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Abstract— We describe a new scalable application-layer
multicast protocol, specifically designed for low-bandwidth
data streaming applications with large receiver sets. Our
scheme is based upon a hierarchical clustering of the
application-layer multicast peersand can support anumber
of different data delivery trees with desirable properties.

We present extensive simulations of both our protocol
and the Narada application-layer multicast protocol over
Internet-like topologies. Our results show that for groups of
size 32 or more, our protocol haslower link stress (by about
25%), improved or similar end-to-end latencies and simi-
lar failurerecovery properties. More importantly, it isable
to achieve these results by using orders of magnitude lower
control traffic.

Finally, we present results from our wide-area testbed in
which we experimented with 32-100 member groups dis-
tributed over 8 different sites. In our experiments, aver-
age group member sestablished and maintained low-latency
pathsand incurred a maximum packet loss rate of lessthan
1% as members randomly joined and left the multicast
group. The average control overhead during our experi-
mentswaslessthan 1 Kbpsfor groups of size 100.

I. INTRODUCTION

Multicasting is an efficient mechanism for packet deliv-
ery in one-many data transfer applications. It eliminates
redundant packet replicationin the network. It aso decou-
ples the size of the receiver set from the amount of state
kept at any singlenodeand therefore, isan useful primitive
to scalemulti-party applications. However, deployment of
network-layer multicast [10] has not been widely adopted
by most commercial ISPs, and thus large parts of the In-
ternet are still incapable of native multicast more than a
decade after the protocols were developed. Application-
Layer Multicast protocols[9], [11], [6], [13], [14], [23],
[17] do not changethe network infrastructure, instead they
implement multicast forwarding functionality exclusively
a end-hosts. Such application-layer multicast protocols

are increasingly being used to implement efficient com-
mercial content-distribution networks.

In this paper, we present a new application-layer multi-
cast protocol which has been devel oped in the context of
the NICE project at the University of Maryland 1. NICE
is a recursive acronym which stands for NICE is the In-
ternet Cooperative Environment. In this paper, we refer
to the NICE application-layer multicast protocol as sim-
ply the NICE protocol. This protocol is designed to sup-
port applications with large receiver sets. Such applica-
tions include news and sports ticker services such as In-
fogate (http://www.infogate.com) and ESPN Bottomline
(http://www.espn.com); real-time stock quotes and up-
dates, e.g. the Yahoo! Market tracker, and popular Inter-
net Radio sites. All of these applicationsare characterized
by very large (potentially tens of thousands) receiver sets
and relatively low bandwidth soft real-time data streams
that can withstand some loss. We refer to this class of
large receiver set, low bandwidth real-time data applica
tions as data stream applications. Data stream applica-
tions present aunique challengefor application-layer mul-
ticast protocols: thelargereceiver setsusualy increasethe
control overhead whilethe relatively low-bandwidth data
makes amortizing this control overhead difficult. NICE
can be used to implement very large data stream appli-
cations since it has a provably small (constant) control
overhead and produces low latency distribution trees. It
is possible to implement high-bandwidth applications us-
ing NICE as well; however, in this paper, we concentrate
exclusively on low bandwidth data streams with large re-
ceiver sets.

A. Application-Layer Multicast

The basic idea of application-layer multicast is shown
in Figure 1. Unlike native multicast where data packets
arereplicated at routersinsidethe network, in application-
layer multicast data packets are replicated at end hosts.

! See http:/Awww.cs.umd.edu/projects/nice
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Fig. 1. Network-layer and application layer multicast. Square nodes
arerouters, and circular nodesare end-hosts. The dotted lines represent
peers on the overlay.

Logicaly, the end-hosts form an overlay network, and
the goal of application-layer multicast is to construct and
maintain an efficient overlay for datatransmission. Since
application-layer multicast protocol smust send theidenti-
cal packets over the same link, they are less efficient than
native multicast. Two intuitive measures of “goodness’
for application layer multicast overlays, namely stressand
stretch, were defined in [9]). The stress metric is defined
per-link and counts the number of identical packets sent
by a protocol over each underlying link in the network.
The stretch metric is defined per-member and is the ra-
tio of path-length from the source to the member aong
the overlay to the length of the direct unicast path. Con-
sider an application-layer multicast protocol in which the
data source unicaststhe datato each receiver. Clearly, this
“multi-unicast” protocol minimizes stretch, but does so at
acost of O(N) stress at links near the source (IV is the
number of group members). It aso requires O( N )control
overhead at some single point. However, this protocol is
robust in the sense that any number of group member fail-
ures do not affect the other members in the group.

In general, application-layer multicast protocolscan be
evaluated along three dimensions:

o Quality of the data delivery path: The quality of the
tree ismeasured using metrics such as stress, stretch,
and node degrees.

o Robustness of the overlay: Since end-hosts are po-
tentialy less stable than routers, it is important
for application-layer multicast protocols to mitigate
the effect of receiver failures. The robustness of
application-layer multicast protocolsis measured by
guantifying the extent of the disruptionin datadeliv-
ery when different membersfail, and thetimeit takes
for the protocol to restore delivery to the other mem-
bers. We present the first comparison of thisaspect of
application-layer multicast protocols.

« Control overhead: For efficient use of network re-
sources, the control overhead at the members should
be low. Thisisan important cost metric to study the
scalahility of the scheme to large member groups.

B. NICE Trees

Our goas for NICE were to develop an efficient, scal-
able, and distributed tree-building protocol which did not
require any underlying topology information. Specif-
icaly, the NICE protocol reduces the worst-case state
and control overhead at any member to O(log V), main-
tains a constant degree bound for the group members
and approach the O(log N) stretch bound possible with
atopology-aware centralized algorithm. Additionally, we
also show that an average member maintains state for a
constant number of other members, and incurs constant
control overhead for topology creation and mai ntenance.

Inthe NICE application-layer multicast scheme, we cre-
ate a hierarchically-connected control topology. The data
delivery pathisimplicitly defined in theway the hierarchy
is structured and no additional route computations are re-
quired.

Along with the analysis of the various bounds, we
also present asimul ation-based performance eval uation of
NICE. Inour simulations, we compare NICE totheNarada
application-layer multicast protocol [9]. Narada was first
proposed as an efficient application-layer multicast pro-
tocol for small group sizes. Extensionsto it have subse-
guently been proposed [8] totailor itsapplicability to high-
bandwi dth media-streaming applicationsfor these groups,
and have been studied using both simulations and imple-
mentation. Lastly, we present results from a wide-area
implementation in which we quantify the NICE run-time
overheads and convergence properties for various group
Sizes.

C. Roadmap

The rest of the paper is structured as follows: In Sec-
tion 11, wedescribe our general approach, explain how dif-
ferent delivery trees are built over NICE and present the-
oretical bounds about the NICE protocol. In Section 111,
we present the operationa details of the protocol. We
present our performance eval uation methodology in Sec-
tion 1V, and present detailed analysisof the NI CE protocol
through simulationsin Section V and a wide-area imple-
mentation in Section V1. We elaborate on related work in
Section VI, and concludein Section VII|I.

I1. SOLUTION OVERVIEW

The NICE protocol arranges the set of end hostsinto a
hierarchy; the basic operation of the protocol is to create
and maintain the hierarchy. The hierarchy implicitly de-
finesthe multicast overlay data paths, as described later in
thissection. The member hierarchy is crucial for scalabil-
ity, since most members arein the bottom of the hierarchy
and only maintain state about a constant number of other
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Fig. 2. Hierarchical arrangement of hostsin NICE. Thelayersarelog-
ical entities overlaid on the same underlying physical network.

members. The members at the very top of the hierarchy
mai ntain (soft) state about O (log N ) other members. Log-
ically, each member keepsdetailed state about other mem-
bers that are near in the hierarchy, and only has limited
knowledge about other membersin the group. The hierar-
chical structure is aso important for localizing the effect
of member failures.

The NICE hierarchy described in this paper is similar
to the member hierarchy used in [3] for scalable multicast
group re-keying. However, the hierarchy in[3], islayered
over a multicast-capable network and is constructed using
network multicast services (e.g. scoped expanding ring
searches). We build the necessary hierarchy on a unicast
infrastructure to provide a multicast-capable network.

In this paper, we use end-to-end latency as the distance
metric between hosts. While constructing the NICE hier-
archy, members that are “close” with respect to the dis-
tance metric are mapped to the same part of the hierarchy:
this alows usto produce trees with low stretch.

In therest of this section, we describe how the NICE hi-
erarchy is defined, what invariants it must maintain, and
describe how it is used to establish scalable control and
data paths.

A. Hierarchical Arrangement of Members

TheNICE hierarchy iscreated by assigning membersto
different levels (or layers) asillustrated in Figure 2. Lay-
ers are numbered sequentially with the lowest layer of the
hierarchy being layer zero (denoted by 7.,). Hostsin each
layer are partitioned into a set of clusters. Each cluster is
of size between k£ and 3k — 1, where k is a constant, and
consists of a set of hosts that are close to each other. We
explain our choice of the cluster size bounds later in this
paper (Section 111-B.1). Further, each cluster has a clus-
ter leader. The protocol distributedly chooses the (graph-
theoretic) center of thecluster to beitsleader, i.e. theclus-
ter leader has the minimum maximum distanceto all other
hosts in the cluster. This choice of the cluster leader is
important in guaranteeing that a new joining member is
quickly abletofind itsappropriatepositioninthehierarchy
using avery small number of queries to other members.

Hostsare mapped to layers using thefollowing scheme:
All hosts are part of the lowest layer, L. The clustering
protocol at I, partitionsthese hostsinto a set of clusters.
The cluster leaders of al theclustersin layer I; join layer
L;41. Thisisshown with an example in Figure 2, using
k = 3. Thelayer L, clusters are [ABCD], [EFGH] and
[JKLM]?. Inthisexample, weassumethat ', F’ and M are
the centers of their respective clusters of their g clusters,
and are chosen to be the leaders. They form layer 1., and
are clustered to create the single cluster, [CFM], in layer
L. Fisthe center of this cluster, and hence its |eader.
Therefore F' belongsto layer 1, aswell.

The NICE clusters and layers are created using a dis-
tributed agorithm described in the next section. The fol-
lowing properties hold for the distribution of hosts in the
different layers:

o A host belongsto only asingle cluster at any layer.

o If a host is present in some cluster in layer I;,

it must occur in one cluster in each of the layers,
Lo, ..., L;_q. Infact, it isthe cluster-leader in each
of these lower layers.
o Ifahostisnot presentinlayer, I;, it cannot be present
inany layer L;, wherej > 1.

» Each cluster hasitssize bounded between £ and 3k —
1. Theleader isthe graph-theoretic center of theclus-
ter.

o Thereareat mostlog, N layers, and thehighest layer

has only a single member.

We a so define the term super-cluster for any host, X'.
Assumethat host, X', belongsto layers Ig, ..., ;1 and
no other layer, and let [..XY Z..] bethecluster it belongsit
initshighest layer (i.e. layer ;_{) withY itsleader inthat
cluster. Then, the super-cluster of X isdefined asthe clus-
ter, inthe next higher layer (i.e. I;), towhichitsleader Y
belongs. It followsthat thereis only one super-cluster de-
fined for every host (except the host that bel ongsto thetop-
most layer, which does not have a super-cluster), and the
super-cluster isin the layer immediatel y above the highest
layer that H belongsto. For example, in Figure 2, cluster
[CFM] in Layer 1 isthe super-cluster for hosts B, A, and
D. In NICE each host maintains state about al the clus-
ters it belongs to (one in each layer to which it belongs)
and about its super-cluster.

B. Control and Data Paths

The host hierarchy can be used to define different over-
lay structuresfor control messagesand datadelivery paths.
The neighbors on the control topology exchange periodic
soft state refreshes and do not generate high volumes of

2We denoteacluster comprisingof hosts X, Y, 7, ... by [XY Z .. ].



Fig. 3. Control and data delivery paths for atwo-layer hierarchy. All A; hosts are members of only L, clusters. All B; hosts are members of
both layers L, and L,. Theonly C host isthe leader of the 7., cluster comprising of itself and all the B hosts.

traffic. Clearly, it isuseful to have a structure with higher
connectivity for the control messages, sincethiswill cause
the protocol to converge quicker.

In Figure 3, weillustratethe choices of control and data
paths using clusters of size 4. The edgesin thefigurein-
dicate the peerings between group members on the over-
lay topology. Each set of four hostsarranged in a4-clique
in Panel O are the clustersin layer Iy. Hosts By, By, B
and 'y arethe cluster leaders of thesefour /g clustersand
form the single cluster in layer L. Host C isthe leader
of thiscluster inlayer L. In therest of the paper, we use
Cl;(X ) todenotethecluster inlayer L; to which member
X belongs. Itisdefined if and only if X belongsto layer
L;.

Thecontrol topology for theNICE protocol isillustrated
in Figure 3, Pand 0. Consider a member, X, that belongs
only to layers Ly, ..., L;. Its peers on the control topol-
ogy are the other members of the clustersto which X be-
longs in each of these layers, i.e. members of clusters
Cly(X),...,CL(X). Usingtheexample (Figure 3, Panel
0), member A, belongstoonly layer 14, and therefore, its
control path peers are the other members in its I clus-
ter, i.e. Ay, A and By. In contrast, member B, belongs
to layers I, and 1., and therefore, its control path peers
are dl theother membersof its I, cluster (i.e. Ay, A; and
Ag) and Iy cluster (i.e. By, By and (). In this control
topology, each member of a cluster, therefore, exchanges
soft state refreshes with al the remaining members of the
cluster. Thisallows al cluster members to quickly iden-
tify changes in the cluster membership, and in turn, en-
ablesfaster restoration of a set of desirableinvariants(de-
scribed in Section I1-D), which might be violated by these
changes.

The delivery path for multicast data distribution needs
to be loop-free, otherwise, duplicate packet detection and
suppression mechanisms need to be implemented. There-
fore, in the NICE protocol we choose the data delivery
path to be atree. More specifically, given a data source,
the data delivery path is a source-specific tree, and isim-
plicitly defined from the control topology. Each member

Procedure : MulticastDataForward(, p)

{h € layersLy,...,L;inclustersCly(h),...,Cl;(h) }

for jin|o0,...,1]
it (p ¢ Cl(1))
ForwardDataToSet(Cl;(~) — {h})
end if
end for

Fig. 4. Dataforwarding operation at a host, %, that itself received
the data from host p.

executes an instance of the Procedure MulticastDataFor-
ward given in Figure 4, to decide the set of members to
whichit needstoforward thedata. Panels1, 2and 3 of Fig-
ure 3 illustrate the consequent source-specific trees when
the sources are at members Ag, A7 and C respectively.
We call thisthe basic data path.

To summarize, in each cluster of each layer, the control
topology is a clique, and the data topology isa star. Itis
possible to choose other structures, e.g. in each cluster, a
ring for control path, and a balanced binary tree for data
path.

C. Analysis

Each cluster in the hierarchy has between £ and 3k — 1
members. Then for the control topology, a host that be-
longsonly to layer L, peerswith O(k) other hostsfor ex-
change of control messages. In genera, ahost that belongs
to layer L; and no other higher layer, peers with O(k)
other hostsin each of thelayers Lo, . . ., ;. Therefore, the
control overhead for this member is O(k ¢). Hence, the
cluster-leader of the highest layer cluster (Host C in Fig-
ure 3), peerswith atotal of O(klog N ) neighbors. Thisis
the worst case control overhead at a member.

It follows using amortized cost anaysisthat the control
overhead at an average member isaconstant. The number
of membersthat occur inlayer I.; and no other higher layer
isbounded by O(N/k"). Therefore, the amortized control
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with asymptotically increasing N . Thus, the control over-
head is O(k) for the average member, and O(klog V) in
the worst case. The same holds analogoudly for stress at
members on the basic data path 3. Also, the number of
application-level hops on the basic data path between any
pair of membersisO(log V).

Whilean O(klog N ) peerson thedatapath isan accept-
able upper-bound, we have defined enhancementsthat fur-
ther reduce the upper-bound of the number of peers of a
member to a constant. The stress at each member on this
enhanced data path (created using local transformations of
the basic data path) is thus reduced to a constant, while
the number of application-level hops between any pair of
members still remain bounded by O(log V). We outline
this enhancement to the basic data path in the Appendix.

D. Invariants

All the properties described in the analysishold aslong
as the hierarchy is maintained. Thus, the objective of
NICE protocol isto scalably maintainthe host hierarchy as
new members join and existing members depart. Specifi-
cally the protocol described in the next section maintains
the following set of invariants:

o At every layer, hosts are partitioned into clusters of
Size between £ and 3k — 1.

o All hosts belong to an I, cluster, and each host be-
longsto only asingle cluster at any layer

o Thecluster leaders are the centers of their respective
clusters and form the immediate higher layer.

I11. PROTOCOL DESCRIPTION

In this section we describe the operations of the NICE
protocol. We assume the existence of a special host that
all members know of a-priori. Using nomenclature devel-
oped in [9], we cal this host the Rendezvous Point (RP).
Each host that intends to join the application-layer multi-
cast group contacts the RP to initiatethe join process. For
ease of exposition, we assume that the RP is always the
leader of thesinglecluster inthe highest layer of thehierar-
chy. Itinteractswith other cluster membersinthislayer on
the control path, andisbypassed onthe datapath. (Clearly,
it ispossiblefor the RP to not be part of the hierarchy, and

?Note that the stress metric at membersis equivalent to the degree of
the members on the data delivery tree.

for theleader of the highest layer cluster to maintain acon-
nection to the RP, but we do not belabor that complexity
further). For an application such as streaming media de-
livery, the RP could be a distinguished host in the domain
of the data source.

The NICE protocoal itself has three main components:
initial cluster assignment as a new host joins, periodic
cluster maintenance and refinement, and recovery from
leader failures. We discuss these in turn.

A. New Host Joins

When a new host joins the multicast group, it must be
mapped to some cluster in layer Lo. Weillustratethejoin
procedurein Figure5. Assumethat host A, wantstojoin
the multicast group. First, it contacts the RP with its join
query (Panel 0). The RP responds with the hosts that are
present in the highest layer of the hierarchy. The joining
host then contacts all members in the highest layer (Panel
1) to identify the member closest to itself. In the exam-
ple, the highest layer I, hasjust one member, C'y, which
by default isthe closest member to A, amongst layer 7.,
members. Host 'y informs A, of the three other mem-
bers (By, By and By) inits Iy cluster. A5 then contacts
each of these members with the join query to identify the
closest member among them (Panel 2), anditeratively uses
this procedureto find its 7, cluster.

It isimportant to note that any host, H, which belongs
toany layer L; isthe center of its L;_; cluster, and recur-
sively, is an approximation of the center among al mem-
bersinall Iy clustersthat are bel ow thispart of thelayered
hierarchy. Hence, querying each layer in succession from
thetop of the hierarchy to layer ., resultsin aprogressive
refinement by thejoining host to find the most appropriate
layer L, cluster tojointhat iscloseto thejoining member.
The outline of this operation are presented in pseudocode
as Procedure BasicJoinLayer in Figure 6.

We assume that all hosts are aware of only a single
well-known host, the RP, from which they initiate thejoin
process. Therefore, overheads due to join query-response
messages is highest at the RP and descreases down the
layers of the hierarchy. Under a very rapid sequence of
joins, the RP will need to handle a large number of such
join query-response messages. Alternate and more scal-
able join schemes are possible if we assume that the join-
ing host is aware of some other “nearby” host that is al-
ready joined to the overlay. In fact, both Pastry [18] and
Tapestry [22] dleviate apotential bottleneck at the RP for
arapid sequence of joins, based on such an assumption.

1) Join Latency: Thejoining process involvesames-
sage overhead of O(klog N) query-response pairs. The
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Fig. 5. Host A;. joinsthe multicast group.

Procedure : BasicJoinLayer (h, 7)

Cl; — Query(RP,—)

while (j > 1)
Findy st. dist(h,y) < dist(h, z),2,y € Cl;
Cli_1(y) — Query(y,j—1)
Decrement j,Cl; — Cl;_1(y)

endwhile

JoinCluster (h,Ldr(Cl;), L;)

Fig. 6.  Basic join operation for member &, to join layer L;.
¢ = 0 for anew member. If ¢ > 0, then & is already part of
layer L;—_1. Query(y,j — 1) seeksthe membership information
of Cl;_1(y) from member y. Query(RP,—) seeks the member-
ship information of the topmost layer of the hierarchy, from the
RP. JoinCluster(z,y, L ;) operation sendsan appropriate message
to add new member = to acluster in layer L;. The messageis sent
to y, the leader of the cluster.

join-latency depends on the delays incurred in this ex-
changes, which is typicaly about O(log N') round-trip
times. In our protocol, we aggressively locate possible
“good” peers for ajoining member, and the overhead for
locating the appropriate attachmentsfor any joining mem-
ber isrelatively large.

To reduce the delay between a member joining the mul-
ticast group, and its receipt of the first data packet on the
overlay, weallow joining membersto temporarily peer, on
the data path, with the leader of the cluster of the current
layer it is querying. For example, in Figure 5, when A4,
is querying the hosts By, By and B for the closest point
of attachment, it temporarily peers with C'y (leader of the
layer I, cluster) on the data path. This allowsthe joining
host to start receiving multicast dataon the group withina
singleround-trip latency of itsjoin.

2) Joining Higher Layers: An important invariant in
the hierarchical arrangement of hostsis that the leader of
a cluster be the center of the cluster. Therefore, as mem-
bers join and leave clusters, the cluster-leader may occa-
sionally change. Consider achangeinleadership of aclus-
ter, C', inlayer L;. The current leader of C' removesitself
from al layers L, and higher to which it isattached. A

o o
Al2 e
L d [
°
B2 BO

new leader is chosen for each of these affected clusters.
For example, a new leader, /, of C'inlayer L; ischosen
whichisnow required tojoinitsnearest ., cluster. This
isitscurrent super-cluster (which by definitionisthe clus-
ter in layer L;4, to which the outgoing leader of C' was
joined to), i.e. the new leader replaces the outgoing leader
in the super-cluster. However, if the super-cluster infor-
mation is stale and currently invalid, then the new leader,
h, invokesthejoinproceduretojointhenearest L, clus-
ter. It calls BasicJoinLayer(h, j + 1) and the routine ter-
minates when the appropriate layer L, cluster isfound.
Also note that the BasicJoinLayer requires interaction of
the member / with the RP. The RP, therefore, aids in re-
pairing the hierarchy from occasiona overlay partitions,
i.e. if the entire super-cluster information becomes stale
in between the periodic HeartBeat messages that are ex-
changed between cluster members. If theRPfails, for cor-
rect operation of our protocol, werequirethat it be capable
of recovery within a reasonable amount of time.

B. Cluster Maintenance and Refinement

Each member z of acluster ', sends a HeartBeat mes-
sageevery T secondsto each of itscluster peers(neighbors
on the control topology). The message contains the dis-
tance estimate of  to each other member of C'. It ispossi-
blefor « to have inaccurate or no estimate of the distance
to some other members, e.g. immediately after it joinsthe
cluster.

The cluster-leader includes the compl ete updated clus-
ter membership in its HeartBeat messages to all other
members. This alows existing members to set up appro-
priate peer relationshipswith new cluster members on the
control path. For each clusterinlevel I;, thecluster-leader
also periodically sendstheitsimmediate higher layer clus-
ter membership (whichisthe super-cluster for all the other
members of the cluster) to that 7; cluster.

All of the cluster member state is sent via unreliable
messages and iskept by each cluster member as soft-state,
refreshed by the periodic HeartBeat messages. A mem-
ber » isdeclared no longer part of a cluster independently



Procedure : Cluster Split(C)

{1C] > 3k}
o —{QIQcC A QLIC-Q|>3k/2]}
Let R(Q) = max(radius(Q),radius(C' — Q)))
Find Q* st. R(Q*) < R(()) whereQ,Q* € ¢
Leader Transfer (Ldr(C), Q*, Ldr(Q*))
Leader Transfer(Ldr(C), C' — Q*, Ldr(C' — Q%))

Fig. 7. Cluster split operation for cluster, C', which exceeds
the size bound. The operation is invoked by the leader of clus-
ter, C. The appropriate partitions (Q* and C — @Q*) can be
naively implemented in with arunning time of O(|C|?). radius(Q)
defines the graph-theoretic radius of the set of members, Q.
Leader Transfer (z, C, v) sends appropriate messagesto transfer the
leadership of the cluster C' from current leader, =, to new leader,
y. The Leader Transfer message can be sent as aregular HeartBeat
message with appropriate flags set to indicate the transfer.

Procedure : ClusterMerge(C')

{|C] < k and L; isthe layer to which C' belongs }
[ — LdI’(C)
Find y st. dist({, y) < dist(h,z),z,y € Cli31(])
ClusterMergeRequest(/, y, L;)
Leader Transfer({, ', )

Fig. 8. Cluster merge operation isinvoked by I, the leader of the
cluster C. Thesize of C' is < k. [ findsy, the leader of another
cluster in layer I; and sendsthe Cluster MergeRequest message.

by al other members in the cluster if they do not receive
amessage from x for a configurable number of HeartBeat
message intervals.

1) Cluster Split and Merge: A cluster-leader periodi-
cally checksthe size of itscluster, and appropriately splits
or merges the cluster when it detects a size bound viola-
tion. A cluster that exceeds the cluster size upper bound,
3k — 1 issplitinto two clusters each of which has at least
|3%/2| members. Thisisdescribedin pseudo-codein Fig-
ure”.

For correct operation of the protocol, we could have
chosen the cluster size upper bound to be any value >
2k —1. However, if 2k — 1 was chosen as the upper bound,
then the cluster would require to split when it exceeds this
upper bound (i.e. reaches the size 2k). Subsequently, an
equal-sized split would create two clusters of size & each.
However, asingledeparturefrom any of thesenew clusters
would violate the size lower bound and require a cluster
merge operation to be performed. Choosing a larger up-
per bound (e.g. 3k-1) avoidsthisproblem. When the clus-
ter exceeds this upper bound, it issplit into two clusters of
sizeat least |3k /2], and therefore, requiresat least [k /2]
member departures before a merge operation needs to be
invoked.

Procedure : Cluster Refing(z)
{ L; ishighest |layer to which = belongs }
[ — Ldl’(Ch(Z)); C — C|Z'_|_1(l)
Find y st. dist(z,y) < dist(z,z),z,y € C
if (y#1)
LeaveCluster(z, 1, ;)
JoinCluster(z, y, L;)

endif
Fig. 9. Cluster refine operation by member z which belongs to
layers Lo, . .., L; and no other higher layer. If it finds another ap-

propriate cluster in the same layer, it leavesits current cluster and
joinsthe other cluster. LeaveCluster (z, y, L ;) sendsan appropriate
message from a departing member = to its cluster leader y in layer
L;.

The cluster leader initiates this cluster split operation.
Given a set of hosts and the pairwise distances between
them, the cluster split operation partitions them into sub-
sets that meet the size bounds, such that the maximum ra-
dius (in a graph-theoretic sense) of the new set of clus-
tersisminimized. Thisissimilar to the K -center problem
(known to be NP-Hard) but with an additional size con-
straint. We use an approximation strategy — the leader
splits the current cluster into two clusters, each of size at
least |3k /2], such that the maximum of the radii among
the two clustersis minimized. It also chooses the centers
of the two partitionsto be the leaders of the new clusters
and transfers | eadership to the new leaders through Lead-
er Transfer messages. If these new clusters till violatethe
size upper bound, they are split by the new leaders using
identical operations.

If thesizeof acluster, C',(inlayer I;) withleader [, falls
below £, [ initiates a cluster merge operation (shown in
pseudo-code in Figure 8). Note, [ itself belongsto alayer
L4 cluster, Cl; 41 (7). I choosesits closest cluster-peer, y,
inCl;;i ;). y isalsotheleader of alayer L; cluster, Cl;(y).
[ initiatesthe merge operation of C' with Cl;(y) by sending
a Cluster MergeRequest message to y. | updates the mem-
bersof C' withthismergeinformation. y similarly updates
themembers of Cl;(y). Followingthemerge, / removesit-
self from layer 1,44 (i.e. from cluster Cl; 1 (7).

When amember isjoining alayer, it may not aways be
able to locate the closest cluster in that layer (e.g. dueto
lost join query or join response, etc.) and instead attaches
to some other cluster in that layer. Therefore, each mem-
ber, z, in any layer (say 1;) periodically probes all mem-
bers in its super-cluster (they are the leaders of layer I;
clusters), to identify the closest member (say y) to itself
in the super-cluster. If y is not the leader of the I; clus-
ter to which =z belongsthen such an inaccurate attachment
isdetected. In thiscase, z leavesitscurrent layer I; clus-



ter and joinsthe layer I; cluster of which y isthe leader.
This cluster refinement process is shown in pseudo-code
in Figure 9.

C. Host Departure and Leader Selection

When ahost z leaves the multicast group, it sendsaRe-
move message to al clustersto which it isjoined. Thisis
a graceful-leave. However, if « fails without being able
to send out this message al cluster peers of = detects this
departure through non-receipt of the periodic HeartBeat
message from z. If » was aleader of a cluster, thistrig-
gers a new leader selection in the cluster. Each remain-
ing member, y, of the cluster independently select a new
leader of the cluster, depending on who y estimates to be
the center among these members. Multiple leaders are
re-conciled into a single leader of the cluster through ex-
change of Leader Transfer message between the two can-
didate |eaders, when the multiplicity is detected.

It is possible for members to have an inconsistent view
of the cluster membership, and for transient cycles to de-
velop on the data path. These cycles are eliminated once
the protocol restores the hierarchy invariants and recon-
cilesthe cluster view for all members.

IV. EXPERIMENTAL METHODOLOGY

We have analyzed the performance of the NICE pro-
tocol using detailed simulations and a wide-area imple-
mentation. In the simulation environment, we compare
the performance of NICE to three other schemes: multi-
unicast, native | P-multicast using the Core Based Tree pro-
tocol [2], and the Narada application-layer multicast pro-
tocol (as givenin [9]). In the Internet experiments, we
benchmark the performance metrics against direct unicast
paths to the member hosts.

Clearly, native IP multicast trees will have the least
(unit) stress, since each link forwards only a single copy
of each data packet. Unicast paths have the lowest la-
tency and so we consider them to be of unit stretch 4.
They provide us areference against which to compare the
application-layer multicast protocols.

A. Data Mod€

In all theseexperiments, we model the scenario of adata
stream source multicasting to the group. We chose a sin-
gle end-host, uniformly at random, to be the data source

*There are some recent studies [19], [1] to show that this may not
always be the case; however, we use the native unicast latency as the
reference to compare the performance of the other schemes.

generating aconstant bit rate data. Each packet inthe data
sequence, effectively, samples the data path on the over-
lay topology at that timeinstant, and the entire data packet
sequence capturesthe evolution of the datapath over time.

B. Performance Metrics

We compare the performance of the different schemes

along the following dimensions:

o Quality of data path: Thisis measured by three dif-
ferent metrics — tree degree distribution, stress on
linksand routersand stretch of datapathsto thegroup
members.

o Recovery from host failure: As hosts join and leave

the multicast group, theunderlying datadelivery path
adaptsaccordingly toreflect these changes. In our ex-
periments, we model ed member departures from the
group as ungraceful departures, i.e. membersfail in-
stantly and are unableto send appropriate leave mes-
sages to their existing peers on the topology. There-
fore, in transience, particularly after host failures,
path to some hosts may be unavailable. Itisaso pos-
sible for multiple paths to exist to a single host and
for cyclesto develop temporarily.
To study these effects, we measured the fraction of
hoststhat correctly receivethe datapackets sent from
the source as the group membership changed. We
also recorded the number of duplicates at each host.
In al of our simulations, for both the application-
layer multicast protocols, the number of duplicates
was insignificant and zero in most cases.

« Control traffic overhead: We report the mean, vari-
ance and the distribution of the control bandwidth
overheads at both routers and end hosts.

V. SIMULATION EXPERIMENTS

We have implemented a packet-level simulator for the
four different protocols. Our network topologies were
generated using the Transit-Stub graph model, using the
GT-ITM topology generator [4]. All topologiesin these
simulations had 10, 000 routers with an average node de-
gree between 3 and 4. End-hosts were attached to a set
of routers, chosen uniformly at random, from among the
stub-domain nodes. The number of such hostsin the mul-
ticast group were varied between 8 and 2048 for different
experiments. In our simulations, we only modeled |oss-
lesslinks; thus, thereis no datal oss dueto congestion, and
no notion of background traffic or jitter. However, data
is lost whenever the application-layer multicast protocol



fails to provide a path from the source to a receiver, and
duplicates are received whenever there is more than one
path. Thus, our simulationsstudy the dynamicsof themul-
ticast protocol and its effects on data distribution; in our
implementation, the performanceis al so affected by other
factors such as additional link latencies due to congestion
and drops due to cross-traffic congestion.

A. Our implementation of Narada

We have implemented the entire Narada protocol from
the description given in [9]. We did not implement the
Narada high bandwidth extensionsdescribed in [8] . Asde-
scribed before, Narada is a mesh-first application-layer
multicast approach, designed primarily for small multicast
groups. In Narada, the initial set of peer assignments to
create the overlay topology is done randomly. While this
initial data delivery path may be of “poor” quality, over
time Narada adds “good” links and discards “bad” links
from the overlay. Narada has O(N?) aggregate control
overhead because of its mesh-first nature: it requires each
host to periodically exchange updates and refreshes with
all other hosts.

The protocol, as defined in [9], has a number of user-
defined parameters that we needed to set. These include
the link add/drop thresholds, link add/drop probe fre-
guency, the periodic refresh rates, the mesh degree, etc.
We experimented with a wide-range of values for these
parameters to understand the behavior of Narada and ob-
served some interesting trade-offs in choosing these pa-
rameters. Specifically, we found that:

o The mesh degree bound for hosts should not be
strictly enforced to ensure connectivity. Instead ad-
ditional mechanisms that limit the degree of the data
path on the mesh should be used.

o Thereisaclear tradeoff between choosing ahighver-
suslow frequency for periodic probesto add or drop
links on the mesh. A high frequency allows mem-
bersto aggressively add and drop good and bad over-
lay linksrespectively. However, thisleadsto frequent
changesto the datapaths on the mesh, which can lead
to a temporary loss of data path to other members.
(Thiseffect isdifferent than when aroute changesand
state for the old route can be temporarily maintained
to mitigate the effect of the route change). We ob-
served this effect in our experiments where we use a
high periodic probe frequency, especialy if this pa-
rameter is set higher than the route packet exchange
frequency. In contrast, using a low probe frequency
leads to more stable paths; however, thisimpliesthat
the mesh topol ogy takes along time to stabilize.

B. Smulation Results

We have simulated a wide-range of topologies, group
sizes, member join-leave patterns, and protocol parame-
ters. For NICE, we set the cluster size parameter, &, to 3
inall of the experiments presented here. Broadly, our find-
ings can be summarized as follows:

o NICE trees have data paths that have stretch compa-

rable to Narada.

« Thestressonlinksand routersarelower in NICE, es-
pecialy asthe multicast group sizeincreases.

o Thefailurerecovery of both the schemes are compa-
rable.

o NICE protocol demonstrates that it is possible to
provide these performance with orders of magnitude
lower control overhead for groups of size > 32.

We begin with results from a representative experiment

that capturesall the of different aspects comparing thevar-
ious protocols.

1) Smulation Representative Scenario: This experi-
ment has two different phases: ajoin phase and a leave
phase. In the join phase a set of 128 members® join the
multicast group uniformly at random between the simu-
lated time 0 and 200 seconds. These hosts are allowed to
stabilize into an appropriate overlay topology until simu-
lation time 1000 seconds. The leave phase starts at time
1000 seconds: 16 hosts leave the multicast group over a
short duration of 10 seconds. Thisis repeated four more
times, at 100 second intervals. The remaining 48 mem-
bers continue to be part of the multicast group until the
end of simulation. All member departures are modeled as
host failures since they have the most damaging effect on
data paths. We experimented with different numbers of
member departures, from a single member to 16 members
leaving over the ten second window. Sixteen departures
from a group of size 128 within a short time window is
adrastic scenario, but it helpsillustrate the failure recov-
ery modes of the different protocols better. Member de-
parturesin smaller sizes cause correspondingly lower dis-
ruption on the data paths.

We experimented with different periodic refresh rates
for Narada. For a higher refresh rate the recovery from
host failures is quicker, but at a cost of higher control
traffic overhead. For Narada, we used different values
for route update frequencies and periodsfor probing other
mesh members to add or drop links on the overlay. In our

®We show results for the 128 member case becausethat is the group
size used in the experiments reported in [9]; NICE performs increas-
ingly better with larger group sizes.
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results, we report results from using route update frequen-
cies of once every 5 seconds (labeled Narada-5), and once
every 30 seconds (labeled Narada-30). The 30 second up-
date period correspondsto thewhat wasusedin [9]; weran
with the 5 second update period since the heartbeat period
in NICE was set to 5 seconds. Note that we could run with
amuch smaller heartbeat period in NICE without signifi-
cantly increasing control overhead since the control mes-
sagesarelimited withinclustersand do not traversetheen-
tiregroup. Wealso varied themesh probeperiodin Narada
and observed data path instability effect discussed above.
In theseresults, we set the Naradamesh probe period to 20
seconds.

Data Path Quality: In Figures 10 and 11, we show the
averagelink stressand the average path lengthsfor the dif-
ferent protocols as the data tree evolves during the mem-
ber join phase. Note that the figure shows the actual path
lengths to the end-hosts; the stretch is the ratio of average
path length of the members of a protocol to the average
path length of the members in the multi-unicast protocol.

Asexplained earlier, thejoin procedurein NICE aggres-
sively finds good points of attachment for the membersin
the overlay topology, and the NI CE tree converges quicker
to a stable value (within 350 seconds of simulated time).
In contrast, the Narada protocols gradually improve the
mesh quality, and consequently so does the data path over
alonger duration. Its average data path length converges
to a stable value of about 23 hops between 500 and 600
seconds of the simulated time. The corresponding stretch
is about 2.18. In Narada path lengths improve over time
due to addition of “good” links on the mesh. At the same
time, the stress on the tree gradually increases since the
Narada decides to add or drop overlay links based purely
on the stretch metric.

The cluster-based data dissemination in NICE reduces
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average link stress, and in general, for large groups NICE
converges to trees with about 25% lower average stress.
In this experiment, the NICE tree had lower stretch than
the Naradatree; however, in other experimentsthe Narada
tree had a dlightly lower stretch value. In general, com-
paring the results from multiple experiments over differ-
ent group sizes, (See Section V-B.2), we concluded that
the datapath lengthsto receiversweresimilar for both pro-
tocols.

In Figures 12 and 13, we plot a cumulative distribution
of the stress and path length metrics for the entire mem-
ber set (128 members) at a time after the data paths have
converged to a stable operating point.

The distribution of stress on links for the multi-unicast
scheme has a significantly large tail (e.g. links close to
the source has a stress of 127). This should be contrasted
with better stress distribution for both NICE and Narada.
Narada uses fewer number of links on the topology than
NICE, since it is comparably more aggressive in adding
overlay links with shorter lengths to the mesh topol ogy.
However, dueto thisemphasis on shorter path lengths, the
stressdistributionof thelinkshasaheavier-tail than NICE.
Morethan 25% of thelinkshave astress of four and higher
in Narada, compared to < 5% in NICE. Thedistribution of
the path lengths for the two protocols are comparable.

Failure Recovery and Control Overheads. To investi-
gate the effect of host failures, we present results from
the second part of our scenario: starting at simulated time
1000 seconds, a set of 16 members leave the group over
a 10 second period. We repeat this procedure four more
timesand no members|eave after simulated time 1400 sec-
onds when the group is reduced to 48 members. When
members leave, both protocols “heal” the data distribu-
tion tree and continue to send data on the partially con-
nected topology. In Figure 14, we show the fraction of
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members that correctly receive the data packets over this
duration. Both Narada-5 and NICE have similar perfor-
mance, and on average, both protocols restore the data
path to al (remaining) receivers within 30 seconds. We
also ran the same experiment with the 30 second refresh
period for Narada. Thelower refresh period caused signif-
icant disruptionson the tree with periods of over 100 sec-
onds when more than 60% of the tree did not receive any
data. Lastly, we notethat thedata distributiontree used for
NICE isthe least connected topology possible; we expect
failurerecovery resultsto be much better if structureswith
aternate paths are built atop NICE.

In Figure 15, we show the byte-overheads for control
traffic at the access links of the end-hosts. Each dot in the
plot representsthe sum of the control traffic (in Kbps) sent
or received by each member inthegroup, averaged over 10
second intervals. Thusfor each 10 second time slot, there
are two dots in the plot for each (remaining) host in the
multicast group correspondingto the control overheadsfor
Narada and NICE. The curvesin the plot are the average
control overhead for each protocol. As can be expected,
for groups of size 128, NICE has an order of magnitude
lower average overhead, e.g. at simulation time 1000 sec-
onds, the average control overhead for NICE is0.97 Kbps
versus 62.05 Kbps for Narada. At the same time instant,
Narada-30 (not shown in the figure) had an average con-
trol overhead of 13.43 Kbps. Note that the NICE control
traffic includes all protocol messages, including messages
for cluster formation, cluster splits, merges, layer promo-
tions, and leader €l ections.

2) Aggregate Results: We present a set of aggregate
results as the group size is varied. The purpose of this
experiment is to understand the scalability of the differ-
ent application-layer multicast protocols. The entire set
of members join in the first 200 seconds, and then we run
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the simulation for 1800 secondsto allow the topol ogiesto
stabilize. In Table |, we compare the stress on network
routers and links, the overlay path lengthsto group mem-
bers and the average contral traffic overheads at the net-
work routers. For each metric, we present the both mean
and the standard deviation. Note, that the Narada protocol
involves an aggregate control overhead of O( N?), where
N isthe size of the group. Therefore, in our simulation
setup, we were unable to simulate Narada with groups of
size 1024 or larger sincethe completiontimefor thesesim-
ulationswere on the order of a day for asinglerun of one
experiment on a550 MHz Pentium 111 machinewith 4 GB
of RAM.

Naradaand NICE tend to convergeto treeswith similar
path lengths. The stress metric for both network linksand
routers, however, isconsistently lower for NICE when the
group sizeislarge (64 and greater). It isinteresting to ob-
servethe standard deviation of stressasit changeswithin-
creasing group sizefor thetwo protocols. Thestandard de-
viationfor stressincreased for Naradafor increasing group
sizes. In contrast, the standard deviation of stressfor NICE
remains relatively constant; the topol ogy-based clustering
in NICE distributesthe data path more evenly among the
different links on the underlying links regardl ess of group
Size.

The control overhead numbers in the table are differ-
ent than the ones in Figure 15; the column in the tableis
the average control traffic per network router as opposed
to control traffic at an end-host. Since the control traffic
getsaggregated insidethe network, the overhead at routers
is significantly higher than the overhead at an end-host.
For these router overheads, we report the values of the
Narada-30 versioninwhich the route update frequency set
to 30 seconds. Recall that the Narada-30 version has poor
failure recovery performance, but is much more efficient
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Group Router Stress Link Stress Path Length Bandwidth Overheads (Kbps)
Size Narada-5 NICE Narada-5 NICE Narada-5 NICE Narada-30 NICE
8 155(1.30) 3.51(3.30) | 1.19(0.39) 3.24(2.90) | 25.14(9.49) 12.14(2.29) 0.61 (0.55) 1.54 (1.34)
16 184(1.28) 2.34(2.16) | 1.34(0.76) 1.86(1.39) | 19.00(7.01) 20.33(6.75) 2.94 (2.81) 0.87(0.81)
32 213(217) 242(260) | 1.54(1.03) 1.90(1.82) | 20.42(6.00) 17.23(5.25) 9.23 (8.95) 1.03 (0.95)
64 2.68(3.09) 2.23(2.25) | 1.74(1.53) 1.63(1.39) | 22.76(5.71) 20.62(7.40) | 26.20(28.86) 1.20 (1.15)
128 3.04(4.03) 2.36(2.73) | 2.06(2.64) 1.63(1.56) | 21.55(6.03) 21.61(7.75) | 65.62(92.08) 1.19(1.29)
256 3.63(752) 2.31(3.18) | 216(3.02) 1.63(1.63) | 23.42(6.17) 24.67(7.45) | 96.18 (194.00) 1.39(1.76)
512 | 4.09(10.74) 2.34(3.49) | 257(5.02) 1.62(1.54) | 24.74(6.00) 22.63(6.78) | 199.96 (55.06)  1.93(3.35)
1024 - 2.59 (4.45) - 1.77 (1.77) - 25.83(6.13) - 2.81(7.22)
1560 - 2.83(5.11) - 1.88(1.90) - 24.99 (6.96) - 3.28 (9.58)
2048 - 2.92 (5.62) - 1.93(1.99) - 24.08 (5.36) - 5.18 (18.55)
TABLE |

DATA PATH QUALITY AND CONTROL OVERHEADSFOR VARY ING MULTICAST GROUP SIZES (SIMULATION)

(specifically 5timeslessoverhead with groupsof size 128)
than the Narada-5 version. The HeartBeat messages in
NICE were still sent at 5 second intervals.

For the NICE protocol, the worst case control over-
heads at members increase logarithmically with increase
in group size. The control overheads at routers (shownin
Tablel), show asimilar trend. Thus, athough we experi-
mented with upto 2048 members in our simulation study,
we believethat our protocol scalesto even larger groups.

V1. WIDE-AREA IMPLEMENTATION

We haveimplemented the compl ete NICE protocol and
experimented with our implementation over a one-month
period, with 32 to 100 member groups distributed across
8 different sites. Our experimental topology is shown in
Figure 16. The number of members at each site was var-
ied between 2 and 30 for different experiments. For ex-
ample, for the 32 member experiment reported in thissec-
tion, we had 2 members each in sitesB, G and H, 4 each
a A,EandF, 6in C and 8in D. Unfortunately, experi-
ments with much larger groups were not feasible on our

testbed. However, our implementation results for proto-
col overheads closely match our simulation experiments,
and we believe our simulations provide a reasonable in-
dication of how the NICE implementation would behave
with larger group sizes.

A. Implementation Specifics

We have conducted experiments with data sources at
different sites. In this paper, we present a representative
set of the experiments where the data stream sourceis|o-
cated at site Cin Figure 16. In thefigure, we aso indicate
thetypical direct unicast latency (in milliseconds) fromthe
site C, to al the other sites. These are estimated one-way
latencies obtained using a sequence of application layer
(UDP) probes. Data streams were sent from the source
host at site C, to all other hosts, using the NICE overlay
topology. For our implementation, we experimented with
different HeartBeat rates; in the results presented in this
section, we set the HeartBeat message period to 10 sec-
onds.
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Fig. 16. Internet experiment sites and direct unicast latencies from C

In our implementation, we had to estimate the end-to-
end latency between hostsfor various protocol operations,
including member joins, leadership changes, etc. We es-
timated the latency between two end-hosts using a low-
overhead estimator that sent a sequence of application-
layer (UDP) probes. We controlled the number of probes
adaptively using observed variance in the latency esti-
mates. Further, instead of using the raw latency estimates
asthedistance metric, we used asimplebinning schemeto
map theraw latenciesto asmall set of equivalenceclasses.
Specifically, two |l atency estimateswere considered equiv-
alent if they mapped to the same equivaence class, and
thisresulted in faster convergence of the overlay topol ogy.
The specificlatency rangesfor each classwere 0-1 ms, 1-5
ms, 5-10 ms, 10-20 ms, 20-40 ms, 40-100 ms, 100-200 ms
and greater than 200 ms.

To compute the stretch for end-hostsin the Internet ex-
periments, we used the ratio of the latency from between
the source and a host along the overlay to the direct uni-
cast latency to that host. In the wide-area implementa-
tion, when a host A receives a data packet forwarded by
member B aong the overlay tree, A immediately sends
back a overlay-hop acknowledgment back to B. B logs
the round-trip latency between itsinitial transmission of
the datapacket to A and thereceipt of the acknowledgment
from A. After the entire experiment isdone, we calcul ated
the overlay round-trip latencies for each data packet by
adding up the individual overlay-hop latencies available
fromthelogsat each host. We estimated the one-way over-
lay latency as half of thisround trip latency. We obtained
the uni cast latencies using our low-overhead estimator im-
mediately after the overlay experiment terminated. This
guaranteed that the measurements of the overlay latencies
and the unicast |atencies did not interfere with each other.
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B. Implementation Scenarios

The Internet experiment scenarios have two phases: a
join phase and a rapid membership change phase. In the
join phase, aset of member hosts randomly join the group
from the different sites. The hostsare then allowed to sta-
bilize into an appropriate overlay delivery tree. After this
period, the rapid membership change phase starts, where
host members randomly join and leave the group. The av-
erage member lifetime in the group, in this phase was set
to 30 seconds. Likein the ssimulation studies, all member
departures are ungraceful and allow us to study the worst
case protocol behavior. Finaly, welet theremaining set of
members to organize into a stable data delivery tree. We
present results for three different groups of size of 32, 64,
and 96 members.

Data Path Quality

InFigure 17, we show the cumul ativedistributionof the
stress metric at the group members after the overlay stabi-
lizes at the end of the join phase. For all group sizes, typ-
ica members have unit stress (74% to 83% of the mem-
bers in these experiments). The stress for the remaining
members vary between 3 and 9. These members are pre-
cisely the cluster leadersin the different layers (recall that
the cluster size lower and upper bounds for these experi-
mentsis 3 and 9, respectively). The stressfor these mem-
bers can be reduced further by using the high-bandwidth
data path enhancements, described in the Appendix. For
larger groups, the number of members with higher stress
(i.e. between 3 and 9 in these experiments) is more, since
the number of clusters (and hence, the number of cluster
leaders) is more. However, as expected, thisincrease is
only logarithmicin the group size.

In Figure 18, we plot the cumulative distribution of the
stretch metric. Instead of plottingthestretch valuefor each
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single host, we group them by the sites at which there are
located. For al the member hosts at a given site, we plot
the mean and the 95% confidence intervals. Apart from
the sites C, D, and E, all the sites have near unit stretch.
However, note that the source of the data streams in these
experimentswere located in site C and hostsin the sitesC,
D, and E had very low latency paths from the source host.
The actua end-to-end latencies along the overlay pathsto
al thesitesare shownin Figure 19. For the sitesC, D and
E these latencies were 3.5 ms, 3.5 ms and 3.0 ms respec-
tively. Therefore, the primary contribution to these laten-
cies are packet processing and overlay forwarding on the
end-hosts themselves.

In Table I, we present the mean and the maximum
stretch for the different members, that had direct unicast
latency of at least 2 ms from the source (i.e. sitesA, B, G
and H), for al the different sizes. The mean stretch for all
thesesitesarelow. However, in some caseswedo seerela-
tively largeworst case stretches(e.g. inthe96-member ex-
periment there was one member that for which the stretch
of the overlay path was 4.63).
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Distribution of losses for packets in random membership change phase
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Fig. 20. Fraction of membersthat received data packets as group
membership continuously changed (testbed)

Cumulative distribution of losses at members in random membership change phase
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Fig.21. Cumulativedistribution of fraction of packetslost for dif-
ferent membersout of the entire sequenceof 900 packetsduring the
rapid membership change phase (testbed)

Failure Recovery

In this section, we describe the effects of group mem-
bership changes on the data delivery tree. To do this, we
observe how successful the overlay is in delivering data
during changes to the overlay topology. We measured the
number of correctly received packetsby different (remain-
ing) members during the rapid membership change phase
of the experiment, which begins after the initial member
set has stahilized into the appropriate overlay topology.
This phase lasts for 15 minutes. Members join and leave
the grou at random such that the average lifetime of a
member in the group is 30 seconds.

In Figure 20 we plot over time the fraction of mem-
bers that successfully received the different data packets.
A tota of 30 group membership changes happened over
the duration. In Figure 21 we plot the cumulative dis-
tribution of packet losses seen by the different members
over the entire 15 minute duration. The maximum num-
ber of packet losses seen by a member was 50 out of 900
(i.e. about 5.6%), and 30% of the members did not en-



Group Stress Stretch
Size | Mean Max. | Mean Max. | Mean Max.
32 1.85 8.0 108 161 | 084 2.34
64 173 8.0 114 167 | 077 2.70
96 1.86 9.0 104 463 | 073 2.65
TABLE I

AVERAGE AND MAXIMUM VALUES OF OF THE DIFFERENT
METRICS FOR DIFFERENT GROUP SIZES(TESTBED)

counter any packet losses. Even under this rapid changes
to the group membership, the largest continuous duration
of packet lossesfor any single host was 34 seconds, while
typical members experienced a maximum continuousdata
loss for only two seconds — this was true for all but 4 of
the members. These failure recovery statistics are good
enough for usein most data stream applications deployed
over the Internet. Note that in this experiment, only three
individual packets (out of 900) suffered heavy losses: data
packets at times 76 s, 620 s, and 819 s were not received
by 51, 36 and 31 members respectively.

Control Overheads

Finally, we present the control traffic overheads (in
Kbps) in Table Il for the different group sizes. The over-
heads include control packets that were sent aswell asre-
ceived. We show the average and maximum control over-
head at any member. We observed that the control traffic
at most members lies between 0.2 Kbps to 2.0 Kbps for
the different group sizes. In fact, about 80% of the mem-
bers requirelessthan 0.9 Kbps of control traffic for topol-
ogy management. More interestingly, the average control
overheads and the distributionsdo not change significantly
as the group size is varied. The worst case control over-
head isalso fairly low (less than 3 Kbps).

VII.

A number of other projectshave exploredimplementing
multicast at the application layer. They can be classified
into two broad categories: mesh-first (Narada [9], Gos-
samer [6]) and tree-first protocols(Yoid [11], ALMI [14],
Host-Multicast [21]). Yoid and Host-Multicast defines a
distributed tree building protocol between the end-hosts,
while ALMI usesa centralized algorithm to create amini-
mum spanning tree rooted at a designated single source of
multicast datadistribution. The Overcast protocol [13] or-
ganizes aset of proxies(called Overcast nodes) into adis-
tribution tree rooted at a central source for single source
multicast. A distributed tree-building protocol is used to
create thissource specific tree, inamanner similar to Yoid.

RELATED WORK
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Control overheads (Kbps) RMX [7] provides support for reliable multicast data de-

livery toend-hostsusingaset of similar proxies, called Re-
liable Multicast proXies. Application end-hosts are con-
figured to affiliate themselves with the nearest RMX. The
architecture assumes the existence of an overlay construc-
tion protocol, using which these proxies organize them-
selvesinto an appropriate data delivery path. TCP isused
to provide reliable communication between each pair of
peer proxieson the overlay.

Some other recent projects (Chord [20], Content Ad-
dressable Networks (CAN) [16], Tapestry [22] and Pas-
try [18]) have aso addressed the scalability issuein cre-
ating application layer overlays, and are therefore, closely
related to our work. CAN defines avirtual d-dimensional
Cartesian coordinate space, and each overlay host “owns’
a part of this space. In [17], the authors have leveraged
the scalable structure of CAN to define an application
layer multicast scheme, inwhich hostsmaintain O(d) state
and the path lengthsare O (d N '/?) application level hops,
where N isthe number of hostsin thenetwork. Pastry [18]
is a self-organizing overlay network of nodes, where log-
ical peer relationshipson the overlay are based on match-
ing prefixes of the node identifiers. Scribe [5] isa large-
scale event notification infrastructure that leverages the
Pastry system to create groups and build efficient applica-
tion layer multicast paths to the group members for dis-
semination of events. Being based on Pastry, it has sim-
ilar overlay properties, namely (2" — 1)log,, N state at
members, and O (log, N ) applicationlevel hops between
members . Bayeux [23] in another architecture for ap-
plication layer multicast, where the end-hosts are orga-
nized into a hierarchy as defined by the Tapestry over-
lay location and routing system [22]. A level of the hi-
erarchy is defined by a set of hosts that share a common
suffix in their host IDs. Such a technique was proposed
by Plaxton et.a. [15] for locating and routing to named
objects in a network. Therefore, hosts in Bayeux main-
tain O(blog, N ) state and end-to-end overlay paths have
O(log, N') application level hops. As discussed in Sec-
tion 11-C, our proposed NICE protocol incurs an amor-
tized O(k) state at members and the end-to-end paths be-
tween members have O(log;,, N) application level hops.
LikePastry and Tapestry, NICE also choosesoverlay peers
based on network locality which leads to low stretch end-
to-end paths.

We summarizetheaboveasfollows: For both NICE and
CAN-multi cast, members maintain constant state for other
members, and consequently exchange a constant amount
of periodic refreshes messages. This overhead is loga
rithmic for Scribe and Bayeux. The overlay paths for

5 is asmall constant.



NICE, Scribe, and Bayeux have a logarithmic number of
applicationlevel hops, and path lengthsin CAN-multicast
asymptotically have a larger number of application level
hops. Both NICE and CAN-multicast use a single well-
known host (the RP, in our nomenclature) to bootstrap the
join procedure of members. The join procedure, there-
fore, incurs a higher overhead at the RP and the higher
layers of the hierarchy than the lower layers. Scribe and
Bayeux assume members are able find different “ nearby”
members on the overlay through out-of-band mechanisms,
from which to bootstrap thejoin procedure. Using thisas-
sumption, the join overheads for a large number of join-
ing members can be amortized over the different such
“nearby” bootstrap members in these schemes.

VIIl. CONCLUSIONS

In this paper, we have presented a new protocol for
application-layer multicast. Our main contribution is an
extremely low overhead hierarchical control structureover
which different data distribution paths can be built. Our
results show that it is possible to build and maintain
application-layer multicast treeswith very little overhead.
Whilethefocus of thispaper has been low-bandwidth data
stream applications, our scheme is generalizableto differ-
ent applications by appropriately choosing data paths and
metrics used to construct the overlays. We believethat the
resultsof thispaper are asignificant first step towards con-
structing large wide-area applications over application-
layer multicast.
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APPENDIX

DATA PATH ENHANCEMENTS FOR HIGH BANDWIDTH
APPLICATIONS

The basic data path in NICE imposes more data for-
warding responsibility onto the cluster leaders. Asacon-
sequence, members that are joined to higher layers are
cluster leadersinall thelower layersthat they arejoinedto.
Therefore, they are required to forward higher volume of
data than those members that are joined to only the lower
layers. Thisdataforwarding path, istherefore, not suited
for high bandwidth applications (e.g. video distribution).
We define an enhancement to this basic data path by al-
lowing the cluster leaders to delegate data forwarding re-
sponsibility to some of its cluster members in a determin-
istic manner. In this paper, we only explain data path del-
egation, assuming that data is originating from the leader
of the highest cluster in the topology. However, the same
delegation mechanism is equally applicable for data orig-
inating from any member (with minor modifications).

Consider ahost i that belongstolayers, L, ..., I; and
no other higher layer. The corresponding clustersin these
layers are: Clg(h),..., Cl;(h). In the basic data path
(described in Section 11-B), A receives the data from the
leader, p, of cluster Cl;(h), i.e. itstopmost layer. Itisaso
responsible for forwarding datato al the membersin the
clusters Clg(h), ..., Cl;_1(h), i.e. theclustersin the re-
maining layers.

In the enhanced data path, ~ forwards datato only the
other members of Cly(h), i.e. its cluster in the lowest
layer (Lo). Additionaly, it delegates the responsibility
of forwarding data to members in Cl;(4) to membersin
Cl;_1(h),fordl 1 < j <i—1. Sincethecluster sizesare
bounded between & and 3% — 1, each member of Cl;_;(h)
gets adel egated forwarding responsibility to at most three
members in Cl;(~). Only the cluster leader can delegate
forwarding responsibility to another member of itscluster.
A member that belongs to multiple layers belongsto only
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a single cluster in each layer and is the leader of the re-
spective clustersin al but one layer. It isnot aleader in
its topmost cluster. Therefore, each member can be dele-
gated forwarding responsibilitiesfor at most 3 new peers.
The member, h receives data from a member, ¢ to which
p (the leader of itstopmost cluster, Cl;(h)) has delegated
the forwarding responsibility.

This data path transformation is illustrated with an ex-
amplein Figure 22. Consider the basic data path with host
C'y asthe source (Pandl 3). Host C is the leader of both
its Lo and 1., clusters. Therefore, in the basic data path, it
is required to forward data to the other members both its
clusters (43, A4 and A5 in layer Ly, and By, By and B-
inlayer I1). In the enhanced data path (Panel 4), it dele-
gates the other members of its 1,y cluster to forward data
to the other members of its 1.1 cluster. In particular, it sets
up the new data path peersas: (As — By), (A4 — B1),
and (A5 — By). Members which are not leaders of their
L, clusters,i.e. By, B1 and B, now receive datanot from
the cluster leader (i.e. (), and instead receive data from
the members delegated by 'y as described.

Any member, in the enhanced data path, forwards data
to all members of only one of its clusters (i.e. its I, clus-
ter), and additionally may be delegated to forward data
to two other members. This the total number of data
path peers for any member in this enhanced data path is
bounded by 3%, aconstant that dependson the cluster size.
However, the number of application-level hops between
any pair of members on the overlay is still bounded by
O(log V).



