
1

Scalable Application Layer Multicast
Suman Banerjee, Bobby Bhattacharjee, Christopher Kommareddy

Department of Computer Science,University of Maryland, College Park, MD 20742, USA
Email: fsuman,bobby,kcrg@cs.umd.edu

UMIACS-TR 2002-53 and CS-TR 4373
May 2002

Abstract— We describe a new scalable application-layer
multicast protocol, specifically designed for low-bandwidth
data streaming applications with large receiver sets. Our
scheme is based upon a hierarchical clustering of the
application-layer multicast peers and can support a number
of different data delivery trees with desirable properties.

We present extensive simulations of both our protocol
and the Narada application-layer multicast protocol over
Internet-like topologies. Our results show that for groups of
size 32 or more, our protocol has lower link stress (by about
25%), improved or similar end-to-end latencies and simi-
lar failure recovery properties. More importantly, it is able
to achieve these results by using orders of magnitude lower
control traffic.

Finally, we present results from our wide-area testbed in
which we experimented with 32-100 member groups dis-
tributed over 8 different sites. In our experiments, aver-
age group members established and maintained low-latency
paths and incurred a maximum packet loss rate of less than
1% as members randomly joined and left the multicast
group. The average control overhead during our experi-
ments was less than 1 Kbps for groups of size 100.

I. INTRODUCTION

Multicasting is an efficient mechanism for packet deliv-
ery in one-many data transfer applications. It eliminates
redundant packet replication in the network. It also decou-
ples the size of the receiver set from the amount of state
kept at any single node and therefore, is an useful primitive
to scale multi-party applications. However, deployment of
network-layer multicast [10] has not been widely adopted
by most commercial ISPs, and thus large parts of the In-
ternet are still incapable of native multicast more than a
decade after the protocols were developed. Application-
Layer Multicast protocols [9], [11], [6], [13], [14], [23],
[17] do not change the network infrastructure, instead they
implement multicast forwarding functionality exclusively
at end-hosts. Such application-layer multicast protocols

are increasingly being used to implement efficient com-
mercial content-distribution networks.

In this paper, we present a new application-layer multi-
cast protocol which has been developed in the context of
the NICE project at the University of Maryland 1. NICE
is a recursive acronym which stands for NICE is the In-
ternet Cooperative Environment. In this paper, we refer
to the NICE application-layer multicast protocol as sim-
ply the NICE protocol. This protocol is designed to sup-
port applications with large receiver sets. Such applica-
tions include news and sports ticker services such as In-
fogate (http://www.infogate.com) and ESPN Bottomline
(http://www.espn.com); real-time stock quotes and up-
dates, e.g. the Yahoo! Market tracker, and popular Inter-
net Radio sites. All of these applications are characterized
by very large (potentially tens of thousands) receiver sets
and relatively low bandwidth soft real-time data streams
that can withstand some loss. We refer to this class of
large receiver set, low bandwidth real-time data applica-
tions as data stream applications. Data stream applica-
tions present a unique challenge for application-layer mul-
ticast protocols: the large receiver sets usually increase the
control overhead while the relatively low-bandwidth data
makes amortizing this control overhead difficult. NICE
can be used to implement very large data stream appli-
cations since it has a provably small (constant) control
overhead and produces low latency distribution trees. It
is possible to implement high-bandwidth applications us-
ing NICE as well; however, in this paper, we concentrate
exclusively on low bandwidth data streams with large re-
ceiver sets.

A. Application-Layer Multicast

The basic idea of application-layer multicast is shown
in Figure 1. Unlike native multicast where data packets
are replicated at routers inside the network, in application-
layer multicast data packets are replicated at end hosts.1See http://www.cs.umd.edu/projects/nice

2

2 4

31

BA

1 2

3 4

A B

Network Layer Multicast Application Layer Multicast

Fig. 1. Network-layer and application layer multicast. Square nodes
are routers, and circular nodes are end-hosts. The dotted lines represent
peers on the overlay.

Logically, the end-hosts form an overlay network, and
the goal of application-layer multicast is to construct and
maintain an efficient overlay for data transmission. Since
application-layer multicast protocols must send the identi-
cal packets over the same link, they are less efficient than
native multicast. Two intuitive measures of “goodness”
for application layer multicast overlays, namely stress and
stretch, were defined in [9]). The stress metric is defined
per-link and counts the number of identical packets sent
by a protocol over each underlying link in the network.
The stretch metric is defined per-member and is the ra-
tio of path-length from the source to the member along
the overlay to the length of the direct unicast path. Con-
sider an application-layer multicast protocol in which the
data source unicasts the data to each receiver. Clearly, this
“multi-unicast” protocol minimizes stretch, but does so at
a cost of O(N) stress at links near the source (N is the
number of group members). It also requires O(N)control
overhead at some single point. However, this protocol is
robust in the sense that any number of group member fail-
ures do not affect the other members in the group.

In general, application-layer multicast protocols can be
evaluated along three dimensions:� Quality of the data delivery path: The quality of the

tree is measured using metrics such as stress, stretch,
and node degrees.� Robustness of the overlay: Since end-hosts are po-
tentially less stable than routers, it is important
for application-layer multicast protocols to mitigate
the effect of receiver failures. The robustness of
application-layer multicast protocols is measured by
quantifying the extent of the disruption in data deliv-
ery when different members fail, and the time it takes
for the protocol to restore delivery to the other mem-
bers. We present the first comparison of this aspect of
application-layer multicast protocols.� Control overhead: For efficient use of network re-
sources, the control overhead at the members should
be low. This is an important cost metric to study the
scalability of the scheme to large member groups.

B. NICE Trees

Our goals for NICE were to develop an efficient, scal-
able, and distributed tree-building protocol which did not
require any underlying topology information. Specif-
ically, the NICE protocol reduces the worst-case state
and control overhead at any member to O(logN), main-
tains a constant degree bound for the group members
and approach the O(logN) stretch bound possible with
a topology-aware centralized algorithm. Additionally, we
also show that an average member maintains state for a
constant number of other members, and incurs constant
control overhead for topology creation and maintenance.

In the NICE application-layermulticast scheme, we cre-
ate a hierarchically-connected control topology. The data
delivery path is implicitly defined in the way the hierarchy
is structured and no additional route computations are re-
quired.

Along with the analysis of the various bounds, we
also present a simulation-based performance evaluation of
NICE. In our simulations,we compare NICE to the Narada
application-layer multicast protocol [9]. Narada was first
proposed as an efficient application-layer multicast pro-
tocol for small group sizes. Extensions to it have subse-
quently been proposed [8] to tailor its applicability to high-
bandwidth media-streaming applications for these groups,
and have been studied using both simulations and imple-
mentation. Lastly, we present results from a wide-area
implementation in which we quantify the NICE run-time
overheads and convergence properties for various group
sizes.
C. Roadmap

The rest of the paper is structured as follows: In Sec-
tion II, we describe our general approach, explain how dif-
ferent delivery trees are built over NICE and present the-
oretical bounds about the NICE protocol. In Section III,
we present the operational details of the protocol. We
present our performance evaluation methodology in Sec-
tion IV, and present detailed analysis of the NICE protocol
through simulations in Section V and a wide-area imple-
mentation in Section VI. We elaborate on related work in
Section VII, and conclude in Section VIII.

II. SOLUTION OVERVIEW

The NICE protocol arranges the set of end hosts into a
hierarchy; the basic operation of the protocol is to create
and maintain the hierarchy. The hierarchy implicitly de-
fines the multicast overlay data paths, as described later in
this section. The member hierarchy is crucial for scalabil-
ity, since most members are in the bottom of the hierarchy
and only maintain state about a constant number of other

3

A

B

C F

Cluster−leaders of

Layer 0

Layer 1

C

L

Cluster−leaders of
layer 1 form layer 2

layer 0 form layer 1

Topological clusters
Layer 2 F

joined to layer 0
All hosts are

E F

G
H

J

K

M

M

D

Fig. 2. Hierarchical arrangement of hosts in NICE. The layers are log-
ical entities overlaid on the same underlying physical network.

members. The members at the very top of the hierarchy
maintain (soft) state aboutO(logN) other members. Log-
ically, each member keeps detailed state about other mem-
bers that are near in the hierarchy, and only has limited
knowledge about other members in the group. The hierar-
chical structure is also important for localizing the effect
of member failures.

The NICE hierarchy described in this paper is similar
to the member hierarchy used in [3] for scalable multicast
group re-keying. However, the hierarchy in [3], is layered
over a multicast-capable network and is constructed using
network multicast services (e.g. scoped expanding ring
searches). We build the necessary hierarchy on a unicast
infrastructure to provide a multicast-capable network.

In this paper, we use end-to-end latency as the distance
metric between hosts. While constructing the NICE hier-
archy, members that are “close” with respect to the dis-
tance metric are mapped to the same part of the hierarchy:
this allows us to produce trees with low stretch.

In the rest of this section, we describe how the NICE hi-
erarchy is defined, what invariants it must maintain, and
describe how it is used to establish scalable control and
data paths.

A. Hierarchical Arrangement of Members

The NICE hierarchy is created by assigning members to
different levels (or layers) as illustrated in Figure 2. Lay-
ers are numbered sequentially with the lowest layer of the
hierarchy being layer zero (denoted by L0). Hosts in each
layer are partitioned into a set of clusters. Each cluster is
of size between k and 3k � 1, where k is a constant, and
consists of a set of hosts that are close to each other. We
explain our choice of the cluster size bounds later in this
paper (Section III-B.1). Further, each cluster has a clus-
ter leader. The protocol distributedly chooses the (graph-
theoretic) center of the cluster to be its leader, i.e. the clus-
ter leader has the minimum maximum distance to all other
hosts in the cluster. This choice of the cluster leader is
important in guaranteeing that a new joining member is
quickly able to find its appropriate position in the hierarchy
using a very small number of queries to other members.

Hosts are mapped to layers using the following scheme:
All hosts are part of the lowest layer, L0. The clustering
protocol at L0 partitions these hosts into a set of clusters.
The cluster leaders of all the clusters in layer Li join layerLi+1. This is shown with an example in Figure 2, usingk = 3. The layer L0 clusters are [ABCD], [EFGH] and
[JKLM]2. In this example, we assume thatC,F andM are
the centers of their respective clusters of their L0 clusters,
and are chosen to be the leaders. They form layer L1 and
are clustered to create the single cluster, [CFM], in layerL1. F is the center of this cluster, and hence its leader.
Therefore F belongs to layer L2 as well.

The NICE clusters and layers are created using a dis-
tributed algorithm described in the next section. The fol-
lowing properties hold for the distribution of hosts in the
different layers:� A host belongs to only a single cluster at any layer.� If a host is present in some cluster in layer Li,

it must occur in one cluster in each of the layers,L0; : : : ; Li�1. In fact, it is the cluster-leader in each
of these lower layers.� If a host is not present in layer,Li, it cannot be present
in any layer Lj , where j > i.� Each cluster has its size bounded between k and 3k�1. The leader is the graph-theoretic center of the clus-
ter.� There are at most logkN layers, and the highest layer
has only a single member.

We also define the term super-cluster for any host, X .
Assume that host, X , belongs to layers L0; : : : ; Li�1 and
no other layer, and let [..XYZ..] be the cluster it belongs it
in its highest layer (i.e. layerLi�1) withY its leader in that
cluster. Then, the super-cluster ofX is defined as the clus-
ter, in the next higher layer (i.e. Li), to which its leader Y
belongs. It follows that there is only one super-cluster de-
fined for every host (except the host that belongs to the top-
most layer, which does not have a super-cluster), and the
super-cluster is in the layer immediately above the highest
layer that H belongs to. For example, in Figure 2, cluster
[CFM] in Layer 1 is the super-cluster for hosts B, A, andD. In NICE each host maintains state about all the clus-
ters it belongs to (one in each layer to which it belongs)
and about its super-cluster.

B. Control and Data Paths

The host hierarchy can be used to define different over-
lay structures for control messages and data delivery paths.
The neighbors on the control topology exchange periodic
soft state refreshes and do not generate high volumes of2We denote a cluster comprising of hostsX;Y; Z; : : : by [XY Z : : :].

4

B2

0

B0

B1

A0
B2

C0

A1

A2

C0

B1
1

A0

A1

A2
B0 B2

2

A0

A1

A2

B1

B0 B2

B1
3

A0

A1

A2
B0

C0
C0

A7 A7A7A7

Fig. 3. Control and data delivery paths for a two-layer hierarchy. All Ai hosts are members of only L0 clusters. All Bi hosts are members of
both layers L0 and L1. The only C host is the leader of the L1 cluster comprising of itself and all the B hosts.

traffic. Clearly, it is useful to have a structure with higher
connectivity for the control messages, since this will cause
the protocol to converge quicker.

In Figure 3, we illustrate the choices of control and data
paths using clusters of size 4. The edges in the figure in-
dicate the peerings between group members on the over-
lay topology. Each set of four hosts arranged in a 4-clique
in Panel 0 are the clusters in layer L0. Hosts B0; B1; B2
and C0 are the cluster leaders of these fourL0 clusters and
form the single cluster in layer L1. Host C0 is the leader
of this cluster in layer L1. In the rest of the paper, we use
Clj(X) to denote the cluster in layer Lj to which memberX belongs. It is defined if and only if X belongs to layerLj .

The control topologyfor the NICE protocol is illustrated
in Figure 3, Panel 0. Consider a member, X , that belongs
only to layers L0; : : : ; Li. Its peers on the control topol-
ogy are the other members of the clusters to which X be-
longs in each of these layers, i.e. members of clustersCl0(X); : : : ; Cli(X). Using the example (Figure 3, Panel
0), member A0 belongs to only layerL0, and therefore, its
control path peers are the other members in its L0 clus-
ter, i.e. A1; A2 and B0. In contrast, member B0 belongs
to layers L0 and L1 and therefore, its control path peers
are all the other members of itsL0 cluster (i.e. A0; A1 andA2) and L1 cluster (i.e. B1; B2 and C0). In this control
topology, each member of a cluster, therefore, exchanges
soft state refreshes with all the remaining members of the
cluster. This allows all cluster members to quickly iden-
tify changes in the cluster membership, and in turn, en-
ables faster restoration of a set of desirable invariants (de-
scribed in Section II-D), which might be violated by these
changes.

The delivery path for multicast data distribution needs
to be loop-free, otherwise, duplicate packet detection and
suppression mechanisms need to be implemented. There-
fore, in the NICE protocol we choose the data delivery
path to be a tree. More specifically, given a data source,
the data delivery path is a source-specific tree, and is im-
plicitly defined from the control topology. Each member

Procedure : MulticastDataForward(h; p)f h 2 layers L0; : : : ; Li in clusters Cl0(h); : : : ; Cli(h) gfor j in [0; : : : ; i]
if (p =2 Clj(h))

ForwardDataToSet(Clj(h)� fhg)
end if

end for

Fig. 4. Data forwarding operation at a host, h, that itself received
the data from host p.

executes an instance of the Procedure MulticastDataFor-
ward given in Figure 4, to decide the set of members to
which it needs to forward the data. Panels 1, 2 and 3 of Fig-
ure 3 illustrate the consequent source-specific trees when
the sources are at members A0; A7 and C0 respectively.
We call this the basic data path.

To summarize, in each cluster of each layer, the control
topology is a clique, and the data topology is a star. It is
possible to choose other structures, e.g. in each cluster, a
ring for control path, and a balanced binary tree for data
path.

C. Analysis

Each cluster in the hierarchy has between k and 3k� 1
members. Then for the control topology, a host that be-
longs only to layer L0 peers with O(k) other hosts for ex-
change of control messages. In general, a host that belongs
to layer Li and no other higher layer, peers with O(k)
other hosts in each of the layersL0; : : : ; Li. Therefore, the
control overhead for this member is O(k i). Hence, the
cluster-leader of the highest layer cluster (Host C0 in Fig-
ure 3), peers with a total ofO(k logN) neighbors. This is
the worst case control overhead at a member.

It follows using amortized cost analysis that the control
overhead at an average member is a constant. The number
of members that occur in layerLi and no other higher layer
is bounded by O(N=ki). Therefore, the amortized control

5

overhead at an average member is� 1N logNXi=0 Nki k:i = O(k) +O(logNN) +O(1N)! O(k)
with asymptotically increasingN . Thus, the control over-
head is O(k) for the average member, and O(k logN) in
the worst case. The same holds analogously for stress at
members on the basic data path 3. Also, the number of
application-level hops on the basic data path between any
pair of members is O(logN).

While anO(k logN) peers on the data path is an accept-
able upper-bound, we have defined enhancements that fur-
ther reduce the upper-bound of the number of peers of a
member to a constant. The stress at each member on this
enhanced data path (created using local transformations of
the basic data path) is thus reduced to a constant, while
the number of application-level hops between any pair of
members still remain bounded by O(logN). We outline
this enhancement to the basic data path in the Appendix.

D. Invariants

All the properties described in the analysis hold as long
as the hierarchy is maintained. Thus, the objective of
NICE protocol is to scalably maintain the host hierarchy as
new members join and existing members depart. Specifi-
cally the protocol described in the next section maintains
the following set of invariants:� At every layer, hosts are partitioned into clusters of

size between k and 3k � 1.� All hosts belong to an L0 cluster, and each host be-
longs to only a single cluster at any layer� The cluster leaders are the centers of their respective
clusters and form the immediate higher layer.

III. PROTOCOL DESCRIPTION

In this section we describe the operations of the NICE
protocol. We assume the existence of a special host that
all members know of a-priori. Using nomenclature devel-
oped in [9], we call this host the Rendezvous Point (RP).
Each host that intends to join the application-layer multi-
cast group contacts the RP to initiate the join process. For
ease of exposition, we assume that the RP is always the
leader of the single cluster in the highest layer of the hierar-
chy. It interacts with other cluster members in this layer on
the control path, and is bypassed on the data path. (Clearly,
it is possible for the RP to not be part of the hierarchy, and3Note that the stress metric at members is equivalent to the degree of
the members on the data delivery tree.

for the leader of the highest layer cluster to maintain a con-
nection to the RP, but we do not belabor that complexity
further). For an application such as streaming media de-
livery, the RP could be a distinguished host in the domain
of the data source.

The NICE protocol itself has three main components:
initial cluster assignment as a new host joins, periodic
cluster maintenance and refinement, and recovery from
leader failures. We discuss these in turn.

A. New Host Joins

When a new host joins the multicast group, it must be
mapped to some cluster in layer L0. We illustrate the join
procedure in Figure 5. Assume that hostA12 wants to join
the multicast group. First, it contacts the RP with its join
query (Panel 0). The RP responds with the hosts that are
present in the highest layer of the hierarchy. The joining
host then contacts all members in the highest layer (Panel
1) to identify the member closest to itself. In the exam-
ple, the highest layer L2 has just one member, C0, which
by default is the closest member to A12 amongst layer L2
members. Host C0 informs A12 of the three other mem-
bers (B0; B1 and B2) in its L1 cluster. A12 then contacts
each of these members with the join query to identify the
closest member among them (Panel 2), and iteratively uses
this procedure to find its L0 cluster.

It is important to note that any host, H , which belongs
to any layer Li is the center of its Li�1 cluster, and recur-
sively, is an approximation of the center among all mem-
bers in allL0 clusters that are below this part of the layered
hierarchy. Hence, querying each layer in succession from
the top of the hierarchy to layerL0 results in a progressive
refinement by the joining host to find the most appropriate
layer L0 cluster to join that is close to the joining member.
The outline of this operation are presented in pseudocode
as Procedure BasicJoinLayer in Figure 6.

We assume that all hosts are aware of only a single
well-known host, the RP, from which they initiate the join
process. Therefore, overheads due to join query-response
messages is highest at the RP and descreases down the
layers of the hierarchy. Under a very rapid sequence of
joins, the RP will need to handle a large number of such
join query-response messages. Alternate and more scal-
able join schemes are possible if we assume that the join-
ing host is aware of some other “nearby” host that is al-
ready joined to the overlay. In fact, both Pastry [18] and
Tapestry [22] alleviate a potential bottleneck at the RP for
a rapid sequence of joins, based on such an assumption.

1) Join Latency: The joining process involves a mes-
sage overhead of O(k logN) query-response pairs. The

6

C0

B0

C0

B0

C0

B0

A12

B1

B2

RP

A12

2
B1

B2

RP

0
B1

B2

RP

1

A12

Join L0

L2:{ C0 }
Join L0

L1: { B0,B1,B2 }

Attach

Fig. 5. Host A12 joins the multicast group.

Procedure : BasicJoinLayer(h; i)
Clj Query(RP;�)while (j > i)

Find y s.t. dist(h; y) � dist(h; x); x; y 2 Clj
Clj�1(y) Query(y; j � 1)
Decrement j, Clj Clj�1(y)endwhile

JoinCluster(h,Ldr(Clj); Li)
Fig. 6. Basic join operation for member h, to join layer Li.i = 0 for a new member. If i > 0, then h is already part of
layer Li�1. Query(y; j � 1) seeks the membership information
of Clj�1(y) from member y. Query(RP;�) seeks the member-
ship information of the topmost layer of the hierarchy, from theRP . JoinCluster(x;y; Lj) operation sends an appropriate message
to add new member x to a cluster in layerLj . The message is sent
to y, the leader of the cluster.

join-latency depends on the delays incurred in this ex-
changes, which is typically about O(logN) round-trip
times. In our protocol, we aggressively locate possible
“good” peers for a joining member, and the overhead for
locating the appropriate attachments for any joining mem-
ber is relatively large.

To reduce the delay between a member joining the mul-
ticast group, and its receipt of the first data packet on the
overlay, we allow joining members to temporarily peer, on
the data path, with the leader of the cluster of the current
layer it is querying. For example, in Figure 5, when A12
is querying the hosts B0; B1 and B2 for the closest point
of attachment, it temporarily peers with C0 (leader of the
layer L1 cluster) on the data path. This allows the joining
host to start receiving multicast data on the group within a
single round-trip latency of its join.

2) Joining Higher Layers: An important invariant in
the hierarchical arrangement of hosts is that the leader of
a cluster be the center of the cluster. Therefore, as mem-
bers join and leave clusters, the cluster-leader may occa-
sionally change. Consider a change in leadership of a clus-
ter, C, in layer Lj . The current leader of C removes itself
from all layers Lj+1 and higher to which it is attached. A

new leader is chosen for each of these affected clusters.
For example, a new leader, h, of C in layer Lj is chosen
which is now required to join its nearestLj+1 cluster. This
is its current super-cluster (which by definition is the clus-
ter in layer Lj+1 to which the outgoing leader of C was
joined to), i.e. the new leader replaces the outgoing leader
in the super-cluster. However, if the super-cluster infor-
mation is stale and currently invalid, then the new leader,h, invokes the join procedure to join the nearestLj+1 clus-
ter. It calls BasicJoinLayer(h; j + 1) and the routine ter-
minates when the appropriate layer Lj+1 cluster is found.
Also note that the BasicJoinLayer requires interaction of
the member h with the RP. The RP, therefore, aids in re-
pairing the hierarchy from occasional overlay partitions,
i.e. if the entire super-cluster information becomes stale
in between the periodic HeartBeat messages that are ex-
changed between cluster members. If the RP fails, for cor-
rect operation of our protocol, we require that it be capable
of recovery within a reasonable amount of time.

B. Cluster Maintenance and Refinement

Each member x of a cluster C, sends a HeartBeat mes-
sage every � seconds to each of its cluster peers (neighbors
on the control topology). The message contains the dis-
tance estimate of x to each other member ofC. It is possi-
ble for x to have inaccurate or no estimate of the distance
to some other members, e.g. immediately after it joins the
cluster.

The cluster-leader includes the complete updated clus-
ter membership in its HeartBeat messages to all other
members. This allows existing members to set up appro-
priate peer relationships with new cluster members on the
control path. For each cluster in levelLi, the cluster-leader
also periodically sends the its immediate higher layer clus-
ter membership (which is the super-cluster for all the other
members of the cluster) to that Li cluster.

All of the cluster member state is sent via unreliable
messages and is kept by each cluster member as soft-state,
refreshed by the periodic HeartBeat messages. A mem-
ber x is declared no longer part of a cluster independently

7

Procedure : ClusterSplit(C)f jCj � 3k g� fQjQ � C ^ jQj; jC �Qj � b3k=2cg
Let R(Q) � max(radius(Q),radius(C�Q))
Find Q� s.t. R(Q�) � R(Q) where Q;Q� 2 �
LeaderTransfer(Ldr(C),Q�, Ldr(Q�))
LeaderTransfer(Ldr(C),C �Q�, Ldr(C � Q�))
Fig. 7. Cluster split operation for cluster, C , which exceeds
the size bound. The operation is invoked by the leader of clus-
ter, C . The appropriate partitions (Q� and C � Q�) can be
naively implemented in with a running time ofO(jCj3). radius(Q)
defines the graph-theoretic radius of the set of members, Q.
LeaderTransfer(x;C; y) sends appropriate messages to transfer the
leadership of the cluster C from current leader, x, to new leader,y. The LeaderTransfermessage can be sent as a regular HeartBeat
message with appropriate flags set to indicate the transfer.

Procedure : ClusterMerge(C)f jCj < k and Li is the layer to which C belongs gl Ldr(C)
Find y s.t. dist(l; y) < dist(h; x); x; y 2 Cli+1(l)
ClusterMergeRequest(l; y; Li)
LeaderTransfer(l; C; y)

Fig. 8. Cluster merge operation is invoked by l, the leader of the
cluster C . The size of C is < k. l finds y, the leader of another
cluster in layer Li and sends the ClusterMergeRequest message.

by all other members in the cluster if they do not receive
a message from x for a configurable number of HeartBeat
message intervals.

1) Cluster Split and Merge: A cluster-leader periodi-
cally checks the size of its cluster, and appropriately splits
or merges the cluster when it detects a size bound viola-
tion. A cluster that exceeds the cluster size upper bound,3k � 1 is split into two clusters each of which has at leastb3k=2cmembers. This is described in pseudo-code in Fig-
ure 7.

For correct operation of the protocol, we could have
chosen the cluster size upper bound to be any value �2k�1. However, if 2k�1was chosen as the upper bound,
then the cluster would require to split when it exceeds this
upper bound (i.e. reaches the size 2k). Subsequently, an
equal-sized split would create two clusters of size k each.
However, a single departure from any of these new clusters
would violate the size lower bound and require a cluster
merge operation to be performed. Choosing a larger up-
per bound (e.g. 3k-1) avoids this problem. When the clus-
ter exceeds this upper bound, it is split into two clusters of
size at least b3k=2c, and therefore, requires at least dk=2e
member departures before a merge operation needs to be
invoked.

Procedure : ClusterRefine(z)f Li is highest layer to which z belongs gl Ldr(Cli(z)); C Cli+1(l)
Find y s.t. dist(z; y) < dist(z; x); x; y 2 Cif (y 6= l)

LeaveCluster(z; l; Li)
JoinCluster(z; y;Li)endif

Fig. 9. Cluster refine operation by member z which belongs to
layers L0; : : : ; Li and no other higher layer. If it finds another ap-
propriate cluster in the same layer, it leaves its current cluster and
joins the other cluster. LeaveCluster(x;y; Lj) sends an appropriate
message from a departing member x to its cluster leader y in layerLj .

The cluster leader initiates this cluster split operation.
Given a set of hosts and the pairwise distances between
them, the cluster split operation partitions them into sub-
sets that meet the size bounds, such that the maximum ra-
dius (in a graph-theoretic sense) of the new set of clus-
ters is minimized. This is similar to theK-center problem
(known to be NP-Hard) but with an additional size con-
straint. We use an approximation strategy — the leader
splits the current cluster into two clusters, each of size at
least b3k=2c, such that the maximum of the radii among
the two clusters is minimized. It also chooses the centers
of the two partitions to be the leaders of the new clusters
and transfers leadership to the new leaders through Lead-
erTransfer messages. If these new clusters still violate the
size upper bound, they are split by the new leaders using
identical operations.

If the size of a cluster,C,(in layerLi) with leader l, falls
below k, l initiates a cluster merge operation (shown in
pseudo-code in Figure 8). Note, l itself belongs to a layerLi+1 cluster, Cli+1(l). l chooses its closest cluster-peer, y,
in Cli+1(l). y is also the leader of a layerLi cluster, Cli(y).l initiates the merge operation ofC with Cli(y) by sending
a ClusterMergeRequest message to y. l updates the mem-
bers ofC with this merge information. y similarly updates
the members of Cli(y). Following the merge, l removes it-
self from layer Li+1 (i.e. from cluster Cli+1(l).

When a member is joining a layer, it may not always be
able to locate the closest cluster in that layer (e.g. due to
lost join query or join response, etc.) and instead attaches
to some other cluster in that layer. Therefore, each mem-
ber, z, in any layer (say Li) periodically probes all mem-
bers in its super-cluster (they are the leaders of layer Li
clusters), to identify the closest member (say y) to itself
in the super-cluster. If y is not the leader of the Li clus-
ter to which z belongs then such an inaccurate attachment
is detected. In this case, z leaves its current layer Li clus-

8

ter and joins the layer Li cluster of which y is the leader.
This cluster refinement process is shown in pseudo-code
in Figure 9.

C. Host Departure and Leader Selection

When a host x leaves the multicast group, it sends a Re-
move message to all clusters to which it is joined. This is
a graceful-leave. However, if x fails without being able
to send out this message all cluster peers of x detects this
departure through non-receipt of the periodic HeartBeat
message from x. If x was a leader of a cluster, this trig-
gers a new leader selection in the cluster. Each remain-
ing member, y, of the cluster independently select a new
leader of the cluster, depending on who y estimates to be
the center among these members. Multiple leaders are
re-conciled into a single leader of the cluster through ex-
change of LeaderTransfer message between the two can-
didate leaders, when the multiplicity is detected.

It is possible for members to have an inconsistent view
of the cluster membership, and for transient cycles to de-
velop on the data path. These cycles are eliminated once
the protocol restores the hierarchy invariants and recon-
ciles the cluster view for all members.

IV. EXPERIMENTAL METHODOLOGY

We have analyzed the performance of the NICE pro-
tocol using detailed simulations and a wide-area imple-
mentation. In the simulation environment, we compare
the performance of NICE to three other schemes: multi-
unicast, native IP-multicast using the Core Based Tree pro-
tocol [2], and the Narada application-layer multicast pro-
tocol (as given in [9]). In the Internet experiments, we
benchmark the performance metrics against direct unicast
paths to the member hosts.

Clearly, native IP multicast trees will have the least
(unit) stress, since each link forwards only a single copy
of each data packet. Unicast paths have the lowest la-
tency and so we consider them to be of unit stretch 4.
They provide us a reference against which to compare the
application-layer multicast protocols.

A. Data Model

In all these experiments, we model the scenario of a data
stream source multicasting to the group. We chose a sin-
gle end-host, uniformly at random, to be the data source4There are some recent studies [19], [1] to show that this may not
always be the case; however, we use the native unicast latency as the
reference to compare the performance of the other schemes.

generating a constant bit rate data. Each packet in the data
sequence, effectively, samples the data path on the over-
lay topology at that time instant, and the entire data packet
sequence captures the evolution of the data path over time.

B. Performance Metrics

We compare the performance of the different schemes
along the following dimensions:� Quality of data path: This is measured by three dif-

ferent metrics — tree degree distribution, stress on
links and routers and stretch of data paths to the group
members.� Recovery from host failure: As hosts join and leave
the multicast group, the underlying data delivery path
adapts accordingly to reflect these changes. In our ex-
periments, we modeled member departures from the
group as ungraceful departures, i.e. members fail in-
stantly and are unable to send appropriate leave mes-
sages to their existing peers on the topology. There-
fore, in transience, particularly after host failures,
path to some hosts may be unavailable. It is also pos-
sible for multiple paths to exist to a single host and
for cycles to develop temporarily.
To study these effects, we measured the fraction of
hosts that correctly receive the data packets sent from
the source as the group membership changed. We
also recorded the number of duplicates at each host.
In all of our simulations, for both the application-
layer multicast protocols, the number of duplicates
was insignificant and zero in most cases.� Control traffic overhead: We report the mean, vari-
ance and the distribution of the control bandwidth
overheads at both routers and end hosts.

V. SIMULATION EXPERIMENTS

We have implemented a packet-level simulator for the
four different protocols. Our network topologies were
generated using the Transit-Stub graph model, using the
GT-ITM topology generator [4]. All topologies in these
simulations had 10; 000 routers with an average node de-
gree between 3 and 4. End-hosts were attached to a set
of routers, chosen uniformly at random, from among the
stub-domain nodes. The number of such hosts in the mul-
ticast group were varied between 8 and 2048 for different
experiments. In our simulations, we only modeled loss-
less links; thus, there is no data loss due to congestion, and
no notion of background traffic or jitter. However, data
is lost whenever the application-layer multicast protocol

9

fails to provide a path from the source to a receiver, and
duplicates are received whenever there is more than one
path. Thus, our simulationsstudy the dynamics of the mul-
ticast protocol and its effects on data distribution; in our
implementation, the performance is also affected by other
factors such as additional link latencies due to congestion
and drops due to cross-traffic congestion.

A. Our implementation of Narada

We have implemented the entire Narada protocol from
the description given in [9]. We did not implement the
Narada high bandwidth extensions described in [8].As de-
scribed before, Narada is a mesh-first application-layer
multicast approach, designed primarily for small multicast
groups. In Narada, the initial set of peer assignments to
create the overlay topology is done randomly. While this
initial data delivery path may be of “poor” quality, over
time Narada adds “good” links and discards “bad” links
from the overlay. Narada has O(N2) aggregate control
overhead because of its mesh-first nature: it requires each
host to periodically exchange updates and refreshes with
all other hosts.

The protocol, as defined in [9], has a number of user-
defined parameters that we needed to set. These include
the link add/drop thresholds, link add/drop probe fre-
quency, the periodic refresh rates, the mesh degree, etc.
We experimented with a wide-range of values for these
parameters to understand the behavior of Narada and ob-
served some interesting trade-offs in choosing these pa-
rameters. Specifically, we found that:� The mesh degree bound for hosts should not be

strictly enforced to ensure connectivity. Instead ad-
ditional mechanisms that limit the degree of the data
path on the mesh should be used.� There is a clear tradeoff between choosing a high ver-
sus low frequency for periodic probes to add or drop
links on the mesh. A high frequency allows mem-
bers to aggressively add and drop good and bad over-
lay links respectively. However, this leads to frequent
changes to the data paths on the mesh, which can lead
to a temporary loss of data path to other members.
(This effect is different than when a route changes and
state for the old route can be temporarily maintained
to mitigate the effect of the route change). We ob-
served this effect in our experiments where we use a
high periodic probe frequency, especially if this pa-
rameter is set higher than the route packet exchange
frequency. In contrast, using a low probe frequency
leads to more stable paths; however, this implies that
the mesh topology takes a long time to stabilize.

B. Simulation Results

We have simulated a wide-range of topologies, group
sizes, member join-leave patterns, and protocol parame-
ters. For NICE, we set the cluster size parameter, k, to 3
in all of the experiments presented here. Broadly, our find-
ings can be summarized as follows:� NICE trees have data paths that have stretch compa-

rable to Narada.� The stress on links and routers are lower in NICE, es-
pecially as the multicast group size increases.� The failure recovery of both the schemes are compa-
rable.� NICE protocol demonstrates that it is possible to
provide these performance with orders of magnitude
lower control overhead for groups of size > 32.

We begin with results from a representative experiment
that captures all the of different aspects comparing the var-
ious protocols.

1) Simulation Representative Scenario: This experi-
ment has two different phases: a join phase and a leave
phase. In the join phase a set of 128 members5 join the
multicast group uniformly at random between the simu-
lated time 0 and 200 seconds. These hosts are allowed to
stabilize into an appropriate overlay topology until simu-
lation time 1000 seconds. The leave phase starts at time
1000 seconds: 16 hosts leave the multicast group over a
short duration of 10 seconds. This is repeated four more
times, at 100 second intervals. The remaining 48 mem-
bers continue to be part of the multicast group until the
end of simulation. All member departures are modeled as
host failures since they have the most damaging effect on
data paths. We experimented with different numbers of
member departures, from a single member to 16 members
leaving over the ten second window. Sixteen departures
from a group of size 128 within a short time window is
a drastic scenario, but it helps illustrate the failure recov-
ery modes of the different protocols better. Member de-
partures in smaller sizes cause correspondingly lower dis-
ruption on the data paths.

We experimented with different periodic refresh rates
for Narada. For a higher refresh rate the recovery from
host failures is quicker, but at a cost of higher control
traffic overhead. For Narada, we used different values
for route update frequencies and periods for probing other
mesh members to add or drop links on the overlay. In our5We show results for the 128 member case because that is the group
size used in the experiments reported in [9]; NICE performs increas-
ingly better with larger group sizes.

10

1.3

1.4

1.5

1.6

1.7

1.8

1.9

2

2.1

2.2

2.3

100 200 300 400 500 600 700 800 900

A
ve

ra
ge

 li
nk

 s
tr

es
s

Time (in secs)

128 end-hosts join

128
Join Narada-5

NICE

Fig. 10. Average link stress (simulation)

10

15

20

25

30

100 200 300 400 500 600 700 800 900

A
ve

ra
ge

 r
ec

ei
ve

r
pa

th
 le

ng
th

 (
ho

ps
)

Time (in secs)

128 end-hosts join

128
Join

Narada-5
NICE
IP Multicast
Unicast

Fig. 11. Average path length (simulation)

results, we report results from using route update frequen-
cies of once every 5 seconds (labeled Narada-5), and once
every 30 seconds (labeled Narada-30). The 30 second up-
date period corresponds to the what was used in [9]; we ran
with the 5 second update period since the heartbeat period
in NICE was set to 5 seconds. Note that we could run with
a much smaller heartbeat period in NICE without signifi-
cantly increasing control overhead since the control mes-
sages are limited within clusters and do not traverse the en-
tire group. We also varied the mesh probe period in Narada
and observed data path instability effect discussed above.
In these results, we set the Narada mesh probe period to 20
seconds.

Data Path Quality: In Figures 10 and 11, we show the
average link stress and the average path lengths for the dif-
ferent protocols as the data tree evolves during the mem-
ber join phase. Note that the figure shows the actual path
lengths to the end-hosts; the stretch is the ratio of average
path length of the members of a protocol to the average
path length of the members in the multi-unicast protocol.

As explained earlier, the join procedure in NICE aggres-
sively finds good points of attachment for the members in
the overlay topology, and the NICE tree converges quicker
to a stable value (within 350 seconds of simulated time).
In contrast, the Narada protocols gradually improve the
mesh quality, and consequently so does the data path over
a longer duration. Its average data path length converges
to a stable value of about 23 hops between 500 and 600
seconds of the simulated time. The corresponding stretch
is about 2.18. In Narada path lengths improve over time
due to addition of “good” links on the mesh. At the same
time, the stress on the tree gradually increases since the
Narada decides to add or drop overlay links based purely
on the stretch metric.

The cluster-based data dissemination in NICE reduces

average link stress, and in general, for large groups NICE
converges to trees with about 25% lower average stress.
In this experiment, the NICE tree had lower stretch than
the Narada tree; however, in other experiments the Narada
tree had a slightly lower stretch value. In general, com-
paring the results from multiple experiments over differ-
ent group sizes, (See Section V-B.2), we concluded that
the data path lengths to receivers were similar for both pro-
tocols.

In Figures 12 and 13, we plot a cumulative distribution
of the stress and path length metrics for the entire mem-
ber set (128 members) at a time after the data paths have
converged to a stable operating point.

The distribution of stress on links for the multi-unicast
scheme has a significantly large tail (e.g. links close to
the source has a stress of 127). This should be contrasted
with better stress distribution for both NICE and Narada.
Narada uses fewer number of links on the topology than
NICE, since it is comparably more aggressive in adding
overlay links with shorter lengths to the mesh topology.
However, due to this emphasis on shorter path lengths, the
stress distributionof the links has a heavier-tail than NICE.
More than 25% of the links have a stress of four and higher
in Narada, compared to< 5% in NICE. The distribution of
the path lengths for the two protocols are comparable.

Failure Recovery and Control Overheads: To investi-
gate the effect of host failures, we present results from
the second part of our scenario: starting at simulated time
1000 seconds, a set of 16 members leave the group over
a 10 second period. We repeat this procedure four more
times and no members leave after simulated time 1400 sec-
onds when the group is reduced to 48 members. When
members leave, both protocols “heal” the data distribu-
tion tree and continue to send data on the partially con-
nected topology. In Figure 14, we show the fraction of

11

0

100

200

300

400

500

600

0 5 10 15 20 25 30 35

N
um

be
r

of
 li

nk
s

Link stress

Cumulative distribution of link stress after overlay stabilizes

(Unicast truncated
Extends to stress = 127)

NICE
Narada-5

Unicast

Fig. 12. Stress distribution (simulation)

0

20

40

60

80

100

120

5 10 15 20 25 30 35 40

N
um

be
r

of
 h

os
ts

Overlay path length (hops)

Cumulative distribution of data path lengths after overlay stabilizes

Unicast
IP Multicast

NICE
Narada-5

Fig. 13. Path length distribution (simulation)

members that correctly receive the data packets over this
duration. Both Narada-5 and NICE have similar perfor-
mance, and on average, both protocols restore the data
path to all (remaining) receivers within 30 seconds. We
also ran the same experiment with the 30 second refresh
period for Narada. The lower refresh period caused signif-
icant disruptions on the tree with periods of over 100 sec-
onds when more than 60% of the tree did not receive any
data. Lastly, we note that the data distribution tree used for
NICE is the least connected topology possible; we expect
failure recovery results to be much better if structures with
alternate paths are built atop NICE.

In Figure 15, we show the byte-overheads for control
traffic at the access links of the end-hosts. Each dot in the
plot represents the sum of the control traffic (in Kbps) sent
or received by each member in the group, averaged over 10
second intervals. Thus for each 10 second time slot, there
are two dots in the plot for each (remaining) host in the
multicast group corresponding to the control overheads for
Narada and NICE. The curves in the plot are the average
control overhead for each protocol. As can be expected,
for groups of size 128, NICE has an order of magnitude
lower average overhead, e.g. at simulation time 1000 sec-
onds, the average control overhead for NICE is 0.97 Kbps
versus 62.05 Kbps for Narada. At the same time instant,
Narada-30 (not shown in the figure) had an average con-
trol overhead of 13.43 Kbps. Note that the NICE control
traffic includes all protocol messages, including messages
for cluster formation, cluster splits, merges, layer promo-
tions, and leader elections.

2) Aggregate Results: We present a set of aggregate
results as the group size is varied. The purpose of this
experiment is to understand the scalability of the differ-
ent application-layer multicast protocols. The entire set
of members join in the first 200 seconds, and then we run

the simulation for 1800 seconds to allow the topologies to
stabilize. In Table I, we compare the stress on network
routers and links, the overlay path lengths to group mem-
bers and the average control traffic overheads at the net-
work routers. For each metric, we present the both mean
and the standard deviation. Note, that the Narada protocol
involves an aggregate control overhead of O(N2), whereN is the size of the group. Therefore, in our simulation
setup, we were unable to simulate Narada with groups of
size 1024 or larger since the completion time for these sim-
ulations were on the order of a day for a single run of one
experiment on a 550 MHz Pentium III machine with 4 GB
of RAM.

Narada and NICE tend to converge to trees with similar
path lengths. The stress metric for both network links and
routers, however, is consistently lower for NICE when the
group size is large (64 and greater). It is interesting to ob-
serve the standard deviation of stress as it changes with in-
creasing group size for the two protocols. The standard de-
viation for stress increased for Narada for increasing group
sizes. In contrast, the standard deviation of stress for NICE
remains relatively constant; the topology-based clustering
in NICE distributes the data path more evenly among the
different links on the underlying links regardless of group
size.

The control overhead numbers in the table are differ-
ent than the ones in Figure 15; the column in the table is
the average control traffic per network router as opposed
to control traffic at an end-host. Since the control traffic
gets aggregated inside the network, the overhead at routers
is significantly higher than the overhead at an end-host.
For these router overheads, we report the values of the
Narada-30 version in which the route update frequency set
to 30 seconds. Recall that the Narada-30 version has poor
failure recovery performance, but is much more efficient

12

0.5

0.6

0.7

0.8

0.9

1

1000 1100 1200 1300 1400 1500 1600

F
ra

ct
io

n
of

 h
os

ts
 th

at
 c

or
re

ct
ly

 r
ec

ei
ve

d
da

ta

Time (in secs)

128 end-hosts join followed by periodic leaves in sets of 16

16 X 5
Leave

NICE
Narada-5

Fig. 14. Fraction of members that received data packets over the
duration of member failures. (simulation)

0

10

20

30

40

50

60

70

80

0 200 400 600 800 1000 1200 1400 1600 1800 2000

C
on

tr
ol

 tr
af

fic
 b

an
dw

id
th

 (
K

bp
s)

Time (in secs)

Control traffic bandwidth at the access links

128
Join

16 X 5
Leave

Narada-5 (Avg)
NICE (Avg)

Fig. 15. Control bandwidth required at end-host access links (sim-
ulation)

Group Router Stress Link Stress Path Length Bandwidth Overheads (Kbps)
Size Narada-5 NICE Narada-5 NICE Narada-5 NICE Narada-30 NICE

8 1.55 (1.30) 3.51 (3.30) 1.19 (0.39) 3.24 (2.90) 25.14 (9.49) 12.14 (2.29) 0.61 (0.55) 1.54 (1.34)
16 1.84 (1.28) 2.34 (2.16) 1.34 (0.76) 1.86 (1.39) 19.00 (7.01) 20.33 (6.75) 2.94 (2.81) 0.87 (0.81)
32 2.13 (2.17) 2.42 (2.60) 1.54 (1.03) 1.90 (1.82) 20.42 (6.00) 17.23 (5.25) 9.23 (8.95) 1.03 (0.95)
64 2.68 (3.09) 2.23 (2.25) 1.74 (1.53) 1.63 (1.39) 22.76 (5.71) 20.62 (7.40) 26.20 (28.86) 1.20 (1.15)
128 3.04 (4.03) 2.36 (2.73) 2.06 (2.64) 1.63 (1.56) 21.55 (6.03) 21.61 (7.75) 65.62 (92.08) 1.19 (1.29)
256 3.63 (7.52) 2.31 (3.18) 2.16 (3.02) 1.63 (1.63) 23.42 (6.17) 24.67 (7.45) 96.18 (194.00) 1.39 (1.76)
512 4.09 (10.74) 2.34 (3.49) 2.57 (5.02) 1.62 (1.54) 24.74 (6.00) 22.63 (6.78) 199.96 (55.06) 1.93 (3.35)
1024 - 2.59 (4.45) - 1.77 (1.77) - 25.83 (6.13) - 2.81 (7.22)
1560 - 2.83 (5.11) - 1.88 (1.90) - 24.99 (6.96) - 3.28 (9.58)
2048 - 2.92 (5.62) - 1.93 (1.99) - 24.08 (5.36) - 5.18 (18.55)

TABLE I
DATA PATH QUALITY AND CONTROL OVERHEADS FOR VARYING MULTICAST GROUP SIZES (SIMULATION)

(specifically 5 times less overhead with groups of size 128)
than the Narada-5 version. The HeartBeat messages in
NICE were still sent at 5 second intervals.

For the NICE protocol, the worst case control over-
heads at members increase logarithmically with increase
in group size. The control overheads at routers (shown in
Table I), show a similar trend. Thus, although we experi-
mented with upto 2048 members in our simulation study,
we believe that our protocol scales to even larger groups.

VI. WIDE-AREA IMPLEMENTATION

We have implemented the complete NICE protocol and
experimented with our implementation over a one-month
period, with 32 to 100 member groups distributed across
8 different sites. Our experimental topology is shown in
Figure 16. The number of members at each site was var-
ied between 2 and 30 for different experiments. For ex-
ample, for the 32 member experiment reported in this sec-
tion, we had 2 members each in sites B, G and H, 4 each
at A, E and F, 6 in C and 8 in D. Unfortunately, experi-
ments with much larger groups were not feasible on our

testbed. However, our implementation results for proto-
col overheads closely match our simulation experiments,
and we believe our simulations provide a reasonable in-
dication of how the NICE implementation would behave
with larger group sizes.

A. Implementation Specifics

We have conducted experiments with data sources at
different sites. In this paper, we present a representative
set of the experiments where the data stream source is lo-
cated at site C in Figure 16. In the figure, we also indicate
the typical direct unicast latency (in milliseconds) from the
site C, to all the other sites. These are estimated one-way
latencies obtained using a sequence of application layer
(UDP) probes. Data streams were sent from the source
host at site C, to all other hosts, using the NICE overlay
topology. For our implementation, we experimented with
different HeartBeat rates; in the results presented in this
section, we set the HeartBeat message period to 10 sec-
onds.

13

G

H

F

E

DC

B

A

39.4

35.5

4.6

0.6

0.5

1.7

33.3

Source

A: cs.ucsb.edu

B: asu.edu

C: cs.umd.edu

D: glue.umd.edu

E: wam.umd.edu

F: umbc.edu

G: poly.edu

H: ecs.umass.edu

Fig. 16. Internet experiment sites and direct unicast latencies from C

In our implementation, we had to estimate the end-to-
end latency between hosts for various protocol operations,
including member joins, leadership changes, etc. We es-
timated the latency between two end-hosts using a low-
overhead estimator that sent a sequence of application-
layer (UDP) probes. We controlled the number of probes
adaptively using observed variance in the latency esti-
mates. Further, instead of using the raw latency estimates
as the distance metric, we used a simple binning scheme to
map the raw latencies to a small set of equivalence classes.
Specifically, two latency estimates were considered equiv-
alent if they mapped to the same equivalence class, and
this resulted in faster convergence of the overlay topology.
The specific latency ranges for each class were 0-1 ms, 1-5
ms, 5-10 ms, 10-20 ms, 20-40 ms, 40-100 ms, 100-200 ms
and greater than 200 ms.

To compute the stretch for end-hosts in the Internet ex-
periments, we used the ratio of the latency from between
the source and a host along the overlay to the direct uni-
cast latency to that host. In the wide-area implementa-
tion, when a host A receives a data packet forwarded by
member B along the overlay tree, A immediately sends
back a overlay-hop acknowledgment back to B. B logs
the round-trip latency between its initial transmission of
the data packet toA and the receipt of the acknowledgment
fromA. After the entire experiment is done, we calculated
the overlay round-trip latencies for each data packet by
adding up the individual overlay-hop latencies available
from the logs at each host. We estimated the one-way over-
lay latency as half of this round trip latency. We obtained
the unicast latencies using our low-overhead estimator im-
mediately after the overlay experiment terminated. This
guaranteed that the measurements of the overlay latencies
and the unicast latencies did not interfere with each other.

0.7

0.75

0.8

0.85

0.9

0.95

1

1 2 3 4 5 6 7 8 9

F
ra

ct
io

n
of

 m
em

be
rs

Stress

Cumulative distribution of stress

32 members
64 members
96 members

Fig. 17. Stress distribution (testbed)

B. Implementation Scenarios

The Internet experiment scenarios have two phases: a
join phase and a rapid membership change phase. In the
join phase, a set of member hosts randomly join the group
from the different sites. The hosts are then allowed to sta-
bilize into an appropriate overlay delivery tree. After this
period, the rapid membership change phase starts, where
host members randomly join and leave the group. The av-
erage member lifetime in the group, in this phase was set
to 30 seconds. Like in the simulation studies, all member
departures are ungraceful and allow us to study the worst
case protocol behavior. Finally, we let the remaining set of
members to organize into a stable data delivery tree. We
present results for three different groups of size of 32, 64,
and 96 members.

Data Path Quality

In Figure 17, we show the cumulative distributionof the
stress metric at the group members after the overlay stabi-
lizes at the end of the join phase. For all group sizes, typ-
ical members have unit stress (74% to 83% of the mem-
bers in these experiments). The stress for the remaining
members vary between 3 and 9. These members are pre-
cisely the cluster leaders in the different layers (recall that
the cluster size lower and upper bounds for these experi-
ments is 3 and 9, respectively). The stress for these mem-
bers can be reduced further by using the high-bandwidth
data path enhancements, described in the Appendix. For
larger groups, the number of members with higher stress
(i.e. between 3 and 9 in these experiments) is more, since
the number of clusters (and hence, the number of cluster
leaders) is more. However, as expected, this increase is
only logarithmic in the group size.

In Figure 18, we plot the cumulative distribution of the
stretch metric. Instead of plotting the stretch value for each

14

1

2

3

4

5

6

7

8

9

A B C D E F G H

S
tr

et
ch

Sites

Distribution of stretch (64 members)

Fig. 18. Stretch distribution (testbed)

0

5

10

15

20

25

30

35

40

45

A B C D E F G H

O
ve

rla
y

en
d-

to
-e

nd
 la

te
nc

y
(in

 m
s)

Sites

Distribution of latency (64 members)

Fig. 19. Latency distribution (testbed)

single host, we group them by the sites at which there are
located. For all the member hosts at a given site, we plot
the mean and the 95% confidence intervals. Apart from
the sites C, D, and E, all the sites have near unit stretch.
However, note that the source of the data streams in these
experiments were located in site C and hosts in the sites C,
D, and E had very low latency paths from the source host.
The actual end-to-end latencies along the overlay paths to
all the sites are shown in Figure 19. For the sites C, D and
E these latencies were 3.5 ms, 3.5 ms and 3.0 ms respec-
tively. Therefore, the primary contribution to these laten-
cies are packet processing and overlay forwarding on the
end-hosts themselves.

In Table II, we present the mean and the maximum
stretch for the different members, that had direct unicast
latency of at least 2 ms from the source (i.e. sites A, B, G
and H), for all the different sizes. The mean stretch for all
these sites are low. However, in some cases we do see rela-
tively large worst case stretches (e.g. in the 96-member ex-
periment there was one member that for which the stretch
of the overlay path was 4.63).

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600 700 800 900

F
ra

ct
io

n
of

 h
os

ts
 th

at
 c

or
re

ct
ly

 r
ec

ei
ve

 d
at

a

Time (in secs)

Distribution of losses for packets in random membership change phase

64 members
Average member lifetime = 30 secs

Fig. 20. Fraction of members that received data packets as group
membership continuously changed (testbed)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.01 0.02 0.03 0.04 0.05

F
ra

ct
io

n
of

 m
em

be
rs

Fraction of packets lost

Cumulative distribution of losses at members in random membership change phase

Fig. 21. Cumulative distribution of fraction of packets lost for dif-
ferent members out of the entire sequenceof 900 packets during the
rapid membership change phase (testbed)

Failure Recovery

In this section, we describe the effects of group mem-
bership changes on the data delivery tree. To do this, we
observe how successful the overlay is in delivering data
during changes to the overlay topology. We measured the
number of correctly received packets by different (remain-
ing) members during the rapid membership change phase
of the experiment, which begins after the initial member
set has stabilized into the appropriate overlay topology.
This phase lasts for 15 minutes. Members join and leave
the grou at random such that the average lifetime of a
member in the group is 30 seconds.

In Figure 20 we plot over time the fraction of mem-
bers that successfully received the different data packets.
A total of 30 group membership changes happened over
the duration. In Figure 21 we plot the cumulative dis-
tribution of packet losses seen by the different members
over the entire 15 minute duration. The maximum num-
ber of packet losses seen by a member was 50 out of 900
(i.e. about 5.6%), and 30% of the members did not en-

15

Group Stress Stretch Control overheads (Kbps)
Size Mean Max. Mean Max. Mean Max.
32 1.85 8.0 1.08 1.61 0.84 2.34
64 1.73 8.0 1.14 1.67 0.77 2.70
96 1.86 9.0 1.04 4.63 0.73 2.65

TABLE II
AVERAGE AND MAXIMUM VALUES OF OF THE DIFFERENT

METRICS FOR DIFFERENT GROUP SIZES(TESTBED)

counter any packet losses. Even under this rapid changes
to the group membership, the largest continuous duration
of packet losses for any single host was 34 seconds, while
typical members experienced a maximum continuous data
loss for only two seconds — this was true for all but 4 of
the members. These failure recovery statistics are good
enough for use in most data stream applications deployed
over the Internet. Note that in this experiment, only three
individual packets (out of 900) suffered heavy losses: data
packets at times 76 s, 620 s, and 819 s were not received
by 51, 36 and 31 members respectively.

Control Overheads

Finally, we present the control traffic overheads (in
Kbps) in Table II for the different group sizes. The over-
heads include control packets that were sent as well as re-
ceived. We show the average and maximum control over-
head at any member. We observed that the control traffic
at most members lies between 0.2 Kbps to 2.0 Kbps for
the different group sizes. In fact, about 80% of the mem-
bers require less than 0.9 Kbps of control traffic for topol-
ogy management. More interestingly, the average control
overheads and the distributionsdo not change significantly
as the group size is varied. The worst case control over-
head is also fairly low (less than 3 Kbps).

VII. RELATED WORK

A number of other projects have explored implementing
multicast at the application layer. They can be classified
into two broad categories: mesh-first (Narada [9], Gos-
samer [6]) and tree-first protocols (Yoid [11], ALMI [14],
Host-Multicast [21]). Yoid and Host-Multicast defines a
distributed tree building protocol between the end-hosts,
while ALMI uses a centralized algorithm to create a mini-
mum spanning tree rooted at a designated single source of
multicast data distribution. The Overcast protocol [13] or-
ganizes a set of proxies (called Overcast nodes) into a dis-
tribution tree rooted at a central source for single source
multicast. A distributed tree-building protocol is used to
create this source specific tree, in a manner similar to Yoid.

RMX [7] provides support for reliable multicast data de-
livery to end-hosts using a set of similar proxies, called Re-
liable Multicast proXies. Application end-hosts are con-
figured to affiliate themselves with the nearest RMX. The
architecture assumes the existence of an overlay construc-
tion protocol, using which these proxies organize them-
selves into an appropriate data delivery path. TCP is used
to provide reliable communication between each pair of
peer proxies on the overlay.

Some other recent projects (Chord [20], Content Ad-
dressable Networks (CAN) [16], Tapestry [22] and Pas-
try [18]) have also addressed the scalability issue in cre-
ating application layer overlays, and are therefore, closely
related to our work. CAN defines a virtual d-dimensional
Cartesian coordinate space, and each overlay host “owns”
a part of this space. In [17], the authors have leveraged
the scalable structure of CAN to define an application
layer multicast scheme, in which hosts maintainO(d) state
and the path lengths are O(dN1=d) application level hops,
whereN is the number of hosts in the network. Pastry [18]
is a self-organizing overlay network of nodes, where log-
ical peer relationships on the overlay are based on match-
ing prefixes of the node identifiers. Scribe [5] is a large-
scale event notification infrastructure that leverages the
Pastry system to create groups and build efficient applica-
tion layer multicast paths to the group members for dis-
semination of events. Being based on Pastry, it has sim-
ilar overlay properties, namely (2b � 1) log2b N state at
members, andO(log2b N) application level hops between
members 6. Bayeux [23] in another architecture for ap-
plication layer multicast, where the end-hosts are orga-
nized into a hierarchy as defined by the Tapestry over-
lay location and routing system [22]. A level of the hi-
erarchy is defined by a set of hosts that share a common
suffix in their host IDs. Such a technique was proposed
by Plaxton et.al. [15] for locating and routing to named
objects in a network. Therefore, hosts in Bayeux main-
tain O(b logbN) state and end-to-end overlay paths haveO(logbN) application level hops. As discussed in Sec-
tion II-C, our proposed NICE protocol incurs an amor-
tized O(k) state at members and the end-to-end paths be-
tween members have O(logkN) application level hops.
Like Pastry and Tapestry, NICE also chooses overlay peers
based on network locality which leads to low stretch end-
to-end paths.

We summarize the above as follows: For both NICE and
CAN-multicast, members maintain constant state for other
members, and consequently exchange a constant amount
of periodic refreshes messages. This overhead is loga-
rithmic for Scribe and Bayeux. The overlay paths for6b is a small constant.

16

NICE, Scribe, and Bayeux have a logarithmic number of
application level hops, and path lengths in CAN-multicast
asymptotically have a larger number of application level
hops. Both NICE and CAN-multicast use a single well-
known host (the RP, in our nomenclature) to bootstrap the
join procedure of members. The join procedure, there-
fore, incurs a higher overhead at the RP and the higher
layers of the hierarchy than the lower layers. Scribe and
Bayeux assume members are able find different “nearby”
members on the overlay through out-of-band mechanisms,
from which to bootstrap the join procedure. Using this as-
sumption, the join overheads for a large number of join-
ing members can be amortized over the different such
“nearby” bootstrap members in these schemes.

VIII. CONCLUSIONS

In this paper, we have presented a new protocol for
application-layer multicast. Our main contribution is an
extremely low overhead hierarchical control structure over
which different data distribution paths can be built. Our
results show that it is possible to build and maintain
application-layer multicast trees with very little overhead.
While the focus of this paper has been low-bandwidth data
stream applications, our scheme is generalizable to differ-
ent applications by appropriately choosing data paths and
metrics used to construct the overlays. We believe that the
results of this paper are a significant first step towards con-
structing large wide-area applications over application-
layer multicast.

IX. ACKNOWLEDGMENTS

Srinivas Parthasarathy implemented a part of the
Narada protocol used in our simulation experiments.
We thank Kevin Almeroth, Lixin Gao, Jorg Liebeherr,
Steven Low, Martin Reisslein and Malathi Veeraraghavan
for providing us with user accounts at the different sites
for our wide-area experiments and Peter Druschel for
providing many useful comments on a previous version
of this paper.

REFERENCES

[1] D. Andersen, H. Balakrishnan, M. Frans Kaashoek, and R. Mor-
ris. Resilient overlay networks. In Proceedingsof 18th ACM Sym-
posium on Operating Systems Principles, Oct. 2001.

[2] T. Ballardie, P. Francis, and J. Crowcroft. Core Based Trees
(CBT): An Architecture for Scalable Multicast Routing. In Pro-
ceedings of ACM Sigcomm, 1995.

[3] S. Banerjee and B. Bhattacharjee. Scalable Secure Group Com-
munication over IP Mulitcast. In Proceedingsof Internation Con-
ference on Network Protocols, Nov. 2001.

[4] K. Calvert, E. Zegura, and S. Bhattacharjee. How to Model an
Internetwork. In Proceedings of IEEE Infocom, 1996.

[5] M. Castro, P. Druschel, A.-M. Kermarrec, and A. Rowstron.
SCRIBE: A large-scale and decentralized application-level mul-
ticast infrastructure. IEEE Journal on Selected Areas in commu-
nications (JSAC), 2002. To appear.

[6] Y. Chawathe. Scattercast: An Architecture for Internet Broadcast
Distribution as an Infrastructure Service. Ph.D. Thesis, Univer-
sity of California, Berkeley, Dec. 2000.

[7] Y. Chawathe, S. McCanne, and E. A. Brewer. RMX: Reliable
Multicast for Heterogeneous Networks. In Proceedings of IEEE
Infocom, 2000.

[8] Y.-H. Chu, S. G. Rao, S. Seshan, and H. Zhang. Enabling Con-
ferencing Applications on the Internet using an Overlay Multicast
Architecture. In Proceedings of ACM SIGCOMM, Aug. 2001.

[9] Y.-H. Chu, S. G. Rao, and H. Zhang. A Case for End System
Multicast. In Proceedings of ACM SIGMETRICS, June 2000.

[10] S. Deering and D. Cheriton. Multicast Routing in Datagram In-
ternetworks and Extended LANs. In ACM Transactions on Com-
puter Systems, May 1990.

[11] P. Francis. Yoid: Extending the Multicast Internet Architecture,
1999. White paper http://www.aciri.org/yoid/.

[12] A. Gupta. Steiner points in tree metrics don’t (really) help. In
Symposium of Discrete Algorithms, Jan. 2001.

[13] J. Jannotti, D. Gifford, K. Johnson, M. Kaashoek, and J. O’Toole.
Overcast: Reliable Multicasting with an Overlay Network. In
Proceedings of the 4th Symposium on Operating Systems Design
and Implementation, Oct. 2000.

[14] D. Pendarakis, S. Shi, D. Verma, and M. Waldvogel. ALMI: An
Application Level Multicast Infrastructure. In Proceedingsof 3rd
Usenix Symposium on Internet Technologies & Systems, March
2001.

[15] C. G. Plaxton, R. Rajaraman, and A. W. Richa. Accessing nearby
copies of replicated objects in a distributed environment. In ACM
Symposium on Parallel Algorithms and Architectures, June 1997.

[16] S. Ratnasamy, P. Francis, M. Handley, R. Karp, and S. Shenker.
A scalable content-addressable network. In Proceedings of ACM
Sigcomm, Aug. 2001.

[17] S. Ratnasamy,M. Handley, R. Karp, and S. Shenker. Application-
level multicast using content-addressable networks. In Proceed-
ings of 3rd InternationalWorkshopon NetworkedGroup Commu-
nication, Nov. 2001.

[18] A. Rowstron and P. Druschel. Pastry: Scalable, distributed ob-
ject location and routing for large-scale peer-to-peer systems.
In IFIP/ACM International Conference on Distributed Systems
Platforms (Middleware), Nov. 2001.

[19] S. Savage, T. Anderson, A. Aggarwal, D. Becker, N. Cardwell,
A. Collins, E. Hoffman, J. Snell, A. Vahdat, G. Voelker, and J. Za-
horjan. Detour: A Case for Informed Internet Routing and Trans-
port. IEEE Micro, 19(1), Jan. 1999.

[20] I. Stoica, R. Morris, D. Karger, M. F. Kaashoek, and
H.Balakrishnan. Chord: A scalable peer-to-peer lookup
service for Internet applications. In Proceedings of ACM
Sigcomm, Aug. 2001.

[21] B. Zhang, S. Jamin, and L. Zhang. Host multicast: A framework
for delivering multicast to end users. In Proceedings of IEEE In-
focom, June 2002.

[22] B. Y. Zhao, J. Kubiatowicz, and A. Joseph. Tapestry: An In-
frastructure for Fault-tolerant Wide-area Location and Routing.
Technical report, UCB/CSD-01-1141, University of California,
Berkeley, CA, USA, Apr. 2001.

[23] S. Q. Zhuang,B. Y. Zhao, A. D. Joseph,R. Katz, and J. Kubiatow-
icz. Bayeux: An architecture for scalable and fault-tolerant wide-
area data dissemination. In Eleventh International Workshop on

17

B0 B2

B1

C0

B0 B2

B1
3

A2

C0

A4

A6

A2

A6

A4 A5

A3

A5

A3
A10

4

A10

Fig. 22. Data path enhancements using delegation.

Network and Operating Systems Support for Digital Audio and
Video (NOSSDAV 2001), 2001.

APPENDIX

DATA PATH ENHANCEMENTS FOR HIGH BANDWIDTH

APPLICATIONS

The basic data path in NICE imposes more data for-
warding responsibility onto the cluster leaders. As a con-
sequence, members that are joined to higher layers are
cluster leaders in all the lower layers that they are joined to.
Therefore, they are required to forward higher volume of
data than those members that are joined to only the lower
layers. This data forwarding path, is therefore, not suited
for high bandwidth applications (e.g. video distribution).
We define an enhancement to this basic data path by al-
lowing the cluster leaders to delegate data forwarding re-
sponsibility to some of its cluster members in a determin-
istic manner. In this paper, we only explain data path del-
egation, assuming that data is originating from the leader
of the highest cluster in the topology. However, the same
delegation mechanism is equally applicable for data orig-
inating from any member (with minor modifications).

Consider a host h that belongs to layers, L0; : : : ; Li and
no other higher layer. The corresponding clusters in these
layers are: Cl0(h); : : : ; Cli(h). In the basic data path
(described in Section II-B), h receives the data from the
leader, p, of cluster Cli(h), i.e. its topmost layer. It is also
responsible for forwarding data to all the members in the
clusters Cl0(h); : : : ; Cli�1(h), i.e. the clusters in the re-
maining layers.

In the enhanced data path, h forwards data to only the
other members of Cl0(h), i.e. its cluster in the lowest
layer (L0). Additionally, it delegates the responsibility
of forwarding data to members in Clj(h) to members in
Clj�1(h), for all 1 � j � i�1. Since the cluster sizes are
bounded between k and 3k�1, each member of Clj�1(h)
gets a delegated forwarding responsibility to at most three
members in Clj(h). Only the cluster leader can delegate
forwarding responsibility to another member of its cluster.
A member that belongs to multiple layers belongs to only

a single cluster in each layer and is the leader of the re-
spective clusters in all but one layer. It is not a leader in
its topmost cluster. Therefore, each member can be dele-
gated forwarding responsibilities for at most 3 new peers.
The member, h receives data from a member, q to whichp (the leader of its topmost cluster, Cli(h)) has delegated
the forwarding responsibility.

This data path transformation is illustrated with an ex-
ample in Figure 22. Consider the basic data path with hostC0 as the source (Panel 3). Host C0 is the leader of both
its L0 and L1 clusters. Therefore, in the basic data path, it
is required to forward data to the other members both its
clusters (A3; A4 and A5 in layer L0, and B0; B1 and B2
in layer L1). In the enhanced data path (Panel 4), it dele-
gates the other members of its L0 cluster to forward data
to the other members of itsL1 cluster. In particular, it sets
up the new data path peers as: hA3 ! B0i, hA4 ! B1i,
and hA5 ! B2i. Members which are not leaders of theirL1 clusters, i.e. B0; B1 and B2 now receive data not from
the cluster leader (i.e. C0), and instead receive data from
the members delegated by C0 as described.

Any member, in the enhanced data path, forwards data
to all members of only one of its clusters (i.e. its L0 clus-
ter), and additionally may be delegated to forward data
to two other members. This the total number of data
path peers for any member in this enhanced data path is
bounded by 3k, a constant that depends on the cluster size.
However, the number of application-level hops between
any pair of members on the overlay is still bounded byO(logN).

