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1. Introdution. The aim of this paper is to give an overview ofthe development and utility of some new algorithms for omputing thenumerial solution of the Navier-Stokes equations�ut � ��u + (u � grad)u+ grad p = f (1.1)subjet to inompressibility onstraints�divu = 0: (1.2)The problem is posed on an open bounded domain 
 in R2 or R3 , withsuitable boundary onditions spei�ed on �
. The parameter � has thevalue 0 for steady-state versions of (1.1) and 1 for evolutionary problems.The methods under onsideration are appliable to a broad olletionof disrete versions of (1.1){(1.2), all of whih treat the primitive variableformulation diretly and require the solution of a series of linear systemsof equations in whih the oeÆient matrix is of the form arising in saddlepoint problems, � F BTB 0 � :The philosophial points of view behind the algorithm development are:1. The methods are derived using tools for simpler problems as build-ing bloks. In partiular, they depend on having eÆient numeri-al algorithms for solving two subsidiary problems, the salar Pois-son equation and the salar onvetion-di�usion equation. More-over, it is possible to make use of approximate solutions of thesesubsidiary problems obtained using iterative methods.2. The solution strategies adapt in a straightforward manner to vari-ants of the problem. In priniple, the same ode ould be used tohandle evolutionary problems (with suitable time disretizations),steady-state problems, or Stokes systems.An overview of the paper is as follows. We will assume throughoutthat the spatial disretization is div-stable; we have in mind low order�nite element disretizations that satisfy an inf-sup ondition, or theMAC �nite di�erene disretization [15, 17, 21℄. The solution methodsonsidered are generalizations of tehniques developed originally for thesteady-state Stokes equations, and in Setion 2 we outline the derivationof our point of view as it evolved for this problem lass. In Setion 3,we introdue the solution methodology for the steady-state Navier-Stokesequations and disuss its properties. In Setion 4, we disuss some strate-gies for time disretization to whih the methodology applies diretly, andwe demonstrate its performane in this setting. A brief summary of theresults of these setions is that for the Stokes equations, it is possible to1



develop optimal algorithms whose onvergene rates are independent ofthe disretization mesh size used, provided methods with this property(suh as multigrid) are available for ertain subproblems entailing thePoisson equation. A similar statement applies to the steady-state Navier-Stokes equations, although performane does depend to some extent onReynolds numbers. For transient problems, this dependene beomesnegligible espeially for small time steps. In Setion 5, we give a briefdisussion of the relative merits of the ideas onsidered here and multi-grid strategies for (1.1){(1.2), and in Setion 6 we make some onludingremarks.2. Bakground: The steady-state Stokes equations. We beginby reviewing some results for the Stokes equations��u + grad p = f�div u = 0:Disretization leads to a linear system� A BTB 0 �� up � = � f0 � (2.1)where, for problems in d dimensions, A is a blok diagonal matrix on-sisting of a set of d independent disrete Laplae operators. The lassialUzawa algorithm [1℄ starts with an arbitrary initial value p0 and performsthe iteration for k = 0 until onvergene douk+1 = A�1(f �BTpk)pk+1 = pk + � Buk+1enddo (2.2)Here, � is a salar parameter that must be determined prior to the iter-ation.Substitution of uk+1 from the �rst step of (2.2) into the seond stepshows that this omputation is equivalent to an iteration for the pressures,pk+1 = pk + � BA�1(f � BTpk):This is a Rihardson iteration [36℄ for the Shur omplement systemBA�1BTp = BA�1f: (2.3)The errors satisfyp� pk = (I � �(BA�1BT ))k(p� p0);2



and in the Eulidean norm,kp� pkk2 � �� �I � �(BA�1BT )��k kp� p0k2 :The optimal onvergene rate is ahieved with the hoie of � for whihthe algebraially smallest and largest eigenvalues of I � �(BA�1BT ) areequal in absolute value, i.e.� = 2=(�min + �max); (2.4)where �min and �max are the extreme eigenvalues of BA�1BT . For thishoie, the onvergene fator is�(I � �(BA�1BT )) = (�� 1)=(�+ 1);where � = �max=�min is the ondition number of BA�1BT .That this iteration is rapidly onvergent for the Stokes equations isa onsequene of the properties of the Shur omplement BA�1BT . LetMp denote the mass matrix assoiated with the pressure disretization.It is well known that the Shur omplement satis�es2 � (p; BA�1BT p)(p;Mpv) � �2;where  � 0 is the inf-sup onstant for the disretization and � � pd[37℄. We are assuming that the spatial disretization is div-stable, so that does not depend on the disretization mesh size h. Consequently, theShur omplement operator is spetrally equivalent to the pressure massmatrix. This assertion also applies to the marker-and-ell (MAC) �nitedi�erene sheme [21℄, for whih the mass matrix on a uniform grid ishdI. Moreover, the pressure mass matrix is itself spetrally equivalentto its diagonal, whih also essentially has the form hdI [40℄. It followsthat �(BA�1BT ) is independent of h. This disussion also suggests thatpreonditioning by the mass matrix or some spetrally equivalent ap-proximation QMp may be bene�ial, whih is indeed the ase [11℄. Thepreonditioned Uzawa algorithm updates the pressures aspk+1 = pk + � Q�1MpBuk+1:If � is de�ned as in (2.4) where �min and �max now represent extrema ofthe Rayleigh quotient (q;BA�1BT q)(q;QMpq) , then we have the onvergene boundkp� pkkQMp � �k kp� p0kQMpwhere � = (�� 1)=(�+ 1) with � = �max=�min.3



Thus, the onvergene rate of the Uzawa algorithm for solving theStokes equations is independent of disretization mesh size. An imple-mentation requires the appliation of the ation of the inverse of A to avetor. If fast methods suh as multigrid are available for this omputa-tion, then the Uzawa method is also an optimal strategy with respet tooperation ounts. Nevertheless, there are some potential drawbaks:1. It requires the parameter �. Bounds on the inf-sup parameter anoften be used to estimate this quantity, but the need to speify itadds a diÆulty to implementation.2. In some sense it is slow. In the ontext of iterative methods forsymmetri positive-de�nite systems of equations, it is known thatRihardson iteration is slower to onverge than the onjugate gra-dient method (CG). The onvergene fator for CG is bounded by� = (p�� 1)=(p�+ 1) [26℄.3. The ation of the inverse of A is potentially ostly. This is learlythe dominant ost of the algorithm. Although fast solvers forthe Poisson equation are available, it would be desirable to avoidaurate solution of this problem at every step.Appliation of CG to (2.3) resolves the �rst and seond of these dif-�ulties. However, a matrix-vetor produt by BA�1BT is required ateah iteration, and we know of no way of avoiding an aurate ompu-tation of this operation. This entails aurate solution of the Poissonequation. By way of ontrast, beause the Uzawa algorithm derives fromthe oupling between the pressure and veloity, its �rst step an be re-plaed by an approximate omputation of the ation of A�1 to produean algorithm with similar onvergene harateristis [4, 11, 41℄. It isnot straightforward to automate this proess, however, sine the inneriteration for the Poisson equation requires a stopping riterion.Thus, neither of these strategies ompletely resolves the drawbakslisted above, and we have ome to prefer an alternative approah, de-veloped independently by Rusten and Winther [25℄ and Silvester andWathen [29, 39℄, whih treats the saddle point problem (2.1) diretly.The system (2.1) is symmetri inde�nite, so that the MINRES Krylovsubspae method [22℄ is appliable. When this method is applied to asystem Ax = b, the residual rk = b�Axk of the kth iterate satis�eskrkk � minpk(0)2�k max�2�(A) jpk(�)j kr0k; (2.5)where �k denotes the set of all real polynomials pk of degree at most kfor whih pk(0) = 1, and �(A) is the set of eigenvalues of A. (We will bemore preise about the norm below.) If �(A) is ontained in two intervals[�a;�b℄ [ [; d℄; a; b; ; d > 0; (2.6)4



where a� b = d� , then the onvergene fator is bounded by2 1�p(b)=(ad)1 +p(b)=(ad)!1=2 :MINRES an be ombined with a symmetri positive-de�nite preon-ditioner with the aim of reduing the size of the intervals ontaining theeigenvalues. The onsiderations above point to the hoieQ = � QA 00 QMp � : (2.7)Here, as above, QMp represents an approximation to the mass matrix,whih is therefore a good approximation to the Shur omplement, andQA represents an approximation to A. In partiular, if QA is spetrallyequivalent to A, i.e., �1 � (v; Av)(v;QAv) � �2for �1, �2 independent of the mesh size, then so are the intervals of (2.6),as well as the onvergene fator for MINRES.Detailed disussions of the e�etiveness of this approah are given in[10, 25, 29℄. The key point is that it ahieves optimal onvergene ratesautomatially, without a need for exat omputation of the ation of A�1,or estimates of any parameters, or stopping riteria assoiated with aninner iteration. QA an be de�ned using any operation available, suhas multigrid or domain deomposition. In pratie, one step of V-ylemultigrid is an e�etive hoie.We onlude this review with two additional observations. First,when preonditioning is used, the norm appearing in the expression (2.5)depends on the hoie of preonditioner,krkkQ�1 = h�Aek � BTdk; Q�1A (Aek �BTdk)�+ (Bek; Q�1MpBek)i1=2 ;(2.8)where ek = u � uk and dk = p � pk. Although this might appear to bea problem, it is ommon for the Stokes equations to seek onvergene inthe energy norm, given in disrete form by[(ek; Aek) + (dk;Mpdk)℄1=2 :But ifQA and QMp are spetrally equivalent to the disrete Laplaian andmass matrix, respetively, then the residual norm of (2.8) is spetrallyequivalent to the energy norm [30℄. Consequently, the quantity mini-mized by preonditioned MINRES is a natural hoie whih is quasi-optimal with respet to the energy norm. Seond, although we have5



onsidered only steady problems here, the same point of view an beadapted to the evolutionary Stokes equations [3, 6℄. In this ase, thematrix A onsists of a linear ombination of a veloity mass matrix anda disrete Laplae operator. Good preonditioners for the Shur om-plement operator require an approximate Poisson solve on the pressurespae. The same onsiderations hold for this problem as in the disussionabove, and approximations based on fast iterative solvers for the pressurePoisson equation an be used in a similar way.3. The steady-state Navier-Stokes equations. We next onsiderthe steady version of the Navier-Stokes equations, i.e., � = 0 in (1.1).For solving the nonlinear system, we will restrit our attention to Piarditeration���u(m+1) + (u(m) � grad)u(m+1) + grad p(m+1) = f�divu(m+1) = 0; (3.1)where the onvetion oeÆient is lagged. For eah m, this system hasthe form of the Oseen equations. Disretization leads to a linear systemof the form � F BTB 0 �� up � = � f0 � (3.2)to be solved at eah step. Our solution strategy for this is to use Krylovsubspae methods suh as the GMRES [27℄, QMR [14℄ or BiCGSTAB(L)[32℄ algorithms, in ombination with preonditioning. The latter is theritial omponent needed for rapid onvergene.The disussion of the previous setion leads to the idea that a preon-ditioner should be derived using approximations to (the ations of theinverses of) F and the Shur omplement S = BF�1BT . Before onsid-ering this in more detail, we �rst observe that for the symmetri problemdisussed above, there is good reason to restrit attention to preondi-tioners with blok diagonal form (2.7) in order to retain symmetry andtake advantage of the short-term reurrenes and optimality ahieved byMINRES. However, no Krylov subspae method has both these apabili-ties for nonsymmetri systems, and for (3.2) we prefer a blok-triangularpreonditioner Q = � QF BT0 �QS � : (3.3)Iteration with this hoie requires approximately half the steps neededwith a blok-diagonal version [8℄. Applying the preonditioner, i.e., om-puting � ws � = � QF BT0 �QS ��1� vq �6



for given v, q entails solving the systemsQSs = �q; QFw = v � BT s: (3.4)The only ost not inurred by the blok diagonal preonditioner is thatof a (sparse) matrix-vetor produt BT s, whih is negligible.A more signi�ant di�erene from the Stokes equations onerns theonstrution of good approximations QF � F and QS � S. The role ofF in (3.2) is largely analogous to that of A above: F is a blok diagonalmatrix onsisting of a set of d independent disrete onvetion-di�usionoperators. Although the onvetion-di�usion equation is a more diÆultproblem than the Poisson equation (in partiular, the analysis of solutionalgorithms is far less well developed), there are e�etive solvers availablefor it, see for example [2, 9, 24, 42℄. The Shur omplement system isless straightforward. An operator QS that is spetrally equivalent to thepressure mass matrix, as disussed above, is easy to implement and hasalso been shown to lead to (essentially) mesh independent rates of on-vergene for (3.1){(3.2) [8, 19℄. However, performane deteriorates if theReynolds number beomes large, i.e., if the visosity � is small. To rem-edy this diÆulty, we onsider an alternative approah for onstrutinga preonditioner, whih leads to a methodology that adapts in a natu-ral way to both steady-state and evolutionary problems. This idea wasoriginally developed by Kay and Loghin [18℄ using the struture of theGreen's funtion for the operator of (3.1). The approah presented herefollows Silvester et. al. [28℄.We start with (3.1) and for �xed m let w = u(m�1) denote the laggedonvetion oeÆient and ���+w �r the resulting onvetion-di�usionoperator. Let us suppose that there is an analogous operator (���+w �r)p de�ned on the pressure spae, and furthermore, that the ommutatorof the onvetion-di�usion operators with the gradient operator,(���+w � r)r�r(���+w � r)p ; (3.5)is small in some sense. A disrete version of this relation is that(M�1u F ) (M�1u BT )� (M�1u BT ) (M�1p Fp)is also small, where Mu is the mass matrix assoiated with the velo-ity disretization and Fp is a disrete approximation to the onvetion-di�usion operator. A straightforward manipulation then yields the rela-tion BF�1BT � ApF�1p Mp ; (3.6)where Ap = BM�1u BT is a disrete Laplaian. That is, the matrix on theright hand side of (3.6) an be viewed as an approximation to the Shuromplement operator, and this de�nes a preonditioning operator QS.7



A preise de�nition of QS also requires that boundary onditions bespei�ed for Ap and Fp. For an enlosed ow with Dirihlet bound-ary onditions for the veloities, the disrete Shur omplement operatorBF�1BT is onventionally assoiated with a Neumann operator for thepressure �eld, see [28℄. Therefore, Ap and Fp should orrespond to dis-rete ellipti problems with Neumann boundary onditions. For a bound-ary segment with outow boundary onditions, the Shur omplement S(and its preonditioner QS) must be de�ned with Dirihlet data on thatsegment in order to ensure that the preonditioning operator is ellip-ti on the pressure spae. See [34, pp. 50-51℄, [7, pp. 36-43℄ for furtherdisussion of these points.Note that we are not attributing any physial meaning to the on-vetion-di�usion operator on the pressure spae, and in addition, thenotion of approximate ommutativity is used only as motivation. Theformal ommutator (3.5) is zero for onstant w, but otherwise it maynot be small. In addition, irrespetive of what happens in the ontinuousase, there are examples where the disrete ommutator is large, suhas for div-stable �nite element disretizations de�ned on di�erent grids(for example, Q1(h)�Q1(2h) onsisting of bilinear veloities and bilinearpressures on maroelements). In pratie, however, the preonditioningmethodology is still valid, as long as the disrete operator Fp an bede�ned.As shown in (3.4), use of this preonditioner requires appliation ofthe ation of Q�1S to a vetor. This entails a Poisson solve (to apply theation of A�1p ), followed by a matrix-vetor produt by Fp, followed thenby an appliation of the inverse of the mass matrix. The �rst and last ofthese steps an be replaed by inexpensive approximations as desribedin Setion 2. That is, the ation of A�1p an be replaed by an iterationsuh as multigrid (or one step of this proess), and Mp an be replaedby its diagonal.Our understanding of the onvergene harateristis of solvers thatuse this preonditioner is largely based on empirial evidene. We showexamples of performane for solving the lid driven avity problem, inwhih the steady version of (1.1) is posed on 
 = (0; 1) � (0; 1), andDirihlet boundary onditions for the veloity u = (u1; u2) are given by� u1 = u2 = 0 for x = 0; x = 1 or y = 0;u1 = 1; u2 = 0 for y = 1:We onsider two disretizations, the MAC �nite di�erene method, andthe P2-P1 �nite element method, whih uses triangular elements withpieewise quadrati bases for the veloity omponents and a pieewiselinear basis for the pressure. In all ases, the disretization is on a uniformmesh of width h. 8



Table 3.1Average inner iteration ounts for Piard iteration, with outer iterations in parentheses.MAC FINITE DIFFERENCES�1/40 1/80 1/160 1/320h = 1=16 8.3 (6) 10.5 (8) 13.3 (11) 17.9 (13)1=32 8.5 (6) 10.4 (8) 14.3 (10) 19.3 (10)1=64 8.6 (6) 11.0 (7) 14.3 (9) 20.9 (11)1=128 8.6 (5) 10.5 (6) 14.5 (8) 20.3 (9)P2-P1 FINITE ELEMENTS�1/40 1/80 1/160 1/320h = 1=16 8.8 (5) 11.2 (6) 14.0 (6) 23.8 (9)1=32 8.5 (5) 10.7 (6) 13.7 (7) 20.4 (9)1=64 8.3 (5) 10.4 (5) 13.4 (6) 18.1 (7)We summarize the performane of preonditioned GMRES as follows:1. Convergene rates are independent of disretization mesh size. Ta-ble 3.1 shows the average number of iterations needed to solve the lin-ear systems arising during the ourse of a Piard iteration (3.1) for thedriven avity problem, for both disretizations. Numbers in parenthesesare the number of Piard steps needed to satisfy the stopping riterionkF (x(m))k2 � 10�5kfk2, where x(m) = � u(m)p(m) � and F (x(m)) is the non-linear residual. Starting iterates were x(0) � 0 for the nonlinear systemand the most reent nonlinear iterate for the linear system. The stoppingriterion for the linear iteration waskrkk2 � 10�2kF (x(m�1))k2 :It is lear that for any �xed value of �, the linear iteration ounts areindependent of h.2. Convergene depends mildly on the visosity parameter �. Furtheronsideration of the data of Table 3.1 shows that there is a mild inreasein iteration ounts as � is dereased (i.e., as the Reynolds number is in-reased). The rate of inrease is learly less than linear in ��1. This issueis explored further in Figure 3.1, whih plots the onvergene history ofthe linear solvers applied to the system (3.2) that arises at the last stepof the Piard iteration, for the P2-P1 disretization and h = 1=64. Theseresults show more learly the dependene on �. For eah �, onvergeneis slow during the early stages of the iteration, and the number of stepsin whih this poor performane is exhibited beomes larger as � is re-dued. After these initial periods of lateny, onvergene beomes morerapid, and the asymptoti onvergene rates of the GMRES iteration9
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1/320Fig. 3.1. Convergene histories of preonditioned GMRES inner iteration for the last step ofPiard iteration for several values of �, P2-P1 disretization, h = 1=64.then appear to be independent of the value of the visosity parameter.These results are onsistent with those of extensive experiments de-sribed in [13, 18, 28℄. It is also shown empirially in [13℄ that the eigen-values of the preonditioned matrix AQ�1 are lustered in a region thatdoes not depend on �, exept for a small number of outliers. The numberof these outliers is on the order of ten, although it inreases slightly as �is dereased, and this is the ause of the latenies seen in Figure 3.1. Tosee this, reall that the optimality of the GMRES iteration leads to thebound on the residual norm [27℄krkk2 � minpk(0)2�k max�2�(AQ�1) jpk(�)j kr0k2; (3.7)where we have assumed that AQ�1 = V �V �1 is diagonalizable. Letf�1; : : : ; �dg denote the set of d outlying eigenvalues, and let k = d + l.Then minpk(0)2�k max�2�(AQ�1) jpk(�)j � max�2�(AQ�1) j�d(�)j jCl(�)j ;where �d(�) = �1� 1�1���1� 1�2�� � � ��1� 1�d��is the polynomial of degree d whose roots are the outliers. and Cl is anypolynomial of degree l satisfying Cl(0) = 1. That is, onvergene tendsto be slow until the roots of the residual polynomial inlude the outliers(and the orresponding eigenvetors are deated from the error), after10



whih onvergene will be ditated by the distribution of the remaininglustered set of eigenvalues. This distribution is independent of �. How-ever, sine the number of outliers inreases with ��1, so does the lengthof the lateny period. Although this analysis only establishes a boundon onvergene, results given in [13℄ demonstrate that performane isonsistent with these observations.The experiments desribed here are for \exat" versions of the pre-onditioners, i.e., no iterations or approximations have been used in plaeof the ation of F�1, A�1p or M�1p . Results in [18℄ indiate that there isonly a small inrease in the numbers of iterations when suh approxi-mations are made. In addition, preliminary experiments performed forthree-dimensional examples display the same trends for both \exat" andapproximate versions of the preonditioner [12℄.There has been a limited amount of analysis of this preonditioningstrategy that provides insight into onvergene. Loghin [20℄ has shownthat the eigenvalues of the preonditioned linear systems are ontained ina set that is independent of the mesh size. This does not �rmly establishthat onvergene rates are also independent of h, sine the bound (3.7)on onvergene of GMRES also depends on the ondition number of thematrix of eigenvetors, but it learly agrees with performane. Loghinhas also established bounds on the relation of the eigenvalues to �: thelargest eigenvalues are bounded by ��1 and the smallest ones are boundedbelow by �2. These are onsistent with other analysis and experimentsdesribed in [13℄, where it is shown that large eigenvalues have imaginaryparts that grow like ��1. However, there is no analysis establishing thatthe majority of eigenvalues are lustered near 1 independent of both hand �.Finally, observe that in the speial ase of the Stokes equations, whereF = A, the preonditioner for the Shur omplement as de�ned in (3.6)reverts to QS = Mp, i.e., it is the same hoie as that disussed in Se-tion 2. It would be straightforward to design a ode that automatiallyhandles Stokes ow by swithing to a MINRES strategy in this ase.4. The evolutionary Navier-Stokes equations. We now on-sider how the preonditioning methodology desribed in Setion 3 anbe adapted to handle evolutionary problems. Assume that the impliittime disretization strategies entails the solution of systems of the form(3.2) at eah time step. Two suh approahes for disretizing in time arethe bakward Euler (BE) methodu(n+1) � u(n)�t � ��u(n+1) + (u(n+1) � grad)u(n+1) + grad p(n+1) = f�divu(n+1) = 0;11



and the Crank-Niolson (CN) methodu(n+1) � u(n)�t + 12 ����u(n+1) + (u(n+1) � grad)u(n+1)�+ grad p(n+1)= f � 12 ����u(n) + (u(n) � grad)u(n)��divu(n+1) = 0:Our emphasis is not on the relative merits of these alternatives, but wenote the well-known fats that BE is �rst order aurate in time and CNis seond order aurate [16, x3.16.1℄. Lak of A-stability may inhibitthe utility of CN if large time steps are used [33℄, but it is e�etivefor omputing time-aurate solutions. From the point of view of thealgorithms onsidered in this study, the two methods entail the sametype of omputations at eah time step. Other time-stepping strategiesthat are amenable to our algorithmi approah are disussed in [34℄.Both approahes as de�ned require the solution of a nonlinear equa-tion at eah time step, whih, after spatial disretization, yields a nonlin-ear algebrai system. This diÆulty an be avoided by suitable treatmentof the oeÆient u(n+1) of the onvetion term. In this study, we replaethis by the lagged value u(n) for the bakward Euler method, and by��32u(n) � 12u(n�1)� � grad� u(n+1)for the Crank-Niolson method. The latter approah retains seond or-der auray [31℄. We will also refer to these linearized methods as BEand CN, respetively, and the experiments desribed below are for thesestrategies.After spatial disretization, both time-stepping strategies lead to sys-tems (3.2). F now has the formF = ÆMu + A+N; (4.1)where A and N are disrete di�usion and onvetion operators, respe-tively, and Æ = 1�t for BE and 2�t for CN. The vetor f in the right handside has boundary onditions and (where appliable) the expliit ompo-nent of CN inorporated into it. The preonditioning operator is de�nedas in (3.3) and (3.6), where, by analogy with (4.1),Fp = ÆMp + Ap +Np :We present here two sets of experimental results, both using MAC�nite di�erenes for the spatial disretization. In Table 4.1, we showresults of integrating the driven avity problem from t = 0 to t = 1 using12



Table 4.1Average number of GMRES iterations per linear solve, for integration of the driven avityproblem from t = 0 to t = 1, with MAC spatial disretization and h = 1=64 and 1=128.h=1/64 �1/40 1/80 1/160 1/320�t = 1=8 8.3 9.3 9.9 10.11=16 6.4 7.4 7.9 8.21=32 4.7 5.5 6.1 6.31=64 3.4 3.8 4.2 4.5h=1/128 1/40 1/80 1/160 1/320�t = 1=8 7.9 9.4 10.3 10.91=16 6.1 7.4 8.6 9.11=32 4.3 5.4 6.4 7.21=64 3.0 3.8 4.4 5.1BE, for several hoies of time steps, �, and h. The table presents theaverage number of preonditioned GMRES iterations required during theourse of the integration. The stopping riterion for the linear solves waskrkk2 � 10�6kfk2where the initial guess at eah time step was the solution at the previ-ous step, and zero at the �rst step. Comparison with Table 3.1 showsa dramati redution in dependene on the visosity, espeially as thetime step is redued. There is also virtually no dependene on the dis-retization mesh size. These results are onsistent with Loghin's analysis[20℄.As in Setion 4, we an explore these trends further by examiningthe performane of the individual linear solves more losely. Figure 4.1shows the detailed onvergene behavior for examples of the inner pre-onditioned iterations, at time t = 1=4, 1=2 and 3=4, where �t = 1=64and h = 1=64. Here, we onsider both the BE and CN time disretiza-tions.1 These results demonstrate that, in ontrast to the steady-statease, there is now no lateny assoiated with the inner solves, and on-vergene rates are insensitive to the value of the visosity as well as thepoint in time at whih the systems arise. The number of iterations re-quired for CN is slightly smaller than for BE, beause the larger value ofÆ in (4.1) an be viewed as having the e�et of using a smaller time step.Note that for evolutionary problems, the subsidiary onvetion-di�u-sion equations that must be solved at eah step are time-dependent ones,whih are easier to handle than in the steady-state ase. The dereased1The linearized CN method is not self-starting, and in these experiments the �rst three timesteps were performed using BE. 13
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Fig. 4.1. Convergene histories of preonditioned GMRES inner iteration at various time steps,for the MAC disretization with h = 1=64 and � = 1=160 and 1=320.dependene on � is largely due to the fat that Mu and Mp oupy in-reasingly dominant plaes in F and Fp, respetively, as the time step isdereased.5. Comparative remarks on multigrid methods. As we havenoted, an assumption underlying the utility of the preonditioning meth-ods onsidered here is the potential for implementing them using buildingbloks for subsidiary omputations. One andidate for handling the sub-sidiary jobs, although by no means the only one, is multigrid (MG). Thereare also various examples of MG methods that an be applied diretly tosaddle point problems, and it is natural to ask how diret appliation of14



MG ompares with the ideas disussed above.The most popular example of multigrid methods for saddle pointproblems takes the form of so-alled \distributive iterations," in whihthe MG smoothing iteration is applied to a system obtained from a hangeof variables [5, 35, 43, 42℄. This approah shares with (3.6) the use of adisrete onvetion-di�usion operator Fp. Consider the transformation�F BTB 0 �� I BT0 �Fp �� û̂p� = � f0 � ; � up� = � I BT0 �Fp �� û̂p� :(5.1)The oeÆient matrix of the transformed system is~A = � F CB BBT �where C = FBT � BTFp is a ommutator. If C is small, then ~A isnearly of blok triangular form, where the diagonal bloks onsist of aonvetion-di�usion operator and a saled disrete Laplaian. Smoothersfor (5.1) are derived from smoothers for these individual bloks: see thereferenes above for details. See also [23, 38℄ for other multigrid methodsderived from the squared system assoiated with (3.2).Thus, we see that multigrid methods share many harateristis of thepreonditioning approah onsidered here. We have performed a ompar-ison of these two lasses of methods for solving steady-state Stokes sys-tems, using the preonditioned MINRES method desribed in Setion 2[10℄. This study showed that the fastest variant of MG is somewhat moreeÆient than preonditioned MINRES, but that there is no di�erene inthe asymptoti behavior with respet to mesh size of the two methodoli-gies. We know of no diret omparison for more general Navier-Stokessystems, although we would not expet signi�ant di�erenes. However,in order to be useful, MG methods require the ommutator to be small;they are ine�etive otherwise. The approah onsidered here has theadvantage of being more generally appliable, and it is also not expli-itly dependent on use of multigrid in ases where a hierarhy of grids isunavailable.6. Conluding remarks. We onlude by reiterating the generalphilosophy behind the development of the algorithms onsidered in thisstudy, and we then mention some open issues. The approah desribedhere is to derive solution algorithms for the Navier-Stokes equations bytaking advantage of the saddle point struture of the linear systems thatarise from standard disretizations, and to make use of algorithms forsubsidiary problems suh as the onvetion-di�usion and Poisson equa-tions. The resulting methods have been shown to be e�etive, and they15



automatially adapt to a variety of senarios inluding both steady andtransient ows.Issues that have not been fully explored inlude the e�ets of bound-ary onditions and of pressure disretization. In partiular, even whenommutativity of disrete operators \nearly" holds in the interior of 
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