analysis, some other approaches such as: Partial 

Least Squares, General Discriminant Analysis, Artificial Neural Network and 

Spectral Angel Mapper are employed in the literature.  
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In hyperspectral imaging processing, the primary goal for researchers is to select the 

useful information among the large amount of data volume and evaluate the features 

for the hyperspectral data.  By evaluating these features, they select the most 

differentiable ones compared with the rest.  Furthermore, an integrated PCA-FDA 

method was developed (Cheng, 2002).  ANN (ElMasry, Wang, Vigneault, et al, 2007; 

Hahn, Lopez, Hernandez et al 2004; Jayas, Paliwal, Visen, 2000; Ariana, Lu, Guyer, 

2006) is a unique pattern recognition method used in hyperspectral image processing 

because of its nonlinear property. SAM (Park, Lawrence, Windham, et al. 2005, Park, 

Windham, Lawrence, et al 2007) is another supervised classification method by using 

n dimensional angle for matching pixels to the reference spectra. This method helps 

to determine the angle between individual spectra and was useful for the fecal 

detection and ingesta contaminations. Gaussian Mixture Model (GMM) is another 

classical method which uses the multivariate normal (Gaussian) probability density 

model. It was also reported that Gaussian-kernel based support vector machine 

(SVM) performance better than PCA and FDA in classifying the walnuts shell and 

pulp (Jiang, Zhu, Jing, et al. 2007a; Jiang, Zhu, Rao, et al. 2007b) . 

 



 

21 
 

Chapter 3 Apple Defect Detection using Hyperspectral 
Analysis 
 

3.1 Experimental System and Sample Materials 

3.1.1 Hyperspectral Imaging System and Image Data Acquisition 

Hyperspectral and multispectral imaging for food safety have been extensively 

studied at ARS. In the laboratory, a rapid line-scan imaging system has been 

developed for hyperspectral Vis/NIR reflectance a. The system is integrated with a 

commercial apple sorting machine (FMC Corp, Philadelphia, PA, USA) and tested by 

inspecting apples for defects and fecal contamination. 

 

The hyperspectral line-scan imaging system utilizes an electron-multiplying charge-

coupled-device (EMCCD) imaging device (Andor iXon Du 860). An imaging 

spectrograph (ImSpector V10E, Spectral Imaging Ltd., Oulu, Finland) and a C-mount 

lens (XENOPLAN 1.4/23mm Compact, Schneider, USA) are attached to the EMCCD. 

The instantaneous field of view (IFOV) is limited to a thin line by the spectrograph 

aperture slit (50 µm). Through the slit, light from the scanned IFOV line is dispersed 

by a prism-grating-prism device and projected onto the EMCCD.  Therefore, for each 

line-scan, a two-dimensional (spatial and spectral) image is created with the spatial 

dimension along the horizontal axis and the spectral dimension along the vertical axis 

of the EMCCD. 
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The line-scan imaging system used two 150-w quartz-tungsten lamps for reflectance 

imaging.  The reflectance at wavelengths shorter than 450 nm is not used because of 

its poor signal-to-noise ratio; the very low irradiance in that portion of the spectrum is 

an attribute of the quartz halogen light sources.  (Kim, Chen, Cho, et al. 2007) 

 

3.1.2 Sample Materials  
 
The apples used in this study were 169 Red delicious apples, randomly selected from 

the Rice fruit Company (Gardners, PA). Among them, 89 of them are normal good 

apples, and the rest 80 apples have visible defects. These apples are “tree-run” 

apples—no wax or other coating was applied to the apple post-harvest.  They are 

stored in a 4 
o
C cold room in the Environmental Microbiological and Food safety 

laboratory. Beltsville Area research Center, Agricultural Research Service, United 

States Department of Agriculture.  

 

We use the aforementioned hyperspectral line-scan imaging system to inspect each of 

the 169 apples. After the line-scan image data is obtained, we randomly split the data 

into two groups: the calibration group and the testing group. The calibration group 

randomly selected10 normal apples and 15 defect apples, the remaining 79 normal 

apples and 65 defect apples were in the testing group as shown in Table 1.  
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Table 1. Classification groups of the 169 sample apples. 
 

Condition Total 
Samples 

Samples for 
Calibration 

Samples for 
Testing 

Normal 89 10 79 

Defect  80 15 65 

 
 

The hyperspectral image data in the calibration group is used to determine the optimal 

wavebands to generate the multispectral imaging algorithm based on the selected 

optimal wavebands. For the 10 normal samples, we randomly select 2817 pixels from 

each data. For the 15 apples with defects, we randomly select 3901 pixels from the 

normal skin area and 794 pixels from the defect area skin for evaluation (Table 2). 

 

3.2 Hyperspectral Data Analysis Methods for Apple Defect Detection 
 

3.2.1 Reflectance Spectrum Analysis 
 
From the preliminary trial-and-error study, wavebands containing a little information 

were discarded. Only 64 channels were used in this research study, ranging from 

535nm to 831nm, with an increment of approximate 4.7nm.  

Table 2. Sample pixels for calibration of different classification groups 
 
Condition Selected Calibration Area  Number of pixels 

Normal Apple Random area  2817 

Defect Apple Normal surface  3901 
 Defect surface  794 
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Our combined apple defect detection method is motivated by the reflectance spectrum 

of the sample apples. Figure 3 shows the relative intensity of the normal skin and the 

defect areas for wavelength between 535nm and 831nm. The three solid curves, from 

top to bottom, depicts the average spectral reflectance responses over three different 

categories of sample areas - good apple skin, normal surface of defect apples, and 

defect areas, respectively. The variance of the data is shown by the six dashed curves, 

which are the average plus or minus one standard deviation for each of the three solid 

curves.  

 

Figure 3 Reflectance spectra of sample image pixels from different surface of apples. 
 
First, we observe that in general, the intensity level of good apple is the highest, 

followed by the normal surface of defect apples and the defect area has the lowest 
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intensity. This suggests that if the intensity level (Ix) at certain wavelength X can be 

used to detect whether the apple has defect. From Figure 3, when the wavelength x is 

about 685nm or higher, the waveband of the average plus one standard deviation for 

defect area becomes so low that it does not even overlap with the curve of average 

minus one standard deviation for the normal surface of defect apples. The curves in 

Figure 3 reveals that the waveband at x=779nm may give the best result, where the 

intensity level of defect area has the largest difference from other surfaces. Using I779 

for classification can successfully and effectively identify defect spots. However, it is 

unable to distinguish good apples and the normal surface of defect apples, which 

means that it will have a relatively high false negative ratio (that is fail to detect the 

defect apples when there is no response from the defect areas due to, for example, a 

bad position of the apple). Furthermore, our study also shows that this method has 

limitations in identifying the calyx, stem-end, and the apple boundary; the detail will 

be more discussed in chapter 4.  

 

Second, it is observed that the pace the intensity level changes as wavelength 

increases are also different. For example, between 577nm and 643nm, the intensity 

level of both the normal surface area on defect apples and the surface of good apples 

increase much more sharply than that of the defective areas; between 657nm and 

676nm, the surface reflectance of both good apples and the normal area of defect 

apples decrease while that of the defect area almost remains as a constant. These 

suggest us that we can measure how the wavebands change over different wavelength 

and use this to detect defects. For a wavelength interval [x, y], we define the band 
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ratio Rx/y = Ix/Iy, where Ix and Iy are the intensity levels at wavelength x and y, 

respectively. The above observation from Figure 3 implies that the band ratio R577/643 

for good apples and normal surface of defect apples will be noticeable smaller than 

that for the defect area; and the band ratio R657/676 for good apples and normal surface 

of defect apples will be larger than that for the defect areas. Our empirical study also 

shows that the band ratio R577/643 often misclassifies the apple calyx and stem-end as 

defect; it sometimes even reports good normal surface as defect; and interestingly, the 

other band ratio R657/676 is very effective in identifying calyx and stem-end in addition 

to its defect detection ability. 

 

The flow chart of this combined apple defects detection method is shown in Figure 4. 

The apples were first inspected by relative intensity method, if the apple is detected as 

good apple, then it is the good apple; if the apple is detected as defect apple, then it 

will be further inspected by band ratio R1, if the apple is detected as defect one using 

band ratio R1, then it will be sent using band ratio R2 for further inspection, otherwise, 

the apple will be recognized as the good one.  
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Figure 4 The combined method scheme of R1&&R2&&I method 
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To test the proposed combined classification method has a better classification rate, I 

tested three other combined methods, they were band ratio R577/643 and R657/676 using 

logic AND operation (R1 && R2) and logic OR (R1 || R2) operation; band ratio with 

logic OR operation then combined with relative intensity method using logic OR 

operation (I || R1&&R2). 

The four combined methods describe as follows: 

              B1= R1&& R2 

              B2= R1 || R2 

              B3= I && (R1 || R2)                                                            

              B4= I && R1 && R2                                                                (4) 

Where B1, B2, B3, B4 are binary image results of four combined detection methods, R1 

is the binary image ratio of R577/643 (R577/643 = I577/I643) with threshold T1, R2 is the 

binary image of R657/676 (R657/676 = I657/I676) with threshold T2, symbol ‘&&’ is the 

logic AND operation, symbol ‘||’ is the logic OR operation. ‘I’ is the relative intensity 

of the apple image at 779nm. 

 

To get a binary image result, different thresholds are applied to band ratio and relative 

intensity method. In this research, we define T1 as the threshold value for R577/643, T2 

as the threshold value for R657/676 and T3 is the threshold value for I799, respectively. 

To successful recognize a normal apple, all pixels in a normal apple should have 

R577/643 value less than T1, R657/676 and I779 value large than T2 and T3 respectively. For 

successful detection of defect area, at least one pixel in defect apples should have 



 

29 
 

R577/643 value higher than T1, R657/676 and I779 value should lower than T2 and T3 

respectively. 

3.2.2 Band Selection  

 
Representative reflectance spectra from 535nm to 831nm extracted from the 

hyperspectral images for normal apple surface on the both good apples and defective 

apples are shown in Figure 3. Reflectance of Red Delicious apples exhibits relatively 

high red reflectance at around 640nm, and also at around 676nm is the characteristic 

absorption of chlorophyll II α in the red region (620nm-750nm). The reflectance 

spectra of defects, calyx and stem regions are visually dark in appearance Figure 5. 

 

Figure 5 The typical defect apple image at 779nm wavelength 
 

Differences between the normal apple surface response and the defect areas are 

clearly shown from the spectrum reflectance in the green region (495nm-570nm).In 

the red region, the defect area does not show the chlorophyll α absorption 

phenomenon. The reflectance spectra between around 750nm and 830nm show the 

same characteristic information between normal apple skin and defect area. 

 

Reflectance information at 577nm and 643nm are selected for the band ratio because 

the intensity values between these wavelengths of normal surface have much 

difference than that value of the defect area; the wavelengths at 657nm and 676nm 
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are also selected for band ratio because the intensity value of the normal surface 

increased much higher than that of the defect area; the intensity value of normal 

surface and defect area at 779nm is selected due to their big intensity value 

difference.  

3.2.3 Threshold Selection 

 
As stated in the spectrum analysis section, the threshold values were selected for band 

ratio method and the relative intensity method to get a binary result image. In this 

research, we compared three different thresholding methods. Here, we defined Tα as 

the first threshold method, which uses the average defect sample pixel intensity or 

ratio value (plus or minus standard deviation σd) as its value; Tβ used the average 

normal pixel intensity value or ratio value (plus or minus standard deviation σn) as its 

threshold value; Tε is the average value of both Tα and Tβ.  

The three threshold method can be expressed as in equation (5): 

Tα = (Id or Rd)   ±  σd  ,        

Tβ = (In or Rn)   ±  σn, 

Tε = (Tα + Tβ) / 2          (5)          

Where Id and In are the intensity value of the defect area and normal apple surface on 

defect apples, respectively; Rd and Rn are the band ratio value  of  the defect area and 

normal apple surface on defect apples, respectively;  σd and σn are the standard 

deviation value of each Id and In ,or Rd and Rn.  
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The average intensity value of normal apple surface, good surface on defect apples, 

and defect area accompanied with their standard deviation bar at wavelength 779nm 

are shown in Figure 6; and the band ratio value of normal apple surface, good surface 

on defect apples, and defect area at wavelength 779nm accompanied with its standard 

deviation bar are shown in Figure 7.  

 

 

 

Figure 6 Average intensity value of sample pixels at 779nm wavelength of 
defect  area, good surface on defect apples and normal apple surface. 
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(a) 

 

 
(b) 

Figure 7 (a) (b) Average of band ratio value of the sample apple image pixel 
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Prior to calculate the ratio values of the two band images, we usually perform a mask 

operation to eliminate the background information of the image. Table 3 shows the 

sample detection result using relative intensity method and band ratio method of Tα, 

Tβ and Tε. As stated in previous methodology section, the normal surfaces on defect 

apples were considered very useful for threshold selection. For example, the result in 

table 3 showed that among three thresholding methods for the intensity method, Tε 

has a better classification result than Tα and Tβ methods. If we selected a good apple 

surface instead of the normal surface on a defect apple for the thresholding method, it 

will misclassify some normal surface area as defect.  

 

Table 3. The defects detection result using three different thresholds on selected 
training samples  
 Tα Tβ Tε 

Intensity 82% 94% 100% 

Ratio R577/643 98% 95% 98% 

Ratio R657/676 68% 94%            79% 

 

Tε thresholding method was selected for the band ratio method between 577nm and 

643nm from the result on Table 3. In Figure 7(a), the average ratio value of the defect 

area (Rd1) is 0.64 with standard deviation value (σ-Rd1) is 0.07; the average ratio value 

of normal apple surface (Rgl) is 0.32 with standard deviation (σ-Rg1) 0.13, and the 

average ratio value of the good surface on the defect apples (Rn1) is 0.29 with its 
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standard deviation value (σ-Rn1) 0.10.  Therefore, the threshold value for T1 is defined 

in equation (6):  

 

T1 = ((Rd1- σ-Rd1) + (Rn1+ σ-Rn1)) / 2                    (6)                                                                          

  

If the sample pixel ratio value is higher than T1, it is classified as the defect; if it is 

lower than T1, the pixel will be classified as the good area. 

 

Tα threshold method was selected for band ratio between 657nm and 676nm 

according to the results in table 3. Figure 7(b) showed that average ratio value of the 

defect area (Rd2) is 1.01 with standard deviation (σ-Rd2) value 0.05; the average ratio 

of normal apple surface (Rg2) is 1.02 with standard deviation (σ-Rg2) is 0.06, and the 

average ratio value of the good surface on the defect apples (Rn2) is 1.17 with its 

standard deviation value (σ-Rd2) 0.09.  Therefore, the selected threshold value for T2 

defines in equation (7):  

 

 T2 = ((Rd2 + σ-Rd2)      (7)        

 

The average value of the defect area (Id) is 0.27with standard deviation (σ-Id) is 0.11; 

the average intensity of normal apple surface (Ig) is 0.68 with standard deviation  
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(σ-Ig) is 0.12, and the average intensity of the good surface on the defect apples (In) is 

0.62 with its standard deviation value (σ-In) is 0.13. Tε threshold method is selected 

for the intensity method; therefore, the threshold value T3 defines as:  

 

T3 = ((Id + σ-Id) + (In - σ-In)) / 2    (8) 

 

Where, Id and In is the average intensity value of defect area and normal surface, 

respectively; σ-Id and σ-In is the standard deviation for  average intensity value of 

defect area and normal surface. If the sample pixel intensity value is less than T3, it 

will be classified as the defect; if it is higher than threshold value T3, the pixel will be 

classified as the good apple surface.  

 

The equation (6) (7), (8) help to find the threshold value for band ratios T1and T2  is 

0.51 and 1.01, the threshold value for intensity method at 799 nm (T3) is 0.47. 



 

36 
 

Chapter 4 Results 

4.1 Relative Intensity Method 

The band difference detection result on normal apples by using the threshold value 

(T3 = 0.47) is shown in Figure 8. The band difference method checks every pixel of 

the image data, if the pixel value is less than the threshold, it could be regarded as a 

defect. The limitation for using the relative intensity method are the classification of 

the apple edge and also the calyx and stem-end classification, the fourth apple from 

left clearly showed that the calyx is misclassified as defect. Besides, the edges of 

apples were misclassified as the defect area, which can be shown in Figure 8. The 

intensity method used for inspection on 89 normal apples, which gave the 82% 

(73/89) correctly detection rate on good apple detection.  

 

 
 

 

Figure 8 The binary image using  relative intensity method at 779nm waveband 
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4.2 Band Ratio Result 

The results in Figure 9 show that the bright spot is classified as the defect area. The 

apples on first two rows are the apple images at 577nm and 643nm waveband 

respectively, and the third row was the classifications result using band ratio R577/643. 

The defect on the first apple (from left to right) is correctly detected from the binary 

image; however, the stem ends of the last four apples are misclassified as the defect 

spots. Therefore, the classification of the stem and calyx from the real defects is still 

the challenge in apple defects detection.  Among total sample group and evaluation 

group apples, 74 of the 80 (92.5%) defective apples are correctly detected, while 48 

apples with stem-ends and calyx are misclassified as defects; only 15 of the 89 (17%) 

normal apples are correctly detected.  

 

 

 

Figure 9 Image result of band ratio between 577 and 643nm. The first row is apple 
image at 577nm; the second row is apple image at 643nm; the binary images of ratio 
(577nm/643nm) results is shown in the third row. 
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The results in Figure 10 show that the bright spots are classified as the defect area. 

The upper two row images are the apple images at 657nm and 676nm waveband, 

respectively. The third row is the classification result using band ratio R657/676.The 

defects on the first four apples were correctly detected from the binary image, even 

most of the stem-ends parts are correctly detected; however, the last apple 

misclassified apple edge as defect spot.  The detection results using band ratio R657/676 

show that among total sample group and evaluation group apples, 76 of the 80 (95%) 

defective apples are correctly detected, and most of the apples’ stem-ends are also 

classified correctly, however normal surface on 13 defective apples (16%) are 

misclassified as defect spots, which is also called false-positive rate. 

 

 
 

Figure 10  Image result of band ratio between 676 and 709nm.  The first row is apple 
image at 657nm; the second row is apple image at 676nm; binary images of ratio 
(657nm/676nm) results is shown in the third row. 
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4.3 Band Ratios and Relative Intensity Combination  
 
Although band ratio method and intensity method both can help to find some certain 

defects, they all have drawbacks in classifying the calyx, stem-ends and defects. To 

seek for a better defect detection rate, the combined method is applied into this 

research. Meanwhile, threshold value T1, T2 and T3 should be selected at the same 

time when they are applied to the combination of I779, R577/643 and R657/676.  

 

The detection results on 80 defect apples are shown in Table 4, R1and R2 are the 

binary image result of band ratio R577/643 and R657/676 with threshold T1 and T2 

respectively; I is the binary result of relative intensity method at 779nm with 

threshold T3. Table 4 indicates that using R1 || R2 combined method gave a 84% 

defect detection rate, however, some normal surface are misclassified as defective 

area; by using ‘R1 &&R2’ method, a 82.5% defect detection rate is achieved.  

Table 4. The defects detection result of several methods on defective apples 
    R1 R2 I R1 ||R2 R1&&R2 (R1||R2)&&I  R1&&R2&&I 

        

 
 
Defect 
apples 

Defect 
area 

92.5% 
(74/80) 

95% 
(76/80) 

87.5% 
(70/80) 

95% 
(76/80) 

92.5% 
(74/80) 

92.5% 
(74/80) 

95% 
(76/80) 
 

Normal 
surface 

40% 
(32/80) 

84% 
(67/80) 

45% 
(36/80) 

84% 
(67/80) 

82.5% 
(66/80) 

85% 
(68/80) 

96.3% 
(77/80) 
 

Whole 
apple 

40% 
(32/80) 

84% 
(67/80) 

45% 
(36/80) 

84% 
(67/80) 

82.5% 
(66/80) 

85% 
(68/80) 

95% 
(76/80) 

 

Figure 11 plots the final detection results on total 169 Red delicious apples compared 

with ‘(R1||R2) &&I’ and ‘R1&&R2&&I’ combined methods. The first method gives a 
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85% defect detection rate of 80 defective apples, and 67% normal apple detection rate 

of 89 normal apples; and the second method gives a 95% defect detection rate of 80 

defect apples, and a 100% normal apple detection rate of 89 normal apples. By 

comparing these combined methods, ‘R1&&R2&&I’ method has much better 

detection rate than other combined methods. 

 

  
 

Figure 11 Detection results of the entire evaluation apples using ‘(R1||R2)&&I’ and 
‘R1&&R2&&I’ method. 
 
 
In Figure 12, the binary image of combined method detection result is showed in the 

second row. The evaluation results show that all the 89 normal apples are classified as 

the good apples, which indicate a 100% correctly detection rate; 76 of 80 defect 

apples are also detected as defect apples, which gives a 95% correctly detection rate. 

The detection results using combined band ratio and intensity clearly show a better 

detection rate than using only band ratio method or intensity methods. 
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Figure 12 Image result of combined method using band ratio and intensity. The first 
row is apple image at 779nm; the second row is binary image result of proposed 
combined method.  
 
 

Here, we can analyze the ‘R1&&R2&&I’ combined classification into two detail 

stage. The first stage is to use single relative intensity method as the first process to 

classify the good apples and defect apples. If the apple is defected as good one using 

intensity method, the apple will be finally detected as good apple; if the apple is 

detected as the defective one by relative intensity method, then the apple will be 

further inspected using the band ratio methods.  

4.4 Discussion 
 
From apple detection results in Table 4, band ratio method is good at detecting defect 

apples, among total 80 defect apples, band ratio R1 and R2 gives a correct defect 

detection rate 92.5% and 95%, respectively. However, when R1 and R2 are used on 

good apple classification, I find that both R1 and R2 misclassify many of good apples 

as defect ones, which causes high false positive rate.  Results show that 59 normal 

apples are correctly detected and the other 30 normal apples are misclassified as 

defect ones by using combined method of R1 and R2.   
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Figure 13 Image results of band ratio combined method and proposed band ratio and 
intensity combined method on good apples; the first row is the apple image at 779nm, 
the second row is binary image detection result of combined R1 and R2; the third row 
is binary image result of the proposed combined method. 
 
 

From Figure 13, we can find that the fist apple (from left), the fourth apple and the 

fifth apple are misclassified as defect apples using‘R1&&R2’ method; the detection 

results show that when the intensity method is added, it helps to correct this 

misclassification caused by ‘R1&&R2’ method. Therefore, ‘R1&&R2&&I’ method 

gives a 100% classification rate on total 89 normal apples. 

 
When using ‘R1&&R2&&I’ method, a 95% defect detection rate is achieved on total 

80 inspected  defect apples, 4 of them cannot detected by this method. In Figure 14, 

the first row are the apple color images, the second row are apple images at 779nm, 

and the third row is the detection binary image result , we can see that four defect 

apples are not detected. The third apple (from left) has minor defect spot, and the 
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proposed method may not has that much accuracy in detecting some small defects; 

however, the other three apples has large defects, but cannot be detected by the 

proposed method. We suspect the reason is these defects have similar surface with 

normal surface, thus there is no big difference between the normal surface reflectance 

response and defect area reflectance response along the spectrum. 

 

 

Figure 14 Four apple image results that misclassified as good one using  
‘R1&&R2&&I’ method.. 
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Chapter 5 Conclusion 
 

The study in this research selected five wavelengths at 577nm 643nm 657nm 676nm 

and 779nm for band ratio and relative intensity method. The requirement of only five 

wavebands and the simple computation of the algorithm present a potentially 

significant reduced time usage of the image acquisition and processing. It is an 

essential consideration for real-world application of non-destructive food safety 

inspection method. 

 

An additional benefit of the developed combined method is that there is no need to 

differentiate apples from background. Since the PCA method and some other existing 

classification methods have the negative influenced by background information, 

throughout the entire imaging analysis after corrected image process, there is no pixel 

in the background gave false positive information by combined relative intensity and 

band ratio method. The studied detection results show that 95% of defect apples are 

correctly detected and 100% of the normal apples are detected correctly.  However, 

the apple number in this study is count manually, it is necessary to detect and count 

apples automatically at the same time; this will be considered in the future research.  

 

In this research, I implemented the relative intensity method first; however, this 

method has limitations, although it can find some of the defect area, it misclassified 

the apple edges and even calyx and stem-end as the defect spots. Another method I 

tested in this research is band ratio method, which is good to classify apple edge and 
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some calyx and stem-end. However, the band ratio method will miss some of the 

defect area. By thinking the advantages and disadvantages of these two classification 

methods, I found that the combination of the relative intensity method and band ratio 

method will give a better correct classification result.  

 

For this study of focusing on the apple defect detection, it only use the reflectance 

image of the line-scan imaging system, we do have using the violet LED lights 

presented another band ratio combined method on fecal contamination detection on 

apples using the fluorescence imaging technique  utilized UV excitation. Considering 

of an EMCCD camera, spectrograph, C-mount lens and even line lights shown in 

Figure 2 , this system could be made portable for installment on the a food processing 

line. For the real-world application, using such a system offers great potential as a 

value-added dynamic inspection system due to its capability for multi-tasking to meet 

a variety of inspection objectives. A multi-tasking inspection system that can meet 

current industry sorting needs with the added benefit of safety inspection without 

requiring significant modification of existing infrastructure or incurring significant 

costs may lead the apple industry to consider adopting voluntary measures to further 

enhance safe production and processing of fruits. 
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Chapter 6 Future Study  
 
The light source of hyperspectral imaging system used in this research is a pair of 

150w quartz-tungsten lamps, the apple we have collected before did not under best 

uniform illumination, when we used band ratio method on good apples, this situation 

showed clearly. The apple surface has sharp bright area which below the fiber 

halogen light.  I am thinking that whether we could align the illumination light and 

make it more uniform in the future study.  

 

The apple hyperspectral data in our research only captured most part of the apple 

surface that face to the camera. In the future study, we could make the apple sorting 

machine to rotate the apple. Imagine that we can rotate the apple surface for 360o, and 

the line scanning imaging system can capture the whole surface of an apple.  
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Appendix A 
 

Results of Principal Component Analysis on Hyperspecteral Image 

Principal component analysis (PCA) was performed on the reflectance spectra of total 

169 Red delicious apples, and hence several principal components could be achieved.  

In general the first four eigenvalues calculated in PCA process have preserved more 

than 90% energy of the whole dataset. As a result, there is a balance between the 

number of selected principal components and the performance and computation time.  

 

1.1 Selection of optimal wavebands  

 

                Figure 15 Loading plots of the average five selected ‘Red Delicious’ Apples 
 

In Figure 15, it showed the average loadings of first four components from selected 5 Red 

delicious apples across the entire spectral region. Although the first principal component 
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accounts for most of the variance in the image, we will still analysis the second principal 

component image and the third and fourth principal component to because it can clearly 

show the difference between the defect area and normal area in single image. Thus, four 

wavebands are choose, are 558nm 676nm 779nm and 812nm. The following analysis was 

carries out on the selected four wavebands instead of whole spectral region. As we can 

see from Figure 16, Prin 1 scores image mainly accounts for the apple shape effect or 

illumination conditions; the Prin2 or Prin3 are good for discriminating defects and even 

bruise tissue.  

 

A classification method to discriminate the defect from normal area was suggested by 

Xing (2004). Combined normalized image were used to identify the apple defects using 

the following equations: 
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Where, I i,norm is the original Prini score image, max(Ii) is the maximum value of the Prin i 

score image, and min(Ii) is the minimum value of the Prin i score image; Ii,norm is the 

normalized Prin i score image; Ii j is the combined Prin i and Prin j normalized image. 

The following Figure 17 is the example of the combined normalized prin2 and prin3 

images. 

 

After using this method on total 169 Red delicious apples, among these apples, 80 of 

them are apples with visible defects and the rest 89 apples are normal one.  The PCA 
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classification method result showed that 7 of the 80 defects are not detected, and 9 

normal apples were mistaken as defected ones. However, we found that among the 9 

mistaken defect apples, 4 of them are have light bruise which cannot clearly see by 

human eyes were detected by PCA classification method. 

 

 

Figure 16  Principal component results by PCA methods 
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Figure 17 Combination of normalized images (upper), and after thresholding  
               results (lower)  
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Appendix B 
 

Apple Image Results using Proposed Classification Method 

 
The following 16 images show apple defects detection results, the first row is the 

color photo taken during experiment; the second row is the reflectance image at 

779nm; the third row is the defect detection result using the proposed intensity and 

band ratio combined method in this thesis. 

 

1) Defect apples 1 to5 (Color photo, Reflectance at 779nm, Detection results) 
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2) Defect apples 6 to10 (Color photo, Reflectance at 779nm, Detection results) 
 

 
 
 
 
 
3) Defect apples 11 to15 (Color photo, Reflectance at 779nm, Detection results) 
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4) Defect apples 16 to20 (Color photo, Reflectance at 779nm, Detection results) 
 

 
 
 
 
 
5) Defect apples 21 to 25(Color photo, Reflectance at 779nm, Detection results) 
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6) Defect apples 26 to30 (Color photo, Reflectance at 779nm, Detection results) 
 

 
 
 
 
 
 
7) Defect apples 31 to35 (Color photo, Reflectance at 779nm, Detection results) 
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8) Defect apples 36 to40 (Color photo, Reflectance at 779nm, Detection results) 
 

 
 
 
 
 
9) Defect apples 41 to 45 (Color photo, Reflectance at 779nm, Detection results) 
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10) Defect apples 46 to50 (Color photo, Reflectance at 779nm, Detection results) 
 

 
 
 
 
 
11) Defect apples 51to55 (Color photo, Reflectance at 779nm, Detection results) 
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12) Defect apples 56 to 60 (Color photo, Reflectance at 779nm, Detection results) 
 

 
 
 
 
 
 
13) Defect apples 61to65 (Color photo, Reflectance at 779nm, Detection results) 
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14) Defect apples 66to70(Color photo, Reflectance at 779nm, Detection results) 
 

 
 
 
 
 
 
15) Defect apples 71to75(Color photo, Reflectance at 779nm, Detection results) 
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16) Defect apples 76 to 80(Color photo, Reflectance at 779nm, Detection results) 
 

 
 
 

 
 
 
 
 

 

 



 

60 
 

 

 Reference 
 

 Ariana, D., Guyer, D. E. and Shrestha, B., “Integrating Multispectral Reflectance and 

Fluorescence Imaging for Defect Detection on Apples”, in Computers and 

Electronics in Agriculture, 2006, pp.148-161.  

Ariana, Diwan P., Lu, R.F. and Guyer, Daniel E., “Near-Infrared Hyperspectral 

Reflectance Imaging for Detection of Bruises on Pickling Cucumbers”, in 

Computers and Electronics in Agriculture 53(1), 2006, pp. 60-70. 

Campbell, J. B., “Introduction to Remote Sensing,” 3rd ed. Oxford, U.K.: Taylor and 

Francis, 2002. 

Cheng, X., Chen, Y.R., Tao, Y., Wang, C.Y., Kim, M.S. and Lefcourt, A.M.,“A 

Novel Integrated PCA and FLD Method on Hyperspectral Image Feature 

Extraction for Cucumber Chilling Damage Inspection,” in Transactions of the 

ASAE 47 (4), 2002, pp.1313–1320.  

Cheng, Xuemei, “Hyperspectral Imaging and Pattern Recognition Technologies   for 

Real Time Fruit Safety and Quality Inspection,” Doctor Dissertation, 2002.  

Knopf, David, “National Agricultural Statistic Service,” USDA, 2010. 

ElMasry, G., Wang, Ning,  Elsayed, Adel and Ngad, Michael, “Hyperspectral 

Imaging for Nondestructive Determination of Some Quality Attributed for 

Strawberry”, in Journal of Food Engineering, 2007, pp.98–107. 



 

61 
 

ElMasry, G., Wang, Ning, Vigneault, Clement, Qiao, Jun and ElSayed, Adel, “Early 

Detection of Apple Bruises on Different Background Colors using 

Hyperspectral Imaging,” In Swiss Society of Food Science and Technology, 

2007, Doi:10.1016/J.Lwt.2007.02.022. 

Fukunaga, K., “Introduction to Statistical Pattern Recognition”. 2nd Ed, New York, 

N.Y.: Academic Press, 1990. 

Giraldo, V.A.M, “Detection of Fecal Contamination on Cantaloupes and Strawberries 

using Hyperspectral Fluorescence Imagery,” Master Thesis, University of 

Maryland, 2006. 

Hahn, F., Lopez, I. and Hernandez, C., “Spectral Detection and Neural Network 

Discrimination of Rhizopus Stolonifer Spores on Red Tomatoes,” in 

Biosystems Engineering 89 (1), 2004, pp.93-99. 

Jayas, D.S., Paliwal, J. and Visen, N.S., “Multi-layer Neural Networks for Image 

Analysis of Agricultural Products,” In Journal of Agriculture Engineering 

Research, 2000, pp.119-128. 

Jiang, L., Zhu, B., Jing, H., Chen, X., Rao, X. and Tao, Y., “Gaussian Mixture Model 

Based Walnut Shell and Meat Classification in Hyperspectral Fluorescence 

Imagery,” in Transactions of the ASABE, 50(1), 2007, pp.153-160.  

Jiang, L., Zhu, B., Rao, X., Berney, G. and Tao, Y. , “Discrimination of Black Walnut 

Shell and Pulp in Hyperspectral Fluorescence Imagery using Gaussian Kernel 

Function Approach,” in Journal of Food Engineering, 81(1), 2007, pp.108-117. 



 

62 
 

Kavdir, I. and Guyer, D.E., “Apple Sorting using Artificial Neural Networks and 

Spectral Imaging, ” in Transactions of the ASAE 45(6), 2002, pp.1995-2005.  

Kim, M.S., Chen, Y. and Mehl, P., “Hyperspectral Reflectance and Fluorescence 

Imaging System for Food Quality and Safety,” in Transactions of the ASAE 

44(3), 2001, pp. 721-729. 

Kim, M.S., Chen, Y.R., Cho, B., Lefcourt, A.M, Chao, K., and Yang, C.C., 

“Hyperspectral Reflectance and Fluorescence Line-Scan Imaging for Online 

Quality and Safety Inspection of Apples,” in Sensing and Instrumentation for 

Food Quality and Safety 1(3), 2007, pp.151-159.  

Kim, M.S., Lefcourt, A.M., Chao, K., Chen, Y.R., Kim, I. and Chan, D.E.,       

“Multispectral Detection of Fecal Contamination on Apples Based on 

Hyperspectral Imagery: Part I Application of Visible and Near-Infrared 

Reflectance Imaging,” in Transactions of the ASAE 45 (6), 2002, pp.2027–

2037. 

Kim, M.S., Chen, Y. R. and Mehl, P.M., “Hyperspectral Reflectance and 

Fluorescence Imaging System for Food Quality and Safety,” in Transactions 

of the ASABE 44(3), 2001, pp.721-729. 

Kim, Moon, Chen, Y-Ren, Cho, Byoung-Kwan, Chao, Kuanglin, Yang, Chun-Chieh, 

Lefcourt, Alan M. and Chan, Diane, “Hyperspectral Reflectance and 

Fluorescence Line-Scan Imaging for Online Defect and Fecal Contamination 

Inspection of Apples,” in Sensing and Instrumentation for Food Quality and 

Safety,  2007, pp.151-159. 



 

63 
 

Kim, M.S., Chao, K., Chane, D. and Lefcourt, A., “Line-Scan Imaging for High-

Speed Food Safety Inspection,” SPIE Newsroom, 2009, DOI: 

10.1117/2.1200903.1564. 

Liu, Y., Chen, Y. R., Kim, M. S., Chan, D. E., &and Lefcourt, A. M., “Development 

of Simple Algorithms for the Detection of Fecal Contaminants on Apples 

from Visible/Near Infrared Hyperspectral Reflectance Imaging,” in Journal of 

Food Engineering 81(2), 2007, pp.412-418. 

Liu, Y., Chen, Y. R., Wang, C. Y., Chan, D. E. and Kim, M. S., “Development of 

Simple Algorithm for the Detection of Chilling Injury in Cucumbers from 

Visible/Near-Infrared Hyperspectral Imaging,” in Applied Spectroscopy59(1), 

2005, pp.78--85. 

Liu, Y., Chen, Y. R., Wang, C. Y., Chan, D. E. and Kim, M. S., “Development of 

Hyperspectral Imaging Techniques for the Detection of Chilling Injury in 

Cucumbers; Spectral and Image Analysis,” in Applied Engineering in 

Agriculture22(1), 2006, pp.101-111. 

Lu, R. and Peng, Y., “Hyperspectral Scattering for Assessing Peach Fruit Firmness,” 

in Biosystems Engineering 93(2), 2006, pp.161–171. 

Noh, H. and Lu, R., “Hyperspectral Laser-Induced Fluorescence Imaging for 

Assessing Apple Fruit Quality,” in Postharvest Biology and Technology 43, 

2007, pp.193-201. 



 

64 
 

Park, B., Lawrence, K. C. , Windham, W. R. and Smith, D. P., “Detection of Fecal 

Contaminants in Visceral Cavity of Broiler Carcasses using Hyperspectral 

Imaging,” in Applied Engineering in Agriculture 21(4), 2005, pp. 627-635.  

Park, B., Windham, W.R., Lawrence, K.C., and Smith, D.P.  , “Contaminant 

Classification of Poultry Hyperspectral Imagery using a Spectral Angle 

Mapper Algorithm,” in Biosystems Engineering 96 (3), 2007, pp.323–333 

Park, B., Windham, W.R., Lawrence, K.C., and Smith, D.P., “Hyperspectral image 

Image Classification for Fecal and Ingesta Identification by Spectral Angle 

Mapper”, in ASAE/CSAE Meeting presentation, 2007. 

Perry West, “High Speed, Real time Machine Vision,” Automated Vision Systems, 

Inc. 

Roggo, Y., Edmond, A., Chalus, P. and Ulmschneider, M., “Infrared Hyperspectral 

Imaging for Qualitative Analysis of Pharmaceutical Solid Forms,” in Sensing 

and Instrumentation for Food Quality and Safety, 2007, pp. 151-159. 

Tao, Yang, Buchanan, Robert, Song, Yoonseok, Luo, Yanguang, Chen, Yud-Ren and 

Kim, Moon, “Safety Inspection of Fruit and Vegetables using Optical Sensing 

and Imaging Techniques,” Proposal for the USDA, 2002. 

USDA ERS., “Economics, Statistics and Market Information System,” Table 3--U.S. 

Apple Production and Utilization, by State, 1980-2009. 

USDA,  “United States Standard for Grades of Apples,” USDA, 2002.  



 

65 
 

Vargas, A.M., Kim, M.S., Tao, Y., Lefcourt, A.M., Chen, Y.R., Luo, Y., and Song, 

Y., “Detection of Fecal Contamination on Cantaloupes using Hyperspectral 

Fluorescence Imagery,”  In Journal of Food Science. 2005, 70:8. 

Wen, Z., and Tao, Y., “Dual-Camera NIR/MIR Imaging for Stem-end/Calyx 

Identification in Apple Defect Sorting,” in Transactions of the ASAE 43(2), 

2000, pp.449-452. 

Wikipedia  

Xing, J. and, Baerdemaeker, J.D.,  “Bruise Detection on ‘Jonagold’ Apples using 

Hyperspectral Imaging,” in Postharvest Biology and Technology 37 (2), 2005, 

pp.152-162. 

Xing, J., Bravo, C., Jancsok, P. ,Ramon, H., Baerdemaeker, J.D., “Detecting Bruises 

on ‘Golden Delicious’ Apples using Hyperspectral Imaging with Multiple 

Wavebands,” in Biosystems Engineering, 2005, pp.27-36. 

Xing, J., Jancsok, P. and Baerdemaeker, J. D., “Stem-end/Calyx Identification on 

Apples using Contour Analysis in Multispectral Images,” in Biosystems 

Engineering 96 (2), 2007, pp.231–237. 

Xing, J., Saeys, W. and Baerdemaeker, J. D., “Combination of Chemometric Tools 

and Image Processing for Bruise Detection on Apples,” in Computers and 

Electronics in Agriculture 56(1), 2007, pp.1-13. 

 
 

 
 



 

66 
 

 
 


	Acknowledgements
	Table Content
	List of Tables
	List of Figures
	Chapter 1 Introduction
	1.1 Introduction
	1.2 Thesis Organization

	Chapter 2 Literature Review
	2.1 Background
	2.1.1 Importance of Food Safety and Quality in Fresh Produce
	2.1.2 Fresh Sorting and Grading
	2.1.3 Quality Inspection using Non-destructive Methods
	2.1.3.1 Apple Inspection
	2.1.3.2 Inspection on Other Fruits, Meat and Vegetables


	2.2 Machine Vision Systems
	2.2.1 Machine Vision Introduction and Future Trend
	2.2.2 Machine Vision as Real-Time System

	2.3 Hyperspectral and Multispectral Imaging and Sensing Techniques
	
	Figure 1 Hyperspectral Cube. This cube presents the data as a volume, composed of the spatial resolution(x, y) and the number 


	2.4 Line-Scanning Hyperspectral Imaging System
	
	Figure 2 The critical components of the line-scan imaging platform (Kim, 2009)


	2.5 Hyperspectral and Multispectral Imaging Data Analysis Methods
	2.5.1 Band Ratio Method
	2.5.2 Other Classification Methods with Hyperspectral Data
	2.5.2.1 Principal Component Analysis
	2.5.2.2 Other Classification Methods



	Chapter 3 Apple Defect Detection using Hyperspectral Analysis
	3.1 Experimental System and Sample Materials
	3.1.1 Hyperspectral Imaging System and Image Data Acquisition
	3.1.2 Sample Materials
	Table 1. Classification groups of the 169 sample apples.


	3.2 Hyperspectral Data Analysis Methods for Apple Defect Detection
	3.2.1 Reflectance Spectrum Analysis
	Table 2. Sample pixels for calibration of different classification groups
	Figure 3 Reflectance spectra of sample image pixels from different surface of apples.
	Figure 4 The combined method scheme of R1&&R2&&I method

	3.2.2 Band Selection
	Figure 5 The typical defect apple image at 779nm wavelength

	3.2.3 Threshold Selection
	Figure 6 Average intensity value of sample pixels at 779nm wavelength of defect  area, good surface on defect apples and norma
	Figure 7 (a) (b) Average of band ratio value of the sample apple image pixel
	Table 3. The defects detection result using three different thresholds on selected training samples



	Chapter 4 Results
	4.1 Relative Intensity Method
	
	Figure 8 The binary image using  relative intensity method at 779nm waveband


	4.2 Band Ratio Result
	
	Figure 9 Image result of band ratio between 577 and 643nm. The first row is apple image at 577nm; the second row is apple imag
	Figure 10  Image result of band ratio between 676 and 709nm.  The first row is apple image at 657nm; the second row is apple i


	4.3 Band Ratios and Relative Intensity Combination
	
	Table 4. The defects detection result of several methods on defective apples
	Figure 11 Detection results of the entire evaluation apples using ‘(R1||R2)&&I’ and ‘R1&&R2&&I’ method.
	Figure 12 Image result of combined method using band ratio and intensity. The first row is apple image at 779nm; the second ro


	4.4 Discussion
	
	Figure 13 Image results of band ratio combined method and proposed band ratio and intensity combined method on good apples; th
	Figure 14 Four apple image results that misclassified as good one using  ‘R1&&R2&&I’ method..



	Chapter 5 Conclusion
	Chapter 6 Future Study
	Appendix A
	
	
	Figure 15 Loading plots of the average five selected ‘Red Delicious’ Apples
	Figure 16  Principal component results by PCA methods
	Figure 17 Combination of normalized images (upper), and after thresholding



	Appendix B
	Reference

