
Abstract

Title of dissertation: Runtime Enforcement of Memory Safety for
the C Programming Language

Matthew Stephen Simpson, Doctor of Philosphy, 2011

Dissertation directed by: Professor Rajeev Barua

Memory access violations are a leading source of unreliability in C programs. Although

the low-level features of the C programming language, like unchecked pointer arithmetic

and explicit memory management, make it a desirable language for many programming

tasks, their use often results in hard-to-detect memory errors. As evidence of this

problem, a variety of methods exist for retrofitting C with software checks to detect

memory errors at runtime. However, these techniques generally suffer from one or more

practical drawbacks that have thus far limited their adoption. These weaknesses include

the inability to detect all spatial and temporal violations, the use of incompatible

metadata, the need for manual code modifications, and the tremendous runtime cost

of providing complete safety.

This dissertation introduces MemSafe, a compiler analysis and transformation for

ensuring the memory safety of C programs at runtime while avoiding the above draw-

backs. MemSafe makes several novel contributions that improve upon previous work

and lower the runtime cost of achieving memory safety. These include (1) a method

for modeling temporal errors as spatial errors, (2) a hybrid metadata representation

that combines the most salient features of both object- and pointer-based approaches,

and (3) a data-flow representation that simplifies optimizations for removing unneeded

checks and unused metadata.

Experimental results indicate that MemSafe is capable of detecting memory safety

violations in real-world programs with lower runtime overhead than previous methods.

Results show that MemSafe detects all known memory errors in multiple versions

of two large and widely-used open source applications as well as six programs from

a benchmark suite specifically designed for the evaluation of error detection tools.

MemSafe enforces complete safety with an average overhead of 88% on 30 widely-used

performance evaluation benchmarks. In comparison with previous work, MemSafe’s

average runtime overhead for one common benchmark suite (29%) is a fraction of

that associated with the previous technique (133%) that, until now, had the lowest

overhead among all existing complete and automatic methods that are capable of

detecting both spatial and temporal violations.

Runtime Enforcement of Memory Safety for the C
Programming Language

by

Matthew Stephen Simpson

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2011

Advisory Committee:
Professor Rajeev Barua, Chair
Professor Shuvra Bhattacharyya
Professor Michael Hicks
Professor Chau-Wen Tseng
Professor Donald Yeung

c© Copyright by
Matthew Stephen Simpson

2011

Acknowledgements

There are several people I would like to thank who were instrumental in the completion
of my doctoral dissertation and my graduate studies in general. Foremost among
these are my parents, Steve and Judy Simpson. I thank them for their constant love,
support, and patience while completing my graduate studies. They instilled in me, at
an early age, the hard work and disciple required for pursing a doctoral degree, and
my achievement is a reflection of their own success as parents. I will never be able to
thank them enough for all that they have done for me.

I would like to thank my advisor, Dr. Rajeev Barua. Dr. Barua became my advisor
in the fall semester of 2004, but we had previously worked together the year before
when I participated in a summer-long research program for undergraduate students.
My experience at the University of Maryland then was enormously influential in the
overall trajectory of my academic endeavors, and I am grateful for having been given
the opportunity to return as a graduate student. His advice throughout these years
has made me a much better writer and researcher and also given me insight into
the challenges and rewards associated with a career in academia. Many of the ideas
presented in this dissertation are the direct result of our conversations and discussions,
and it is fair to say that without his eager support and extensive knowledge of compilers
and computer systems, this dissertation would not have been possible.

I would also like to thank Dr. Dina Demner-Fushman, Dr. Sameer Antani, and
Dr. George Thoma—colleagues and mentors of mine at the U.S. National Library of
Medicine—for providing a welcome distraction from the stress of my dissertation, and
introducing me to new and exciting areas of research.

Finally, I would like to thank several other people whose contribution to this
dissertation may have been small, but whose broader impact was large. I thank
Allison Barnett for her unwaivering support and companionship and for encouraging
me during the most stressful times of my doctoral studies. I thank David Sander for
helping me to survive in the Electrical and Computer Engineering department, and
I thank members of the Systems & Computer Architecture Lab, especially Bhuvan
Middha and Nghi Nguyan, for discussions related to this work. Lastly, I would like
to acknowledge the friends I have in the Washington, D.C. area and my friends and
family elsewhere. Thank you all!

v

vi

Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Contributions . 5
1.3 Organization of Dissertation . 9

2 C Language Compilation and Analysis 13
2.1 The C Programming Language . 14

2.1.1 History . 14
2.1.2 Common use . 16
2.1.3 Low-level features . 17

2.2 Compilation . 21
2.3 Analysis . 23

2.3.1 Control-flow and call graph construction 24
2.3.2 Data-flow analysis . 25
2.3.3 SSA form . 26
2.3.4 Alias analysis . 27

3 Memory Safety Violations and Prior Enforcement Methods 29
3.1 Memory Safety Violations . 29

3.1.1 Bounds violations . 31
3.1.2 Uninitialized pointer dereference 32
3.1.3 Null pointer dereference . 32
3.1.4 Manufactured pointer dereference 33
3.1.5 Dereference of dangling stack pointers 34
3.1.6 Dereference of dangling heap pointers 34
3.1.7 Multiple deallocations . 35

3.2 Prior Enforcement Methods . 35
3.2.1 Spatial safety . 36
3.2.2 Temporal safety . 41

4 MemSafe 45
4.1 Language Extensions and Assumptions 46

4.1.1 Memory deallocation . 48
4.1.2 Pointer stores . 52

4.2 The Required Checks and Metadata 56

vii

4.2.1 Pointer metadata . 58
4.2.2 Pointer bounds check . 59
4.2.3 Object metadata . 61
4.2.4 Object bounds check . 62

4.3 Propagation of the Required Metadata 64
4.3.1 Memory allocation . 64
4.3.2 Memory deallocation . 66
4.3.3 Address-of operator . 68
4.3.4 Pointer copies and arithmetic 69
4.3.5 %-functions . 69
4.3.6 NULL and manufactured pointers 71
4.3.7 Function arguments and return values 72

4.4 Memory Safety for Multithreaded Programs 75
4.4.1 Declaration of the required locks 77
4.4.2 Object bounds check . 78
4.4.3 Memory allocation . 79
4.4.4 Memory deallocation . 82
4.4.5 %-functions . 84
4.4.6 Function calls . 86

4.5 Example Application . 88

5 Reducing the Runtime Cost of Enforcing Memory Safety 95
5.1 A Data-flow Graph for Pointers . 95

5.1.1 Construction . 97
5.1.2 Connectivity . 99
5.1.3 Properties . 100
5.1.4 Example application . 104

5.2 Optimizations of the Basic Approach 107
5.2.1 Dominated dereferences optimization 108
5.2.2 Temporally safe dereferences optimization 111
5.2.3 Non-incremental dereferences optimization 113
5.2.4 Monotonically addressed ranges optimization 115
5.2.5 Partitioned metadata optimization 119
5.2.6 Unused metadata optimization 122

6 MemSafe Implementation 127
6.1 MemSafe’s Analysis and Transformation 127
6.2 Metadata Facilities . 130

6.2.1 Implementation alternatives 130
6.3 Metadata Allocation . 132
6.4 Limitations . 135

6.4.1 Separate compilation . 135
6.4.2 NULL and manufactured pointers 136

viii

7 Results 137
7.1 Effectiveness in Detecting Errors . 138
7.2 Runtime Performance . 140

7.2.1 Increase in runtime . 141
7.2.2 Increase in memory consumption 146
7.2.3 Effectiveness of optimizations 147
7.2.4 Additional cost of temporal safety 150

7.3 Static analysis . 151

8 Related Work 157
8.1 Spatial and Temporal Safety . 157
8.2 Spatial Safety . 158
8.3 Temporal Safety . 159
8.4 Software Debugging Tools . 159
8.5 Other Methods of Memory Protection 160
8.6 SSA Extensions . 161

9 Future Work 163
9.1 Performance Enhancements and Evaluation 163
9.2 Specification and Verification . 165
9.3 Additional Uses . 166

10 Conclusion 169

A Metadata Propagation for the C Standard Library 173
A.1 Memory Copying Functions of string.h 173
A.2 Variadic Function Macros of stdarg.h 175

B Spatial Safety and Segmentation 179
B.1 Spatial Safety . 179

B.1.1 The required checks and metadata 180
B.1.2 Propagation of the required metadata 181

B.2 Segmentation . 189
B.2.1 Propagation of the required metadata 191

ix

x

List of Tables

1.1 Related work . 8

3.1 Memory safety violations . 30

7.1 Violations detected in Bugbench . 138
7.2 Violations detected in real-world applications 139
7.3 Dynamic results with whole-program analysis 142
7.4 Dynamic results with separate compilation 143
7.5 Static results with whole-program analysis 152
7.6 Static results with separate compilation 153

xi

xii

List of Figures

3.1 Prior enforcement methods . 38

4.1 Language syntax for MemSafe presention 46
4.2 Prior enforcement methods . 57
4.3 Merge sort algorithm . 89
4.4 Merge sort in SSA form . 91
4.5 Merge sort fragment with metadata and checks 93

5.1 DFPG construction . 97
5.2 Merge sort DFPG . 105

6.1 Header allocation . 134

7.1 Runtime comparison with MSCC . 144
7.2 Optimization effectiveness with whole-program analysis 148
7.3 Optimization effectiveness without whole-program analysis 149
7.4 Effect of aliasing . 151
7.5 Compile-time slowdown . 154

xiii

xiv

List of Runtime Checks

4.1 Pointer bounds check . 59
4.2 Object bounds check . 62
4.3 Object bounds check (thread safe) . 79

5.1 Monotonically addressed range check 116
B.1 Pointer bounds check (spatial safety) 181

xv

xvi

List of Metadata Rules

4.1 Automatic memory allocation . 64
4.2 Dynamic memory allocation . 65
4.3 Automatic memory deallocation . 66
4.4 Dynamic memory deallocation . 67
4.5 Address-of operator . 68
4.6 Pointer copies and arithmetic . 69
4.7 Pointer loads . 70
4.8 Pointer stores . 71
4.9 NULL and manufactured pointers . 72
4.10 Function calls . 73
4.11 Function declarations . 74
4.12 Automatic memory allocation (thread safe) 80
4.13 Dynamic memory allocation (thread safe) 81
4.14 Automatic memory deallocation (thread safe) 82
4.15 Dynamic memory deallocation (thread safe) 83
4.16 Pointer loads (thread safe) . 84
4.17 Pointer stores (thread safe) . 85
4.18 Function calls (thread safe) . 86
4.19 Function declarations (thread safe) 87

A.1 Memory copying functions . 174
A.2 Variadic function arguments . 176
A.3 Argument list bounds . 177
A.4 Argument list pointer . 178
B.1 Dynamic memory allocation (spatial safety) 182
B.2 Address-of operator (spatial safety) 183
B.3 Pointer copies and arithmetic (spatial safety) 184
B.4 Pointer loads (spatial safety) . 185
B.5 Pointer stores (spatial safety) . 185
B.6 NULL and manufactured pointers (spatial safety) 186
B.7 Function calls (spatial safety) . 187
B.8 Function declarations (spatial safety) 188
B.9 Dynamic memory allocation (segmentation) 191
B.10 Address-of operator (segmentation) 192

xvii

xviii

Chapter 1

Introduction

This dissertation shows that an automatic compiler analysis and transformation

technique is capable of ensuring the memory safety of C programs at runtime. A

program is transformed such that it detects spatial and temporal memory errors before

they occur, while remaining compatible with existing code and requiring lower runtime

overhead than similar techniques. The motivation and contributions of this research

are outlined below.

1.1 Motivation

Use of the C programing language remains common despite the well-known memory

errors it allows. The features that make C a desirable language for many system-level

programing tasks—namely its weak typing, low-level access to computer memory, and

pointers—are the same features whose misuse cause the variety of difficult-to-detect

memory access violations common among C programs. Although these violations often

cause a program to crash immediately, their symptoms can frequently go undetected

long after they occur, resulting in data corruption and incorrect results while making

1

software testing and debugging a particularly onerous task.

A commonly cited memory error is the buffer overflow, where data is stored to

a memory location outside the bounds of the buffer allocated to hold it. Although

buffer overflow errors have been understood as early as 1972 [5, pg. 61], they and

other memory access violations still plague modern software and are a major source of

recently reported security vulnerabilities. For example, according to the United States

Computer Emergency Readiness Team (US-CERT), 67 (29%) of the 228 vulnerability

notes released in 2008–2009 were due to buffer overflow errors alone [80].

Several safety methods [e.g. 9, 62, 68, 82] have characterized memory access vio-

lations as either spatial or temporal errors. A spatial error is a violation caused by

dereferencing a pointer that refers to an address outside the bounds of its “referent.”

Examples include indexing beyond the bounds of an array; dereferencing pointers

obtained from invalid pointer arithmetic; and dereferencing uninitialized, NULL or

“manufactured” pointers.1 A temporal error is a violation caused by using a pointer

whose referent has been deallocated (e.g. by calling the free standard library function)

and is no longer a valid memory object. The most well-known temporal violations

include dereferencing “dangling” pointers to dynamically allocated memory and at-

tempting to deallocate a pointer more than once. However, dereferencing pointers to

automatically allocated memory (i.e., stack variables) is also a concern if the address

of the referent “escapes” and is made available outside the function in which it was

1A manufactured pointer is a pointer created by means other than explicit memory allocation
(e.g., by calling the malloc standard library function) or taking the address of a variable using the
address-of operator (&). Type-casting an integral type to a pointer type is a common example. The
various memory safety violations are discussed in detail in Chapter 3.

2

defined. A program is memory safe if it does not commit any spatial or temporal

errors.

Safe languages, such as Java, ensure memory safety through a combination of syntax

restrictions and runtime checks, and are widely-used when security is a major concern.

Others, like Cyclone [48] and Deputy [21], preserve many of the low-level features of C,

but require additional programmer annotations to assist in ensuring safety. Although

the use of these languages may be ideal for safety-critical environments, the reality is

that many of today’s applications—including operating systems, web browsers, and

database management systems—are still typically implemented in C or C++ because

of its efficiency, predictability, and access to low-level features. This trend will likely

continue into the future.

As an alternative to safe languages, sophisticated static analysis methods for C [e.g.

11, 13, 27, 32, 34] can be used alone, or in conjunction with other systems, to ensure

the partial absence of spatial and temporal errors statically. While these techniques are

invaluable for software verification and debugging, they can rarely prove the absence

of all memory errors and often require a significant amount of verification time due to

the precision of their analyses.

A growing number of methods rely primarily on inserted runtime checks to detect

memory access violations dynamically. However, the methods capable of detecting

both spatial and temporal memory safety violations [9, 24, 30, 33, 43, 49, 64, 66,

68, 74, 82, 83] generally suffer from one or more practical drawbacks that have thus

far limited their widespread adoption. These drawbacks can be summarized by the

following qualities.

3

• Completeness. Methods that associate metadata (the base and bound infor-

mation required for runtime checks) with objects [e.g. 24, 30, 33, 43, 49, 74, 83]—

rather than the pointers to these objects—generally do not detect two kinds

of memory errors. First, because C supports the allocation of nested objects

(e.g., an array of structures), spatial errors involving sub-object overflows are

not detected since inner objects share metadata with the outer object. Second,

if the system allocates an object to a previously deallocated location, temporal

errors are not detected since dangling pointers to the deallocated object may

still refer to a location within bounds of the newly allocated object.

• Compatibility. The use of alternate pointer representations, such as multi-

word “fat-pointers” [e.g. 9, 64] to store metadata raises compatibility concerns.

Inline metadata breaks many legacy programs—and requires implicit language

restrictions for new ones—because it changes the memory layout of pointers.

For example, since their data types are the same size, programmers often cast

pointers to integers to compute certain addresses. However, since fat-pointers

alter memory layout, this computation is no longer valid and can result in

data corruption. Inline metadata also breaks the calling convention of external

libraries whose parameters or return types involve pointers.

• Code Modifications. Some methods [e.g. 64] require non-trivial source code

modifications to avoid the above compatibility issues or to prevent an explosion

in runtime. A common example is for a programmer to write “wrapper functions”

that remove inline metadata in order to interface with external libraries.

4

• Cost. Methods capable of detecting both spatial and temporal errors often

suffer from high performance overheads [e.g. 9, 66, 68, 82]. This is commonly

due to the cost of maintaining the metadata required for ensuring spatial safety

and the use of conservative garbage collection for ensuring temporal safety. High

runtime overhead can make a method prohibitively expensive for deployment

and can slow the development process when it is used for testing, especially if a

program is to be executed many times to increase coverage.

1.2 Contributions

This dissertation introduces MemSafe [77], a method for ensuring both the spatial

and temporal memory safety of C programs at runtime. MemSafe is a whole-program

compiler analysis and transformation that, like other runtime methods, utilizes a

limited amount of static analysis to prove memory safety whenever possible, and

then inserts checks to ensure the safety of the remaining memory accesses at runtime.

MemSafe is complete, compatible, requires no code modifications, and generally has

lower runtime cost than other complete and automatic methods achieving the same

level of safety. MemSafe makes the following contributions for lowering the runtime

cost of dynamically ensuring memory safety:

• MemSafe uniformly handles all memory violations by modeling temporal errors

as spatial errors. Therefore, the use of separate mechanisms for detecting

temporal errors (e.g. garbage collection or explicit checks for temporal safety

[9, 68, 82, 83]) is no longer required.

5

• MemSafe captures the most salient features of object and pointer metadata

in a hybrid spatial metadata representation. MemSafe’s handling of pointer

metadata is similar to that of SoftBound [62], a previous technique for detecting

spatial errors, and ensures MemSafe’s completeness and compatibility. However,

MemSafe’s additional use of object metadata creates a novel synergy with pointer

metadata that allows the detection of temporal errors as well.

• MemSafe uniformly handles pointer data-flow in a representation that simplifies

several performance-enhancing optimizations. Unlike previous methods that

require checks for all dereferences and the expensive propagation of metadata

at every pointer assignment [e.g. 9, 66, 68, 82], MemSafe eliminates redundant

checks and the propagation of unused metadata. This capability is further

enhanced with whole-program analysis.

In order to achieve the above, MemSafe exploits several key insights related to the

flow of pointer values in a program. The following program behavior models form the

foundation of MemSafe’s approach.

1. Memory deallocation can be modeled as an assignment. For example, the

statement free(p) can be represented by the statement p = invalid, where

invalid is a special untyped pointer to a temporally “invalid” range of memory.

This insight is useful because it enables spatial safety mechanisms to be

reused to ensure temporal safety. In order to detect spatial safety violations,

existing methods insert before pointer dereferences runtime checks that determine

whether the pointers refer to a location within the base and bound addresses of

6

their referents. If a dereferenced pointer refers to a location outside the region

of memory occupied by its referent, a spatial safety violation is signaled. By

assigning pointers to deallocated memory to be equal to the invalid pointer, they

inherit the base and bound addresses of the “invalid” region of memory. If the

base and bound addresses of this region are defined such that they represent some

impossible address range (e.g., a block with a negative size), any legal pointer

must refer to a location outside this range. Thus, dereferences of dangling

pointers and multiple deallocation attempts can then be detected with the

inserted checks for spatial safety.

2. Indirect pointer assignments can be modeled as explicit assignments. Statements

of the form ptr1 = *p, where both ptr1 and p are pointers, make low-cost mem-

ory safety difficult to achieve since ptr1’s set of potential referents is not known

statically. Alias analysis can be used to narrow this set, and MemSafe makes

the results of this analysis explicit in the program’s Static Single Assignment

(SSA) [26] form by using a new φ-like construct called the %-function.

For example, assume the statement s0:*p = ptr0 is the only direct reaching

definition of a pointer defined as s1:ptr1 = *p. The statement s2:*q = ptr2

may indirectly redefine ptr1 if p and q may alias and control-flow may reach

statement s1 from s2. Therefore, MemSafe models the statement ptr1 = *p as

ptr1 = %(ptr0, ptr2), meaning the value of ptr1 may equal that of ptr0 or

ptr2 but only these two values.

This insight is useful because it enables MemSafe to construct a convenient

7

Approach Complete Compatible No Code Whole Slowdown
Modifications Program

Purify [43] no yes yes yes 148.44∗
Patil, Fischer [68] yes yes yes no 6.38†
Safe C [9] yes no yes no 4.88†
Fail-Safe C [66] yes yes yes no 4.64†
MSCC [82] yes yes yes no 2.33
Yong, Horwitz [83] no yes yes no 1.37‡
CCured [64] yes no no yes 1.30

MemSafe yes yes yes yes 1.29

Table 1.1: Related work. A comparison of methods providing both spatial and
temporal memory safety is given. Slowdown is computed as the ratio of the execution
time of the instrumented program to that of the original program. Slowdown is
reported for the Olden benchmarks [71] unless otherwise noted.

∗Checks are only inserted for heap objects.
†Slowdown is the average of all results reported by the authors.
‡Checks are only inserted for store operations.

data-flow graph that codifies both direct and indirect pointer assignments—in

addition to memory deallocation with the insight above (1)—as simple definition

and use relationships. Thus, this representation greatly simplifies optimizations

for reducing the cost of achieving memory safety.

A prototype implementation of MemSafe has been evaluated in terms of its com-

pleteness and runtime cost. MemSafe was able to successfully detect known memory

violations in multiple versions of the Apache HTTP server [6] and the GNU Core

Utilities [39] software package. Additionally, MemSafe detected all previously reported

memory errors in six programs from the BugBench [60] benchmark suite. In terms

of cost, MemSafe’s average overhead was 88% on 30 large programs widely-used in

evaluating error detection tools. Finally, as evidence of its compatibility, MemSafe

compiled each of the above programs without requiring any code modifications or

programmer intervention.

8

Table 1.1 summarizes previous software approaches for ensuring both spatial

and temporal safety.2 Each method is evaluated on its completeness, compatibility,

lack of code modifications, use of whole-program analysis, and runtime cost. For

consistency, slowdown is reported for the Olden benchmarks [71] where results are

available. MemSafe compares favorably in each category and has the lowest overhead

among all existing complete and automatic methods. This result is primarily due to

MemSafe’s novel contributions based on the above insights.

Since MemSafe’s performance overheads cannot necessarily be considered “low,”

MemSafe is deployable in systems whose primary concern is memory safety. In practice,

it has been observed that many runtime checks can be avoided with MemSafe’s

simple optimizations, and for safety-critical applications, MemSafe’s moderate runtime

overheads can be an acceptable trade-off compared to redesigning systems in a safe

language. However, for performance-critical applications, MemSafe is primarily useful

as a dynamic bug detection tool.

1.3 Organization of Dissertation

The remainder of this dissertation is organized as follows. Chapter 2 presents an

overview of the C programming language and compilation process. It briefly reviews

the history of the language, introduces the low-level features of C whose misuse can

result in memory safety violations, and describes the basic compiler analysis techniques

2Other methods (e.g, CIT [1], DFI [17], WIT [2], SoftBound [62], SafeCode [31], “baggy” bounds
checking [3], etc.) are excluded from Table 1.1 since they either are (1) not software-only mechanisms
for detecting memory errors or (2) do not aim to ensure complete spatial and temporal safety.
However, these methods are discussed in detail in Chapter 8.

9

that MemSafe requires for enforcing memory safety.

Chapter 3 describes the memory safety violations that are commonly found in C

programs and reviews prior work related to the detection and prevention of memory

errors. In reviewing previous work, this chapter primarily focusses on the way in

which prior methods organize the base and bound information required by runtime

safety checks, and it discusses the strengths and weakness of each approach.

Chapter 4 describes MemSafe’s basic, unoptimized approach for ensuring the

memory safety of C programs at runtime. It presents the challenges associated with

the use of memory deallocation and indirect pointer assignments, and it describes the

C language syntax extensions that MemSafe uses to reason about these programming

idioms. This chapter then defines the runtime checks, metadata, and metadata

propagation rules required for MemSafe to enforce spatial and temporal memory safety.

The chapter concludes with additions to these basic rules that allow MemSafe to

ensure the memory safety of multithreaded programs.

Chapter 5 describes how MemSafe is able to reduce the runtime overhead of

achieving memory safety. It builds upon the language extensions introduced in

Chapter 4 to construct a novel data-flow representation for pointers, and it then

describes how this representation can be utilized for identifying and eliminating

unneeded runtime checks and code for propagating unused metadata.

Chapter 6 describes the prototype implementation of MemSafe and some of its

limitations. Then, Chapter 7 evaluates the implementation of MemSafe based on its

ability to detect memory safety violations in real-world programs and the runtime

overhead required for it to do so. This chapter demonstrates that MemSafe’s key

10

contributions—namely, the modeling temporal errors as spatial errors, a hybrid

metadata representation, and MemSafe’s data-flow representation—are effective tools

for reducing the cost of dynamically ensuring memory safety.

Finally, Chapter 8 describes additional related work by reviewing methods capable

of detecting both spatial and temporal violations as well as techniques that can only

detect one type of memory error. This chapter also presents a discussion of previous

work related to MemSafe’s data-flow analysis. Chapter 10 concludes this dissertation

by summarizing important aspects of the above.

11

12

Chapter 2

C Language Compilation and
Analysis

The C programming language is one of the most popular languages of all time, and a

C compiler is available for almost all computer architectures. However, despite its

ubiquity, the features that make C desirable for many system-level programing tasks—

namely its weak typing, low-level access to computer memory, and pointers—are the

same features whose misuse cause the variety of difficult-to-detect memory access

violations that are common among C programs.

This chapter presents an overview of the C programming language and the C

language compilation process. Specifically, Section 2.1 gives a brief history of C,

discusses its use in common systems and applications, and introduces the low-level

features whose misuse can result in memory safety violations. Section 2.2 describes

the basic steps involved in the C compilation process, and Section 2.3 introduces some

of the program analysis techniques used by most modern-day optimizing compilers.

These techniques include control- and data-flow analyses, the Static Single Assignment

(SSA) form [26], and alias analysis.

13

2.1 The C Programming Language

The C programming language [46] is a general-purpose programming language that

was initially developed in 1972 by Dennis Ritchie at the Bell Telephone Laboratories

for use with the Unix operating system [70]. Although C was originally intended to be

used for implementing systems software, many of today’s commonly used applications—

including database management systems and web browsers—are implemented in C.

As such, the C programming language is one of the most widely-used programming

languages, and this trend is likely to continue into the future. This section reviews

the development of the C, discusses its most common uses, and presents the low-level

features of the language that are often responsible for contributing to the commonly

occurring violations of memory safety.

2.1.1 History

The origin of the C programming language is closely tied to the development of

the Unix operating system [70]. The Unix kernel (the central component of most

computer operating systems) was originally developed in assembly language for the

PDP-7 computer. The PDP-7 was an early computer developed by the Digital

Equipment Corporation (DEC). Since assembly code is non-portable and specific to

a particular computer architecture, changes in the computer hardware on which an

assembly program is designed to run require developers to rewrite the program to

match the physical features of the new architecture. The C programming language

was developed—based on the specification of a previous language named “B” (from

14

which C derives its name)—to be a high-level version of assembly language with which

the Unix kernel could be portably rewritten. Due to the early success of C, Unix

became one of the first operating system kernels to be implemented in a language

other than assembly.

The first effort at standardizing the C programming language came in 1978 with

the publication of The C Programming Language by Kernighan and Ritchie [50]. This

book served as the de facto specification of the language before C became standardized.

Several new features were added to the language at this time, including a standard

library for I/O operations and the long int and unsigned int data types. In the

years following the publication of the book, several unofficial features were added to

the language in addition to these, which were supported to varying degrees by the

exiting C compilers. These extensions included void functions and the ability for a

function to return struct and union types.

Given the large number of extensions and the increasing popularity of C, stan-

dardization became necessary. The C Programming language was standardized by

the American National Standards Institute (ANSI) in 1989 and by the International

Organization for Standards (ISO) in 1990. This standard is commonly referred to

as ANSI C, C89, or C90. The standardization process resulted in the inclusion of

additional features, such as function prototypes (a declaration specifying a function’s

name, arity, and argument and return types) and void pointers. A program conform-

ing to the ANSI C standard that does not make any assumptions of the hardware on

which it will run (e.g., byte endianness) will run correctly, within resource constraints,

on any system that having an implementation of C (i.e., the standard libraries) that

15

also conform to the ANSI standard.

At the time of this writing, the most recent update to the ANSI/ISO C standard

came in 1999. The corresponding specification is commonly referred to as C99, and it

introduced several new features, including inline functions, additional data types, and

support for variable-length arrays. C99 is backward compatible with ANSI C, but

the reverse is not true. That is, a program conforming to the previous C standard

conforms to the current C99 specification. MemSafe assumes that the source code to

which it is applied conforms to the C99 specification, and all code transformations

that MemSafe makes conform to this standard as well.

2.1.2 Common use

C is most often used for “systems programming.” Systems programming is distinct

from application programming in that the latter aims to produce software that provides

a particular service to an end user (e.g, a word processor) whereas the former aims

to produce software that provides services to a computer system. As such, systems

programming requires greater knowledge of computer hardware. Examples of systems

programming tasks include implementing operating systems and embedded systems

applications. The C programming language is well-suited for these tasks because of

its efficiency, predictability, weak typing, and low-level access to computer memory.

Ironically, it is the misuse of these features that results in the memory safety violations

MemSafe aims to detect.

Given its wide acceptance and efficiency, many commonly-used applications and

16

language implementations are also written in C. For example, the C language is used

for implementing large database management systems and web browsers as well as

the compilers, libraries, and interpreters of other languages. Python, Perl and PHP

are examples of such languages. The efficiency of C code also makes it particularly

well-suited for implementing computationally intensive software, such as applications

for analyzing large amounts of scientific data.

2.1.3 Low-level features

As mentioned above, several of the features that make C a desirable programming

language are the same features that are often responsible for commonly occurring

memory access violations. Memory errors are made possible in C by the ability to

acquire low-level access to computer memory and to manipulate the data that is stored

in a particular region of memory. The discussion below describes the C language

features that can lead to violations of memory safety—namely the unrestricted use of

pointers and manual memory management.

2.1.3.1 Pointers

A pointer is a value that enables a program to indirectly access data that is stored

in a computer’s main memory or that is located in some peripheral device (e.g.,

through memory-mapped I/O). Pointers record the memory address of an object

or function and are said to “point” or “refer” to the data located at that address.

Pointers are dereferenced in order to access the data to which they point, or as is

the case with pointers to a function, they may be dereferenced to invoke a procedure.

17

Pointers are useful for a variety purposes in C including manual memory management

(discussed below) and the implementation of common data structures, such as trees

and lists. Additionally, function pointers are frequently used to implement the callback

mechanism required by event handlers. However, because a pointer variable can be

made to refer to an arbitrary location, and because pointer operations are typically

unchecked in C, the misuse of pointers are responsible for a variety of memory access

violations, particularly those related to spatial safety.

Pointers in C are created using the address-of operator (&) or by calling the malloc

standard library function. However, the value of one pointer may be assigned to

another pointer, and a pointer may be assigned an arbitrary value through the use of

type-casting. Pointers are manipulated through simple assignments and arithmetic. A

pointer that is assigned the value of NULL refers to no object, and in most systems, a

dereference of the NULL pointer results in a runtime error. NULL pointers are useful in

C programming for indicating special cases. For example, a NULL pointer can be used

to indicate that there are no items beyond the last element of a linked list.

A pointer’s type indicates the type of data stored at the location to which it refers.

However, a void pointer points to an object of unknown or unspecified type, and

can therefore be used as a generic data pointer or to implement type polymorphism.

Pointers that are void cannot be dereferenced, and pointer arithmetic on them is

not allowed. However, a pointer of one type can be freely converted into a pointer of

another type through type-casting.

A unique feature of the C programming language is the duality that exists between

pointers and arrays. Essentially, a variable declared as an array of a particular type

18

also acts as a pointer to that type, and when the variable is used by itself (i.e., the

array is not indexed), it is a pointer to the first element of the array. Formally, the

array sub-script notation a[i] is equivalent to *(a + i), where pointer arithmetic is

performed on a pointer to the first element of the array to compute the address of

the ith element. The dereference operation accesses the data stored at the resulting

address. Thus, pointer arithmetic and array indexing are identical operations. For

simplicity, MemSafe represents all array indexing operations as functionally equivalent

pointer arithmetic.

2.1.3.2 Manual memory management

The C programming language provides three mechanisms by which a programmer can

manually manage objects stored in memory. These include static memory allocation

for managing global objects, automatic memory allocation for managing stack objects,

and dynamic memory allocation for managing heap objects. The misuse of memory

allocation and deallocation mechanisms, especially those for managing heap-allocated

objects, are responsible for a variety of memory access violations, particularly those

related to temporal safety.

Static memory allocation refers to the process by which global variables are

allocated. Since the number and size of global variables is known statically, storage for

global variables is provided in a program binary by the compiler during compilation.

Static variables have a global scope, a lifespan equal to that of the program, and

are not deallocated until the program terminates and the binary in which they are

contained is removed from memory. Static allocation incurs no runtime overhead

19

since the storage space is managed by the compiler. Although this lack of overhead is

desirable, static allocation is not suitable for many programming tasks, such as the

implementation of data structures that can potentially grow in size at runtime.

Automatic memory allocation refers to the process by which variables local to a

procedure are allocated on the stack. When a procedure is executed, the required

storage space for its local variables, having been determined by the compiler, is

automatically reserved on the procedure stack. Similarly, when a function exists, its

local variables are automatically deallocated. Unlike global variables, the deallocation

of local variables introduces the possibility of memory safety violations. If the address

of an automatically allocated objects “escapes” and is made available outside the

procedure in which the object is allocated, all references to the object’s location

become invalid when the procedure exists and the object is deallocated. Pointers

to a deallocated object, whether the object was originally allocated on the stack or

the heap, are collectively referred to as dangling pointers, and their dereference is a

violation of temporal safety.

Dynamic memory allocation refers to the process by which blocks of memory of

arbitrary size can be allocated dynamically at runtime on the system heap. This is

accomplished with the malloc standard library function, which allocates a region

of memory and returns either a pointer to its base address or the NULL pointer,

indicating that a block of the specified size could not be allocated. Dynamically

allocated memory is deallocated by passing, to the free function, a pointer that

refers to the base address of the allocated block. In giving the programmer complete

control over memory allocation and deallocation, memory safety violations related to

20

dynamically allocated memory are commonplace. Dereferences of dangling pointers to

heap-allocated objects occur if a pointer to an object is dereferenced after the object

is deallocated. Similarly, a violation occurs if an attempt is made to deallocate an

object more than once with the free function. However, an example of a related

programming error that does not result in a memory safety violation is the “memory

leak.” A leak occurs when a pointer to dynamically allocated memory is lost, and the

program is never able to reclaim the allocated space. Since this is not a violation of

spatial or temporal safety, MemSafe does not aim to detect such an error.

2.2 Compilation

A C language compiler [7] is a computer program that transforms a program written in

C into a machine executable form. A compiler is responsible for performing a variety

of tasks, including lexical and semantic analysis of the source code and machine code

generation and optimization. Typically, tasks are organized into three groups based

on the order in which they occur: the compiler frontend, middle-end and backend.

The main task of a compiler frontend is to analyze the source code in order to build

an internal target-independent representation of the program, called the intermediate

representation (IR), for use by the middle-end. This process includes the following

steps: (1) Lexical analysis involves the tokenization of the source code in order to

recognize keywords, identifiers, and symbols. (2) Preprocessing involves performing

macro substitutions and the processing of inclusion, conditional compilation, and other

preprocessor directives. (3) Syntax analysis involves parsing the resulting sequence

21

of tokens to identify the syntactic structure of the program. (4) Semantic analysis,

the final step, involves performing various semantic checks (e.g. type checking) of the

program’s structure and is responsible for rejecting incorrect programs and issuing

compiler warnings.

The primary task of the compiler backend is to transform the IR into a machine exe-

cutable representation. This process involves the following steps: (1) Target-dependant

analysis and optimization involves transforming a program into a functionally equiva-

lent, but optimized, program based on features of the target machine (e.g., a machine’s

memory hierarchy). (2) Instruction selection involves selecting the appropriate ma-

chine instructions to implement a given operation or operations present in the IR.

(3) Instruction scheduling involves determining the order in which the selected in-

structions are placed based on their latency on the target machine. (4) Register

allocation, typically one of the final steps, involves assigning the large number of

program variables to the much smaller number of machine registers.

Finally, the compiler middle-end is responsible for performing target-independent

analyses and optimizations. These processes are performed after the source code is

converted into the intermediate representation by the frontend and before the IR is

converted into machine code by the backend. The analyses and optimizations performed

by the middle-end (some of which are the focus of Section 2.3) are typically intended

for gathering machine-independent information about the structure of a program and

using this information to transform the program such that it becomes faster or smaller

than the original version. Example analyses include call graph construction, control-

and data-flow analysis, and alias analysis. Common optimizations include constant

22

propagation and dead code elimination. MemSafe’s analysis and transformation is

target-independent and operates in the middle-end of a C compiler.

2.3 Analysis

Compiler analysis is the process of gathering information about a source program’s

structure in order to transform, or in some way optimize, it such that an attribute

of the executable program is maximized or minimized. Frequently, this involves the

optimization of programs to minimize execution time, memory consumption, or power

consumption. Given that some of the most basic compiler analyses have been shown

to be undecidable [54], the goal of most analyses and optimizations is not to produce

a program that is necessarily “optimal” in any way. Rather the goal is to apply

heuristics that improve desirable characteristics of a “typical” program.

Compiler analyses can be grouped and categorized in several ways based on their

scope and precision. The scope of an analysis can be (1) intraprocedural, meaning that

each procedure is considered individually, (2) interprocedural, meaning that multiple

procedures are considered at the same time, and (3) whole-program, meaning that the

analysis considers the entire program at once. Interprocedural and whole-program

analyses can acquire a greater amount of information about a program’s behavior and

lead to more effective optimizations. However, because they must reason over more of

the program at once, these analyses can be complex and require a compilation time

that can often be impractical.

Additionally, analyses can be grouped by the precision of their results. An analysis

23

is (1) flow-sensitive if it takes instruction ordering into consideration, and (2) context-

sensitive if it takes calling context into consideration when analyzing the target

procedure of function call. Flow- and context-insensitive analyses are more efficient to

perform than the above, but produce results that are not as precise.

Many compiler analyses exist, and they are useful for performing a variety of

program optimizations. However, only those required by MemSafe’s transformation

for ensuring memory safety are presented in this section.

2.3.1 Control-flow and call graph construction

A program’s potential execution paths can be effectively represented using control-flow

and call graphs. The construction of a control-flow graph (CFG) is an itraprocedural

analysis that produces a graph G = (V,E) where V is a set of vertices representing

each basic block in a function, and E is a set of edges such that if control-flow can

transfer from a block b1 to another block b2, there is an edge (b1, b2) in E. A sequence

of instructions forms a basic block [7], if the sequence has only one entry point, meaning

that only the first instruction is the target of a branch instruction, and has only one

exit point, meaning that only the last instruction can cause the program to begin

executing in a different basic block. The CFG is essential for many compiler analyses

and optimizations. For example, backedges in the CFG are useful in recognizing loops,

and disconnected subgraphs of the CFG are useful in identifying unreachable code.

The construction of a call graph is an interprocedural analysis that produces a

graph G = (V,E) where V is a set of vertices representing each function in a program,

24

and E is a set of edges such that if a function f calls another function g, there is

an edge (f, g) in E. In the presence of function pointers, determining the exact call

graph of a program is undecidable, so graph construction algorithms must produce

over-approximations. That is, a program’s call graph contains every call relationship

that can potentially be realized at runtime in addition to other spurious relationships

that can never occur. Frequently, alias analysis (discussed below) is used to determine

a set of the potential targets of a function pointer. Call graphs are essential for most

interprocedural analyses and optimizations.

2.3.2 Data-flow analysis

Data-flow analysis is a technique for reasoning about the possible set of values

computed at various points in a computer program. Intuitively, a program’s CFG is

used to determine the locations in a program where particular values might propagate

during the program’s execution. Data-flow analysis is used by a compiler to perform

a variety of optimizations including constant folding, dead code elimination and

common-subexpression elimination [7].

Data-flow analysis is performed by iteratively solving a set of equations for each

basic block of the CFG until the system of equations stabilizes and reaches a fixpoint

[51]. Information is gathered at the boundaries among basic blocks instead of individual

instructions since, once the information is gathered for each block, it is trivial to

compute the required information for each point within a block. A data-flow analysis

can be forward or backward, depending on the type of analysis being performed. In a

25

forward analysis, the exit state of a basic block is a function of its entry state, and the

entry state of a block is a function of the exit states of the block’s predecessors. Thus,

for each basic block b in a program, a forward data-flow analysis can be characterized

by the following equations:

inb = joinp∈predb(outp)
outb = transb(inb)

where transb, called the transfer function of block b, produces the exit state of b for a

given input sate. The join operation (usually set intersection or union) combines the

exit states of the predecessors of b to form the entry state of b. These equations are

applied iteratively to each basic block in the CFG until the entry and exit states of

each no longer change. A backward data-flow analysis operates analogously but with

the direction of the transfer function reversed.

2.3.3 SSA form

The Static Single Assignment (SSA) [26] form is a compiler intermediate representation

in which every variable is assigned exactly once. SSA ensures that a use of a variable

is dependent on exactly one definition, which greatly simplifies the construction of

use-def and def-use chains [7]. Furthermore, all evaluations of variables having the

same name are required to produce the same value. The primary reason for converting

a program into SSA form is that, because of the above properties, many compiler

analysis and optimization algorithms are enabled or significantly enhanced.

Within a single basic block, it is trivial to assign every definition a unique name.

26

For example, consider the statement x = 1 and the following statement x = 2. In

SSA form, these two assignments are represent as x1 = 1 and x2 = 2. All remaining

uses of the original variable x would now be uses of variable x2. However, at the point

where control-flow paths merge, it is not obvious how each variable can have exactly

one definition. Assume a basic block b has exactly two predecessor blocks and that

variable x is assigned in each one, becoming definitions of x1 and x2 in SSA form. The

value of x that is used in b is dependent on the control-flow of the program. Therefore,

this uncertainty in control-flow is resolved using a special statement x3 = φ(x1, x2),

which is inserted at the beginning of b, meaning that the value of x3 is either equal to

the value of x1 or x2. The φ-function produces the value of x1 if the predecessor of b

contains the definition of x1 and produces the value of x2 if the predecessor contains

the definition of x2.

The algorithm for converting a program into SSA form is straightforward. It

first inserts the required φ-functions to resolve the uncertainty in control-flow, and

it then renames all definitions and uses of variables such that each assignment is

given a unique name. The algorithm relies on a data-flow analysis that computes

the dominance frontier [7] of each basic block in order to efficiently determine the

locations of the required φ-functions.

2.3.4 Alias analysis

Alias analysis is a type of data-flow analysis that is used to determine whether the

data stored at a particular location in memory may be accessed in more than one

27

way. Two pointers are said to alias if they refer to the same location and, therefore,

could both be used to access the same data. Alias analysis is responsible for deciding,

for any two pointers, whether they must, must not, or may alias. The analysis is

commonly used for determining, for example, whether a value stored to memory (e.g.,

*q = x) can affect a value loaded from memory (e.g., x = *p). Such would be the

case if the two pointers (p and q) must alias. Compilers perform alias analysis because

it can significantly improve the performance of other analyses and transformations.

However, the usefulness of an alias analysis depends on the precision of the analysis.

For example, an analysis the produces a may-alias response for every alias query

would not improve the effectiveness of other analyses and optimizations. Flow- and

context-sensitive algorithms produce the most precise results yet typically require far

too much computation time and memory to be very useful in practice.

Andersen’s analysis [4] is widely-regarded to be one of the most precise inter-

procedural flow- and context-insensitive alias analyses. Even so, it requires O(n3)

computation time. In practice, techniques such as online cycle elimination [35] and

offline variable substitution [72] are required to make the analysis more efficient and

scalable to large programs. Because of its balance between precision and efficiency,

MemSafe uses Andersen’s analysis as its default alias analysis.

28

Chapter 3

Memory Safety Violations and
Prior Enforcement Methods

Having introduced the C programming language, the processes by which it is compiled

and optimized, and the low-level features of C that can enable or contribute to the

existence of hard-to-detect memory errors, this chapter examines the resulting memory

safety violations in more detail. Section 3.1 presents the spatial and temporal errors

that can result from the misuse of the low-level C language features, and Section 3.2

gives and overview of previous methods for detecting some or all memory access

violations in C programs. The overall strengths and weaknesses of these strategies are

compared with that of MemSafe.

3.1 Memory Safety Violations

Memory safety violations can be divided into two categories: violations of spatial

safety and violations of temporal safety. A spatial safety violation is an error in which

a pointer is used to access the data at a location in memory that is outside the bounds

of an allocated object. The error is “spatial” in the sense that the dereferenced pointer

29

Memory Safety Violation Example

Spatial Safety Bounds
violation

1: struct { ... int array[100]; ... } s;
2: int *p;
3: ...
4: p = &(s.array[101]);
5: ... *p ... � bounds violation

Uninitialized
pointer

1: int *p;
2: ...
3: ... *p ... � uninitialized pointer

dereference

NULL pointer 1: int *p;
2: ...
3: p = NULL;
4: ... *p ... � null pointer dereference

Manufactured
pointer

1: int *p;
2: ...
3: p = (int*) 42;
4: ... *p ... � manufactured pointer

dereference

Temporal Safety Dangling stack
pointer

1: int *p;
2: ...
3: void f() {
4: int x;
5: ...
6: p = &x;
7: }
8: ...
9: void g() {

10: f();
11: ... *p ... � dangling stack
12: } pointer dereference

Dangling heap
pointer

1: int *p, *q;
2: ...
3: p = (int*) malloc(10*sizeof(int));
4: q = p;
5: ...
6: free(p);
7: ... *q ... � dangling heap

pointer dereference

Multiple
deallocations

1: int *p, *q;
2: ...
3: p = (int*) malloc(10*sizeof(int));
4: q = p;
5: ...
6: free(p);
7: free(q); � multiple deallocations

Table 3.1: Memory safety violations. Example code fragments demonstrating
memory safety violations are presented grouped by whether they affect aspects of
spatial or temporal safety.

30

refers to an incorrect location in memory. A temporal safety violation is an error

in which a pointer is used in an attempt to access or deallocate an object that has

already been deallocated. The violation is “temporal” in the sense that the pointer

use occurs at an invalid instance during the execution of the program (i.e., after the

object to which it refers has been deallocated). Table 3.1 lists spatial and temporal

memory safety violations that MemSafe detects and gives examples of each. These

errors are discussed in detail below.

3.1.1 Bounds violations

A spatial violation occurs when a pointer is used to access a location outsize the

bounds of an allocated object. Common examples include accessing elements beyond

the end of an array and dereferencing a pointer derived from invalid pointer arithmetic.

Note that a pointer must be dereferenced for a violation to occur; it is not sufficient

for a pointer to simply refer to a location outside the bounds of an object to cause

a spatial safety violation. In many C programs, it is common for a pointer to be

out-of-bounds and later refer to an in-bounds location.

The first category of Table 3.1 (“Bounds violation”) shows the dereference of a

pointer that is out-of-bounds. Here, a pointer p is created that refers to a location

beyond the last element of the array field of structure s. The dereference of p is

an example of a “sub-object” bounds violation. A sub-object is an object that is

allocated at part of a larger, nested structure. Examples include arrays of structures

and structures containing array fields. Sub-object bounds violations frequently go

31

undetected by error detection mechanisms since an out-of-bounds pointer to a sub-

object can remain within the bounds of the outer object.

3.1.2 Uninitialized pointer dereference

The dereference of an uninitialized pointer also results in a spatial violation. Statically

allocated pointer values that are not given an initial value are typically initialized by

the compiler to be equal to NULL. Therefore, a dereference of such a pointer, while still

resulting in a spatial violation, commonly results in a runtime error on many systems.

However, automatically allocated pointer values that are not given an initial value refer

to whatever address is specified in the location on the stack in which they are stored.

Thus, since it is not known statically what this value might be, the dereference of an

uninitialized pointer that is allocated on the stack might result in data corruption or

cause the program to eventually crash in a way that obfuscates the root problem. The

second category of Table 3.1 shows an example of an uninitialized pointer dereference.

3.1.3 Null pointer dereference

The NULL pointer, often—but not necessarily—equal the value zero, is used to indicate

that a pointer refers to no object. Thus, the dereference of a NULL pointer results in

a spatial violation. Commonly, the dereference of a NULL pointer causes a runtime

error and immediately halts a program with a segmentation fault, since an operating

system never allocates a running program the address of NULL.

However, this is not true for all systems. The XScale [45] and other ARM

32

microprocessors [8] that lack virtual memory reserve address zero for their interrupt

vector table. An interrupt vector table contains the memory addresses of interrupt

handlers and is used by a processor to determine the correct response to hardware

interrupts and exceptions. A program running on these microprocessors is able to

modify the contents of the interrupt vector table by dereferencing the NULL pointer,

which results in a security exploit known as the vector rewrite attack [47]. The third

category of table 3.1 shows an example of a NULL pointer dereference.

3.1.4 Manufactured pointer dereference

A “manufactured” pointer is a pointer created by a means other than explicit memory

allocation (i.e., with the malloc standard library function) or by using the address-of

operator (&). Type-casting an integral type to a pointer type is a common method for

creating such a pointer, and in doing so, results in a pointer that refers to an address

equal to the value of the integer. The dereference of a manufactured pointer results

in a spatial safety violation since the layout of objects in memory is not specified by

the C language, and therefore, object addresses are unknown to a programmer at

compile-time.1 The fourth category of Table 3.1 shows the dereference of a pointer

that is type-cast from integer 42.

1Memory-mapped I/O locations (discussed in Section 4.3.6) are an exception to this rule since
the addressable memory map is made known to a programmer.

33

3.1.5 Dereference of dangling stack pointers

As discussed previously, if the address of an automatic variable is made available

outside the function in which it is defined (e.g., by assigning it to a global pointer

or storing it in a heap object), all pointers to the local variable become dangling

when the function exists and its local storage is deallocated. Since a function’s local

storage may be reallocated for the execution of another function, reading or writing

the address of a previously allocated variable results in a of temporal violation.

The fifth row of table 3.1 shows two functions f and g, and function g is shown

calling f. However, in function f, the address of local variable x is assigned to the

global pointer p. The dereference of p in function g after the call to f results in a

temporal safety violation.

3.1.6 Dereference of dangling heap pointers

Like pointers to local variables, pointers to dynamically allocated memory become

dangling when the objects to which they refer are deallocated. In this case, memory

is deallocated dynamically by free instead of automatically when a function exits.

Since some or all of the storage occupied by a deallocated object may be subsequently

reallocated with malloc for another object of an incompatible type, reading or writing

the deallocated location is undefined, and results in a violation of temporal safety.

The sixth row of Table 3.1 shows two pointers p and q that must alias. A dynamic

array of integers is allocated with malloc, and the base address of the allocated region

(assuming the allocation was successful) is assigned to both p and q. Since p is used

34

to deallocate the array with a call to free, the subsequent dereference of pointer q is

a dangling pointer dereference, and results in a temporal safety violation.

3.1.7 Multiple deallocations

A program that attempts to deallocate the same object more than once, or attempts

to deallocate a location that was not originally allocated by malloc, commits a

temporal safety violation. Calling free twice with the same value or with a value

not returned by malloc typically corrupts the internal data structures of a system’s

memory allocator. This can result in application data corruption, in malloc returning

the same value for subsequent allocations, and in the eventual crash of a program.

The last row of Table 3.1 shows two pointers p and q that must alias. A dynamic

array of integers is again allocated with malloc, and the base address of the allocated

region (assuming the allocation was successful) is assigned to both p and q. Since p is

used to deallocate the array with a call to free, the subsequent call to free using

pointer q results in multiple deallocation attempts of the same objects, and causes a

violation of temporal safety.

3.2 Prior Enforcement Methods

As evidence of the significance of the above memory safety violations, the instru-

mentation of C programs to ensure memory safety remains an actively researched

topic. This section reviews previous approaches for detecting some or all spatial and

temporal safety violations, primarily focusing on the prior works’ use of metadata. In

35

the context of enforcing memory safety, metadata refers to the creation of additional

data for describing the spatial or temporal properties of an object or pointer. For

example, metadata often consists of the base and bound addresses that indicate the

valid address range to which a pointer may refer.

3.2.1 Spatial safety

The goal of spatial safety is to ensure that every memory access occurs within the

bounds of a known object. Spatial safety is typically enforced by inserting runtime

checks before pointer dereferences. Alternatively, checking for bounds violations after

pointer arithmetic is also possible [e.g. 3, 30, 49, 74], but requires care since pointers in

C are allowed to be out-of-bounds so long as they are not dereferenced. The metadata

required for spatial safety checks can be associated either with objects or pointers,

and there are strengths and weaknesses of each approach.

3.2.1.1 Object metadata

Methods that utilize object metadata usually record the base and bound addresses

of objects, as they are allocated, in a global database that relates every address in

an allocated region to the metadata of its corresponding object. Advantages of this

approach include efficiency, since it avoids the propagation of metadata at every pointer

assignment (see the discussion of pointer metadata below), and compatibility, since it

does not change the layout of objects in memory or prohibit the use of pre-compiled

libraries. Prominent methods employing this strategy include the work by Jones and

Kelly [49], Ruwase and Lam [74], Dhurjati and Adve [30], Akritidis et al. [3], SafeCode

36

[31] and SVA [24].

However, the use of object metadata as means of enforcing spatial safety results

in several drawbacks. First, this approach prevents complete spatial safety. Since

nested objects (e.g., an array of structures) are assigned a base and bound address

that spans the entire allocated region, it is impossible to detect sub-object overflows if

an out-of-bounds pointer to an inner object remains within bounds of the outer object.

Second, this approach requires a runtime lookup operation to be performed in order

to retrieve metadata from the object database. Dhurjati and Adve [30] improve the

runtime cost associated with this lookup operation by partitioning the object database

using Automatic Pool Allocation [55, ch. 5], and Akritidis et al. [3] improve runtime

by constraining the size and alignment of allocated objects. However, these methods

do not detect sub-object overflows or temporal errors.

Figure 3.1 depicts the utility of object metadata (shown in red) in enforcing memory

safety. In order to ensure memory safety, complete spatial and temporal safety must be

enforced. Since all pointer dereferences are either object-level references or sub-object

references, it follows that all object and sub-object references must be both spatially

and temporally safe for a program to be memory safe. However, object-level base

and bound information is only useful in enforcing object-level spatial safety, since

sub-objects must share metadata with their corresponding outer objects. 2 Figure 3.1

will be referenced again when describing the remaining prior enforcement strategies.

2Some methods [e.g., 3, 24, 30, 31, 49, 74] are capable of using object metadata to detect some,
but not all, temporal safety violations. However, if an object is deallocated and its space is reallocated
for use by another object, dangling pointer dereferences to the original object will not be detected
because they are within bounds of the new object. Thus, these methods are incapable of enforcing
either complete object-level or sub-object temporal safety.

37

Memory
Safety

Spatial Safety

Sub-objects Objects

Temporal
Safety

Objects Sub-objects

Object metadata
Pointer metadata

Garbage collection & temporal capabilities

Figure 3.1: Prior enforcement methods. The use of spatial
metadata, garbage collection, and temporal capabilities is shown
for previous methods of enforcing memory safety.

38

3.2.1.2 Pointer metadata

An alternative to using object metadata for enforcing spatial safety is to associate

metadata with individual pointers. When a new pointer is created (i.e., with malloc or

the address-of operator), its metadata is initialized to be the base and bound address

of its referent, and when a pointer definition uses the value of another pointer (e.g.,

pointer arithmetic), its metadata is inherited from the original pointer. Advantages

of this approach include avoiding costly database lookups and the ability to ensure

complete safety, since sub-object overflows can be detected by assigning each pointer

a unique base and bound address.

Pointer metadata is commonly implemented using multi-word blocks of memory,

called “fat-pointers,” that record the required base and bound information inline

with pointers. Each pointer in a program essentially becomes a struct containing

three fields: the original pointer value and the base and bound address of its referent.

Prominent methods employing this strategy include Safe C [9], Fail-Safe C [66] and

CCured [64]. However, the use of inline metadata is not always compatible and breaks

many programs. Since a pointer’s size is no longer equal to the word size of the target

architecture, many programming idioms no longer work as expected. Additionally,

interfacing with external libraries becomes difficult and requires wrapper functions to

pack and unpack fat-pointers at boundaries with uninstrumented code.

Several pointer-based methods have developed approaches that avoid some of the

compatibility issues of fat-pointers. CCured [64], MSCC [82] and Patil and Fischer

[68] record metadata in disjoint structures that mirror the shape of the underlying

39

data, but maintaining this representation increases runtime. Fail-Safe C [66] combines

fat-pointers with fat-integers and virtual structure offsets, but this too increases cost.

Finally, Softbound [62] maintains metadata for in-memory pointers in an efficient

global lookup table, but this method only detects spatial violations.

Another disadvantage of the use of pointer metadata as a means of enforcing spatial

safety is its runtime cost. While it avoids the need for expensive database lookups

operations, metadata must instead be propagated at every pointer assignment. CCured

[64] reduces metadata propagation by using a type system to infer pointer usage.

CCured classifies pointers as SAFE, SEQ and WILD and optimizes the inserted checks

and code for propagating metadata for each pointer kind. However, CCured requires

manual code modifications to avoid the expensive bookkeeping of WILD pointers and

to correct the compatibility issues of fat-pointers.

Figure 3.1 depicts the utility of pointer metadata (shown in blue) in enforcing

memory safety. Since individual pointers can be associated with a unique base and

bound address, pointer metadata can be used to enforce complete object-level and

sub-object spatial safety. However, prior methods are not capable of utilizing pointer

metadata in enforcing temporal safety.

3.2.1.3 MemSafe’s approach for ensuring spatial safety

MemSafe’s use of metadata as a means for ensuring spatial safety avoids the drawbacks

of the above approaches. MemSafe captures the most salient features of object and

pointer metadata in a hybrid representation. To ensure complete and compatible

spatial safety, MemSafe maintains disjoint pointer-based metadata in an approach

40

similar to that of SoftBound. However, to lower runtime cost, MemSafe models

temporal errors as spatial errors and propagates pointer-based metadata only when

it is needed for performing runtime checks. Additionally, MemSafe maintains some

object-based metadata in a global database but performs lookup operations only when

MemSafe’s pointer-based metadata is insufficient for ensuring temporal safety.

3.2.2 Temporal safety

The goal of enforcing temporal safety is to ensure that every memory accesses refers

to an object that has not been deallocated. As described in Section 3.1, temporal

safety violations occur when dereferencing pointers to stack objects, if the function in

which they were defined has exited, and when dereferencing pointers to heap objects,

if the object to which they refer has been deallocated with free. Temporal safety is

typically enforced with garbage collection or by software checks. Like the methods for

ensuring spatial safety, there are strengths and weaknesses of each approach.

3.2.2.1 Garbage collection

Methods using garbage collection to prevent dangling pointers to heap objects com-

monly ignore calls to the free function and replace calls to malloc with the Boehm-

Demers-Weiser conservative garbage collector [16]. To prevent dangling pointers

to stack objects, local variables can be “heapified” and replaced with dynamically

allocated objects that are managed by the garbage collector. This is the approach

taken by CCured [64] and Fail-Safe C [66].

However, garbage collection negates several of C’s primary benefits, including its

41

predictability and low-level access to memory. Garbage collection voids real-time

guarantees [10], increases address space requirements, reduces reference locality, and

increases page fault and cache miss rates [84]. Moreover, since the collector must

be conservative, some memory may never be reclaimed by the system, resulting in

memory leaks. Finally, heapifying stack objects increases the runtime overhead of

enforcing temporal safety since dynamic allocation is slower than automatic allocation.

Despite these drawbacks, conservative garbage collection is capable of enforcing

complete temporal safety. This capability is depicted in Figure 3.1, where the use of

garbage collection is shown in orange.

3.2.2.2 Temporal checks

An alternative to using garbage collection for enforcing temporal safety is to insert

explicit software checks that test the temporal validity of referenced objects. To

achieve this, a “capability store” is commonly used to record the temporal capability

of objects as they are created and destroyed. Additional temporal metadata that

is created and propagated with spatial metadata links a pointer to the temporal

capability of its referent. Methods employing this strategy include Safe C [9], MSCC

[82], and the work by Patil and Fischer [68] and Yong and Horwitz [83].

There are advantages and disadvantages of using explicit temporal checks for

enforcing temporal safety. The primary strength of this approach is that it retains C’s

memory allocation model and avoids the drawbacks associated with garbage collection.

However, the inclusion of additional runtime checks and metadata significantly increases

the runtime overhead beyond that of enforcing spatial safety alone. Figure 3.1 indicates

42

that temporal capabilities (shown in orange), like garbage collection, can be used to

enforce complete temporal safety.

3.2.2.3 MemSafe’s approach for ensuring temporal safety

One of MemSafe’s main contributions is the modeling of temporal errors as spatial

errors. Therefore, MemSafe does not require conservative garbage collection or explicit

temporal checks, and it avoids the drawbacks of both approaches. Instead, MemSafe

relies on spatial safety checks and the hybrid metadata representation mentioned

above for ensuring temporal safety.

43

44

Chapter 4

MemSafe

MemSafe [77] is a compiler analysis and transformation for ensuring the spatial

and temporal memory safety of C programs at runtime. MemSafe’s source code

transformation ensures complete memory safety, produces transformed code that is

compatible with legacy software, and is entirely automatic. In order to reduce the

runtime cost of enforcing memory safety, MemSafe requires a limited amount of static

analysis—an alias analysis used for disambiguating memory operations—to avoid

inserting unnecessary checks and the propagation of unneeded metadata. MemSafe

inserts runtime checks and propagates the required metadata for the remaining memory

accesses that cannot be statically verified to be safe.

This chapter describes MemSafe’s basic, unoptimized approach for ensuring the

memory safety of C programs. (Chapter 5 will describe optimization techniques

for lowering the runtime cost associated with enforcing memory safety.) Section 4.1

presents a small C-like language and introduces syntax extensions of this language that

MemSafe uses to model the challenging aspects of enforcing memory safety—namely,

memory deallocation and pointer aliasing. Sections 4.2–4.3 present the runtime checks

and metadata propagation rules required to achieve safety. Section 4.4 discusses

45

Atomic Types α := int | τ*
Types τ := α | struct{d+} | τ[n]

Declarations d := τ x;
Functions f := func(x∗) {b∗}

Blocks b := p∗ d∗ s+

φ-Functions p := x = φ(x+);
LHS Expressions l := x | *l | l.y
RHS Expressions r := r+r | l | &l | (α)r | malloc(r) | n

Statements s := l=r; | l(r); | for(l=r; r<r; l=r) {b}
| if(r) {b} else {b} | return r; | free(r);

where x ∈ variables
y ∈ structure field identifiers
n ∈ N

Figure 4.1: Language Syntax for MemSafe presentation. Syntax is given for a
simple SSA [26] language with procedures, pointers, control flow, and manual memory
management.

the use of MemSafe for ensuring the memory safety of multithreaded programs and

describes the changes to MemSafe’s basic approach that are required in order to

achieve thread safety. Finally, Section 4.5 shows an implementation of MemSafe’s

unoptimized checks and metadata for an example real-world application.

4.1 Language Extensions and Assumptions

This section describes the main components of MemSafe’s program analysis. Because

the C programming language, in its entirety, is both large and complex, the language

defined in Figure 4.1 will be used for describing MemSafe’s source code translations

and the rules for runtime check insertion and metadata propagation. Figure 4.1 defines

a small SSA [26] intermediate language that captures all the relevant pointer-related

portions of C. Features of the language include, among others, syntax for pointer

types, manual memory management, type-casting of pointer values, pointer arithmetic,

46

and complex control-flow.

Without loss of generality, the following assumptions are made of the language

presented in Figure 4.1. First, it is assumed that memory is only accessed with

explicit load (e.g., x = *ptr) and store (e.g., *ptr = x) operations involving pointers.

Second, it is assumed that pointer values are only created with the address-of operator

(&) or by calling the malloc function. Recall that in C, a variable declared as an

array of some particular type can act as a pointer to that type, and when used by

itself, is a pointer that points to the first element of the array. To enforce the notion

that pointers are only created through the two mechanisms above, all array accesses

are represented as an indexing operation applied to the address of the first element of

the array. For example, for the allocation of an array a of ten elements, an access of

the fifth element a[4] is represented as (&a[0])[4]. That is, a pointer is created to

the first element of the array, and then this pointer is used to compute the address of

the fifth element. In this way, all new pointer values may only be created with the

address-of operator and by calling the malloc system function.

Furthermore, MemSafe assumes all global variable definitions define a symbol

that provides the address of an object instead of the actual object “contents.” Since

assignments of global variables must be conservatively accounted for in SSA form [26],

compiler intermediate representations (e.g., LLVM [56]) often represent global variables

as pointers to statically allocated regions of memory. The advantage of this approach

is that within a procedure, a global variable can be loaded from memory, renamed

according to the SSA conversion algorithm, and then stored back to memory before

control-flow reaches another procedure. Therefore, MemSafe identifies statically

47

allocated objects by their location in memory. Note that MemSafe’s representation of

global variables is analogous to the discussion of arrays above in that the declaration

of an object implicitly creates a pointer to that object.

MemSafe models both memory deallocation and pointer store operations as explicit

assignments using syntax extensions to this C-like SSA language. The advantage of this

approach is that it enables MemSafe to ensure complete memory safety by reasoning

solely about pointer definitions, which eliminates the need for separate mechanisms

for detecting spatial and temporal errors and reveals optimization opportunities. The

remainder of this section describes these abstractions.

4.1.1 Memory deallocation

Memory deallocation can implicitly change the object to which a pointer refers. If the

region of memory that was occupied by a deallocated object is ever reallocated, the

contents of the region may change, and any remaining pointers to the original object

implicitly become invalid. This implicit redefinition of pointers can be made apparent

by modeling both automatic and dynamic memory deallocation as an explicit pointer

assignment. For example, MemSafe models the statement free(p) as p = invalid,

where invalid is a special untyped pointer constant that points to an “invalid” region

of memory. The base and bound address associated with this abstract memory region

are defined by the impossible address range [1, 0]. Thus, if the spatial metadata

of p is located at address addrp in memory, then p could be associated with the

base and bound of the invalid pointer by the statements addr_p->base = 1 and

48

addr_p->bound = 0. Since the size of this block is −1, spatial safety checks involving

the base and bound of the invalid pointer are guaranteed to always report a memory

safety violation. Therefore, temporal safety violations can be detected with runtime

checks inserted for enforcing spatial safety. The rules for inserting assignments of the

invalid pointer are given below.

4.1.1.1 Automatic memory deallocation

If the address of a stack-allocated object is taken with the address-of operator (&),

the pointer to this object may “escape” and be made available outside the function in

which the object is allocated. Such an occurrence is possible, for example, if a local

variable’s address is stored in a global or heap variable. While this is a legal operation

in the C programming language, a common consequence of escaping pointers is the

program committing a temporal safety violation. When a function exits, its local

variables are automatically deallocated, and any escaping pointers to these deallocated

objects become dangling. To make the implicit redefinition of these pointers explicit,

MemSafe inserts assignments of the invalid pointer at the end of a procedure for each

of its local variables whose address is taken. MemSafe assumes the address of a local

variable escapes if it is ever stored in another variable. Assignments of the invalid

pointer are inserted according to the following rule for automatic memory deallocation.

Numbered lines represent original code.

Syntax Extension 4.1—Automatic memory deallocation:

1: void f() {
2: struct { ... int array[100]; ... } s, *p;
3: ...

49

4: p = &s; � address of s is taken and may escape
5: ...

p = invalid; � MemSafe models deallocation as an explicit
6: } pointer assignment of ‘invalid’

In this example, the nested structure s is allocated automatically on the stack as a

local variable of function f. In line 4, the address of s is taken and stored in pointer

p. It is assumed that p may escape to another procedure and result in a dangling

pointer when function f exits. Therefore, MemSafe assigns p the value of the invalid

pointer before the function exits, indicating that the pointer now refers to a temporally

“invalid” region of memory. After this assignment, the base and bound of p would be

updated to be equal to that of the invalid pointer, and any pointer derived from p

would inherit this metadata as well (see Section 4.3).

4.1.1.2 Dynamic memory deallocation

If a pointer’s referent is deallocated dynamically by a program calling the free function,

all pointers that refer to this object become dangling pointers. The subsequent

dereference of a dangling pointer results in a temporal safety violation. To make

the redefinition of these pointers explicit, MemSafe inserts assignments of the invalid

pointer after calls to free for the pointer used in deallocating the object. Assignments

of the invalid pointer are inserted according to the following rule for dynamic memory

deallocation. Numbered lines represent original code.

Syntax Extension 4.2—Dynamic memory deallocation:

1: int *p;
2: ...
3: p = malloc(size);

50

4: ...
5: free(p); � MemSafe models deallocation as an explicit

p = invalid; pointer assignment of ‘invalid’

In this example, an object of size bytes is dynamically allocated by a program with

the malloc function, and the base address of object is assigned to pointer p. In line

5, the object to which p refers is deallocated by the program with the free function.

Therefore, MemSafe assigns p the value of the invalid pointer to indicate that the

pointer now refers to a temporally “invalid” region of memory.

4.1.1.3 Inserting assignments of the invalid pointer

MemSafe inserts assignments of the invalid pointer according to the above rules for

the deallocation of stack- and heap-allocated objects. Since global variables have a

lifetime equal to that of the program, they are not deallocated until the program

terminates and, therefore, do not require assignments of the invalid pointer. MemSafe

removes all inserted assignments of invalid after instrumenting the program with the

required safety checks and code for propagating metadata. The pseudocode of the

algorithm for inserting assignments of the invalid pointer is given below. Pseudocode

conventions follow those of Cormen et al. [23].

Algorithm 4.1—Pseudocode for inserting assignments of invalid:

1: for each function f in the program
2: do for each instruction i in function f
3: do if i defines a pointer p
4: then if rhs(i) computes the address of a local variable
5: then invalidate-at-end(p, f)
6: else if i is a call to function free
7: then p← pointer argument of call
8: invalidate-after(p, i)

51

The algorithm for inserting assignments of the invalid pointer is straightforward and

operates as follows. For each instruction in the program, if the instruction defines

a pointer to be equal to the address of a local variable, the pointer is assigned the

value of the invalid pointer at the end of the function containing the instruction,

according to the rule for automatic memory deallocation. The procedure invalidate-

at-end inserts the assignment into the program at the end of the specified function.

Otherwise, if the instruction is a call to free, the pointer argument of free is assigned

the value of the invalid pointer after the call, according to the rule for dynamic memory

deallocation. The procedure insert-after inserts the assignment into the program

after the specified instruction.

4.1.2 Pointer stores

Having inserted assignments of the invalid pointer to make the redefinition of pointers

to deallocated memory explicit, MemSafe then transforms the program to make

indirect pointer store operations explicit assignments as well.

Indirect assignments are problematic in SSA form and make the representation of

pointer stores nonintuitive. A key property of SSA is that each assignment is given a

unique name (hence, the “single assignment” condition of Static Single Assignment).

However, this property does not hold for in-memory assignments of the form *p = x.

In this case, *p is not given a unique name when it is assigned the value of x, and it

is unclear whether other values loaded from memory can be equal to x or not.

To address this problem for the indirect assignment of pointer values, MemSafe

52

models in-memory pointer assignments (including those induced for the invalid pointer)

as explicit assignments using alias analysis and a φ-like SSA extension called the

%-function. In the same way that the φ-function of SSA is used to resolve control-flow

uncertainty, thereby giving a unique name to conditional assignments at the point

where control-flow paths merge, MemSafe uses the %-function to resolve the data-

flow uncertainty of pointer values, thereby giving a unique name to indirect pointer

assignments at the point where pointers are loaded from memory.

For example, assume the statement s0:*p = ptr0 is the only direct reaching

definition of a pointer defined as s1:ptr1 = *p. The statement s2:*q = ptr2 may

indirectly redefine ptr1 if p and q may alias and control-flow may reach statement s1

from s2. Therefore, MemSafe models ptr1 = *p as ptr1 = %(ptr0, ptr2), meaning

the value of ptr1 may equal that of ptr0 or ptr2 but only these two values. In this

way, all indirect pointer assignments and object deallocations are represented as direct

assignments of the pointers that are potentially modified.

The following code fragment provides a more concrete example of the %-function

and demonstrates how this syntax extension creates a synergy with MemSafe’s rep-

resentation of memory deallocation that results in the propagation of the data-flow

associated with the invalid pointer. Numbered lines represent original code.

Example 4.1—%-function insertion :
1: int *a, *b, *c;
2: int **p, **q; � assume p and q may alias

...
3: *q = a;

...
4: if (condition) {
5: *p = b;

53

6: } else {
7: free(*p);

*p = invalid; � MemSafe models deallocation as an explicit
8: } pointer assignment of ‘invalid’

...
9: c0 = *q

c1 = %(a, b, invalid); � MemSafe models in-memory data-flow with the
%-function. All subsequent uses of c0 are
replaced with uses of c1.

In this example, all pointer values exist in memory, and pointer assignments are made

possible by pointer store and load operations. After the call to the free function in

line 7, an in-memory assignment of the invalid pointer is inserted to indicate that the

referent of *p has been deallocated. Since p and q are assumed to potentially alias,

this store operation and the ones in lines 3 and 5 may define the pointer loaded and

assigned to the variable c0 in line 9. Therefore, MemSafe resolves this uncertainty

in pointer data-flow and gives a unique name to these assignments by inserting the

%-function after line 9 and assigning it to the variable c1. Pointers a, b and invalid

are added to the %-function assigned to pointer c1, meaning c1 may be equal to any

of these three values, but only these values. All subsequent uses of pointer c0 are

replaced with uses of c1.

By default, MemSafe utilizes flow- and context-insensitive pointer alias information

to determine the arguments of %-functions. However, MemSafe is capable of using

more precise alias analyses, and in general, their uses result in %-functions with smaller

arity. In the case of the former, MemSafe performs a simple reachability analysis to

improve the results of alias analysis. For example, consider the pointer store operation

*ptr1 = p0 and the pointer load operation p1 = *ptr2. If alias analysis indicates

54

that the pointers ptr1 and ptr2 may alias, p0 would be added to the %-function inserted

for p1. However, if there is no control-flow path from the store operation to the load

operation, this is unnecessary since there is no program execution in which the stored

value can modify the loaded value. MemSafe does not include stored pointers in the

%-functions inserted for loaded pointers if the store cannot reach the load. Note that

MemSafe’s reachability analysis does not result in a flow-sensitive alias analysis.

4.1.2.1 Inserting %-functions

MemSafe inserts %-functions after all pointer loads, and like the inserted assignments

of the invalid pointer, they are removed after MemSafe instruments the program with

the required runtime checks and code for propagating metadata. Crucially, MemSafe

does not insert %-functions for loads of non-pointer values since they are not required

for MemSafe’s analysis and could potentially lead to a large increase in code size.

The pseudocode of the %-function insertion algorithm is given below. Pseudocode

conventions follow those of Cormen et al. [23].

Algorithm 4.2—Pseudocode for inserting %-functions:

1: S ← set of all pointer store instructions
2: L← set of all pointer load instructions
3: for each load instruction l ∈ L
4: do Args← {}
5: for each store instruction s ∈ S
6: do if statement l is reachable from s
7: then m1 ← stored location of s
8: m2 ← loaded location of l
9: if m1 and m2 may alias
10: then q ← stored value of s
11: Args← Args ∪ {q}
12: pold ← defined value of l
13: pnew ← insert-rho(Args, pold)

55

14: for each use of pold
15: do replace pold with pnew

Intuitively, the %-function insertion algorithm operates as follows. First, the algorithm

identifies all pointer load and store operations. Then, for each pointer load operation

it identified, the algorithm determines a set of stored pointer values such that (1) there

is a control-flow path from each corresponding store operation to the load operation

and (2) the memory locations stored by each store operation may alias the memory

location loaded by the load operation. The procedure insert-rho creates and inserts

into the program a new %-function at the location following the load operation, which

indicates that the loaded value may be equal to the computed set of stored pointer

values. Finally, each use of the original loaded value is replaced by a use of the value

defined by the newly created %-function.

4.2 The Required Checks and Metadata

After inserting code for modeling memory deallocation and pointer stores as explicit

assignments, MemSafe then inserts the runtime checks and metadata necessary for

enforcing memory safety. This section describes the pointer- and object-based checks

and metadata that MemSafe requires.

Figure 4.2 depicts MemSafe’s unique combination of object- and pointer-based

metadata. In contrast to the enforcement methods shown in Figure 3.1, MemSafe

utilizes this hybrid metadata representation for ensuring both the spatial and temporal

memory safety of C programs.

56

Memory
Safety

Spatial Safety

Sub-objects Objects

Temporal
Safety

Objects Sub-objects

PBC OBC

Object metadata
Pointer metadata

Figure 4.2: Hybrid metadata representation. The use
of object and pointer spatial metadata is shown for MemSafe’s
method of enforcing memory safety.

57

The differences between Figures 3.1 and 4.2 can be explained as follows. First,

because MemSafe models temporal errors as spatial errors, MemSafe avoids the

drawbacks associated with the use of conservative garbage collection and the use of

additional checks and metadata for enforcing temporal safety (shown in orange in

Figure 3.1). Second, since MemSafe’s hybrid metadata representation captures the

most salient features of object and pointer metadata, MemSafe avoids the drawbacks

associated with the use of each in enforcing spatial safety, and gains the ability to reuse

this metadata for enforcing temporal safety as well. As shown in Figure 4.2, MemSafe

utilizes pointer-based metadata for enforcing complete spatial and partial temporal

safety, and MemSafe utilizes object-based metadata for enforcing complete temporal

and partial spatial safety. PBC and OBC are MemSafe’s runtime checks that utilize

this metadata. These checks, in addition to MemSafe’s object- and pointer-based

metadata, are discussed below.

4.2.1 Pointer metadata

For the definition of a new pointer p (i.e., a pointer created with malloc or the

address-of operator), MemSafe creates pointer metadata in the form of a 3-tuple

〈base, bound, id〉p of intermediate values. Together, basep and boundp indicate the

range [base, bound) of memory p is permitted to access. idp is a unique key that is

assigned to p’s referent object, and it is used to associate p with the metadata of its

referent (discussed in Section 4.2.3). MemSafe maintains pointer metadata in memory

and allocates at runtime an address addrp from a set of unused addresses A for storing

58

〈base, bound, id〉p. These values are stored to memory with an explicit dereference

operation, represented by M [addrp]← 〈base, bound, id〉p, where M [addrp] holds the

value at address addrp in memory.

In addition to the pointer metadata described above, MemSafe also creates a

tuple 〈addr, id〉p of intermediate values. These values are created for the definition

of each pointer p in a program (i.e., not just those pointers created with malloc

or the address-of operator), and are statically named such that there is a known

compile-time association with p. Unlike the metadata described above, no dereference

is required at runtime for retrieving these values. As previously described, addrp is the

location in memory containing the base and bound addresses that indicate the range

of memory p is permitted to access. Finally, in order to allow the reuse of location

addrp (discussed later), a copy of the id associated with p’s referent is also maintained

with this statically associated tuple.

4.2.2 Pointer bounds check

MemSafe utilizes pointer metadata for performing a Pointer Bounds Check (PBC).

MemSafe inserts a PBC before each pointer dereference that cannot be verified to be

safe statically (see Chapter 5 for optimizations that reason about dereferences that

must be safe). PBC is the forcibly inlined procedure defined by:

Runtime Check 4.1—Pointer bounds check:

1: inline void PBC(ptr, size, addr, id) {
2: 〈base, bound, id〉ptr ←M [addr]
3: if ((id != idptr) || (ptr < baseptr) || (ptr + size > boundptr)) {
4: signal_safety_violation();

59

5: }
6: }

In the above runtime check, ptr, baseptr, and boundptr are all pointers to the type

unsigned char and size is the size in bytes (as indicated by the sizeof operator)

of ptr’s referent.1 For example, MemSafe utilizes the pointer metadata of a pointer

ptr to ensure the safety of its dereference at runtime:

Example 4.2—PBC insertion:

PBC(ptr, sizeof(*ptr), addrptr, idptr);
1: ... *ptr ...
2: � some load or store operation involving ptr

In this example, MemSafe will abort the program and report a violation of memory

safety (by calling signal_safety_violation) if the dereference *ptr will access

a location outside the range specified by [baseptr, boundptr). Because the PBC only

utilizes pointer metadata, no costly database lookup is required to retrieve baseptr

and boundptr, as 〈addr, id〉ptr are uniquely named symbols in the inserted code.

As depicted in Figure 4.2, the PBC and MemSafe’s pointer-based metadata are

capable of not only ensuring complete spatial safety, but also temporal safety with

a single check. Whenever a pointer p is assigned the value of the invalid pointer,

its pointer metadata is updated as M [addrp] ← 〈base, bound, id〉invalid, which will

always cause the PBC to signal a safety violation since the invalid pointer refers to an

impossible address range.

1These pointers are implicitly type-cast to be pointers to type unsigned char because
sizeof(unsigned char) is defined to always equal one byte [46]. This is required for the pointer
arithmetic performed in the body of the bounds check to be valid.

60

As mentioned above, since addresses in A can be reused, a copy of the id associated

with a pointer p must be included with p’s pointer metadata. Whenever the metadata

associated with the invalid pointer is stored to a particular address, this address

is marked for potential reuse. Thus, addrp may be reused for storing the pointer

metadata of another pointer if p’s referent is deallocated. To ensure that addrp has not

been reused, the PBC checks whether the id associated with the dereferenced pointer p,

is equal to the id located at addrp. If it is not, addrp has been reused for the pointer

metadata of another pointer and p’s referent is temporally invalid.

However, the PBC is insufficient for ensuring complete temporal safety. Since a

nested object (e.g., an array of structures or a structure containing and array field) is

deallocated using a pointer to its base address, only pointers that refer to the outer

object are assigned the value of the invalid pointer upon the object’s deallocation.

The pointer metadata of any potential sub-object references are not updated in this

way (see the rules for metadata propagation in Section 4.3). Thus, object metadata is

required to associate pointers to inner objects with the base and bound address of

their corresponding outer object. Object metadata is introduced below.

4.2.3 Object metadata

For every object allocation, MemSafe creates and assigns a unique id to the object

and records a tuple 〈base, bound〉 for the allocated region in a global object metadata

facility. MemSafe removes entries for objects from the metadata facility when they are

deallocated. The object metadata facility maps an object’s id to its base and bound

61

address and is formally defined by the partial function:

omd : I → O

id 7→ 〈base, bound〉id

where I is the set of ids and O is the set of object metadata. For notational convenience,

the function omd can also be represented more generally as the relation RO, where

(id, 〈base, bound〉id) ∈ RO if the object associated with id is a valid memory object

that has yet to be deallocated. A discussion of the implementation of the object

metadata facility is deferred until Section 6.2 in order to separate the presentation of

MemSafe’s method from its prototype implementation.

4.2.4 Object bounds check

MemSafe utilizes object metadata for performing an Object Bounds Check (OBC).

MemSafe inserts an OBC, in addition to the PBC described above, before each pointer

dereference that may access a sub-object if the pointer cannot be statically verified to

be temporally safe.2 OBC is the forcibly inlined procedure defined by:

Runtime Check 4.2—Object bounds check:

1: inline void OBC(ptr, size, id) {
2: 〈base, bound〉id = omd(id)
3: if ((ptr < baseid) || (ptr + size > boundid)) {
4: signal_safety_violation();
5: }
6: }

In the definition of the above runtime check, ptr is a pointer to type unsigned char,

2Refer to Section 5.1.3.4 for a discussion of how MemSafe utilizes its pointer data-flow represen-
tation for computing the set of potential sub-object references.

62

id is a component of ptr’s pointer metadata, and size is the size in bytes of ptr’s

referent. An OBC is similar in functionality to the PBC. For example, MemSafe utilizes

the object metadata of pointer ptr’s referent, denoted 〈base, bound〉id, to ensure the

safety of its dereference at runtime:

Example 4.3—OBC insertion:

1: PBC(ptr, sizeof(*ptr), addrptr, idptr);
OBC(ptr, sizeof(*ptr), idptr);

2: ... *ptr ...
3: � some load or store operation involving ptr

In this example, MemSafe will abort the program and report a violation of memory

safety if the dereference *ptr will access a location outside the range specified by

[baseid, boundid). The OBC uses the id field of ptr’s pointer metadata to retrieve the

object metadata of its referent from the object metadata facility. Assuming pointer

ptr refers to a sub-object, the temporal safety of ptr’s dereference is ensured because,

had ptr’s referent been previously deallocated, its entry would have been unmapped

in the object metadata facility RO, causing omd(id) to fail and MemSafe to signal a

safety violation.

As depicted in Figure 4.2, the OBC and MemSafe’s object-based metadata are

capable of not only ensuring complete temporal safety, but also partial spatial safety

with a single check. Thus, if the detection of sub-object overflows is not a requirement,

the PBC in the above example can be eliminated since the OBC also verifies ptr is within

bounds of its outer object.

63

4.3 Propagation of the Required Metadata

Having presented the runtime checks that MemSafe requires for ensuring memory

safety, this section describes MemSafe’s translations for creating and propagating

the required metadata. In doing so, it is assumed that the program has already

been transformed such that it includes the syntax extensions for modeling memory

deallocation and pointer stores as explicit pointer assignments (see Section 4.1). In

the discussion below, the rules for propagating the required metadata are addressed

according to the way in which pointers are defined.

4.3.1 Memory allocation

As described previously, MemSafe creates entries in the global object metadata facility

as objects are allocated. For automatic memory allocation (i.e., the allocation of stack

variables), MemSafe generates a new id for the allocated object and maps it to the

object’s base and bound address in RO. MemSafe updates the object metadata facility

according to the following metadata rule for automatic memory allocation. Numbered

lines indicate original code.

Metadata Rule 4.1—Automatic memory allocation:

1: struct { ... int array[100]; ... } s;

RO = RO ∪ {(id ∈ I, 〈&s, &s+sizeof(s)〉)} (4.1.1)

In this example, a structure containing an array field is allocated on the procedure

stack. Therefore, MemSafe obtains a new id for the allocated object and maps it to

64

the base and bound address of the allocated region in RO (4.1.1).

For dynamic memory allocation (i.e., the allocation of objects on the heap),

MemSafe updates RO as it does for automatic memory allocation, but it also creates

pointer metadata for the pointer returned by malloc, since the malloc function is

responsible for creating a new object as well as a new pointer to the allocated object.

If the pointer returned by malloc is equal to the NULL pointer, the pointer inherits

the metadata of the invalid pointer. MemSafe creates the required object and pointer

metadata for heap-allocated objects according to the following metadata rule for

dynamic memory allocation. Numbered lines indicate original code.

Metadata Rule 4.2—Dynamic memory allocation:

1: int *p;
2: ...
3: p = (int*) malloc(size);

〈addr, id〉p = 〈addr ∈ A, id ∈ I〉 (4.2.1)

〈base, bound〉idp =

〈base, bound〉idinvalid if p = null,
〈p, p+size〉 otherwise

(4.2.2)

RO = RO ∪
{(
idp, 〈base, bound〉idp

)}
(4.2.3)

M [addrp]← 〈baseidp , boundidp , idp〉 (4.2.4)

In this example, an object of size bytes is allocated dynamically by calling malloc,

and the address returned by malloc is assigned to the pointer p. After the program

allocates the object, MemSafe obtains an address for holding the pointer metadata of

p and obtains a new unique id for the allocated object (4.2.1). If the value returned

by malloc is equal to NULL, the object metadata associated with idp is set to the

base and bound address of the “invalid” region of memory. Otherwise, the metadata

65

associated with the object is defined such that it refers to the space occupied by the

allocated region of memory (4.2.2). Finally, MemSafe associates the object’s metadata

with idp in RO (4.2.3) and stores the metadata of p at its associated address (4.2.4).

For static memory allocation (i.e., the allocation of global variables), MemSafe

initializes the object metadata facility to include entries for the base and bound address

of each allocated region, since the number and size of global variables in known at

compile-time.

4.3.2 Memory deallocation

Whenever an object is deallocated, MemSafe removes its entry from RO and sets

the pointer metadata of the pointer that refers to the object to be equal to that of

the invalid pointer. Stack-allocated objects are deallocated when the function in

which they are defined exits. Therefore, MemSafe removes their entries from RO just

before the end of the procedure. MemSafe updates object and pointer metadata for

automatic memory deallocation according to the following metadata rule. Numbered

lines indicate original code.

Metadata Rule 4.3—Automatic memory deallocation:

1: void f() {
2: struct { ... int array[100]; ... } s;
3: int *p;
4: ...
5: p = &(s.array[42]);
6: ...

RO = RO \ {(ids, omd (ids))} (4.3.1)
M [addrp]← 〈base, bound, id〉invalid (4.3.2)

7: p = invalid; � MemSafe models deallocation as an explicit

66

8: } pointer assignment of ‘invalid’

In this example, structure s is an automatic variable of function f and contains an

array sub-object that is nested within it. In line 5, pointer p is assigned the address

of an element of the structure’s array field, and it is assumed that p may escape to

another procedure. Before the procedure exits, MemSafe removes the entry for s from

RO (4.3.1) using the unique id associated with s (“\” denotes set difference). Since p

may escape, it is assigned the value of the invalid pointer in line 7, and its pointer

metadata is updated to refer to the metadata associated with invalid (4.3.2).

Heap-allocated objects are deallocated dynamically with the free function. Similar

to the above rule for automatic memory deallocation, MemSafe updates object and

pointer metadata for dynamic memory deallocation according to the following metadata

rule. Numbered lines indicate original code.

Metadata Rule 4.4—Dynamic memory deallocation:

1: int *p;
2: ...

RO = RO \ {(idp, omd (idp))} (4.4.1)
M [addrp]← 〈base, bound, id〉invalid (4.4.2)

3: free(p);
4: p = invalid; � MemSafe models deallocation as an explicit

pointer assignment of ‘invalid’

In this example, a pointer p to a heap-allocated object is used to deallocate its referent

dynamically by the program calling the free function. Before the call to free in line

3, MemSafe removes the entry for the deallocated object from RO with idp (4.4.1)

and sets the pointer metadata of p to be equal to that of the invalid pointer (4.4.2).

67

Pointer p is assigned the value of invalid in line 4.

If idp had been previously unmapped in the object metadata facility (indicating

that p’s referent was already deallocated before the call to free), the lookup operation

represented by omd (idp) would fail. In this case, MemSafe would signal a temporal

safety violation to indicate the multiple deallocation attempt.

4.3.3 Address-of operator

Like dynamic memory allocation, the address-of operator (&) creates a pointer to

a new location. Therefore, having already updated RO for an object’s allocation,

MemSafe creates pointer metadata for pointers to the object. MemSafe sets the pointer

metadata of a pointer defined in terms of the address-of operator according to the

following metadata rule. Numbered lines indicate original code.

Metadata Rule 4.5—Address-of operator:

1: struct { ... int array[100]; ... } s;
2: int *p;
3: ...
4: p = &(s.array[42]);

〈addr, id〉p = 〈addr ∈ A, ids〉 (4.5.1)
M [addrp]← 〈&s.array[0], sizeof(s.array), idp〉 (4.5.2)

In this example, as in previous examples, a pointer p is assigned the address of an

element of the array field of structure s. Because the program creates a new pointer,

MemSafe obtains a new address for storing the pointer metadata of p (4.5.1). MemSafe

then creates and stores pointer metadata for p to indicate that it refers to the base

and bound address of the array field of s (4.5.2).

68

This example also demonstrates MemSafe’s ability to detect sub-object overflows.

Although p refers to a location within object s (indeed, p inherits the id of s), p’s

base and bound address are associated with the array field of s.

4.3.4 Pointer copies and arithmetic

Pointers defined as simple pointer copies or in terms of pointer arithmetic (e.g., array

and structure indexing) inherit the pointer metadata of the original pointer.3 MemSafe

sets the pointer metadata of pointers defined by simple assignments according to the

following metadata rule. Numbered lines indicate original code.

Metadata Rule 4.6—Pointer copies and arithmetic:

1: int x, *p0, *p1;
2: ...
3: p1 = p0 + x;

〈addr, id〉p1 = 〈addr, id〉p0 (4.6.1)

In this example, since pointer p1 is defined in terms of pointer arithmetic, it simply

inherits the pointer metadata associated with pointer p0 (4.6.1).

4.3.5 %-functions

Since the value produced by a %-function is not known statically, MemSafe must

“disambiguate” it for the returned pointer to inherit the correct metadata. Thus,

MemSafe requires an additional metadata facility. Like the object metadata facility,

3SSA φ-functions that involve pointer values are no different than ordinary pointer copies. For
example, p2 = φ(p0, p1) copies p0 to p2 at the end of the basic block defining p0 and copies p1 to
p2 at the end of the basic block defining p1.

69

the pointer metadata facility maps the address of an in-memory pointer to its pointer

metadata and is defined by the partial function:

pmd : A→ P

ptr 7→ 〈addr, id〉*ptr

where A is the set of addresses, and P is the set of pointer metadata. For notational

convenience, the function pmd can also be represented more generally as the relation

RP , where (ptr, 〈addr, id〉*ptr) ∈ RP .

For pointer loads, MemSafe creates a new definition for the loaded value and assigns

it the result of a %-function, which indicates the set of values to which the loaded

value may potentially be equal. For a pointer ptr whose pointed-to location is loaded

in defining another pointer p, MemSafe retrieves from the pointer metadata facility

the required pointer metadata for p with the lookup operation pmd(ptr). MemSafe

performs this operation according to the following metadata rule for pointer loads.

Numbered lines indicate original code.

Metadata Rule 4.7—Pointer loads:

1: int **ptr1, *p0, *p1, ...;
2: ...
3: p0 = *ptr1; � MemSafe models in-memory data-flow with
4: p1 = %(a0, b0, ...); the %-function

〈addr, id〉p1 = pmd(ptr1) (4.7.1)

In this example, an in-memory pointer is loaded and assigned to pointer p0. MemSafe

then creates a new pointer p1 and assigns it the result of a %-function indicating the

values the in-memory pointer may potentially equal. The pointer metadata for p1

is retrieved from the pointer metadata facility with the pmd(ptr1) lookup operation

70

(4.7.1), and all uses of p0 are replaced with uses of p1.

For each argument of the %-function (including the invalid pointer), MemSafe

saves their pointer metadata in RP at the locations each pointer is stored to memory.

MemSafe updates the pointer metadata facility for pointer stores according to the

following metadata rule. Numbered lines indicate original code.

Metadata Rule 4.8—Pointer stores:

1: int **ptr2, *a0;
2: ...
3: *ptr2 = a0; � ptr2 may alias ptr1 from above

RP = (RP \ {(ptr2, pmd(ptr2))}) ∪ {(ptr2, 〈addr, id〉a0)} (4.8.1)

In this example, pointer ptr2 is assumed to potentially alias with pointer ptr1 from

the previous example. Thus, pointer a0 appears in the %-function defined above for

pointer p1 because of the pointer store in line 3. Here, MemSafe maps pointer ptr2

to the pointer metadata of a0 in RP (4.8.1). If ptr1 happens to be equal to ptr2, the

pointer metadata of a0 would be retrieved in the previous example.

4.3.6 NULL and manufactured pointers

Pointer type-casts and unions do not require any additional metadata propagation.

The new pointer simply inherits the pointer metadata of the original pointer, as in

the rule for pointer copies and arithmetic. However, pointers defined as NULL or

as a cast from a non-pointer type must inherit the base and bound of the invalid

pointer. Although this may result in false positives, they have been observed to be rare

occurrences in practice. For reading and writing to memory-mapped I/O locations,

71

MemSafe requires a target’s backend to specify the base and bound address of all valid

address ranges. MemSafe propagates the metadata of the invalid pointer according

to the following rule for NULL and manufactured pointers. Numbered lines indicate

original code.

Metadata Rule 4.9—NULL and manufactured pointers:

1: int *p;
2: ...
3: p = (int*) 42;

〈addr, id〉p = 〈addr, id〉invalid (4.9.1)

In this example, pointer p is defined as a type-cast from the integer 42. Thus, MemSafe

defines the pointer metadata for p to be equal to that of the invalid pointer (4.9.1).

The result would have been the same if p had been assigned the value of NULL.

4.3.7 Function arguments and return values

MemSafe requires an additional metadata facility in order to propagate pointer

metadata for pointers passed as arguments to functions or returned from functions.

Let callee values refer to formal pointer arguments and pointer values that are returned

from functions. Similarly, let caller values refer to actual pointer arguments and local

pointer values to be returned from functions. The function metadata facility maps a

callee value to the pointer metadata of its corresponding caller value and is defined

by the partial function:

fmd : C → P

callee 7→ 〈addr, id〉caller

72

where C is the set of caller values, P is the set of pointer metadata, and callee is

a tuple 〈&f, i〉 indicating the ith pointer associated with function f. Pointers are

statically assigned an index i based on their usage: the return value of a function is

assigned index zero, and the pointer arguments of a function are assigned an index

equal to their offset in the function’s argument list, beginning at one. For notational

convenience, the function fmd can also be represented more generally as the relation

RF , where (callee, 〈addr, id〉caller) ∈ RF .

For function calls, MemSafe creates an entry in the function metadata facility for

pointer arguments passed to the function. Similarly, MemSafe defines the pointer

metadata of a pointer returned from the function call by performing a lookup operation

of RF . MemSafe updates and defines pointer metadata for function calls according to

the following metadata rule. Numbered lines indicate original code.

Metadata Rule 4.10—Function calls:

1: int *p0, *p1;
2: ...

RF = (RF \ {(〈&f, 1〉, fmd(〈&f, 1〉))}) ∪ {(〈&f, 1〉, 〈addr, id〉p0)} (4.10.1)

3: p1 = f(p0);

〈addr, id〉p1 = fmd(〈&f, 0〉) (4.10.2)

In this example, a pointer p0 is passed as an argument to function f and pointer p1 is

assigned the returned value. The return value of f is statically associated with the

index “0,” and its single pointer argument is given an index of “1.” Thus, before the

function call, the pointer metadata of p0 is associated with the tuple 〈&f, 1〉 in RF

(4.10.1). That is, a key represented by the address of f and the integer “1” is mapped

73

to the pointer metadata of p0. Similarly, after the call returns, the pointer metadata

for p1 is retrieved from RF with the tuple 〈&f, 0〉 (4.10.2).

For the declaration of a function with pointer arguments, MemSafe retrieves the

pointer metadata for each incoming pointer by performing a lookup operation of

RF . Similarly, if a function returns a pointer value, MemSafe creates an entry in the

function metadata facility for its pointer metadata just before the function returns.

MemSafe updates and defines pointer metadata for function declarations according to

the following metadata rule. Numbered lines indicate original code.

Metadata Rule 4.11—Function declarations:
1: int* f(int *q) {
2: int *r;
3: ...

〈addr, id〉q = fmd(〈&f, 1〉) (4.11.1)

2: . . .

RF = (RF \ {(〈&f, 0〉, fmd(〈&f, 0〉))}) ∪ {(〈&f, 0〉, 〈addr, id〉r)} (4.11.2)

3: return r;
4: }

In this example, pointer q is a formal argument of function f, and pointer r is returned

at the end of the procedure. Since q is declared to be the first pointer in the function’s

argument list, MemSafe retrieves the pointer metadata for q from RF with the tuple

〈&f, 1〉 at the beginning of the procedure (4.11.1). Similarly, since MemSafe statically

assigns pointer return values the index “0,” the pointer metadata of r is associated

with the tuple 〈&f, 0〉 in RF before the procedure exits (4.11.2).

MemSafe’s approach for propagating metadata for pointer arguments and return

values is quite robust. It is sufficient for interfacing with pre-compiled libraries,

74

handling variable-argument functions, and passing metadata through poorly-typed

function pointers. For complete safety, pre-compiled libraries must have been compiled

with MemSafe’s safety checks, but a safe application is capable of interfacing with

unsafe libraries as well.

4.4 Memory Safety for Multithreaded Programs

Concurrent programming is an increasingly common method for improving application

performance. Advantages of concurrency include (1) increased application throughput,

since the parallel execution of a concurrent program can increase the total number

tasks completed in a given time period and (2) increased application responsiveness,

since time spent waiting for input/output operations to complete can be effectively

used for another task.

Given the current proliferation of multi-core and multiprocessor CPUs, the multi-

threading paradigm has emerged as a widespread—if not the dominant—concurrent

programming and execution model. Multithreading refers to the ability of a computer

to efficiently execute multiple threads. An execution thread is the smallest unit of

processing that is schedulable by an operating system, and it exists within the context

of a traditional operating system process. The use of multithreading to exploit task

parallelism has two main advantages over multiprocessing, the other primary technique

for increasing application throughput. First, context switching between threads in

the same process is typically faster than context switching between processes since

processes maintain a considerable amount of state information. Multiple threads

75

existing within the same process share the same state. Second, multiple threads within

the same process share the same address space, which allows concurrently-running

code to conveniently communicate using shared memory. Processes have separate

address spaces and must rely on expensive inter-process communication mechanisms

for exchanging data.

However, because of the tight coupling of concurrent threads, the potential exists

for race conditions to occur, whereby multiple threads simultaneously attempt to

update shared data structures. To prevent such concurrency errors, multithreaded

applications must use synchronization primitives that lock shared data structures

against concurrent access. A multithreaded piece of code is said to be thread safe if

it lacks such concurrency errors, which is to say that the piece of code is guaranteed

to function correctly during simultaneous execution by multiple threads. Because

concurrency errors can be very difficult to reproduce and isolate, thread safety is a

major challenge for the multithreaded programming paradigm.

For MemSafe to be an effective method of enforcing memory safety for the increas-

ingly large number of multithreaded applications, MemSafe’s inserted safety checks,

metadata, and code for propagating the required metadata must be made thread safe.

Therefore, since the potential exists for the RO, RP , and RF global metadata facilities

to be concurrently operated upon by separate threads of a multithreaded program,

a locking mechanism is required so that simultaneous updates to these metadata

facilities is prevented.

MemSafe requires read/write locks [37] for controlling access to each global meta-

data facility. A read/write lock is a synchronization primitive that allows multiple

76

threads to read from the same shared memory area concurrently, but enforces mutual

exclusion for any thread that writes to the shared memory. Therefore, RO, RP , and

RF are each able to be simultaneously read by multiple threads, but when a thread

attempts to update a particular metadata facility, all other threads wishing to read or

write that metadata facility must wait until the write operation is completed.

The POSIX threads (Pthreads) standard [44] defines an implementation of the

read/write locks MemSafe requires for managing concurrent accesses of the global

metadata facilities. Pthreads is a commonly-used standard for creating and manip-

ulating threads for various Unix-like operating systems, including GNU/Linux and

Max OS X, and it defines a set of C programming language types and functions (in

the pthread.h header file) that, in addition to implementing thread synchronization

mechanisms, also provides an API for creating and joining threads.

In the remainder of this section, the checks MemSafe inserts for enforcing memory

safety and the rules MemSafe uses for propagating the required object and pointer

metadata are updated to ensure thread safety. Note that only the portions of MemSafe’s

method that requires modification (i.e., the portions that access the RO, RP , and

RF global metadata facilities) are repeated in this section. All other components of

MemSafe’s method remain the same as presented in Sections 4.1–4.3.

4.4.1 Declaration of the required locks

Before describing how the checks and rules for metadata propagation are altered to

achieve thread safety, the required locks must first be declared and initialized. The

77

following code fragment demonstrates the use of the Pthreads API for initializing a

read/write lock for each metadata facility at the beginning of a program.

Example 4.4—Declaration of metadata facility locks:

1: #include <pthread.h>
2: ...
3: pthread_rwlock_t object_lock, pointer_lock, function_lock;
4: ...
5: int main(int argc, char *argv[]) {
6: if (pthread_rwlock_init(&object_lock, NULL) |
7: pthread_rwlock_init(&pointer_lock, NULL) |
8: pthread_rwlock_init(&function_lock, NULL) != 0) {
9: abort("Unable to create locks for metadata facilities");

10: }
11: ...
12: }

In this example, three global read/write locks are declared in line 3 for the three

metadata facilities RO, RP , and RF . The locks are initialized at the beginning of

main so that they will be available for managing access to the metadata facilities

before execution enters the concurrent sections of the code. The program aborts in

line 9 if any one of the locks could not be initialized.

4.4.2 Object bounds check

Recall that if a pointer may potentially refer to a sub-object, MemSafe inserts an

object bounds check (OBC) to enforce the temporal safety of the pointer’s dereference,

in addition to the pointer bounds check (PBC) required for enforcing spatial safety.

The OBC uses the id field of a pointer’s pointer metadata to retrieve from the object

metadata facility RO the object metadata 〈base, bound〉id associated with the pointer’s

referent. The OBC then determines whether the dereferenced pointer refers to a location

78

that is within the base and bound address of its referent, and if it is not, the OBC

signals a safety violation.

Since the OBC retrieves metadata with the lookup operation omd(id), if a thread

allocates an object and inserts its base and bound address into RO at the same moment

that another thread is executing an OBC, a race could occur and incorrect or undefined

program behavior could result. Therefore the lookup operation is a critical section

of execution that must be protected by an appropriate locking mechanism, which is

shown below in the following revised definition of the object bounds check. Numbered

lines indicate code present in the original definition of OBC.

Runtime Check 4.3—Object bounds check (thread safe):

1: inline void OBC(ptr, size, id) {
if (pthread_rwlock_rdlock(&object_lock) != 0) {

abort("Unable to acquire read lock for metadata facility");
}

2: 〈base, bound〉id = omd(id)
pthread_rwlock_unlock(&object_lock);

3: if ((ptr < baseid) or (ptr+size > boundid))
4: signal_safety_violation();
5: }

Before the lookup operation in line 2, MemSafe acquires a read lock for RO or aborts

the program if it is unable to successfully obtain the lock. After the lookup operation

is complete, MemSafe releases the read lock for RO, and performs the bounds check.

4.4.3 Memory allocation

MemSafe creates entries in the object metadata facility as objects are allocated. Since

inserting entries into RO changes the state of this global data structure, memory

79

allocation is a critical section of execution. Therefore, a thread that updates RO to

include the metadata of a newly allocated object must obtain a write lock before

performing the operation.

For automatically allocated stack variables, MemSafe generates a new id for the

allocated object, and maps it to the base and bound address of the allocated region of

memory. MemSafe inserts thread synchronization primitives for automatic memory

allocation according to the following revised rule. Numbered lines indicate code present

in the original definition of the metadata propagation rule for automatic memory

allocation.

Metadata Rule 4.12—Automatic memory allocation (thread safe):

1: struct { ... int array[100]; ... } s;
if (pthread_rwlock_wrlock(&object_lock) != 0) {

abort("Unable to acquire write lock for metadata facility");
}

2: RO = RO ∪ {(id ∈ I, 〈&s, &s+sizeof(s)〉)}

pthread_rwlock_unlock(&object_lock);

Before the update operation in line 2, MemSafe acquires a write lock for RO or aborts

the program if is unable to successfully obtain the lock. After the update operation is

complete, MemSafe releases the write lock for RO.

For dynamically allocated heap variables, MemSafe updates the object metadata

facility as it does for automatic allocation, and it also creates pointer metadata for the

pointer returned by malloc since malloc is responsible for creating a new object as well

as a new pointer to the allocated object. Thus, the object metadata facility must again

be protected with a write lock. MemSafe inserts thread synchronization primitives for

80

dynamic memory allocation according to the following revised rule. Numbered lines

indicate code present in the original definition of the metadata propagation rule for

dynamic memory allocation.

Metadata Rule 4.13—Dynamic memory allocation (thread safe):

1: int *p;
2: ...
3: p = malloc(size);

4: 〈addr, id〉p = 〈addr ∈ A, id ∈ I〉

5: 〈base, bound〉idp =

〈base, bound〉idinvalid if p = null,
〈p, p+size〉 otherwise

if (pthread_rwlock_wrlock(&object_lock) != 0) {
abort("Unable to acquire write lock for metadata facility");

}

6: RO = RO ∪
{(
idp, 〈base, bound〉idp

)}
7: M [addrp]← 〈baseidp , boundidp , idp〉

pthread_rwlock_unlock(&object_lock);

Before the update operation in line 6, MemSafe acquires a write lock for RO or aborts

the program if it is unable to successfully obtain the lock. MemSafe releases the write

lock for RO after the update operation is complete. Note that unlike the creation of

object metadata, the creation of pointer metadata is local to a thread and, therefore,

does not require the use of thread synchronization primitives.

For statically allocated global variables, their number and size are known at

compile-time. Therefore, MemSafe initializes RO to include entries for the base and

bound address of each allocated region at the beginning of a program’s main procedure.

The initialization of RO does not require thread synchronization since it occurs when

81

the program is executing sequential code and has not yet spawned additional threads

of execution.

4.4.4 Memory deallocation

Whenever an object is deallocated—whether it was allocated automatically on the

stack or dynamically on the heap—MemSafe removes its entry from RO and sets the

pointer metadata of the pointer that refers to the object to be equal to that of the

invalid pointer. Since the removal of entries from RO changes the state of this data

structure (as was the case for the insertion of new entries) memory deallocation is also

a critical section of execution, and a thread that updates RO to remove the metadata

of a deallocated object must obtain a write lock before performing the operation.

Stack-allocated objects are deallocated when the function in which they are

defined exits. Therefore, MemSafe removes from RO the entries for a function’s

locally allocated objects just before the end of the function. MemSafe inserts thread

synchronization primitives for the deallocation of stack-allocated objects according

to the following revised rule. Numbered lines indicate code present in the original

definition of the metadata propagation rule for automatic memory deallocation.

Metadata Rule 4.14—Automatic memory deallocation (thread safe):
1: void func() {
2: struct { ... int array[100]; ... } s;
3: int *p;
4: ...
5: p = &(s.array[42]);
6: ...

if (pthread_rwlock_wrlock(&object_lock) != 0) {
abort("Unable to acquire write lock for metadata facility");

}

82

7: RO = RO \ {(ids, omd (ids))}
8: M [addrp]← 〈base, bound, id〉invalid

pthread_rwlock_unlock(&object_lock);
9: p = invalid; � MemSafe models deallocation as an explicit

10: } pointer assignment of ‘invalid’

Before the lookup and update operations in line 7, MemSafe acquires a write lock for

RO or aborts the program if is unable to successfully obtain the lock. After completing

the operations, MemSafe releases the write lock for RO.

Heap-allocated objects are deallocated by a program calling the free function.

Therefore, MemSafe removes from RO the entry for the object being deallocated

just before a call to free. MemSafe inserts thread synchronization primitives for

the deallocation of heap-allocated objects according to the following revised rule.

Numbered lines indicate code present in the original definition of the metadata

propagation rule for dynamic memory deallocation.

Metadata Rule 4.15—Dynamic memory deallocation (thread safe):
1: int *p;
2: ...

if (pthread_rwlock_wrlock(&object_lock) != 0) {
abort("Unable to acquire write lock for metadata facility");

}

3: RO = RO \ {(idp, omd (idp))}
4: M [addrp]← 〈base, bound, id〉invalid

pthread_rwlock_unlock(&object_lock);
5: free(p);
6: p = invalid; � MemSafe models deallocation as an explicit

pointer assignment of ‘invalid’

Like the rule for stack-allocated objects, MemSafe acquires a write lock for RO before

the lookup and update operations in line 3 or aborts the program if is unable to

83

successfully obtain the lock. After completing the operations, MemSafe releases the

write lock for RO.

Since statically allocated object have a global scope and a lifespan equal to that of

the program, they are not deallocated until the program terminates. Thus, an update

of RO is not required to remove entries for global variables.

4.4.5 %-functions

MemSafe uses the global pointer metadata facility RP to “disambiguate” the value

produce by %-functions. Since inserting entries into RP changes the state of this

global data structure, pointer loads and stores are critical sections of execution, and a

thread that reads or updates RP must obtain an appropriate read/write lock before

performing these operations.

For pointer loads, MemSafe creates a new definition for the produced value and

assigns it the result of a %-function, which indicates the set of values to which the loaded

value may potentially be equal. For a pointer ptr whose pointed-to location is loaded

in the definition of another pointer p, MemSafe retrieves from the pointer metadata

facility the required pointer metadata for p with the lookup operation pmd(ptr).

MemSafe inserts thread synchronization primitives for pointer loads according to the

following revised rule. Numbered lines indicate code present in the original definition

of the metadata propagation rule for pointer loads.

Metadata Rule 4.16—Pointer loads (thread safe):

1: int **ptr1, *p0, *p1, ...;
2: ...

84

3: p0 = *ptr1; � MemSafe models in-memory data-flow with
4: p1 = %(a0, b0, ...); the %-function

if (pthread_rwlock_rdlock(&pointer_lock) != 0) {
abort("Unable to acquire read lock for metadata facility");

}

5: 〈addr, id〉p1 = pmd(ptr1)

pthread_rwlock_unlock(&pointer_lock);

Before the lookup operation in line 5, MemSafe acquires a read lock for RP or aborts

the program if it is unable to successfully obtain the lock. MemSafe releases the read

lock for RP after the lookup operation is complete.

For each argument of a %-function, MemSafe updates RP at the location the

pointer is stored to memory. Since this operation involves the insertion of a new

entry into the pointer metadata facility, a write lock is required for a thread to obtain

exclusive access to RP . MemSafe inserts thread synchronization primitives for pointer

loads according to the following revised rule. Numbered lines indicate code present in

the original definition of the metadata propagation rule for pointer stores.

Metadata Rule 4.17—Pointer stores (thread safe):

1: int **ptr2, *a0;
2: ...
3: *ptr2 = a0; � ptr2 may alias ptr1 above

if (pthread_rwlock_wrlock(&pointer_lock) != 0) {
abort("Unable to acquire write lock for metadata facility");

}

4: RP = (RP \ {(ptr2, pmd(ptr2))}) ∪ {(ptr2, 〈addr, id〉a0)}

pthread_rwlock_unlock(&pointer_lock);

Before the lookup and update operations in line 4, MemSafe acquires a write lock for

RP or aborts the program if is unable to successfully obtain the lock. After completing

85

the operations, MemSafe releases the write lock for RP .

4.4.6 Function calls

Like the pointer metadata facility is used to disambiguate the value produced by %-

functions, MemSafe uses the global function metadata facility RF in an analogous role

for disambiguating pointers passed as arguments to and returned from functions. Since

the state of RF is modified when a program makes a call to a function that requires

pointer arguments or returns a pointer value, threads must obtain an appropriate

read/write lock before performing such an operation.

For function calls that pass a pointer p as an actual argument, MemSafe maps

a tuple—composed of the address of the callee and the offset of p in the argument

list—to the pointer metadata of p. Since this operation involves the insertion of a new

entry into the function metadata facility, a write lock is required for a thread to obtain

exclusive access to RF . Similarly, a read lock is required to obtain the metadata

of a returned pointer value. MemSafe inserts thread synchronization primitives for

function calls involving pointer arguments or returned pointer values according to the

following revised rule. Numbered lines indicate code present in the original definition

of the metadata propagation rule for function calls.

Metadata Rule 4.18—Function calls (thread safe):
1: int *p0, *p1;
2: ...

if (pthread_rwlock_wrlock(&function_lock) != 0) {
abort("Unable to acquire write lock for metadata facility");

}

3: RF = (RF \ {(〈&f, 1〉, fmd(〈&f, 1〉))}) ∪ {(〈&f, 1〉, 〈addr, id〉p0)}

86

pthread_rwlock_unlock(&function_lock);
4: p1 = f(p0);

if (pthread_rwlock_rdlock(&function_lock) != 0) {
abort("Unable to acquire read lock for metadata facility");

}

5: 〈addr, id〉p1 = fmd(〈&f, 0〉)

pthread_rwlock_unlock(&function_lock);

Before the lookup and update operations in line 3, MemSafe acquires a write lock for

RF or aborts the program if is unable to successfully obtain the lock. After completing

the operations, MemSafe releases the write lock for RF . Similarly, MemSafe acquires

and releases a read lock for RF for the lookup operation in line 5.

For the definition of a function f that declares a pointer p as a formal argument at

offset one in its argument list, MemSafe retrieves from the function metadata facility

the required pointer metadata for p with the lookup operation fmd(〈&f, 1〉). Similarly,

for functions that return a pointer value, MemSafe updates RF with the pointer

metadata of the returned value. MemSafe inserts thread synchronization primitives

for function declarations having formal pointer arguments or returning a pointer value

according to the following revised rule. Numbered lines indicate code present in the

original definition of the metadata propagation rule for function declarations.

Metadata Rule 4.19—Function declarations (thread safe):

1: int* f(int *q) {
2: int *r;
3: ...

if (pthread_rwlock_rdlock(&function_lock) != 0) {
abort("Unable to acquire read lock for metadata facility");

}

2: 〈addr, id〉q = fmd(〈&f, 1〉)

87

pthread_rwlock_unlock(&function_lock);
3: . . .

if (pthread_rwlock_wrlock(&function_lock) != 0) {
abort("Unable to acquire write lock for metadata facility");

}

4: RF = (RF \ {(〈&f, 0〉, fmd(〈&f, 0〉))}) ∪ {(〈&f, 0〉, 〈addr, id〉r)}

pthread_rwlock_unlock(&function_lock);
5: return r;
6: }

Before the lookup operation in line 4, MemSafe acquires a read lock for RF or aborts

the program if it is unable to successfully obtain the lock. MemSafe releases the read

lock for RF after the lookup operation is complete. Similarly, MemSafe acquires and

releases a write lock for RF for the update and lookup operations in line 6.

4.5 Example Application

Having presented MemSafe’s unoptimized runtime checks and metadata, it is useful to

consider a real-world code example in order to better understand how the metadata

propagation code is actually implemented. A small, widely-used piece of code that can

serve this purpose is the merge sort algorithm. The merge sort algorithm, first proposed

in 1945 by John von Neumann [52, p. 159], is a comparison-based sorting algorithm.

Having a worst case performance of Θ(n log n), the merge sort algorithm easily scales to

large data sets and is typically stable, meaning that most implementations preserve the

input order of equal elements in the sorted output. Merge sort is a classical example of

a divide-and-conquer algorithm [23], and is becoming an increasingly popular sorting

algorithm given its scalability and ease of implementation. For example, merge sort is

88

1: #include <stdlib.h>
2: #include <limits.h>
3:

4: � Merge 2 sorted sequences. A2 is an array
5: and p, q, and r are indices numbering
6: elements of the array such that p ≤ q < r.
7:

8: void merge(int *A2, int p, int q, int r) {
9:

10: int n1 = q - p + 1;
11: int n2 = r - q;
12:

13: int *L = (int*) malloc((n1+1)*sizeof(int));
14:

15: for (int i=0; i < n1; i++) {
16: L[i] = A2[p+i-1];
17: }
18:

19: int *R = (int*) malloc((n2+1)*sizeof(int));
20:

21: for (int i=0; i < n2; i++) {
22: R[i] = A2[q+i];
23: }
24:

25: L[n1] = INT_MAX;
26: R[n2] = INT_MAX;
27:

28: int i = 0;

29: int j = 0;
30: for (int k=p; k <= r; k++) {
31: if (L[i] <= R[j]) {
32: A2[k] = L[i];
33: i = i+1;
34: } else {
35: A2[k] = R[j];
36: j = j+1;
37: }
38: }
39: free(L);
40: free(R);
41: }
42:

43: � Sort the elements in the subarray A1[p..r].
44: If p ≥ r, the subarray has at most one
45: element and is therefore already sorted.
46:

47: void merge_sort(int* A1, int p, int r) {
48: if (p < r) {
49: int q = (p+r)/2;
50: merge_sort(A1, p, q);
51: merge_sort(A1, q+1, r);
52: merge(A1, p, q, r);
53: }
54: }

Figure 4.3: Merge sort algorithm. An implementation of the merge sort algorithm
[23] is shown for sorting an unordered array of integers.

the standard sorting routine for the Perl, Python, and Java interpreted programming

languages. Because the merge sort algorithm is used so frequently and is relatively

small in size, it provides a convenient and illustrative example of the application of

MemSafe’s method.

Figure 4.3 shows the C language source code for a simple implementation [23] of

the merge sort algorithm for sorting integer arrays. Intuitively, the algorithm operates

by dividing an n-element sequence of items to be sorted into two subsequences, each

containing n/2 elements. It then recursively sorts the two subsequences. Finally the

algorithm merges the two sorted subsequences to produce the final sorted sequence.

The recursion is terminated when the subsequence to be sorted contains only one

element. When this is the case, there is nothing to be done since a sequence of length

89

one is, by definition, already sorted.

The primary operation of the merge sort algorithm is the actual merging of the

sorted sequences. The merge procedure, shown in line 8 of Figure 4.3, takes four

arguments as input. A is an array of integers and p, q, and r are indices enumerating

elements of A such that p ≤ q < r. The procedure assumes that the sub-arrays

A[p . . . q] and A[q + 1 . . . r] are in sorted order. It then copies the sub-arrays to

temporary storage (the L and R dynamically allocated arrays) and merges the sub-

arrays to form a single sorted sub-array that replaces A[p . . . r].

The merge procedure is used as a subroutine of the merge_sort procedure defined

in line 47, which takes three arguments as input. A is the sub-array to be sorted

and p and r are array indices. If p ≥ r, the sub-array has at most one element and

is, therefore, already sorted. If p < r, the algorithm computes an array index q

that partitions A[p . . . r] into two sub-arrays. The sub-array A[p . . . q] contains dn/2e

elements and A[q + 1 . . . r] contains bn/2c elements. Thus, to sort an entire sequence

A using merge sort, the algorithm is initialized as merge_sort(A, 1, n) where n is

the length of array A.

Figure 4.4 shows the source code for the two procedures used in the merge sort

algorithm after (1) conversion to the SSA form and (2) insertion of MemSafe’s syntax

extensions for modeling memory deallocation and pointer stores. Note that the for

loops from the original source code are implemented here as equivalent do while

structures to show the inserted φ-functions. Complex expressions are also shown

separated into elementary operations, and it is assumed that all variables are SSA

temporary variables except L and R which require storage in memory. Because the

90

1: #include <stdlib.h>
2: #include <limits.h>
3:

4: � Merge 2 sorted sequences. A2 is an array
5: and p, q, and r are indices numbering
6: elements of the array such that p ≤ q < r.
7:

8: void merge(int *A2, int p, int q, int r) {
9:

10: int n1 = q - p + 1;
11: int n2 = r - q;
12:

13: int *L = (int*) malloc((n1+1)*sizeof(int));
14:

15: int i9;
16: do {
17: int i0 = φ(0, i9);
18: if (i0 < n1) {
19: int *tmp2 = A2+p+i0-1;
20: int *tmp4 = L+i0;
21: *tmp4 = *tmp2;
22: } else {
23: break;
24: }
25: i9 = i0+1;
26: } while (1);
27:

28: int *R = (int*) malloc((n2+1)*sizeof(int));
29:

30: int i2;
31: do {
32: int i1 = φ(0, i2);
33: if (i1 < n2) {
34: int *tmp7 = A2+q+i1;
35: int *tmp9 = R+i1;
36: *tmp9 = *tmp7;
37: } else {
38: break;
39: }
40: i2 = i1+1;
41: } while (1);
42:

43: int *tmp12 = L+n1;
44: int *tmp14 = R+n2;
45: *tmp12 = INT_MAX;
46: *tmp14 = INT_MAX;
47:

48: int i4, j2, k1;
49: do {
50: int i3 = φ(0, i4);
51: int j0 = φ(0, j2);
52: int k0 = φ(p, k1);
53: if (k0 <= r) {
54: int *tmp16 = L+i2;
55: int *tmp18 = R+j0;
56: if (*tmp16 <= *tmp18) {
57: int *tmp20 = L+i2;
58: int *tmp22 = A2+k0;
59: *tmp22 = *tmp20;
60: int i5 = i2+1;
61: } else {
62: int *tmp25 = R+j0;
63: int *tmp27 = A2+k0;
64: *tmp27 = *tmp25;
65: int j1 = j0+1;
66: }
67: } else {
68: break;
69: }
70: i4 = φ(i5, i2);
71: j2 = φ(j1, j0);
72: k1 = k0+1;
73: } while (1);
74:

75: free(L);
76: free(R);

L = invalid;
R = invalid;

77: }
78:

79: � Sort the elements in the subarray A1[p..r].
80: If p ≥ r, the subarray has at most one
81: element and is therefore already sorted.
82:

83: void merge_sort(int* A1, int p, int r) {
84: if (p < r) {
85: int q = (p+r)/2;
86: merge_sort(A1, p, q);
87: merge_sort(A1, q+1, r);
88: merge(A1, p, q, r);
89: }
90: }

Figure 4.4: Merge sort in SSA form. The implementation of the merge sort
algorithm presented in Figure 4.3 is shown here in SSA form [26] with MemSafe’s
extensions for modeling memory deallocation and pointer stores.

91

program dynamically deallocates the L and R arrays at the end of the merge procedure,

MemSafe inserts the assignments of the invalid pointer after lines 75 and 76. However,

since there are no pointer store or load operations in this example, MemSafe does not

insert any %-functions.

Figure 4.5 shows an implementation of MemSafe’s unoptimized checks and metadata

for a portion of the merge sort algorithm shown in Figure 4.4. Since MemSafe’s code

insertions for the entire algorithm would be significantly long and complex, only the

first 25 lines of the algorithm (in SSA form) are shown with the required checks and

metadata for ensuring memory safety. Although this fragment of code is only a portion

of the complete algorithm, it includes the allocation of the L array and the copying of

the first sorted subsequence of A2 into L.

Before line 4, MemSafe creates type definitions to represent both pointer and

object metadata. The type pmdb_t is a structure for representing the 3-tuple pointer

metadata 〈base, bound, id〉, and the type pmda_t is a structure for representing pointer

metadata of the form 〈addr, id〉. Finally, the type omd_t is a structure that represents

the tuple 〈base, bound〉 of object metadata.

Since pointer A2 is an argument of the merge procedure, it’s pointer metadata

〈addr, id〉A2 must be defined according to Metadata Rule 4.11, which is used for

handling function declarations. Pointer metadata for A2 is retrieved from the function

metadata facility with the fmd_get procedure.

After the allocation of the L array in line 13, MemSafe creates additional metadata.

Since storage for L is allocated dynamically, MemSafe defines both pointer and object

metadata according to Metadata Rule 4.2, which is used for handling dynamic memory

92

� Type for 〈base, bound, id〉 pointer metadata
typedef struct {

unsigned char *base, *bound; int id;
} pmdb_t;

� Type for 〈addr, id〉 pointer metadata
typedef struct {

pmdb_t *addr; int id;
} pmda_t;

� Type for 〈base, bound〉 object metadata
typedef struct {

unsigned char *base, *bound;
} omd_t;

4: � Merge 2 sorted sequences. A2 is an array
5: and p, q, and r are indices numbering
6: elements of the array such that p ≤ q < r.
7:

8: void merge(int *A2, int p, int q, int r) {

� Retrieve pointer metadata for A2
according to Metadata Rule 4.11.1

pmda_t pmda_A2 = fmd_get(&merge, 1);

...
13: int *L = (int*) malloc((n1+1)*sizeof(int));

� Define pointer metadata for L
according to Metadata Rule 4.2.1

pmda_t pmda_L = {
(pmdb_t*) malloc(sizeof(pmdb_t),
getUniqueId()

};

� Define object metadata for L
according to Metadata Rule 4.2.2

omd_t *omd_L = (omd_t*)malloc(sizeof(omd_t));
if (L == NULL) {

*omd_L = *omd_invalid
} else {

*omd_L = (omd_t) {
L, L+((n1+1)*sizeof(int))

};
}

� Map object metadata of L in the object
metadata facility according to Metadata
Rule 4.2.3

omd_set(pmda_L.id, omd_L);

� Store pointer metadata of L to memory
according to Metadata Rule 4.2.4

pmdb_t pmdb_L = {
omd_L->base, omd_L->bound, pmda_L.id

};
*(pmda_L.addr) = pmdb_L

14:

15: int i9;
16: do {
17: int i0 = φ(0, i9);
18: if (i0 < n1) {
19: int *tmp2 = A2+p+i0-1;

� Define pointer metadata for tmp2
according to Metadata Rule 4.6.1

pmda_t pmda_tmp2 = pmda_A2;

20: int *tmp4 = L+i0;

� Define pointer metadata for tmp4
according to Metadata Rule 4.6.1

pmda_t pmda_tmp4 = pmda_L;

� Perform PBC for dereference of tmp4
PBC(tmp4, sizeof(int),

pmda_tmp4.addr, pmda_tmp4.id);

� Perform PBC for dereference of tmp2
PBC(tmp4, sizeof(int),

pmda_tmp2.addr, pmda_tmp2.id);

21: *tmp4 = *tmp2;
22: } else {
23: break;
24: }
25: i9 = i0+1;
26: } while (1);

...

Figure 4.5: Merge sort fragment with metadata and checks. A portion of
the merge sort algorithm presented in Figure 4.4 in SSA form [26] is shown here with
the required checks and metadata MemSafe inserts to ensure memory safety.

93

allocation. First, MemSafe inserts a call to malloc to create an address addrL for

storing the pointer metadata associated with L, and MemSafe creates the unique

key idL for the allocated object with the getUniqueId procedure. Second, MemSafe

defines the object metadata 〈base, bound〉idL associated with the allocated region

of memory. If the pointer returned by malloc is equal to NULL, the region’s object

metadata is set to that of the “invalid” region. Otherwise, the region’s object metadata

is defined to be the base and bound of the allocated object. Third, MemSafe maps

the allocated object’s key idL to it’s metadata 〈base, bound〉idL in the object metadata

facility with the omd_set procedure. Finally, MemSafe defines the pointer metadata

of the returned pointer 〈base, bound, id〉L and stores it to memory at location addrL.

Since pointers tmp2 and tmp4 are defined in lines 19 and 20 in terms of pointer

arithmetic, MemSafe creates their pointer metadata 〈addr, id〉tmp2 and 〈addr, id〉tmp4

according to Metadata Rule 4.6, which is used for pointer copies and arithmetic. This

metadata is then utilized to perform the pointer bounds checks before the pointers

are dereferenced in line 21. MemSafe inserts metadata and runtime checks for the

remaining portion of the merge sort algorithm in a similar way.

94

Chapter 5

Reducing the Runtime Cost of
Enforcing Memory Safety

Because the runtime overhead of MemSafe’s basic approach can be prohibitively

expensive for use in real systems, this chapter develops several tools and optimizations

for reducing the cost associated with the inserted checks for memory safety and the code

required for propagating metadata. First, a novel pointer data-flow representation

is presented that is made possible by the modeling of both memory deallocation

and pointer store operations as explicit pointer assignments. Then, this data-flow

representation is used as the foundation of several optimizations that identify and

eliminate unneeded runtime checks and code for propagating unused metadata.

5.1 A Data-flow Graph for Pointers

By utilizing the abstractions developed in Section 4.1 for memory deallocation and

pointer stores, MemSafe creates a whole-program Data-Flow for Pointers Graph

(DFPG). The DFPG is a definition-use graph for the flow of all pointer metadata

in a program. Since the invalid pointer creates a direct pointer assignment for each

95

deallocated object, and since the %-function creates a pointer assignment for indirect

pointer stores, every pointer assignment, whether it is an explicit or implicit assignment,

is given a unique name in the SSA representation of the program. Therefore, if the

pointer metadata associated with a pointer p is copied to that of another pointer q,

there is a directed edge from p to q in the DFPG.1 Similarly, if the pointer metadata

of q is loaded from memory, a %-function is inserted that indicates the pointers whose

metadata may equal that of q, and these pointers are represented in the DFPG as

predecessors of q. In general, since the data-flow of pointers may flow recursively,

cycles are possible in the DFPG. Recall that since the data-flow associated with

pointer loads and stores is represented by the %-function, the definitions and uses

associated with these operations are not included in the DFPG.

Figure 5.1 shows (a) an example code fragment and (b) its associated DFPG. In

this code fragment, which was introduced during the discussion of the invalid pointer

and %-function (see Section 4.1.2), the only pointer definition that is not a pointer

load or store operation is that of c1, which occurs after line 9. Since the definition

of c1 uses the value of three other pointers (a, b, and invalid), there is an edge in

the DFPG from each of these pointers to c1. More complicated pointer data-flow is

possible, and the DFPG for a real-world program is presented in Section 5.1.4.

The remainder of this section describes the process by which the DFPG is con-

structed, the issue of DFPG connectivity, and important properties of the DFPG

that will be utilized for performing the optimizations that eliminate unneeded runtime

1For simplicity, nodes in the DFPG are identified by named pointer values. However, in actuality,
DFPG nodes represent the pointer metadata associated with these pointers, and not the pointers
themselves.

96

1: int *a, *b, *c;
2: int **p, **q;

� assume p and q may alias
...

3: *q = a;
...

4: if (condition) {
5: *p = b;
6: } else {
7: free(*p);

*p = invalid;
8: }

...
9: c0 = *q

c1 = %(a, b, invalid);

(a) Syntax Extensions

a

c1

b

invalid

(b) DFPG

Figure 5.1: DFPG construction. A code fragment with MemSafe’s syntax ex-
tensions (a) and its corresponding DFPG (b). Numbered lines indicate original
code.

checks and metadata propagation. The section ends by discussing the construction of

the DFPG for a real-world application.

5.1.1 Construction

The construction of the DFPG is a straightforward process that involves analyzing

pointer definitions and uses and reasoning about the propagation of their associated

pointer metadata, according to the rules presented in Section 4.3, were it to be inserted

for runtime checks. The construction process takes place after (1) a program has been

converted to SSA form, (2) pointers assignments for the invalid pointer have been

inserted for memory deallocation, and (3) %-functions have been inserted to represent

the data-flow of pointer stores and loads. The DFPG = (V,E) is a directed graph

97

consisting of a set of vertices V that represent the pointers in a program (i.e., the

〈base, bound, id〉 metadata associated with the pointers) and a set of directed edges

E that connect pointer uses to pointer definitions. The pseudocode for the DFPG

construction algorithm is given below. Pseudocode conventions follow those of Cormen

et al. [23].

Algorithm 5.1—Pseudocode for constructing the DFPG:

1: V ← {}
2: E ← {}
3: for each instruction i in the program
4: do if i is a function call
5: then F ← set of all potential callees of i
6: for each potential callee f ∈ F
7: do for each actual pointer argument p of i
8: do if p /∈ V
9: then V ← V ∪ {p}
10: q ← the formal argument of f corresponding to p
11: if q /∈ V
12: then V ← V ∪ {q}
13: E ← E ∪ {(p, q)}
14: if i defines a pointer p
15: then if p /∈ V
16: then V ← V ∪ {p}
17: for each potential callee f ∈ F
18: q ← the return value of f
19: if q /∈ V
20: then V ← V ∪ {q}
21: E ← E ∪ {(q, p)}
22: else if i defines a pointer p
23: then if p /∈ V
24: then V ← V ∪ {p}
25: for each pointer q that i uses
26: do if q 6∈ V
27: then V ← V ∪ {q}
28: E ← E ∪ {(q, p)}
29: DFPG← graph(V,E)

Intuitively, the DFPG construction algorithm operates as follows. For each instruction

in the program, if the instruction is a function call, the algorithm first determines

98

the potential set of functions the call instruction may be calling. This is done by

analyzing a conservative call graph that was created using alias analysis to determine

the set of potential functions to which each function pointer may refer. The algorithm

then connects each actual pointer argument of the call instruction with the formal

argument of each potential callee, adding the pointers to the graph in the process if

they are not already present. Similarly, pointers that are function return values are

connected with the pointer defined by each potential caller of the function. Finally,

for instructions that are not function calls, if the instruction defines a pointer value,

the pointer is added to the graph and an edge is created to it from each pointer value

the definition uses.

5.1.2 Connectivity

While the number of regular vertices in the DFPG (i.e., all vertices excluding those

representing %-functions) is fixed for a given program, the number of edges is largely

dependent on the precision of the alias analysis that was used for inserting %-functions.

For example, assume a naïve alias analysis that responds with may alias for every

alias query. The analysis would declare that any pointer stored to memory may alias

with any pointer loaded from memory. Thus, if this analysis was used for inserting

%-functions, there would be an edge from every stored pointer to the %-function

representing each loaded pointer. The large number of DFPG edges, in this case,

would indicate that a high amount of uncertainty exists in the data-flow of pointer

values. This ambiguity is detrimental for the optimizations described in Section

99

5.2 as the removal of unneeded checks and metadata propagation relies on knowing

statically—with certainty—that particular conditions must or must not occur.

MemSafe uses Andersen’s alias analysis [4] as the default analysis for %-function

insertion (see Section 4.1.2). Andersen’s analysis is widely-regarded as the most

precise flow- and context- insensitive analysis. However, MemSafe is not tied to one

particular analysis, and it can benefit from improved alias analysis precision, although

the improved precision would likely come at the expensive of longer compile times.

5.1.3 Properties

Several properties can be derived for the pointers in the DFPG based on the structure

of the graph. Examples include the potential for a pointer to be spatially unsafe

and the potential for it to be temporally unsafe. Such properties are essential for

performing the optimizations that eliminate unneeded runtime checks and code for

propagating metadata. The properties required for the optimizations in Section 5.2

are described below.

5.1.3.1 DFPG transpose

The transpose of the DFPG is a new graph DFPGT on the same set of vertices

but with all the edges reversed compared to their original orientation in the DFPG.

Formally, the transpose of DFPG = (V,E) is DFPGT = (V,ET) where ET =

{(u, v) : (v, u) ∈ E}. DFPGT is computed efficiently in Θ(|V | + |E|) time using

adjacency lists. The transpose of the DFPG is useful when considering a reverse

data-flow analysis. That is, while the DFPG is a definition-use graph, meaning there

100

is a directed edge from the definition of a pointer to its uses, the DFPGT is the

corresponding use-definition graph.

5.1.3.2 Undirected DFPG

Similarly, the undirected version of the DFPG is a new graph DFPGU = (V ′, EU)

where V ′ = V \ {invalid}. EU is formed by (1) replacing all directed edges in E with

undirected edges and (2) removing all edges incident with the vertex representing the

invalid pointer. invalid is removed when constructing the DFPGU to simplify the

graph and reveal features that are discussed below. Additionally, since the removal

of invalid may leave vertices representing %-functions with only a single immediate

predecessor, such vertices are also removed to simplify the graph, and edges are

inserted to connect the predecessor of each removed %-function with its immediate

successors. For example, assume p is defined as a %-function and edges (u, p) and

(p, v) are in EU . If p has only the single immediate predecessor u after the removal

of the invalid pointer, then p, (u, p), and (p, v) are also removed and replaced with a

new edge (u, v). The DFPGU is also efficiently computed in Θ(|V |+ |E|) time using

adjacency lists.

5.1.3.3 Potential referents

A vertex in DFPGT having no children represents a newly created pointer. That is,

pointers in DFPGT with no children represent pointers returned from the malloc

function, pointers created with the address-of operator (&), or pointers representing

statically allocated objects. A newly created pointer, by definition, refers to the object

101

of its initial assignment. Therefore, the set of potential referents R of a pointer p

(represented in the DFPGT by a vertex v) is given by the set of vertices that are

reachable from v and have no children. Formally, the potential referents of v are given

by Rv =
{
u ∈ V : v ; u ∧ deg+(u) = 0

}
, where ; denotes reachability and deg+(u)

denotes the outdegree of vertex u. For any given pointer, its set of potential referents

can be computed efficiently in O(|V |+ |E|) time using a breadth- or depth-first search.

5.1.3.4 Potential sub-object referents

A pointer created with the address-of operator refers to a sub-object if it has a

composite type, and its value is the result an indexing operation through a composite

type. The address of a sub-object is computed by indexing through the fields of an

aggregate object beginning at the aggregate’s base address b. Therefore, a pointer p

refers to a sub-object if its definition has the form p = &(b + ∑
xi) where p and b

are pointers to composite types and xi are offsets that index through the elements of

the aggregate pointed to by b. For indexing into a structure type, an offset xi must

be a compile-time constant, but when indexing through an array, xi is not required

to be constant. For any given pointer represented in the DFPG, the pointer may

potentially refer to a sub-object if there exists a sub-object reference in the pointer’s set

of potential referents R. Formally, the set of potential sub-object referents R(s)
v ⊆ Rv

for a vertex v is given by R(s)
v = {r ∈ Rv : is-sub(r)} where is-sub(r) denotes the

proposition that the definition of r matches the indexing pattern r = &(b+∑
xi).

102

5.1.3.5 Temporally unsafe pointers

If the pointer metadata associated with the invalid pointer may potentially propagate

to another pointer p, then p may be temporally unsafe. Therefore, all vertices

in the DFPG reachable from invalid represent pointers that may be temporally

unsafe. Formally, the set of pointers T that may be temporally unsafe is given by

T = {v ∈ V : invalid ; v}. The set of all pointers that may be temporally unsafe

can be efficiently computed in O(|V |+ |E|) time using a breadth- or depth-first search

beginning at the vertex representing the invalid pointer.

5.1.3.6 Spatially unsafe pointers

Pointers in the DFPG reachable from NULL or manufactured pointers or from pointers

defined in terms of pointer arithmetic may be spatially unsafe. Additionally, a pointer

that is not physically sub-typed [18] with each of its potential referents may also be

spatially unsafe since the object to which the pointer refers is unknown statically. A

type τ is a physical sub-type of type τ ′, denoted τ � τ ′, if a value of type τ ′ may

be operated upon as if it had type τ , which is to say that in the memory layout

of the two types, the values stored in corresponding locations are compatible for

assignment. The vertices representing NULL and manufactured pointers and pointers

defined in terms of pointer arithmetic can be identified efficiently in Θ(|V | + |E|)

time by performing a breadth- or depth-first search. If these vertices are represented

by the set A, then the set S of pointers that may be spatially unsafe is given by

S = {v ∈ V : (∃u ∈ A)(u ; v) ∨ (∃r ∈ Rv)(τ(v) � τ(r))} where τ(v) denotes the type

103

of the pointer represented by vertex v.

5.1.3.7 Pointers that may alias

Pointers that may alias are represented in DFPGU as connected components. In-

tuitively, since pointers that may alias might refer to the same objects, there is a

path between all vertices in DFPGU that have overlapping sets of potential referents.

Thus, pointers that may alias are in the same connected component in DFPGU , and

pointers that must not alias are in different connected components. The connected

components of an undirected graph can be computed efficiently in Θ(|V |+ |E|) time

by performing a breadth- or depth-first search. A search beginning at vertex v will

find the entire single connected component containing v (and no additional vertices)

in O(|V |+ |E|) time. The remaining connected components are found by initiating a

similar search beginning at the next unvisited vertex and continuing until all vertices

have been visited.

5.1.4 Example application

It is again useful to consider a real-world example to better understand how a program’s

DFPG is actually constructed. Recall the merge sort procedure described in Section

4.5. Figure 5.2 shows (a) the DFPG of the merge sort algorithm presented in Figure

4.4 and (b) its corresponding DFPGU . Crucially, these data-flow graphs simulate

the flow of pointer metadata, which was shown for a portion of the algorithm: in

Figure 4.5, pointer metadata is given type pmdb_t. Note that the nodes in the graph

are named according to the pointer with which the metadata is associated.

104

tmp25tmp16 tmp20

tmp27tmp22

L invalidA1 R

A2 tmp9tmp18 tmp14tmp4

tmp7

tmp12

tmp2

(a) DFPG for the merge sort algorithm

tmp25tmp16 tmp20

tmp27tmp22

LA1 R

A2 tmp9 tmp18tmp14tmp4

tmp7

tmp12

tmp2

(b) DFPGU for the merge sort algorithm

Figure 5.2: Merge Sort DFPG. The DFPG (a) and corresponding DFPGU (b)
are shown for the merge sort algorithm [23]. The DFPGU shows three connected
components.

105

Because the original L and R arrays are deallocated with calls to free, the pointer

metadata of each is updated to be equal to that of the invalid pointer, indicating that

L and R now refer to an “invalid” region of memory. MemSafe uses Andersen’s alias

analysis to insert %-nodes for every loaded pointer that may alias with the locations

used in storing pointers (including stores of the metadata associated with the invalid

pointer and the loads of pointer metadata performed by the pointer bounds checks,

which are not shown in Figure 4.5). Because Andersen’s analysis is flow-insensitive,

the analysis identifies pointer loads of locations that may alias with stored-to locations

regardless of where they occur in the control-flow of the program. Therefore, even

though the L and R arrays are not deallocated until the end of the merge procedure,

invalid is propagated to other pointers in the algorithm.2 Note that since there are no

pointer loads involving pointers derived from the original array A, and since A is not

deallocated, the pointer metadata of invalid does not propagate to A.

The example’s DFPGU in Figure 5.2 is formed by removing the invalid pointer,

and all edges incident with it, from the DFPG and replacing all directed edges with

undirected edges. The graph is also simplified by removing %-functions that have

only a single remaining argument (after having removed the invalid pointer). The

DFPGU shows three connected components that correspond to the disjoint alias sets

associated with the original L, R, and A arrays.

2As mentioned in Section 4.1, MemSafe performs a simple reachability analysis to avoid the
insertion of %-functions for impossible pointer data-flow. However, that analysis was not used in
constructing this example in order to show the propagation of the pointer metadata associated with
the invalid pointer.

106

5.2 Optimizations of the Basic Approach

MemSafe utilizes the previously described properties of a program’s DFPG to perform

several optimizations that reduce the cost of enforcing memory safety at runtime. Since

the DFPG blurs the distinction between spatial and temporal errors by encoding

memory deallocation and pointer stores as direct pointer assignments, the optimizations

described below effect the runtime overhead of achieving both spatial and temporal

memory safety.

In the discussion below, the following C source code example will be used to

demonstrate the application of MemSafe’s optimizations.

Example 5.1—Original Code for Demonstrating Optimizations:

1: struct { ... int array[100]; ... } s;
2: ...
3: int *p = &(s.array[42]);
4: int *q = &(s.array[0]);
5: ...
6: *p = x;
7: ...
8: for (int i=0; i < 42-n; i++) {
9: q[i] = *p;

10: }

In this example, a nested object (a structure containing an array) is allocated on the

procedure stack in line 1. In line 3, a pointer p is created that refers to a location

within the array field of the structure s, and in line 4, another pointer q is created

that refers to the beginning of array. The element to which p refers (element 42 of

array) is then assigned some value x in line 6. Finally, in lines 8–10, pointer q is used

to iterate over the first part of array (elements 0 to 42− n) and assign each element

107

the value to which p refers, which in this case, is the value x.

Although this code fragment is somewhat contrived, it contains several features

that are useful for demonstrating the application and functionality of MemSafe’s

optimizations. These features include (1) multiple dereferences of the same pointer,

(2) sub-object pointer accesses, (3) pointer arithmetic involving both constant and

non-constant offsets, and (4) array accesses within the body of a loop.

In the remainder of this section, several effective optimizations for eliminating

unneeded safety checks and code for the propagation of metadata are described.

Throughout the discussion, the above code fragment, instrumented with the code

transformations necessary for enforcing spatial and temporal memory safety, will be

reproduced in order to demonstrate the application of each optimization.

5.2.1 Dominated dereferences optimization

Multiple dereferences of the same pointer require safety checks only for the dereference

that dominates the others. Dominated dereferences do not require checking. Well-

known in compiler theory, a dereference d1 dominates [7] another dereference d2 if every

path from the beginning of the program to d2 includes d1. Given the naming invariant

of the SSA form—that is extended to include assignments of the invalid pointer and

%-functions (see Section 4.1)—all variables with the same name are required to have

the same value. Thus, if the dereference of a pointer is guaranteed to always be

executed before another dereference of the same pointer, memory safety checks for

the second dereference are redundant, since the second pointer must have the same

value as the first.

108

Within a basic block, a dereference d1 dominates d2 if d1 comes before d2 in the

order of instructions. Across basic blocks, d1 dominates d2 if the basic block containing

d1 dominates the basic block containing d2. The dominators of a basic block n are

defined on the control-flow graph of the function f containing n and given by the

maximal solution to the following data-flow equations:

Dom(n0) = n0

Dom(n) =
 ⋂
p∈preds(n)

Dom(p)
⋃{n}

where n0 is the entry block of f. Thus, the dominator of the first basic block in f is

itself, and the set of dominators for any other basic block n in f is the intersection of

the set of dominators for all predecessors p of n. Since a basic block also dominates

itself, n is also in the set of dominators for n.

The concept of dominance is integral to the SSA form, since all definitions must

dominate their uses, and the computation of dominators is required for converting

a program into SSA form. Although, the direct solution to the above equations

is computed in O(N2) time, where N is the number of basic blocks in function f,

Lengauer and Tarjan [57] developed an efficient near-linear-time algorithm that relies

on properties of the depth-first spanning tree [23] of f’s control-flow graph.

The following code fragment demonstrates the application of the Dominated Deref-

erences Optimization (DDO) using the running code example introduced above. Below,

the source code is shown after conversion to SSA form and after the insertion of all

necessary checks and metadata required for enforcing memory safety. Note that the

original for loop is replaced here with an equivalent do while loop to show the

109

inserted φ-functions. Unnumbered lines indicate MemSafe’s insertions for performing

runtime checks and propagating the required metadata.

Example 5.2—Dominated dereferences optimization:

1: struct { ... int array[100]; ... } s;
RO = RO ∪ {(id ∈ I, 〈&s, &s + sizeof(s)〉)}

2: ...
3: int *p0 = &(s.array[42]);
4: int *q0 = &(s.array[0]);
〈addr, id〉p0 = 〈addr ∈ A, ids〉
M [addrp0]← 〈&s.array[0], sizeof(s.array), idp0〉
〈addr, id〉q0 = 〈addr ∈ A, ids〉
M [addrq0]← 〈&s.array[0], sizeof(s.array), idq0〉

5: ...
PBC(p0, sizeof(int), addrp0, idp0);
OBC(p0, sizeof(int), idp0);

6: *p0 = x;
7: ...
8: int i1;
9: do {

10: int i0 = φ(0, i1);
11: if (i0 < 42-n) {
12: int *q1 = q0 + i0;

〈addr, id〉q1 = 〈addr, id〉q0

PBC(p0, sizeof(int), addrp0, idp0); � Dominated dereferences do
OBC(p0, sizeof(int), idp0); not require checking
PBC(q1, sizeof(int), addrq1, idq1);
OBC(q1, sizeof(int), idq1);

13: *q1 = *p0;
14: } else {
15: break;
16: }
17: i1 = i0+1;
18: } while (1);

Since the dereference of p0 in line 6 dominates the dereference of p0 in line 13, the

object and pointer bounds checks before the dereference of p0 in line 13 are redundant

and are eliminated.

110

5.2.2 Temporally safe dereferences optimization

Dereferences of pointers that are guaranteed to be temporally safe do not require an

object bounds check. Recall that since temporal errors are modelled as spatial errors,

with the introduction of assignments of the invalid pointer, the pointer bounds check

is capable of ensuring complete spatial and temporal safety for object-level references.

However, if a pointer may refer to a sub-object (and may be temporally unsafe), its

dereference requires an OBC in addition to a PBC to ensure temporal safety.

To understand why an OBC is needed to ensure the temporal safety of potential sub-

object references, consider a pointer p that refers to the base address of a dynamically

allocated structure containing a nested sub-object. If the structure is deallocated

with free(p), the statement p = invalid is inserted into the program in order to

propagate the metadata of the invalid pointer. MemSafe updates the pointer metadata

of p according to the metadata propagation rule for dynamic memory deallocation

(see Section 4.3.2):

M [addrp]← 〈base, bound, id〉invalid

However, if before the deallocation of s, there exists a sub-object reference of the form

q = (p)->field (which is represented as q = &((*p).field)), the pointer metadata

for q is defined according to the rule for the address-of operator (see Section 4.3.3)

and is represented as

〈addr, id〉q = 〈addr ∈ A, id〉M [addrq] ← 〈&s.field, sizeof(s.field), id〉

where s is equal to *p and id refers to the unique id assigned to s when it was allocated.

111

Thus, q is assigned a new address for storing metadata, and its base and bound are

equal to the “narrowed” sub-range of a particular field of the nested structure. Only if

q had been defined as an object-level reference of the form q = p would it inherit addrp

and the metadata associated with the invalid pointer when p is used to deallocate s.

Therefore, a PBC is not capable of enforcing temporal safety for sub-object references

and an OBC is instead required.

However, the OBC can be eliminated for pointers that are guaranteed to be tem-

porally safe. Pointers that may be temporally unsafe are determined by traversing

the DFPG (see Section 5.1.3.5). In addition, pointers that may be temporally unsafe

but cannot be sub-object references (see Section 5.1.3.4) are, by the above discussion,

capable of being checked with a PBC. Since an OBC requires that a lookup operation

be performed of the object metadata facility RO (and any required blocking due to

thread synchronization primitives), MemSafe preferentially removes an OBC where a

PBC is sufficient for enforcing memory safety.

The following code fragment demonstrates the application of the Temporally safe

Dereferences Optimization (TDO) using the running code example. Below, the source

code is shown after eliminating the redundant checks for the dereference of p0 in line

12 with the dominated dereferences optimization.

Example 5.3—Temporally safe dereferences optimization:
1: struct { ... int array[100]; ... } s;
RO = RO ∪ {(id ∈ I, 〈&s, &s + sizeof(s)〉)}

2: ...
3: int *p0 = &(s.array[42]);
4: int *q0 = &(s.array[0]);
〈addr, id〉p0 = 〈addr ∈ A, ids〉
M [addrp0]← 〈&s.array[0], sizeof(s.array), idp0〉

112

〈addr, id〉q0 = 〈addr ∈ A, ids〉
M [addrq0]← 〈&s.array[0], sizeof(s.array), idq0〉

5: ...
PBC(p0, sizeof(int), addrp0, idp0);
OBC(p0, sizeof(int), idp0); � Temporally safe dereferences

6: *p0 = x; do not require an object check
7: ...
8: int i1;
9: do {

10: int i0 = φ(0, i1);
11: if (i0 < 42-n) {
12: int *q1 = q0 + i0;

〈addr, id〉q1 = 〈addr, id〉q0

PBC(q1, sizeof(int), addrq0, idq1);
OBC(q1, sizeof(int), idq1);

13: *q1 = *p0;
14: } else {
15: break;
16: }
17: i1 = i0+1;
18: } while (1);

Although p0 refers to a sub-object (the array field of structure s), p0 is guaranteed to

be temporally safe in this example, and the object bounds checks before the dereference

of p0 in line 6 and the dereference of q1 in line 13 are eliminated.

5.2.3 Non-incremental dereferences optimization

A pointer may be spatially unsafe if the vertex representing it in the DFPG is

reachable from NULL or manufactured pointers or pointers defined in terms of pointer

arithmetic. Additionally, a pointer is may also spatially unsafe if it is not physically

sub-typed with each of its potential referents (see Section 5.1.3.6). All other pointers

are guaranteed to be spatially safe. If a spatially safe pointer is also temporally safe

(see Section 5.1.3.5), a PBC before its dereference is not required and is removed. Recall

that the pointer bounds check is capable of ensuring the temporal safety of object

113

references in addition to the spatial safety of object and sub-object references. Since

MemSafe preferentially removes (with TDO) an OBC for the dereference of pointer

that may be temporally unsafe, but which must not be a sub-object reference, a PBC

cannot be removed if the dereferenced pointer may be temporally unsafe.

As a refinement of the above discussion, compile-time bounds checking is possible

for pointers that are reachable in the DFPG from pointers defined in terms pointer

arithmetic if every such path in the DFPG only involves the arithmetic of constant

values. Every possible constant-offset address expression for a pointer p can be

determined by performing a depth-first search of the DFPGT beginning at the vertex

representing p. If each potential address expression is within bounds of, and physically

sub-typed with, the type associated with each potential referent of p, a PBC for the

dereference of p is not required and is eliminated.

The following code fragment demonstrates the application of the Non-incremental

Dereferences Optimization (NDO) using the running code example. Below, the source

code is shown after eliminating the object bounds checks for pointers p0 and q1 with

the temporally safe dereferences optimization.

Example 5.4—Non-incremental Dereferences Optimization:

1: struct { ... int array[100]; ... } s;
RO = RO ∪ {(id ∈ I, 〈&s, &s + sizeof(s)〉)}

2: ...
3: int *p0 = &(s.array[42]);
4: int *q0 = &(s.array[0]);
〈addr, id〉p0 = 〈addr ∈ A, ids〉
M [addrp0]← 〈&s.array[0], sizeof(s.array), idp0〉
〈addr, id〉q0 = 〈addr ∈ A, ids〉
M [addrq0]← 〈&s.array[0], sizeof(s.array), idq0〉

114

5: ...
PBC(p0, sizeof(int), addrp0, idp0); � Non-incremental dereferences

6: *p0 = x; do not require a pointer check
7: ...
8: int i1;
9: do {

10: int i0 = φ(0, i1);
11: if (i0 < 42-n) {
12: int *q1 = q0 + i0;

〈addr, id〉q1 = 〈addr, id〉q0

PBC(q0, sizeof(int), addrq0, idq0);
13: *q1 = *p0;
14: } else {
15: break;
16: }
17: i1 = i0+1;
18: } while (1);

Since the definition of pointer p0 does not involve any pointer arithmetic—it only

involves the address-of operator (&) after expanding the complex expression—and p0 is

not equal to the NULL pointer or a manufactured pointer, p0 is spatially safe and must

refer to the address of its assignment in line 3. In addition, since p0 is also temporally

safe, the pointer bounds check before the dereference of p0 in line 6 is not required

and is eliminated.

5.2.4 Monotonically addressed ranges optimization

A pointer whose value is a monotonic function of a loop induction variable is said

to refer to a monotonically addressed range of memory [42]. Induction variable

increments of the form in = in−1 + 1 and in = in−1 − 1 are examples of monotonic

functions that are common in real-world applications. In general, if a pointer refers to

a monotonically addressed range of memory, and if the value of the loop terminating

115

condition is loop-invariant, then it is possible to determine an expression for the range

of memory to which the pointer refers throughout the execution of the loop.

For example, let p0 be the initial value of a pointer p that is dereferenced within

the body of loop having a monotonically increasing induction variable. The range

of memory to which p can refer is given by [p0 + f(i0), p0 + f(in)), where f is some

monotonic function of the induction variable i. The initial and final values of i are

represented by i0 and in, respectively, and are determined by the loop starting and

terminating conditions. For the sake of discussion, assume that i has been identified

with a suitable loop induction variable recognition analysis [7], and that the loop has

been subsequently transformed such that i is the single canonical induction variable,

meaning that i is initialized to zero and incremented by one on every iteration of the

loop [58]. The range of memory to which p can refer then simplifies to [p0, p0 + n],

where n is the terminating condition of the loop.

For the dereference of a pointer referring to a monotonically addressed range of

memory, MemSafe removes the pointer’s PBC from within the loop body, and instead

inserts a Monotonically Addressed Range Check (MARC) in the loop pre-header. If the

pointer’s dereference also requires an OBC, this check is placed in the loop pre-header

as well. MARC is a runtime check defined by the following forcibly inlined procedure.

Runtime Check 5.1—Monotonically addressed range check:
1: inline void MARC(ptr, size, addr, id, trip_count) {
2: 〈base, bound, id〉ptr ←M [addr]
3: ptr_max = ptr + trip_count;
4: if ((id != idptr) || (ptr < baseptr) || (ptr_max + size > boundptr)) {
5: signal_safety_violation();
6: }
7: }

116

For a loop having a canonical induction variable i, MemSafe signals a safety violation

during the execution of the loop pre-header if *ptr + i will access a location outside

the range specified by [baseptr, boundptr) on any iteration of the loop. Since i is

canonical, trip_count is determined by the loop terminating condition. Additionally,

because a MARC utilizes pointer metadata, the id of the dereferenced pointer must be

compared to the id located at the metadata’s address since the address may have

been reused (see Section 4.2.2). Finally, Note that a MARC does not eliminate the need

to perform an object bounds check for potential sub-object references that may be

temporally unsafe. However, if the dereference of a pointer also requires an OBC, this

check can be placed in the loop pre-header as well.

A basic block p is the pre-header [7] of a loop if it is the immediate dominator [7]

of the loop header h. p is the immediate dominator of h if (1) p 6= h, (2) p dominates

h, and (3) p does not dominate any other dominator of h. The basic block h is the

header [7] of a loop if (1) from any basic block in the loop there is a path of directed

control-flow edges leading to h, (2) there is a path of directed edges from h to any

other basic block in the loop, and (3) there is no edge from any block outside the loop

to any block within the loop other than h.

The following code fragment demonstrates the application of the Monotonically

addressed Ranges Optimization (MRO) using the running code example. Below, the

source code is shown after eliminating the PBC before line 6 with the non-incremental

dereferences optimization.

Example 5.5—Monotonically Addressed Ranges Optimization:

117

1: struct { ... int array[100]; ... } s;
RO = RO ∪ {(id ∈ I, 〈&s, &s + sizeof(s)〉)}

2: ...
3: int *p0 = &(s.array[42]);
4: int *q0 = &(s.array[0]);
〈addr, id〉p0 = 〈addr ∈ A, ids〉
M [addrp0]← 〈&s.array[0], sizeof(s.array), idp0〉
〈addr, id〉q0 = 〈addr ∈ A, ids〉
M [addrq0]← 〈&s.array[0], sizeof(s.array), idq0〉

5: ...
6: *p0 = x;
7: ...
8: int i1;

MARC(q0, sizeof(int), addrq0, idq0, 42-n);
9: do {

10: int i0 = φ(0, i1);
11: if (i0 < 42-n) {
12: int *q1 = q0 + i0;

〈addr, id〉q1 = 〈addr, id〉q0

PBC(q0, sizeof(int), addrq0, idq0); � Monotonically addressed
13: *q1 = *p0; ranges can be checked in
14: } else { loop pre-header
15: break;
16: }
17: i1 = i0+1;
18: } while (1);

Since the definition of q1 in line 12 occurs within the body of a loop having a

loop-invariant terminating condition (42− n), and q1 is a function of the canonical

loop induction variable i0, q1 refers to a monotonically addressed range of memory.

Therefore, the PBC for the dereference of q1 in line 13 is not required, and MemSafe

instead inserts a MARC in the loop pre-header.

The monotonically addressed ranges optimization is similar to array bounds check

elimination [15, 41, 53, 73, 81] and loop-invariant code motion [7] of compiler theory.

Loop-invariant code motion is a compiler optimization that automatically moves

loop-invariant code from within a loop to a location outside the loop in order to avoid

118

unnecessarily repeating computations. However, since the pointer dereferences that

are targeted by MRO are not loop-invariant, loop-invariant code motion is unable

to hoist a PBC within a loop and move the check to the loop’s pre-header. The PBC

must first be converted to a MARC by the monotonically addressed ranges optimization

before it becomes loop-invariant and capable of being hoisted.

Array bounds check elimination is a well-researched technique whereby the un-

needed bounds checks for affine array accesses can be eliminated. However, MRO does

not require a memory reference to be an affine array access. Indeed, a dereferenced

pointer could itself be an induction variable. In certain cases, though, techniques such

as affine conversion [36] can be used to convert pointer accesses of array elements into

semantically equivalent array representations. Thereafter, the array access would be

subject to bounds check elimination. MRO is more general than array bounds check

elimination, but for affine array accesses, bounds check elimination could be used with

MemSafe to completely eliminate some of the required runtime checks.

5.2.5 Partitioned metadata optimization

In a multithreaded program, concurrent threads must acquire read/write locks when

attempting to update or retrieve metadata from the global metadata facilities RO, RP ,

and RF (see Section 4.4). In order to avoid some of the runtime cost associated with

the required thread synchronization primitives, MemSafe can partition each metadata

facility into separate structures and thereby reduce metadata facility access contention.

Furthermore, thread synchronization primitives can be removed entirely if concurrent

119

threads access disjoint data structures after the contentious metadata facilities have

been partitioned. The code constituting a “thread” can be conservatively determined

automatically through an analysis of a program’s call graph.

As discussed in Section 5.1.3.7, connected components in the DFPGU represent

disjoint alias sets. Since pointers that must not alias are guaranteed to never refer to

the same objects, the metadata for a pointer in one particular connected component

of the DFPGU will never propagate to a pointer in another connected component.

To understand why, consider two pointers p and q. If metadata propagates from p to

q, the pointers are required to alias since the metadata associated with each would

indicate that both p and q refer to a region of memory bounded by the same base and

bound address. By definition, pointers that refer to the same region of memory, or

overlapping regions of memory, must alias.

Therefore, since the metadata for pointers in one connected component cannot

propagate to the pointers of another connected component (an exception being the

metadata for the invalid pointer which is discussed below), the global metadata

facilities RO, RP , and RF can be partitioned into N disjoint structures, where N is

the number of connected components in the DFPGU . Thus, all pointers in a connected

component n are assigned the metadata facilities RO(n), RP (n), and RF (n), and all

update and retrieval operations involving pointers in the nth connected component

make use of the nth set of metadata facilities.

When computing the DFPGU , the invalid pointer and edges incident with it

are removed from the graph in order to avoid representing an artificial flow of data

introduced by MemSafe’s analysis. Therefore, after partitioning the metadata facilities,

120

a separate invalid pointer, represented by invalid(n), is created for each connected

component. This ensures that the metadata associated with the original invalid

pointer will not propagate to multiple connected components of the DFPGU .

The following code fragment demonstrates the application of the Partitioned

Metadata Optimization (PMO) using the running code example. Below, the source

code is shown after converting the PBC within the loop body to a MARC in the loop

pre-header by applying the monotonically addressed ranges optimization. Also, since a

multithreaded program is assumed for this example, thread synchronization primitives

have been added to control access to the metadata facilities.

Example 5.6—Partitioned Metadata Optimization:

1: struct { ... int array[100]; ... } s;
if (pthread_rwlock_wrlock(&object_lock) != 0) {

abort("Unable to acquire write lock for metadata facility");
}
RO(n) = RO(n) ∪ {(id ∈ I, 〈&s, &s + sizeof(s)〉)} � Object metadata facility
pthread_rwlock_unlock(&object_lock); partitioned into N

2: ... disjoint structures
3: int *p0 = &(s.array[42]);
4: int *q0 = &(s.array[0]);
〈addr, id〉p0 = 〈addr ∈ A, ids〉
M [addrp0]← 〈&s.array[0], sizeof(s.array), idp0〉
〈addr, id〉q0 = 〈addr ∈ A, ids〉
M [addrq0]← 〈&s.array[0], sizeof(s.array), idq0〉

5: ...
6: *p0 = x;
7: ...
8: int i1;

MARC(q0, sizeof(int), addrq0, idq0, 42-n);
9: do {

10: int i0 = φ(0, i1);
11: if (i0 < 42-n) {
12: int *q1 = q0 + i0;

〈addr, id〉q1 = 〈addr, id〉q0

13: *q1 = *p0;
14: } else {
15: break;

121

16: }
17: i1 = i0+1;
18: } while (1);

After the allocation in line 1, an entry for the object metadata associated with s is

added to the nth object metadata facility RO(n). Here, it is assumed that the address of

s does not flow into any pointers other than the ones in the example. Thus, p0, q0, and

q1 are represented in the same connected component of the DFPGU . Since it is also

assumed that no other threads of execution access RO(n), the thread synchronization

primitives surrounding the update operation after line 1 are eliminated.

5.2.6 Unused metadata optimization

Metadata is unused if it is no longer required for performing safety checks that have

been removed with the above optimizations. Therefore, MemSafe removes such unused

metadata and the code required for its propagation. Metadata is deemed unused and

removed according to the following three rules, which are applied iteratively until all

unused metadata has been identified and eliminated:

1. Object metadata that is not directly used for a safety check is considered unused

and is removed. This includes the code that inserts object metadata into the

object metadata facility RO.

2. Pointer metadata that is not directly used for a safety check, stored in the RP

or RF metadata facilities, or copied to other pointers as a result of pointer

assignments or casts (see Section 4.3) is considered unused and is removed. This

includes pointer metadata retrieved from RP or RF with lookup operations.

122

3. If all lookup operations for theRP orRF metadata facilities have been eliminated

for all pointers in a particular connected component of the DFPGU , all store

operations to that metadata facility involving the pointer metadata of any

pointer in the same connected component are also eliminated.

Since connected components in the DFPGU represent disjoint alias sets, the last rule

simply states that for a disjoint set of pointers that may alias, if none of these pointers

are ever used to retrieve metadata from RP or RF , then metadata does not need to

be associated with these pointers in the same metadata facility.

The following code fragment demonstrates the application of the Unused Metadata

Optimization (UMO) using the running code example. Below, the source code is

shown after converting the PBC within the loop body to a MARC in the loop pre-header

by applying the monotonically addressed ranges optimization.

Example 5.7—Unused Metadata Optimization:

1: struct { ... int array[100]; ... } s;
RO = RO ∪ {(id ∈ I, 〈&s, &s + sizeof(s)〉)} � Unused metadata can be

2: ... eliminated
3: int *p0 = &(s.array[42]);
4: int *q0 = &(s.array[0]);
〈addr, id〉p0 = 〈addr ∈ A, ids〉
M [addrp0]← 〈&s.array[0], sizeof(s.array), idp0〉
〈addr, id〉q0 = 〈addr ∈ A, ids〉
M [addrq0]← 〈&s.array[0], sizeof(s.array), idq0〉

5: ...
6: *p0 = x;
7: ...
8: int i1;

MARC(q0, sizeof(int), addrq0, idq0, 42-n);
9: do {

10: int i0 = φ(0, i1);
11: if (i0 < 42-n) {
12: int *q1 = q0 + i0;

〈addr, id〉q1 = 〈addr, id〉q0

123

13: *q1 = *p0;
14: } else {
15: break;
16: }
17: i1 = i0+1;
18: } while (1);

Since all object bounds checks have been eliminated previously, the update of the

object metadata facility RO after the allocation in line 1 is eliminated. Similarly, since

the pointer bounds checks for the dereference of p0 and q1 have been eliminated, and

since the pointer metadata for p0 and q1 (defined after lines 4 and 12, respectively) is

not propagated through either RP or RF , it is removed as well. After applying all of

the above optimizations, the only code remaining that is required to enforce memory

safety is the definition of the pointer metadata for q0 after line 4, and the MARC before

line 9, which uses this metadata.

The unused metadata optimization is similar to, but not the same as, the well-known

dead code elimination optimization [7] in compiler theory. Dead code elimination is

used to remove code that is guaranteed to be never executed (unreachable code), and

code that operates on dead variables. Unreachable code is identified by inspecting

a program’s call and control-flow graphs. For example, a basic block that has no

immediate predecessors in the control-flow graph represents unreachable code. Dead

variables are variables that are defined but never used. Such unused variables are

trivial to identify in a program’s SSA form since each assignment is given a unique

name. If a defined value never appears on the right-hand side of an expression, the

value is never used, and it is safe to eliminate the assignment.

124

However, the unused metadata optimization cannot be accomplished using dead

code elimination since the metadata, and the code inserted for its propagation, is

neither necessarily unreachable nor does it represent dead code. The inserted metadata

is assumed reachable since it is a requirement of the inserted safety checks, which

themselves are assumed reachable, and the code for metadata propagation, even if

all safety checks have been eliminated, is not dead code since RO, RP , and RF must

maintain state throughout the execution of a program. Thus, the unused metadata

optimization is an enhancement of traditional dead code elimination achieved through

the use of application-specific knowledge.

125

126

Chapter 6

MemSafe Implementation

Having described MemSafe’s approach for inserting and optimizing the runtime checks

needed for ensuring memory safety, this chapter describes the implementation of the

MemSafe compiler and the global data structures it requires for maintaining metadata.

Additionally, implementation issues related to the C language and the typical C

programming development process are also considered.

6.1 MemSafe’s Analysis and Transformation

MemSafe is implemented within the Low Level Virtual Machine (LLVM) [56] compiler

infrastructure. LLVM’s intermediate representation is a low-level, typed SSA [26] form

that is language-independent and also independent of any instruction set architecture.

Thus, the implementation of MemSafe’s transformation for ensuring memory safety is

not specific to a particular computer architecture, and in theory, could also be used to

enforce safety for languages other than C. However, MemSafe has not been tested for

this purpose. By default, MemSafe uses Andersen’s analysis [4] for interprocedural

flow- and context-insensitive points-to information, but MemSafe is compatible with

127

any alias analysis implementation that operates within the LLVM infrastructure.

MemSafe consists of a collection of analyses and transformations that each con-

tribute a portion of the overall approach described in Chapter 4. These include:

1. An analysis and transformation that creates a temporary global variable for

representing the invalid pointer and assigns it to each pointer whose referent is

deallocated, as presented in Section 4.1.1. Pointers to deallocated objects are

identified by locating calls to free and by determining the local variables whose

addresses may escape the function in which they are defined. While MemSafe

conservatively assumes that the address of a variable escapes if it is saved in

another variable, an escape analysis (implemented as a client of alias analysis)

can be used to obtain more precise information.

2. An analysis and transformation that uses the results of alias analysis to insert

%-functions, as described in Section 4.1.2. For simplicity, %-functions are imple-

mented as calls to a variable-argument function since %-function arguments can

be of any (pointer) type and number.

Additionally, a simple reachability analysis is used to improve upon the results

of alias analysis. For example, consider the pointer store operation *ptr1 = p0

and the pointer load operation p1 = *ptr2. If alias analysis indicates that the

pointers ptr1 and ptr2 may alias, p0 would be added to the %-function inserted

for p1. However, if there is no control-flow path from the store operation to

the load operation, this is unnecessary since there is no program execution in

which the stored value can modify the loaded value. MemSafe does not include

128

stored pointers in the %-functions inserted for loaded pointers if the store cannot

reach the load. Note that the imprecision of this approach is the result of the

flow-insensitivity of Andersen’s analysis and that MemSafe’s reachability analysis

does not result in a flow-sensitive alias analysis.

3. An analysis that constructs the DFPG for the transformed code, as described

in Section 5.1. The DFPG is made available to the remaining transformations.

4. An analysis and transformation that inserts the required runtime checks and

metadata for ensuring memory safety, according to the check insertion and

metadata propagation rules in Sections 4.2–4.3 and the optimizations in Section

5.2. The metadata facilities RO, RP , and RF are declared as global data

structures and code for their initialization is placed in main.

5. A pass that aggressively removes the inserted assignments of the invalid pointer

(but not its associated metadata) and all %-functions, since these are only used

for MemSafe’s analysis.

Each of the above analyses and transformations are run sequentially on a program

after it as been translated into LLVM’s intermediate form, linked, and optimized with

LLVM’s standard set of compiler optimizations. Applying MemSafe’s transformation

after LLVM’s optimizations improves the results of alias analysis and ensures that

MemSafe avoids inserting unnecessary checks. The same optimizations are run after

MemSafe has completed its transformation to further optimize the inserted checks

and to eliminate any dead code MemSafe may have introduced during its analysis.

129

6.2 Metadata Facilities

The global facilities (RO, RP and RF) MemSafe requires for maintaining object

and pointer metadata can be implemented using any data structure that supports

efficient insertion, deletion, and retrieval operations. For simplicity and ease of

implementation, MemSafe uses dynamically resized hash tables for all three metadata

facilities. Collisions are resolved using separate chaining. Hash functions are a modulo

of the key with the size of the table, which becomes an efficient bitwise and operation

by restricting table sizes to powers of two.

The prototype implementation of MemSafe makes two simplifications in the process

described for creating pointer and object metadata. Fist, MemSafe acquires addresses

addr ∈ A for storing a pointer’s pointer metadata using malloc, and this storage is

released back to the system using free when a pointer’s metadata is updated to be

that of the invalid pointer. Second, MemSafe acquires a unique id ∈ I, which is used

as a key for the object metadata facility by incrementing a global counter. While this

ensures that each generated id is unique, this places a finite limitation on the number

of objects that can be allocated by a program. However, note that a 4GHz computer

would take 136 years to overflow a 64-bit counter allocating a new object on every

clock cycle.

6.2.1 Implementation alternatives

Although the prototype implementation of MemSafe utilizes hash tables for maintaining

the required metadata, other implementations are possible. In particular, tries [38]

130

can often be used as an alternative to hash tables. A trie is a prefix tree data structure

in which the position of a node in the tree indicates the key with which the node’s

data is associated. Tries are useful for implementing associative containers because

the time required for performing insertion, deletion, and retrieval operations is O(m),

where m is the length of a key. Although a hash table is capable of performing these

operations in constant time, complex hash functions, key collisions, and table resizing

can, in the worst case, degrade their performance to O(n) time, where n is the number

of keys. Tries are also simpler than hash tables to implement effectively, and they are

commonly used for implementing dictionaries and spell checking algorithms.

Splay trees can also be used instead of hash tables for implementing MemSafe’s

metadata facilities. A splay tree [78] is a self-optimizing binary search tree in which

the frequently accessed nodes are moved towards the root of the tree, where they

become quick to access again. The insertion, deletion, and retrieval operations of a

splay tree are each performed in O(log n) amortized time, where n is the number of

nodes in the tree. When accessing a node, a special splaying operation is performed

that uses a sequence of tree rotations to place the accessed node at the root of the

tree. Because of this self-optimizing property, if used to maintain metadata, splay

trees can mimic a program’s locality of reference and ensure the base and bound

information of the most frequently dereferenced pointers is kept near the root of the

tree. Another advantage of splay trees is that, because their elements are sorted,

they can be used to perform range lookups, which can be useful for some forms of

metadata propagation (see Section A.1 for an example). Splay trees are commonly

used to implement software caches and garbage collection algorithms.

131

While the above design alternatives apply to all three metadata facilities, the

function metadata facility RF could also be implemented using a stack instead of an

associate container. Just like parameters are passed to functions by pushing them

onto the call stack, the 〈addr, id〉 pointer metadata associated with pointer arguments

could be pushed onto a disjoint shadow stack before procedure calls. A callee could

then pop the required metadata from the top of the shadow stack at the beginning of

the procedure. The advantage of this approach is its simplicity: although the hash

table is an effective implementation of the function metadata facility, a stack-based

approach would likely require less memory overhead and the insertion, deletion, and

retrieval operations would be more predictable in runtime.

As a final implementation alternative, pointer metadata could be passed to functions

through the use of additional arguments. In order to do so, each function accepting

pointer arguments must be replaced with an equivalent function accepting an additional

metadata argument for each of its original pointer arguments. While this approach is

essentially a stack-based model, it eliminates the need for maintaining a separate data

structure for RF . However, the requirement to modify function prototypes would

complicate interfacing with variadic functions and pre-compiled libraries.

6.3 Metadata Allocation

Since the metadata associated with pointers is propagated at pointer assignments,

it can be efficiently allocated locally using automatic memory that is disjoint from

the pointers with which it is associated. However, the metadata that is maintained

132

in the global metadata facilities requires dynamic storage. To avoid the runtime

cost associated with dynamic memory management, MemSafe initially sizes the RP

and RF metadata facilities large enough such that the need to dynamically allocate

additional storage is a rare occurrence.

MemSafe makes the following improvement to the above approach for lowering the

dynamic allocation overhead of the object metadata facilityRO. Since object metadata

exists in RO only for as long as the object it is associated with is allocated, the storage

space required for object metadata can be located with the objects. For stack-allocated

objects, their corresponding object metadata can be efficiently allocated on the stack,

and a pointer to this structure can be maintained in RO. For an object allocated on

the heap, instead of requiring the program to perform an additional call to malloc

to allocate the storage needed for the metadata, MemSafe transforms the program

such that the object’s metadata is maintained in a header structure appended to the

beginning of the allocated region.

Figure 6.1 demonstrates MemSafe’s transformation for lowering the runtime cost

associated with dynamically allocating object metadata. In the original code frag-

ment (a), an array of ten of structures is allocated dynamically with malloc, and

then this object is later deallocated with free. The metadata associated with array

(not shown) must be dynamically allocated and inserted into RO.

In the transformed code (b), line 1 computes the storage space required for the

original array plus one header structure h for storing array’s object metadata. In line

2, a region of memory is allocated and the pointer header is created to point to the

metadata structure. This pointer is incremented by the size of one header structure in

133

1: array = (struct s*) malloc(10 * sizeof(struct s));
...

2: free(array);

(a) Original source code

1: size = 10 * sizeof(struct s) + sizeof(struct h);
2: header = (struct h*) malloc(size);
3: array = (struct s*) (header + 1);
4: header->base = (void*) array;
5: header->bound = (void*) (array + 10);
6: header->id = id;

...
7: header = ((struct h*) array) - 1;
8: free(header);

(b) Transformed source code

h0 s0 s1 s2 s3 s4 s5 s6 s7 s8 s9

array

10*sizeof(struct s)

header

sizeof(struct h)

(c) Memory layout

Figure 6.1: Header allocation. The original source code (a)
is transformed (b) to efficiently allocate memory for the header
and initialize the object metadata. The memory layout (c) of the
resulting allocation contains enough padding to hold the header
in addition to the original data.

134

line 3 to obtain a pointer to the array. Lines 4–6 store the metadata of array in the

header structure, and a pointer to this structure is maintained in RO (not shown). In

order to deallocate the array, the base address of the allocated object is computed in

line 7, and in line 8, this address is used to deallocate the entire region. Note that the

object metadata for array would have been unmapped in RO before the call to free

(see Section 4.3). The resulting memory layout (c) of the entire structure shows the

location of the two pointers.

6.4 Limitations

Although MemSafe’s method of ensuring the memory safety of C is complete and

compatible with most programs, given C’s weak typing guarantees and the typical

application development process, in practice, MemSafe is not free from limitations.

For example, the implementation of MemSafe currently does not support inline

assembly instructions and does not allow self-modifying code. For programs requiring

assembly, MemSafe could be extended with the appropriate rules for handling these

instructions, but this would likely limit the effectiveness of MemSafe’s optimizations.

Self-modifying code is now commonly disabled by default in most modern operation

systems. Additional limitations of MemSafe’s implementation are discussed below.

6.4.1 Separate compilation

MemSafe’s most significant limitation is its use of whole-program analysis to limit the

number of required checks and to avoid unnecessary metadata propagation. Although

135

analyzing the entire program is essential for reducing the cost of software-provided

memory safety, it negates the advantages of separate compilation, and can be prob-

lematic for use in common build environments. However, MemSafe’s whole-program

analysis, which is based the construction of the DFPG, is not required for enforcing

safety. The checks and metadata propagation described in Sections 4.2–4.3 are fully

compatible with separate compilation, and MemSafe’s optimizations can be turned

off for programs where whole-program analysis is infeasible. Chapter 7 presents

performance overheads with and without using whole-program analysis.

6.4.2 NULL and manufactured pointers

Pointers that are NULL or defined as a type-cast from a non-pointer type cannot be

associated with a valid object. Therefore, MemSafe sets the base and bound of such

pointers to be equal to that of the invalid pointer. Although this may result in false

positives, they have been observed to be rare occurrences in practice. For reading and

writing to memory-mapped I/O locations, MemSafe requires a target’s backend to

specify the base and bound address of all valid address ranges.

136

Chapter 7

Results

Having discussed the prototype implementation of the MemSafe compiler, this chapter

presents a thorough evaluation of MemSafe’s approach for ensuring the memory

safety of C programs at runtime. Specifically, this chapter evaluates (1) MemSafe’s

completeness by demonstrating that it is capable of detecting known memory safety

violations in several large programs, (2) MemSafe’s runtime cost by measuring its

runtime overhead on a variety of programs and comparing this slowdown with that of

prior methods, and (3) the effectiveness of MemSafe’s static analysis by measuring

quantities related to MemSafe’s data-flow representation and the number of required

checks and performed optimizations.

In performing the above evaluation, it will be demonstrated that MemSafe is

compatible with a variety of C programs and that it does not require any source

code modifications or programmer intervention. Additionally, it will be shown that

MemSafe’s key contributions—namely, the modeling of temporal violations as spatial

violations, the use of a hybrid metadata representation, and MemSafe’s data-flow

representation—are effective tools for reducing the runtime cost of dynamically ensuring

memory safety.

137

Benchmark Size Detected All

Suite Program LOC Derefs

BugBench 099.go 29246 16632 yes
129.compress 1934 232 yes
bc-1.06 14288 2474 yes
gzip-1.2.4 9076 1722 yes
ncompress-4.2.4 1922 838 yes
polymorph-0.4.0 716 65 yes

Table 7.1: Violations detected in BugBench. MemSafe’s ability to detect all
memory violations in the BugBench [60] programs is demonstrated. Program size is
measured in lines of code (LOC) and the number of static dereferences.

7.1 Effectiveness in Detecting Errors

To provide evidence of its completeness and ability to detect real errors, MemSafe was

evaluated on programs containing known memory errors from the BugBench [60] suite

of programs. BugBench is a collection of programs containing various documented

software bugs that was expressly created to evaluate the effectiveness of error detection

tools. Table 7.1 shows that MemSafe is capable of detecting all known memory

errors in six programs from BugBench. BugBench programs that were excluded from

Table 7.1 include programs that only contain errors that are not related to spatial

or temporal safety (e.g., memory leaks and race conditions). Thus, the programs in

Table 7.1 are representative of all memory safety violations in BugBench. The size of

each program is given in lines of code (LOC) and the number of static dereferences.

MemSafe’s ability to detect real-world memory violations was further validated by

it compiling two large applications and successfully detecting the known memory errors.

Table 7.2 summarizes the memory safety violations detected by MemSafe in various

versions of the Apache HTTP server [6] and the GNU Core Utilities [39] software

138

Application Version LOC Component Detected Violation

Apache HTTP Server∗ 2.0.39 262487 mod_ext_filter null dereference
2.0.40 266741 mod_env null dereference
2.0.46 282682 mod_ssl dangling pointer
2.0.48 284627 mod_ssl null dereference
2.0.50 262266 mod_rewrite buffer overflow
2.0.52 263513 mod_auth_ldap null dereference
2.0.54 265243 mod_auth_ldap null dereference
2.0.59 267783 mod_rewrite uninitialized pointer
2.2.0 310283 mod_proxy double free
2.2.2 311235 mod_dbd double free
2.2.6 314531 mod_proxy_balancer buffer overflow
2.2.8 316713 mod_log_config null dereference
2.2.9 332867 mod_ldap null dereference
2.3.4 206590 mod_proxy null dereference

GNU Core Utilities† 5.2.1 103659 fts double free
5.2.1 103659 copy buffer overflow
5.2.1 103659 who buffer overflow
5.3.0 107147 cut double free
5.9.0 112781 regexec buffer overflow
6.10 69491 mkfifo null dereference
6.10 69491 mknod null dereference
6.10 69491 ptx buffer overflow

Table 7.2: Violations detected in real-world applications. MemSafe’s ability
to detect known real-world memory violations in the Apache HTTP Server [6] and
GNU Core Utilities [39] software package is demonstrated. Program size is measured
in lines of code (LOC).

∗Source of violations: https://issues.apache.org/bugzilla/
†Source of violations: http://lists.gnu.org/archive/html/bug-coreutils/

139

https://issues.apache.org/bugzilla/
http://lists.gnu.org/archive/html/bug-coreutils/

package. The Apache HTTP server is a widely-used open source web server, and the

GNU Core Utilities is a GNU software package that provides the basic text, shell, and

file utilities (e.g., cat, expr, and cp) common among virtually all Unix-like operating

systems. To reproduce the known errors in these programs, the online development

archive and bug database of each was consulted in order to identify particular versions

of the software that contain memory safety violations and the runtime conditions

necessary for producing them. Having discovered the known violations, MemSafe was

then used to compile each version of the software, and the programs were executed to

verify that the inserted runtime checks successfully detected the violations. The size

of each program in Table 7.2 is given in lines of code.

7.2 Runtime Performance

MemSafe’s increase in runtime and memory consumption was measured on a total

of 30 programs from the Olden [71], PtrDist [9] and SPEC [79] benchmark suites.

Programs from Olden and PtrDist suites are known for being memory allocation

intensive, while those from SPEC are larger and generally more computationally

intensive. The programs were executed on a system running the Ubuntu 8.04 LTS

Desktop operating system with Linux kernel version 2.6.24. The system contains a

single 3GHz Pentium 4 processor and 2GB of main memory. Program execution times

were determined by taking the lowest of three times obtained using the GNU/Linux

time command, and memory usage was measured by instrumenting all allocation and

deallocation instructions to record the number of allocated objects and their sizes.

140

Due in part to LLVM’s research-quality implementation of Andersen’s analysis, the

current implementation of MemSafe is not yet robust enough to compile the entire set

of SPEC benchmarks. The results presented in this section pertain to the subset that

MemSafe correctly compiles.

7.2.1 Increase in runtime

Table 7.3 summarizes the runtime and memory consumption overheads of MemSafe’s

fully optimized approach. While this section discusses the increase in runtime of

programs compiled with MemSafe’s safety checks, the discussion of their increase in

memory consumption is deferred until Section 7.2.2.

The “Runtime” and “Slowdown” columns of Table 7.3 show that MemSafe ensured

complete spatial and temporal safety for all 30 programs with an average overhead

of 88%. In general, MemSafe’s overhead was observed to be comparable to that of

CCured [64]: on the allocation intensive Olden benchmarks, MemSafe’s overhead

was 29% versus CCured’s 30%, and on CCured’s entire set of reported benchmarks,

MemSafe overhead was 69% versus CCured’s 80%. Not including bc (on which

CCured’s overhead was particularly high) reduces these to 65% and 30%, respectively.

While the runtime cost of MemSafe is similar to that of CCured, MemSafe does

not incur the drawbacks associated with the use of CCured—the need for manual

modifications and the compatibility issues arising from the use of “fat pointer.” Due

to CCured’s need for manual code modifications, results for CCured on additional

programs were not obtained.

141

Benchmark Size Runtime (s) Memory (MB) Slowdown
Suite Program LOC Derefs Base MemSafe Base MemSafe MemSafe CCured MSCC

Olden bh 2073 284 4.64 5.34 14.67 17.70 1.15 1.44 2.82
bisort 350 76 1.31 1.59 214.73 275.12 1.21 1.45 1.76
em3d 688 187 5.11 6.95 54.84 55.15 1.36 1.87 1.79
health 502 236 0.47 0.70 36.63 53.61 1.48 1.29 2.72
mst 428 57 0.31 0.36 24.90 24.92 1.17 1.06 1.76
perimeter 484 258 0.36 0.48 37.33 80.12 1.34 1.09 3.37
power 622 285 4.09 4.70 2.91 5.14 1.15 1.07 1.22
treeadd 245 26 0.38 0.59 48.00 182.92 1.55 1.10 3.23
tsp 582 194 3.83 4.44 144.00 278.65 1.16 1.15 2.28

average 716 178 2.28 2.79 64.22 108.15 1.29 1.30 2.33

PtrDist anagram 650 113 1.56 2.96 0.24 0.25 1.90 1.43 –
bc 7297 3927 1.34 3.15 0.72 0.72 2.35 9.91 –
ft 1766 246 2.04 3.61 3.24 9.20 1.77 1.03 –
ks 782 239 1.54 2.97 0.02 0.09 1.93 1.11 –
yacr2 3986 1000 1.96 5.98 29.88 30.17 3.05 1.56 –

average 2896 1105 1.69 3.73 6.82 8.09 2.20 3.01 –

SPEC’95 099.go 29246 16632 0.62 1.26 0.00 0.01 2.03 1.22 2.60
129.compress 1934 232 0.01 0.02 0.00 0.00 2.20 1.17 1.85
130.li 7597 4905 0.06 0.12 19.91 19.91 1.93 1.70 –
147.vortex 67202 25135 0.00 0.00 96.41 96.41 – – –

average 26495 11726 0.17 0.35 29.08 29.08 2.05 1.36 –

SPEC’00 164.gzip 8605 1499 20.72 43.10 187.93 187.94 2.08 – 1.46
175.vpr 17729 5386 8.34 16.26 44.35 44.37 1.95 – 3.53
181.mcf 2412 534 11.34 21.89 99.86 99.46 1.93 – 2.85
186.crafty 24975 7579 14.93 34.94 7.09 7.14 2.34 – –
255.vortex 67213 25134 3.96 8.28 96.46 96.46 2.09 – –
256.bzip2 4649 1254 22.33 45.55 191.95 191.96 2.04 – –
300.twolf 20459 11741 7.52 15.34 6.39 12.74 2.04 – –

average 20863 7590 12.73 26.48 90.58 91.49 2.07 – –

SPEC’06 401.bzip2 8293 4013 6.20 17.55 855.79 855.79 2.83 – –
445.gobmk 197215 27614 0.29 0.66 28.50 28.66 2.27 – –
456.hmmr 35992 7582 7.82 17.52 59.82 59.89 2.24 – –
458.sjeng 13847 5832 10.12 22.26 179.63 179.64 2.20 – –
473.astar 5842 1873 0.00 0.00 313.15 313.15 – – –

average 52238 9383 4.89 11.60 287.38 287.43 2.39 – –

Average 18394 5136 4.77 9.62 93.31 106.92 1.88 – –

Table 7.3: Dynamic results with whole-program analysis. Program size is
measured in lines of code and the number of static dereferences, runtime is measured in
seconds, and memory consumption is measured in megabytes. Slowdown is computed
as the ratio of the execution time of the instrumented program to that of the original
program. Slowdown for MemSafe with all optimizations is shown in comparison with
CCured [64] and MSCC [82] where results are available.

142

Benchmark Size Runtime (s) Memory (MB) Slowdown
Suite Program LOC Derefs Base MemSafe Base MemSafe MemSafe CCured MSCC

Olden bh 2073 284 5.00 9.35 14.67 19.52 1.87 1.44 2.82
bisort 350 76 1.32 5.77 214.73 294.74 4.37 1.45 1.76
em3d 688 187 5.22 7.41 54.84 55.39 1.42 1.87 1.79
health 502 236 0.46 2.36 36.63 57.96 5.12 1.29 2.72
mst 428 57 0.30 0.38 24.90 24.93 1.26 1.06 1.76
perimeter 484 258 0.36 1.83 37.33 90.67 5.09 1.09 3.37
power 622 285 4.09 4.83 2.91 5.94 1.18 1.07 1.22
treeadd 245 26 0.38 2.09 48.00 208.00 5.51 1.10 3.23
tsp 582 194 3.83 19.04 144.00 304.00 4.97 1.15 2.28

average 716 178 2.33 5.89 64.22 117.91 3.42 1.30 2.33

PtrDist anagram 650 113 1.57 2.97 0.24 0.25 1.89 1.43 –
bc 7297 3927 1.34 4.03 0.72 0.73 3.01 9.91 –
ft 1766 246 2.05 3.63 3.24 11.15 1.77 1.03 –
ks 782 239 1.54 3.33 0.02 0.09 2.16 1.11 –
yacr2 3986 1000 1.97 6.15 29.88 30.20 3.12 1.56 –

average 2896 1105 1.69 4.02 6.82 8.49 2.39 3.01 –

SPEC’95 099.go 29246 16632 0.62 1.25 0.00 0.01 2.02 1.22 2.60
129.compress 1934 232 0.01 0.02 0.00 0.01 1.78 1.17 1.85
130.li 7597 4905 0.06 0.20 19.91 19.92 3.32 1.70 –
147.vortex 67202 25135 0.00 0.00 96.41 96.42 – – –

average 26495 11726 0.17 0.37 29.08 29.09 2.37 1.36 –

SPEC’00 164.gzip 8605 1499 20.75 43.99 187.93 187.94 2.12 – 1.46
175.vpr 17729 5386 8.39 27.27 44.35 44.37 3.25 – 3.53
181.mcf 2412 534 11.28 30.79 99.86 99.86 2.73 – 2.85
186.crafty 24975 7579 14.95 42.91 7.09 7.15 2.87 – –
255.vortex 67213 25134 3.95 21.73 96.46 96.46 5.50 – –
256.bzip2 4649 1254 22.30 53.74 191.95 191.96 2.41 – –
300.twolf 20459 11741 7.51 30.94 6.39 14.71 4.12 – –

average 20863 7590 12.73 35.91 90.58 91.78 3.29 – –

SPEC’06 401.bzip2 8293 4013 6.23 24.23 855.79 855.79 3.89 – –
445.gobmk 197215 27614 0.30 0.99 28.50 28.77 3.30 – –
456.hmmr 35992 7582 7.82 28.00 59.82 59.89 3.58 – –
458.sjeng 13847 5832 10.11 30.23 179.63 179.64 2.99 – –
473.astar 5842 1873 0.00 0.00 313.15 313.15 – – –

average 52238 9383 4.89 16.69 287.38 287.45 3.44 – –

Average 18394 5136 4.79 13.65 93.31 109.99 3.09 – –

Table 7.4: Dynamic results with separate compilation. Program size is mea-
sured in lines of code and the number of static dereferences, runtime is measured in
seconds, and memory consumption is measured in megabytes. Slowdown is computed
as the ratio of the execution time of the instrumented program to that of the original
program. Slowdown for MemSafe with all optimizations is shown in comparison with
CCured [64] and MSCC [82] where results are available.

143

0

2

4

6

8

10

12

bisort
health

perimeter

power
tsp ft ks yacr2

129.compress

256.bzip2

Average

Sl
ow

do
w
n

Spatial & Temporal Safety: MSCC MemSafe

Benchmark

0

2

4

6

8

10

12

bisort
health

perimeter

power
tsp ft ks yacr2

129.compress

256.bzip2

Average

Sl
ow

do
w
n

Spatial & Temporal Safety:
Spatial Safety: MSCC MemSafe

Benchmark

Figure 7.1: Runtime comparison with MSCC. Slowdown for MemSafe and
MSCC [82] is shown for spatial and temporal and spatial-only safety.

Additionally, MemSafe demonstrated a significant and consistent improvement

over the reported performance of MSCC [82], the tool with the lowest overhead among

all existing complete and automatic methods that detect both spatial and temporal

errors. On the Olden benchmarks, MemSafe’s average overhead (29%) was roughly

1/4 that of MSCC (133%), and on the entire set of MSCC’s reported benchmarks,

MemSafe’s overhead (44%) was roughly 1/3 that of MSCC (137%).

In order to provide a direct comparison with MSCC (instead of relying on published

results) on the same computer hardware, an attempt was made to compile our entire

set of benchmarks with MSCC. However, perhaps due to MSCC having not been

actively maintained since its publication, it was found to be difficult to compile

MemSafe’s entire set of 30 benchmarks with MSCC. Figure 7.1 compares the slowdown

of MemSafe’s fully optimized approach for spatial and temporal safety with that

of MSCC on the set of benchmarks MSCC compiled correctly. MemSafe’s average

144

overhead for these benchmarks (74%) was roughly 1/6 that of MSCC (486%). While

these results show a dramatic increase in runtime overhead for MSCC, the overall

trend is similar to the reported results for MSCC shown in Table 7.3. Comparisons

with additional methods on the Olden benchmarks is presented in Section 1.2.

MemSafe’s optimized approach improves the runtime cost required for memory

safety in comparison to that of prior work for the following reasons: (1) MemSafe’s

data-flow representation enables performance-enhancing optimizations that reduce

overhead from 253% to 88% (explained later). (2) MemSafe’s modeling of temporal

errors as spatial errors, combined with a hybrid metadata representation, enables

MemSafe to ensure temporal safety with only a 10% increase in the overhead of spatial

safety alone (also explained later). In particular, MemSafe’s large improvement versus

MSCC on the Olden benchmarks is due to the fact that these programs deallocate all

dynamically allocated memory at once before terminating. Thus, by determining that

there is no control-flow path from the deallocation to other points in the program,

MemSafe is able to eliminate the propagation of the metadata associated with the

invalid pointer and remove all object bounds checks. Deallocated memory at the end

of a program is a common programming style when objects are required to have an

unlimited lifespan or when memory reallocation is not needed.

Table 7.4 summarizes, in the same way as Table 7.3, the runtime performance of

MemSafe’s fully optimized approach, but when limited by disabling whole-program-

analysis. Moreover, MemSafe was instructed to not use interprocedural information

when inserting the required runtime checks and code for propagating metadata.

Thus, these results represent the worse-case execution time associated with separate

145

compilation, since each function, in a sense, was processed as if it were contained in a

separate module. The “Slowdown” column of Table 7.4 shows that MemSafe’s average

runtime overhead increases to 209% overall and to 242% on the Olden benchmark

suite by disallowing interprocedural analysis.

To explain the seemingly large increase in MemSafe’s runtime overhead when

restricted to separate compilation, note that while not being true whole-program

analyses themselves, both CCured and MSCC link the intermediate representation

of separately processed files together to form one monolithic representation of the

program before generating object code. Thus, the compiler backend of each of

these tools benefits from interprocedural information when performing optimizations.

Interprocedural optimization was completely disabled to obtain the runtime overheads

for MemSafe’s approach presented in Table 7.4.

7.2.2 Increase in memory consumption

The “Memory” column of Table 7.3 reports the memory consumption of each pro-

gram when compiled with the LLVM compiler and when compiled with MemSafe.

MemSafe ensured complete spatial and temporal safety for all 30 programs with an

average increase in memory of 13.61MB, which is equal to 48.60% of the programs’

original memory requirements. MemSafe’s average memory consumption overhead is

significantly higher for the Olden (73.52%) and PtrDist (130.32%) benchmark suites

compared to the three SPEC (8.46%) benchmark suites. Since MemSafe requires

the metadata of each allocated object to be mapped in the object metadata facility,

146

allocation intensive programs, like those in the Olden and PtrDist suites, can be

expected to require more memory for maintaining metadata than computationally

intensive programs. In particular, the memory required for MemSafe’s metadata is

determined by the number of allocated objects rather than their total size.

Table 7.4 shows MemSafe’s increase in memory consumption when whole-program-

analysis is disabled. Without the full effectiveness of MemSafe’s optimizations for

eliminating unnecessary checks and metadata, MemSafe’s average memory consump-

tion increases from 13.61MB to 16.67MB (57.77%).

7.2.3 Effectiveness of optimizations

Figure 7.2 shows that MemSafe’s optimizations and whole-program analysis are

effective tools for reducing the runtime overhead required for ensuring memory safety.

Shown in the “Average” histogram, MemSafe’s optimizations reduced its average

runtime overhead from 253% to 88%. Since the optimization for dominated dereferences

(DDO) is minimally effective, it is presented in Figure 7.2 as the baseline. The

optimization for temporally-safe dereferences (TDO) reduced overhead by 102%, and

the optimization for non-incremental dereferences (NDO) reduced overhead by 37%.

Combined with the optimization for unused metadata, which is included with both,

NDO and TDO accounted for the greatest reduction in overhead. The optimization for

monotonically addressed ranges (MRO) was marginally effective and reduced overhead

by only 1%.

Figure 7.3 shows the effectiveness of MemSafe’s optimizations without utilizing

147

0 1 2 3 4 5 6 7

bh
bisort em3d health mst
perimeter
power treeadd tsp

anagram bc
ft
ks
yacr2

099.go 129.compress

130.li

164.gzip 175.vpr 181.mcf 186.crafty
255.vortex
256.bzip2
300.twolf
401.bzip2
445.gobmk
456.hmmer
458.sjeng
Average

Slowdown

Spatial&
Tem

poralSafety:
B
ase+

D
D
O

+
T
D
O

+
N
D
O

+
M
R
O

SP
EC

2006
SP

EC
2000

SP
EC

95
P
trD

ist
O
lden

0 1 2 3 4 5 6 7

bh
bisort em3d health mst
perimeter
power treeadd tsp

anagram bc
ft
ks
yacr2

099.go 129.compress

130.li

164.gzip 175.vpr 181.mcf 186.crafty
255.vortex
256.bzip2
300.twolf
401.bzip2
445.gobmk
456.hmmer
458.sjeng
Average

Slowdown

Spatial&
Tem

poralSafety:
SpatialSafety:

B
ase+

D
D
O

+
T
D
O

+
N
D
O

+
M
R
O

SP
EC

2006
SP

EC
2000

SP
EC

95
P
trD

ist
O
lden

F
igure

7.2:
O
ptim

ization
effectiveness

w
ith

w
hole-program

analysis.
Slowdown

isshown
forspatialand

tem
poraland

spatial-only
safety.

O
ptim

izations
include

dom
inated

dereferences
(D

D
O
),tem

porally-safe
dereferences

(TD
O
),non-increm

ental
dereferences

(N
D
O
),and

m
onotonically

addressed
ranges

(M
RO

).

148

01234567

bh
bis
ort

em
3d

he
alt
hms

t
pe
rim

ete
r

po
we
rtre

ead
dtsp

an
ag
rambc

ft
ks
ya
cr2

09
9.g
o12

9.c
om
pre
ss

13
0.l
i

16
4.g
zip17

5.v
pr18

1.m
cf18

6.c
raf
ty

25
5.v
ort
ex

25
6.b
zip
2

30
0.t
wo
lf

40
1.b
zip
2

44
5.g
ob
mk45

6.h
mm

er
45
8.s
jen
g

Av
era
ge

Slowdown

Sp
at
ia
l&

Te
m
po

ra
lS

af
et
y:

B
as
e+

D
D
O

+
T
D
O

+
N
D
O

+
M
R
O

SP
EC

20
06

SP
EC

20
00

SP
EC

95
P
tr
D
ist

O
ld
en

01234567

bh
bis
ort

em
3d

he
alt
hms

t
pe
rim

ete
r

po
we
rtre

ead
dtsp

an
ag
rambc

ft
ks
ya
cr2

09
9.g
o12

9.c
om
pre
ss

13
0.l
i

16
4.g
zip17

5.v
pr18

1.m
cf18

6.c
raf
ty

25
5.v
ort
ex

25
6.b
zip
2

30
0.t
wo
lf

40
1.b
zip
2

44
5.g
ob
mk45

6.h
mm

er
45
8.s
jen
g

Av
era
ge

Slowdown

Sp
at
ia
l&

Te
m
po

ra
lS

af
et
y:

Sp
at
ia
lS

af
et
y:

B
as
e+

D
D
O

+
T
D
O

+
N
D
O

+
M
R
O

SP
EC

20
06

SP
EC

20
00

SP
EC

95
P
tr
D
ist

O
ld
en

F
ig
ur
e
7.
3:

O
pt
im

iz
at
io
n
eff

ec
ti
ve
ne

ss
w
it
ho

ut
w
ho

le
-p
ro
gr
am

an
al
ys
is
.
Sl
ow

do
wn

is
sh
ow

n
fo
r
sp
at
ia
la

nd
te
m
po

ra
l

an
d

sp
at
ia
l-o

nl
y
sa
fe
ty
.

O
pt
im

iz
at
io
ns

in
cl
ud

e
do

m
in
at
ed

de
re
fe
re
nc
es

(D
D
O
),

te
m
po

ra
lly

-s
af
e
de
re
fe
re
nc
es

(T
D
O
),

no
n-

in
cr
em

en
ta
ld

er
ef
er
en
ce
s
(N

D
O
),
an

d
m
on

ot
on

ic
al
ly

ad
dr
es
se
d
ra
ng

es
(M

RO
).

149

whole-program analysis. When restricted to not use interprocedural information,

MemSafe’s optimizations reduced the overhead from 253% to 209%. TDO reduced

overhead by 11%, NDO reduced overhead by 7%, and MRO reduced overhead by

an additional 2%. Hence, MemSafe’s average overhead with separate compilation

was 209% versus 88% with whole-program analysis. MemSafe’s seemingly large

improvement in runtime overhead when given the ability to perform interprocedural

optimizations is not by chance: By representing memory deallocation and pointer

stores as direct assignments, MemSafe makes whole-program optimizations much more

effective. Thus, MemSafe’s overheads are lower than those of existing methods that

cannot benefit in this way.

7.2.4 Additional cost of temporal safety

Figure 7.2 also quantifies the additional runtime cost required for MemSafe to ensure

temporal safety. The last bar in the “Average” histogram shows that MemSafe’s

overhead for both spatial and temporal safety (88%) is comparable to the runtime

overhead MemSafe requires for ensuring spatial safety alone (80%). Thus, for the

30 programs tested, MemSafe ensured complete temporal safety with a modest 10%

increase in the average overhead for achieving spatial safety alone.

Finally, the additional cost of ensuring temporal safety with MemSafe is a significant

reduction in the cost of achieving temporal safety with MSCC. On MSCC’s set of

reported benchmarks, the additional cost of ensuring temporal safety with MemSafe

(1%) is a reduction in the additional runtime cost required for MSCC to ensure tempral

150

0.1

1

10

100

1000

10000

255.vortex

147.vortex

130.li
401.bzip2

445.gobmk

ft perimeter

456.hmmer

458.sjeng

300.twolf

bc 473.astar

tsp 186.crafty

181.mcf

175.vpr

ks bisort
bh yacr2

treeadd

129.compress

164.gzip

256.bzip2

health
em3d

anagram

mst
power

%
/S

to
re

Benchmark

No Alias Analysis
Andersen’s Alias Analysis

Figure 7.4: Effect of aliasing. The average number of %-nodes modifiable by each
pointer store is shown with Andersen’s alias analysis versus no alias analysis.

safety (62%) by a factor of 62. For the set of programs that were successfully compiled

with MSCC on the same platform as MemSafe (shown in Figure 7.1), the additional

cost of ensuring temporal safety with MemSafe (13%) is a reduction in the additional

runtime cost required for MSCC to ensure temporal safety (114%) by a factor of nearly

9. Thus, while the overheads for MemSafe are much lower than that of MSCC, the

difference in the additional overhead required to achieve temporal safety is further

evidence that by modeling temporal errors as spatial errors, MemSafe’s optimizations

are effective tools for reducing the additional cost of temporal safety.

7.3 Static analysis

The “Checks,” “Opts.,” and “DFPG” columns of Table 7.5 describe results related

to MemSafe’s whole-program analysis. First, the “Checks” column shows the static

151

Benchmark Size Checks (%) Opts. (%) DFPG
Suite Program LOC Derefs PBC OBC MARC DDO TDO NDO Invalid (%) %/Store

Olden bh 2073 284 19.01 0.00 1.76 27.11 70.07 52.11 0.00 7.19
bisort 350 76 9.21 0.00 0.00 35.53 64.47 55.26 0.00 9.93
em3d 688 187 31.55 0.00 3.21 7.49 82.35 57.75 0.00 1.84
health 502 236 22.46 0.00 0.00 15.25 84.32 62.29 0.00 3.42
mst 428 57 19.30 0.00 5.26 12.28 77.19 63.16 0.00 0.24
perimeter 484 258 19.77 0.00 0.00 0.00 100.00 80.23 0.00 142.61
power 622 285 37.89 0.00 0.00 22.46 75.79 39.65 0.00 0.00
treeadd 245 26 39.47 0.00 0.00 0.00 100.00 60.53 0.00 5.33
tsp 582 194 15.98 0.00 0.00 31.96 68.04 52.06 0.00 31.07

average 716 178 23.85 0.00 1.14 16.90 80.25 58.12 0.00 22.40

PtrDist anagram 650 113 33.63 0.00 0.00 21.24 52.21 45.13 0.00 0.29
bc 7297 3927 15.76 3.79 1.12 32.85 57.70 50.27 8.99 43.62
ft 1766 246 30.49 0.00 0.00 24.80 70.33 44.72 3.92 155.43
ks 782 239 28.03 0.00 0.00 27.62 49.37 44.35 0.00 13.71
yacr2 3986 1000 34.70 5.00 3.90 34.60 51.20 26.80 4.85 6.15

average 2896 1105 28.52 1.76 1.00 28.22 56.16 42.25 3.55 43.84

SPEC’95 099.go 29246 16632 57.54 0.00 5.96 25.44 11.06 11.06 0.00 –
129.compress 1934 232 16.38 0.00 4.74 40.95 37.93 37.93 0.00 4.13
130.li 7597 4905 14.92 0.00 0.06 27.26 70.89 57.76 0.00 694.18
147.vortex 67202 25135 7.35 0.25 0.04 34.36 64.25 58.25 13.18 1511.59

average 26495 11726 24.05 0.06 2.70 32.00 46.03 41.25 3.30 736.63

SPEC’00 164.gzip 8605 1499 21.35 0.47 4.34 44.70 30.02 29.62 0.96 3.79
175.vpr 17729 5386 21.59 0.32 2.32 22.08 71.67 54.01 7.07 14.52
181.mcf 2412 534 7.30 0.19 1.31 23.60 69.10 67.79 9.61 25.74
186.crafty 24975 7579 38.49 11.11 0.01 15.64 46.15 45.86 23.77 29.08
255.vortex 67213 25134 7.35 0.25 0.04 34.37 64.24 58.24 13.18 1511.61
256.bzip2 4649 1254 43.46 0.40 3.03 41.23 14.83 12.28 1.12 316.95
300.twolf 20459 11741 16.73 0.88 0.25 20.82 72.24 62.21 9.39 3.71

average 20863 7590 22.32 1.95 1.61 28.92 52.61 47.14 9.30 54.72

SPEC’06 401.bzip2 8293 4013 17.29 8.07 1.20 12.09 75.18 69.42 27.83 440.48
445.gobmk 197215 27614 38.51 8.52 1.96 19.49 41.80 40.05 12.70 209.98
456.hmmr 35992 7582 27.13 8.76 1.58 18.40 65.63 52.89 14.21 108.66
458.sjeng 13847 5832 26.29 2.54 0.22 28.21 48.47 45.28 18.37 80.29
473.astar 5842 1873 7.90 2.62 0.32 19.38 75.71 72.40 18.91 39.38

average 52238 9383 23.42 6.10 1.06 19.51 61.36 56.01 18.40 133.89

Average 18394 5136 24.23 1.77 1.42 24.04 62.07 50.31 6.48 177.68

Table 7.5: Static results with whole-program analysis. Program size is mea-
sured in lines of code and the number of static dereferences. The static number of
required checks and optimizations are measured as a percentage of dereferences. The
DFPG is measured by the percentage of nodes reachable from invalid and the average
number of %-nodes modifiable by each pointer store.

152

Benchmark Size Checks (%) Opts. (%)
Suite Program LOC Derefs PBC OBC MARC DDO TDO NDO

Olden bh 2073 284 42.96 33.10 1.76 27.11 36.97 28.17
bisort 350 76 46.05 38.16 0.00 35.53 26.32 18.42
em3d 688 187 40.11 20.86 3.21 7.49 62.57 49.20
health 502 236 60.17 38.14 0.00 15.25 46.61 24.58
mst 428 57 31.58 14.04 5.26 12.28 64.91 50.88
perimeter 484 258 98.06 89.53 0.00 0.00 10.47 1.94
power 622 285 48.42 11.23 0.00 22.46 64.56 29.12
treeadd 245 26 63.16 31.58 0.00 0.00 68.42 36.84
tsp 582 194 64.95 59.28 0.00 31.96 8.76 3.09

average 716 178 55.05 37.32 1.14 16.90 43.29 26.92

PtrDist anagram 650 113 33.63 0.00 0.00 21.24 52.21 45.13
bc 7297 3927 39.62 31.65 1.12 32.85 30.00 26.41
ft 1766 246 30.49 0.00 0.00 24.80 70.33 44.72
ks 782 239 34.73 6.69 0.00 27.62 42.68 37.66
yacr2 3986 1000 42.00 22.40 3.90 34.60 33.90 19.50

average 2896 1105 36.09 12.15 1.00 28.22 45.82 34.68

SPEC’95 099.go 29246 16632 57.93 0.42 5.96 25.44 10.67 10.67
129.compress 1934 232 21.98 5.60 4.74 40.95 32.33 32.33
130.li 7597 4905 50.38 48.60 0.06 27.26 22.32 22.30
147.vortex 67202 25135 50.10 49.13 0.04 34.36 15.50 15.50

average 26495 11726 45.10 25.94 2.70 32.00 20.21 20.20

SPEC’00 164.gzip 8605 1499 23.08 2.54 4.34 44.70 28.09 27.89
175.vpr 17729 5386 53.47 46.05 2.32 22.08 26.90 22.13
181.mcf 2412 534 25.84 19.10 1.31 23.60 50.19 49.25
186.crafty 24975 7579 57.63 31.73 0.01 15.64 26.82 26.72
255.vortex 67213 25134 50.10 49.15 0.04 34.37 15.49 15.49
256.bzip2 4649 1254 45.06 3.67 3.03 41.23 11.56 10.69
300.twolf 20459 11741 58.08 48.09 0.25 20.82 25.14 20.86

average 20863 7590 44.75 28.62 1.61 28.92 26.31 24.72

SPEC’06 401.bzip2 8293 4013 83.85 79.79 1.20 12.09 3.46 2.87
445.gobmk 197215 27614 58.85 31.96 1.96 19.49 19.95 19.70
456.hmmr 35992 7582 63.60 55.01 1.58 18.40 21.79 16.42
458.sjeng 13847 5832 48.13 28.07 0.22 28.21 23.56 23.44
473.astar 5842 1873 54.40 51.90 0.32 19.38 26.70 25.89

average 52238 9383 61.77 49.35 1.06 19.51 19.09 17.66

Average 18394 5136 49.28 31.58 1.42 24.04 32.63 25.26

Table 7.6: Static results with separate compilation. Program size is measured
in lines of code and the number of static dereferences. The static number of required
checks and optimizations are measured as a percentage of dereferences.

153

0.0

1.0

2.0

3.0

4.0

5.0

6.0

7.0

ft 130.li
tsp bisort

anagram

129.compress

treeadd

power
health

perimeter

yacr2
147.vortex

bc em3d
bh 255.vortex

456.hmmer

ks 401.bzip2

mst
164.gzip

445.gobmk

458.sjeng

175.vpr

473.astar

300.twolf

181.mcf

099.go
186.crafty

256.bzip2

Sl
ow

do
w
n

Benchmark

Figure 7.5: Compile-time slowdown. For each program, slowdown is computed
as the ratio of the compilation time required by MemSafe to that of the base LLVM
compiler using the default set of optimizations.

number of required checks, organized by check type, as a percentage of the static

number of total pointer dereferences. Second, the “Opts.” column shows the static

number of checks (i.e., PBC and OBC) that were eliminated by MemSafe’s optimizations,

organized by optimization type. Finally, the “DFPG” column summarizes the DFPG

with the percentage of nodes reachable from the node representing the invalid pointer

and with the %/store quantity. The former indicates the portion of pointers that may

refer to temporally invalid objects, and the latter indicates the average number of

loaded memory locations that each pointer store may potentially modify. Thus, these

two quantities are a static estimate of the uncertainty in pointer data-flow. Figure 7.4

demonstrates that Andersen’s alias analysis [4] is often capable of reducing %/store

by several orders of magnitude.

Table 7.6 shows the static number of required checks and the number of checks

that were eliminated with MemSafe’s optimizations when MemSafe’s whole-program

154

analysis was disabled. Thus this represents the results of MemSafe’s static analysis

in a separate compilation development environment where it is unable to make use

of interprocedural information. Since the DFPG is only useful for interprocedural

optimization, Table 7.6 does not report the size or complexity of the DFPG.

Finally, Figure 7.5 shows MemSafe’s compile-time slowdown for each program.

Slowdown is computed as the ratio of the compilation time required by MemSafe

to that of the base LLVM compiler using default optimizations. In general, the

compile-time requirements of MemSafe are modest. For 93% of the benchmarked

programs (i.e., 28 out of 30), MemSafe was able to ensure memory safety with an

increase in compile-time by less than a factor of two. The compilation time required by

ft and 130.li surpassed this threshold due to the time required to query alias analysis

for each pair of pointer load and store instructions, which is needed for inserting

%-functions (see the algorithm for %-function insertion in Section 4.1.2.1). Despite these

two programs, MemSafe’s average increase in compile-time over all 30 benchmarked

programs was 62%.

155

156

Chapter 8

Related Work

Most prior techniques related to the enforcement of memory safety were presented in

Section 3.2 after having described the various types of spatial and temporal memory

errors. Therefore, this chapter will not repeat that content, but it will discuss additional

details for methods capable of detecting both spatial and temporal violations as well

as techniques that can only detect one type of error. This chapter also presents a

discussion of previous work related to MemSafe’s data-flow analysis.

8.1 Spatial and Temporal Safety

While generally not enforcing complete memory safety, several methods are capable

of detecting both spatial and temporal errors. Purify [43] operates on binaries, but

only ensures the safety of heap-allocated objects. Yong and Horwitz [83] present a

similar approach and improve its cost with static analysis, but this method only checks

store operations. Safe C [9] ensures complete safety but is incompatible due to its

use of fat-pointers. Patil and Fischer [68] address these issues by maintaining disjoint

metadata and performing checks in a separate “shadow process,” but this requires

157

an additional CPU. CCured [64] utilizes a type system to eliminate checks for safe

pointers and reduce metadata bookkeeping. However, CCured’s use of fat-pointers

causes compatibility issues, and some programs require code modifications to lower

cost. MSCC [82] is highly compatible and complete but is unable to handle some

downcasts. Fail-Safe C [66] maintains complete compatibility with ANSI C but incurs

significant runtime overhead. Finally, Clause et al. [20] describe an efficient technique

for detecting memory errors, but it requires custom hardware.

8.2 Spatial Safety

Methods that primarily detect bounds violations are numerous. Notable is the work

by Jones and Kelly [49] since it maintains compatibility with pre-compiled libraries.

However, this method has high overhead and results in false positives. Ruwase and

Lam [74] extend this method to track out-of-bounds pointers to avoid false positives.

Additionally, Dhurjati and Adve [30] utilize Automatic Pool Allocation [55] to improve

cost, and Akritidis et al. [3] constrain the size and alignment of allocated regions to

further improve cost. However, these methods do not detect temporal violations and

are unable to detect sub-object overflows.

HardBound [28] is a hardware-assisted approach for ensuring spatial safety with

low overhead. This method encodes fat-pointers in a special “shadow space” and

provides architectural support for checking and propagating metadata. SoftBound

[62] is a related technique that records pointer metadata in disjoint data structures

similar to MemSafe’s representation. However, while these methods ensure complete

158

spatial safety, they do not ensure temporal safety, and HardBound requires custom

hardware to achieve low overhead.

8.3 Temporal Safety

Few methods are designed primarily for detecting temporal violations. Dhurjati and

Adve [29] describe a technique based on the Electric Fence [69] malloc debugger:

Their system assigns a unique virtual page to every dynamically allocated object

and relies on hardware page protection to detect dangling pointer dereferences. This

approach is improved with Automatic Pool Allocation [55] and a customized address

mapping. However, this method does not detect spatial violations and only detects

temporal violations of heap objects. CETS [63] inserts temporal safety checks before

pointer dereferences and utilizes an efficient lock-and-key mechanism, instead of hash

tables, for accessing the required temporal metadata. However, this method also does

not detect spatial violations and must be combined with an existing spatial safety

mechanism in order to guarantee complete temporal safety.

8.4 Software Debugging Tools

While not intended for deployment in production-quality applications, automated

debugging tools can be used to detect some memory safety violations during software

development and testing. Valgrind [65] is a heavyweight dynamic binary instrumenta-

tion framework providing the Memcheck [75] tool for debugging memory accesses and

159

leaks, and Mudflap [33] is a compiler approach for debugging memory accesses imple-

mented in the GCC [40] compiler infrastructure. However, these tools are incapable of

ensuring complete spatial and temporal memory safety and incur significant runtime

overheads. For example, both Memcheck and Mudflap are unable to detect spatial

safety errors where an out-of-bounds pointer to one object happens to fall within

bounds of another object. They are also unable to detect temporal safety errors when

the runtime system reallocates memory to a previously deallocated location. Moreover,

Memcheck does not aim to ensure spatial or temporal safety for stack-allocated objects

and increases runtime by a factor of 10–30.

8.5 Other Methods of Memory Protection

Several methods utilize software checks to enforce various security-related policies.

Abadi et al. [1] describe a technique to prevent software attacks by enforcing control-

flow integrity. Similarly, Castro et al. [17] enforce data-flow integrity with an analysis

based on reaching definitions, and WIT [2] enforces write-integrity by ensuring each

write operation accesses an object from a static set of legally modifiable objects.

Although these techniques are capable of preventing many memory access violations,

they do not ensure complete spatial and temporal safety.

DieHard [12] is a memory allocator capable of preventing many heap-related errors.

It uses random object placement within a larger-than-normal heap to prevent invalid

frees and probabilistically avoid heap buffer overflows. However, this method is

incapable of ensuring complete spatial and temporal safety.

160

Other methods seek to provide minimal memory protection guarantees to programs

executed on systems lacking hardware virtual memory. Simpson et al. [76] developed

a low-overhead method for achieving memory segmentation using compiler-inserted

runtime checks. Like paging, segmented virtual memory is a common approach for

providing coarse-grained memory protection, and Appendix B shows how MemSafe’s

metadata propagation rules can be modified to achieve segment protection instead

of full memory safety. In another method, Biswas et al. [14] developed a technique

for avoiding out-of-memory errors with compiler-inserted runtime checks, memory

reuse, and the compression of unused data. Finally, Middha et al. [61] developed a

similar method for avoiding out-of-memory errors in embedded systems by sharing

stack space among the executing tasks of multitasking workloads.

8.6 SSA Extensions

Various methods have extended SSA [26] to incorporate alias information. IPSSA [59]

is an interprocedural, Gated SSA [67] that uses alias analysis to replace indirect stores

with φ-like functions whose semantics are similar to our %-function. However, IPSSA

represents all indirect stores as direct assignments, whereas MemSafe’s %-function

is only used for pointer stores. Other extensions include the χ- and µ-extensions

[19], which model may-def and may-use information, but unlike the %-function, do

not keep track of the defining values. Finally, Cytron and Gershbein [25] describe a

demand-driven algorithm that incrementally incorporates alias information with SSA

to avoid a large increase in program size.

161

162

Chapter 9

Future Work

MemSafe is a whole-program compiler analysis and transformation for ensuring

the spatial and temporal memory safety of C programs. Although it is complete,

compatible, does not require any manual code modifications, and has lower runtime

cost than other methods, MemSafe is not without limitations, and additional work

can enhance it further. This chapter identifies several aspects of MemSafe in which

additional research is warranted. These areas include (1) MemSafe’s performance

overheads and the scope of its evaluation, (2) the specification and verification of

MemSafe’s transformations and optimizations, and (3) additional uses of MemSafe’s

core technology for tasks not directly related to ensuring the memory safety of C

programs.

9.1 Performance Enhancements and Evaluation

Although MemSafe’s performance overheads are, on average, lower than that of

existing complete and automatic methods that are capable of detecting both spatial and

temporal errors, they are not yet low enough for MemSafe to be used with performance-

163

critical applications. In addition, while MemSafe has been evaluated on a set of

thirty benchmark programs and two large and widely-used open source applications,

performance overheads are, in general, application-dependent, and MemSafe’s current

results may be a poor indicator of its results for other commonly-used applications.

The following is a list of future work related to lowering MemSafe’s performance

overheads and improving its evaluation.

1. The implementation alternatives discussed in Section 6.2 for constructing Mem-

Safe’s global metadata facilities (i.e., RO, RP , and RF) should each be evaluated

in terms of their runtime overhead and memory usage. MemSafe’s prototype

implementation should then be updated to use the most efficient data structures,

which would lower the overall cost of maintaining the required metadata.

2. Additional optimizations for lowering MemSafe’s runtime overhead and memory

usage should be considered. The six optimizations presented in Section 5.2 are

not exhaustive, and additional optimizations could have a significant impact on

MemSafe’s average performance overheads. An effective means of discovering

potential optimization opportunities is to instrument the applications exhibiting

high runtime with profiling instructions that help to determine the source of

their overhead.

3. Sophisticated static analysis techniques should be investigated for lowering

MemSafe’s runtime overhead and memory usage. In particular, while MemSafe’s

static analysis currently only relies on a flow- and context-insensitive alias

analysis, more precise analyses [e.g. 13] may yield fewer runtime checks and

164

metadata propagation.

4. MemSafe’s performance overheads should be evaluated on multithreaded pro-

grams. Given the current proliferation of multi-core and multiprocessor CPUs,

the multithreading paradigm has emerged as the dominant concurrent program-

ming and execution model. While Section 4.4 ensures MemSafe’s metadata

facilities and runtime checks are thread safe, the runtime cost of the required

thread synchronization primitives has yet to be evaluated in a multithreaded

environment.

9.2 Specification and Verification

In addition to lowering MemSafe’s performance overheads and improving its evalua-

tion, additional work would be useful for increasing the number of programs to which

MemSafe can be applied and guaranteeing the correctness of MemSafe’s transforma-

tions. The following is a list of future work related to the specification of MemSafe’s

metadata propagation rules and their verification.

1. Additional metadata propagation rules should be devised for handling inline

assembly instructions and self-modifying code. Although programs utilizing

these features are uncommon, extending MemSafe with the necessary rules would

increase the number of programs to which MemSafe could be applied. However,

as mentioned in Section 6.4, MemSafe’s optimizations would likely be of little

benefit to such programs, so the runtime cost of ensuring their memory safety is

165

expected to be high.

2. MemSafe’s program transformations and optimizations should be formally veri-

fied in order to prove their correctness. Related work in this regard has provided

formalisms of spatial safety [62, 64], temporal safety [63], and static mem-

ory safety analyses based on the results of flow- and context-insensitive alias

analysis [22], which could serve as a starting point.

9.3 Additional Uses

Although MemSafe has been demonstrated to be an effective tool for ensuring the

memory safety of C programs, the technology developed for MemSafe could be useful

in other contexts. The following is a list of future work that could potentially reuse

some or all of MemSafe’s main components for performing tasks not directly related

to ensuring the memory safety of C programs.

1. MemSafe should be evaluated on its ability to prevent the exploitation of security

vulnerabilities and to thwart attempts at malicious attacks. As mentioned in

Section 1, many, if not all, security vulnerability exploits rely on some form of

memory access violation (e.g., a buffer overflow error) in order for an attacker to

perform a malicious act. Since MemSafe can ensure a program’s memory safety,

it could also be used as a defense against such attacks.

2. The current implementation of MemSafe is capable of ensuring memory safety

for programming languages other than C, and its effectiveness in doing so should

166

be evaluated. Since LLVM’s intermediate representation is source language

independent, MemSafe can ensure the memory safety of any language that

can be compiled by LLVM. LLVM’s compiler frontend currently supports sev-

eral languages in the C family of programming languages including C, C++,

Objective-C, and Objective-C++.

3. While MemSafe’s analysis and transformation passes operate on LLVM’s inter-

mediate representation, it is possible that MemSafe could be made to ensure

memory safety by directly analyzing application binaries. Ensuring the safety

of binaries would require a new set of metadata propagation rules for assembly

language instructions, but given the low-level nature of LLVM’s instruction set,

this is likely an achievable task. However, without accurate source-level infor-

mation, MemSafe’s optimizations would be ineffective, and MemSafe’s spatial

safety guarantees would be limited to object-level safety. Sophisticated binary

translation techniques and composite type reconstruction methods could improve

MemSafe’s ability to directly ensure the memory safety of binaries.

4. Several of MemSafe’s key components—in particular, the use of the invalid

pointer to represent memory deallocation and the use of the %-function to

represent indirect pointer assignments—may have general applicability, and their

usefulness should be explored outside the context of ensuring memory safety. It

is conceivable that MemSafe’s DFPG, which incorporates both of these tools,

could simplify or enable other compiler optimizations as it does for optimizations

of memory safety checks and metadata.

167

168

Chapter 10

Conclusion

This dissertation describes MemSafe, an automatic compiler analysis and transforma-

tion technique that is capable of ensuring the memory safety of C programs at runtime.

MemSafe transforms a program such that it detects all spatial and temporal memory

violations before they occur, while remaining compatible with existing code and

requiring lower runtime overhead than previous techniques. The major contributions

of this dissertation are summarized below.

The motivation behind this research is the realization that use of the C programming

language is likely going to remain common despite the many well-known memory

safety violations it allows. The features of C that make it a desirable language for

systems-level programming—including weak typing, low-level access to computer

memory, and unchecked pointer use—are the very features whose misuse cause the

variety of hard-to-detect memory errors that plague today’s software. The detection

or prevention of memory errors in C is a challenging problem because, while these

violations often cause a program to crash immediately, their symptoms frequently go

undetected long after they occur, resulting in data corruption and incorrect results

and making software debugging particularly difficult.

169

As evidence of this problem, a variety of methods exist for retrofitting C programs

with software checks to detect memory errors at runtime. However, these techniques

generally suffer from one or more practical drawbacks that have thus far limited their

adoption. These weaknesses include (1) the inability to detect all spatial and temporal

violations, (2) the use of incompatible metadata (the bounds information required for

performing runtime checks), (3) the need for manual code modifications, and (4) the

tremendous runtime cost of providing complete safety.

MemSafe addresses the above drawbacks and ensures the memory safety of C

programs by utilizing a whole-program compiler analysis and transformation that

performs a limited amount of static analysis to prove memory safety whenever possible

and inserts runtime checks to ensure the safety of the remaining memory accesses.

MemSafe is complete, compatible, requires no manual code modifications, and generally

has lower runtime overhead than prior techniques achieving a similar level of safety.

In this regard, MemSafe makes several novel contributions to the research community,

which are each summarized below.

First, MemSafe uniformly handles all memory violations by modeling temporal

errors as spatial errors. By doing so, the use of separate mechanisms for detecting

temporal errors is no longer required. In particular, MemSafe avoids the drawbacks

associated with using conservative garbage collection and explicit temporal checks.

MemSafe achieves this uniformity of errors by modeling memory deallocation as an

explicit pointer assignment, thereby enabling spatial safety mechanisms to be reused

to enforce temporal safety.

Second, MemSafe captures the most salient features of object and pointer meta-

170

data in a hybrid spatial metadata representation. MemSafe’s metadata representation

exploits the strengths of both approaches, while simultaneously avoiding their weak-

nesses, in order to ensure its completeness and compatibility. Additionally, object and

pointer metadata create a synergy that allows properties related to temporal safety to

be represented using spatial metadata.

Finally, MemSafe uniformly handles pointer data-flow in a representation that

simplifies several performance-enhancing optimizations. Unlike previous methods that

require runtime checks for all pointer dereferences and the expensive propagation of

metadata at every pointer assignment, MemSafe eliminates redundant checks and

the propagation of unused metadata. MemSafe achieves this uniformity of pointer

data-flow by modeling indirect pointer assignments as explicit pointer assignments,

which enables MemSafe’s whole-program analysis and optimizations to reason solely

about the ways in which pointers are defined.

Experimental results indicate that MemSafe is capable of detecting memory safety

violations in real-world programs with a lower runtime overhead than previous methods.

Results show that MemSafe detects all known memory errors in multiple versions

of two large and widely-used open source applications as well as six programs from

a benchmark suite specifically designed for the evaluation of error detection tools.

MemSafe enforces complete safety with an average overhead of 88% on 30 widely-used

performance evaluation benchmarks. In comparison with previous work, MemSafe’s

average runtime overhead for one common benchmark suite (29%) is a fraction of

that associated with the previous technique (133%) that, until now, had the lowest

overhead among all existing complete and automatic methods that are capable of

171

detecting both spatial and temporal violations.

Since MemSafe’s performance overheads cannot necessarily be considered “low,”

MemSafe is likely only permanently deployable in applications where memory safety

is the primary design concern. In practice, it has been observed that many runtime

checks can be avoided with MemSafe’s simple optimizations, and for safety-critical

applications, MemSafe’s moderate runtime overheads can be an acceptable trade-off

compared to redesigning systems in a safe language. However, for performance-critical

applications, MemSafe is primarily useful as a dynamic bug detection tool.

172

Appendix A

Metadata Propagation for the C
Standard Library

The metadata propagation rules presented in Section 4.3 are sufficient for MemSafe to

ensure the spatial and temporal memory safety of many C programs. However, the C

standard library routines provide programmers with the ability to manipulate memory

and pointers in ways that are not covered by those metadata rules. In this appendix,

MemSafe is extended with the rules required for a program to correctly propagate

metadata when using the C standard library routines. Specifically, Section A.1

describes metadata propagation for the memory copying functions of string.h,

and Section A.2 describes metadata propagation for the variadic function macros of

stdarg.h.

A.1 Memory Copying Functions of string.h

The memory copying functions (e.g. memcpy and memmove) defined in the string.h

standard library generally copy a specified number of bytes from a location indicated

by a source pointer src to the location referred to by a destination pointer dest.

173

Although these procedures result in multiple read and write operations, MemSafe only

needs to perform bounds checks for the source and destination buffers once before the

operation begins.

However, any in-memory pointer values that are located in the source buffer and

copied to the destination buffer must also have their associated pointer metadata

copied. Recall that pointer metadata that is associated with in-memory pointers is

maintained in the pointer metadata facility RP . Thus, any mapped address in RP

that is within the range [base, bound) of the source buffer, must have its metadata

copied and associated with a new address that is located at a distance of dest− src

bytes from the original address. This is achieved with the following metadata rule for

memory copying functions. Numbered lines indicate original code.

Metadata Rule A.1—Memory copying functions:

1: memcpy(v, u, size);

S = {(ptr, 〈addr, id〉*ptr) ∈ RP : basesrc ≤ ptr < boundsrc} (A.1.1)
D = {(ptr + (dest− src), 〈addr, id〉*ptr) : (ptr, 〈addr, id〉*ptr) ∈ S} (A.1.2)
RP = RP ∪D (A.1.3)

In this example, the definition of S selects the pointer metadata associated with

the source buffer that must be copied (A.1.1), and the definition of D associates

the metadata with a new address within bounds of the destination buffer (A.1.2).

Finally, RP is updated to contain the copied metadata (A.1.3). To avoid the runtime

overhead of performing the metadata copy, MemSafe attempts to infer if the source

buffer contains any in-memory pointer values by reasoning about its type and usage.

Although this may lead to the pointer metadata facility not being properly updated,

174

instances of in-memory pointers being coped with the string.h functions have been

observed to be rare in practice.

A.2 Variadic Function Macros of stdarg.h

The variadic function macros defined in stdarg.h enable functions to process an

unspecified number of optional arguments in addition to their fixed number of manda-

tory arguments. Variadic functions are convenient because they are able to accept

a different number of arguments per invocation. For example, the printf function

accepts one mandatory argument, the format string, and a variable number of optional

arguments, which are the values to print. Declaring a function to be variadic simply

involves placing an ellipsis (‘. . . ’) as the last argument in the function’s argument list.

Within the body of a variadic function, optional arguments are processed sequen-

tially in the order in which they were passed to the function. To do so, a program

initializes a pointer of type va_list to point to the front of the optional argument

list using the va_start macro. The program can then process each argument with

successive calls to the va_arg macro. For example, the first call to va_arg returns

the first optional argument, the second call returns the next optional argument, etc.

Finally, a program calls the va_end macro to indicate it is finished processing the

optional arguments.

Propagating the pointer metadata associated with the optional pointer arguments

of a variadic function is straightforward and follows the metadata rules presented in

Section 4.3 for function calls. Recall that within the body of a function, MemSafe

175

retrieves the pointer metadata of mandatory arguments from the function metadata

facility based on their position in the function’s argument list. Optional arguments

are handled in the same way, and MemSafe retrieves their pointer metadata according

to the following metadata rule. Numbered lines indicate original code.

Metadata Rule A.2—Variadic function arguments:

1: void f(int x, ...) {
2: va_list ap;
3: int *p, i;
4: ...
5: for(i=0; i < x; i++) {
6: p = va_arg(ap, int*);

〈addr, id〉p = fmd(〈&f, i+ 1〉) (A.2.1)

7: ...
8: }
9: }

In this example, function f is declared to be variadic. Without loss of generality,

the value of argument x is assumed to indicate at runtime the number of optional

arguments that are passed to f , and it is also assumed that each optional argument

is a pointer to type int. The loop beginning in line 5 iterates over the number of

arguments using an induction variable i, and pointer p is assigned the location of

the next argument using the va_arg macro on each iteration of the loop. After p is

assigned, MemSafe retrieves from RF its associated pointer metadata by performing

the lookup operation fmd(〈&f, i+ 1〉), where the argument’s offset in the function’s

argument list is given by i+ 1 since x is the first argument of the function (A.2.1).

While the above rule ensures that optional pointer arguments inherit the correct

pointer metadata, MemSafe must also define metadata associated with the argument

176

list itself. Since the argument list is allocated contiguously in memory, it is essentially

an array, and MemSafe must insert pointer bounds checks to ensure each va_arg

operation falls within bounds of the list. Typically, a program ensures each access of

the argument list is within bounds by counting the number of arguments at runtime.

For example, the printf function counts the number of format specifiers in its format

string argument to determine the number of optional arguments to process. However,

since the optional arguments can be of different types at runtime, MemSafe cannot rely

on their number, and must utilize the base and bound addresses of the argument list

to perform the required check. MemSafe creates the pointer metadata of the argument

list according to the following metadata rule. Numbered lines indicate original code.

Metadata Rule A.3—Argument list bounds:

1: int x;
2: ...

〈addr, id〉 = 〈addr ∈ A, idf〉 (A.3.1)
M [addr]← 〈0,∑n

i=1sizeof(ai), idf〉 (A.3.2)
RF = RF \ {(〈&f,−1〉, fmd(〈&f,−1〉))}

∪ {(〈&f,−1〉, 〈addr, id〉)}
(A.3.3)

3: f(x, a1 . . . an);

In this example, the variadic function f is called in line 3. However, before the call

MemSafe must define the pointer metadata for the function’s argument list. First,

MemSafe obtains a new address for storing the bounds information of the list (A.3.1).

Then, MemSafe stores the list’s base and bound addresses at the specified location,

temporally setting the base address to zero and the bound address equal to the total

size of the arguments (A.3.2). Within the body of f , this range will be adjust to reflect

177

the correct starting and ending locations in memory, but here MemSafe simply defines

the size of the list. Finally, MemSafe updates RF with the list’s pointer metadata

using a key of 〈&f,−1〉, where the index −1 is reserved for a function’s argument list

pointer (A.3). Refer to Section 4.3 for additional information regarding the keys used

with the function metadata facility.

Within the body of a variadic function, in addition to retrieving the pointer

metadata of any optional pointer arguments, a program must also retrieve the metadata

of the argument list itself. MemSafe retrieves metadata for the argument list according

to the following metadata propagation rule. Numbered lines indicate original code.

Metadata Rule A.4—Argument list pointer:

1: void f(int x, ...) {
2: va_list ap;

〈addr, id〉ap = fmd(〈&f,−1〉) (A.4.1)
M [addrap]←M [addrap] + 〈&x+sizeof(x), &x+sizeof(x), 0〉 (A.4.2)

7: ...
8: }

In this example, after the argument list pointer ap is declared, MemSafe retrieves its

pointer metadata from the function metadata facility with the fmd(〈&f,−1〉) lookup

operation (A.4.1). MemSafe then offsets the base and bound addresses of the list by an

amount that will locate the list adjacent to and directly following the last mandatory

argument (i.e., x) in memory (A.4.2).

178

Appendix B

Spatial Safety and Segmentation

Since the nontrivial performance overheads of MemSafe could limit its usefulness with

some performance-critical applications, MemSafe can be modified to enforce lesser

forms of memory protection. In doing so, an acceptable trade-off between the level

of memory protection and the resulting increase in runtime may be achieved that is

suitable for these programs. In this appendix, Section B.1 considers a modified set

of runtime checks and metadata propagation rules that would be required to ensure

only spatial safety, and Section B.2 further modifies these rules in order to achieve

coarse-grained segment-level protection [76].

B.1 Spatial Safety

Before MemSafe’s checks and metadata propagation rules are modified to eliminate the

enforcement of temporal safety, recall MemSafe’s basic method of detecting temporal

memory violations. In order to ensure temporal safety, MemSafe assigns the invalid

pointer to pointers that no longer refer to a temporally valid object. Since the invalid

pointer refers to an impossible address range, spatial safety checks for the dereference

179

of pointers equal to invalid are guaranteed to report a safety violation. Thus, MemSafe

achieves temporal safety by reusing the techniques of spatial safety. To reduce the

runtime cost of ensuring both spatial and temporal safety, MemSafe maintains a

combination of pointer and object metadata. The pointer bounds check (PBC) uses

the pointer metadata to enforce complete spatial and partial temporal safety whereas

the object bounds check (OBC) uses the object metadata to enforce complete temporal

and partial spatial safety, as depicted in Figure 4.2.

For MemSafe to achieve only spatial safety, much of MemSafe’s basic method is

no longer required. Specifically, MemSafe does not require assignments of the invalid

pointer to be inserted for modeling memory deallocation, and MemSafe does not require

object metadata or the OBC, since these are primarily used for enforcing the temporal

safety of sub-object references. The remainder of this section describes changes to

MemSafe’s checks and metadata propagation rules (presented in Sections 4.2–4.3) that

are needed in order to enforce only spatial safety.

B.1.1 The required checks and metadata

MemSafe only requires a limited amount of metadata for ensuring spatial safety. As

mentioned above, object metadata is not required for ensuring spatial safety so it can

be eliminated along with the object metadata facility RO. In addition, the id field of

MemSafe’s pointer metadata representation is no longer required since it is used to link

a pointer to the object metadata of its referent. Thus, to ensure spatial safety, MemSafe

requires only pointer metadata in the form of a tuple 〈base, bound〉p that indicates the

180

range [base, bound) of memory pointer p is permitted to access. MemSafe maintains

this pointer metadata in memory and allocates at runtime an address addrp from a

set of unused address A for storing 〈base, bound〉p. These values are stored to memory

with an explicit dereference operation, represented by M [addrp] ← 〈base, bound〉p,

where M [addrp] holds the value at address addrp in memory.

The pointer bounds check, modified to enforce only spatial safety, utilizes the

above pointer metadata. Before every pointer dereference, MemSafe inserts a call to

the forcibly inlined procedure defined below. Refer to Section 4.2 for additional details

regarding pointer metadata and the original PBC.

Runtime Check B.1—Pointer bounds check (spatial safety):

1: inline void pbc(ptr, size, addr) {
2: 〈base, bound〉ptr ←M [addr]
3: if ((ptr < baseptr) || (ptr + size > boundptr)) {
4: signal_safety_violation();
5: }
6: }

B.1.2 Propagation of the required metadata

Having presented the modified pointer bounds check and the metadata MemSafe

requires for enforcing spatial safety, this section describes MemSafe’s corresponding

translations for creating and propagating the required pointer metadata. Similar

assumptions are made in the following discussion as were made in Section 4.3. Namely,

it is assumed that the program has been transformed into a low-level, typed SSA form

that includes MemSafe’s %-functions for modeling pointer stores as explicit pointer

assignments. However, since temporal safety is not enforced, it is assumed that

181

assignments of the invalid pointer have not been inserted.

B.1.2.1 Memory allocation

For static and automatic memory allocation, metadata is neither created or propagated

since such allocation does not define a new pointer value. Whereas to achieve full

memory safety, the bounds of the allocated object must be mapped in the object

metadata facility, this mapping is no longer required for achieving only spatial safety.

However, for dynamic memory allocation, MemSafe creates pointer metadata according

to the following metadata rule. Numbered lines indicate original code.

Metadata Rule B.1—Dynamic memory allocation (spatial safety):

1: int *p;
2: ...
3: p = (int*) malloc(size);

〈base, bound〉p =

〈NULL, NULL〉 if p = null,
〈p, p+size〉 otherwise

(B.1.1)

M [addrp ∈ A]← 〈base, bound〉p (B.1.2)

In this example, an object of size bytes is allocated dynamically by calling malloc, and

the address returned by malloc is assigned to the pointer p. If the value returned by

malloc is equal to NULL, MemSafe sets the base and bound addresses associated with

p equal to NULL.1 Otherwise, the pointer metadata is defined such that it refers to the

space occupied by the allocated region of memory (B.1.1). Finally, MemSafe obtains

1Setting the base and bound addresses associated with the returned pointer to NULL is equivalent
to defining the base and bound of the region to be that of the invalid pointer, as is done in Section
4.3. This ensures that any PBC inserted before the dereference of the returned pointer will report a
safety violation.

182

an address addrp for holding the pointer metadata of p and stores the metadata at

this location (B.1.2).

B.1.2.2 Address-of operator

Like dynamic memory allocation, the address-of operator (&) creates a pointer to a

new location. Therefore, MemSafe must define the metadata of the newly created

pointer. MemSafe sets the pointer metadata of a pointer defined in terms of the

address-of operator according to the following metadata rule. Numbered lines indicate

original code.

Metadata Rule B.2—Address-of operator (spatial safety):

1: struct { ... int array[100]; ... } s;
2: int *p;
3: ...
4: p = &(s.array[42]);

M [addrp ∈ A]← 〈&s.array[0], sizeof(s.array)〉 (B.2.1)

In this example, pointer p is assigned the address of an element of the array field

of structure s. Because the program creates a new pointer, MemSafe obtains a new

address for locating the pointer metadata of p and creates and stores the metadata at

the specified address (B.2.1).

B.1.2.3 Pointer copies and arithmetic

Pointers defined as simple pointer copies or in terms of pointer arithmetic inherit

the pointer metadata of the original pointer. MemSafe sets the pointer metadata

of pointers defined by simple assignments according to the following metadata rule.

183

Numbered lines indicate original code.

Metadata Rule B.3—Pointer copies and arithmetic (spatial safety):

1: int x, *p0, *p1;
2: ...
3: p1 = p0 + x;

addrp1 = addrp0 (B.3.1)

In this example, since pointer p1 is defined in terms of pointer arithmetic, it simply

inherits the pointer metadata associated with pointer p0 (B.3.1).

B.1.2.4 %-functions

MemSafe requires the use of the pointer metadata facility RP for disambiguating

the value produced by a %-function in order for the returned pointer to inherit the

correct metadata. Since MemSafe’s pointer metadata representation was able to be

simplified by not enforcing temporal safety, the pointer metadata facility must be

updated accordingly. The pointer metadata facility, modified to support spatial safety

only, maps the address of an in-memory pointer to the address of its pointer metadata

and is defined by the partial function:

pmd : A→ A

ptr 7→ addr*ptr

where A are memory addresses. For convenience, pmd is also represented more

generally as the relation RP , where (ptr, addr*ptr) ∈ RP .

For pointer loads, MemSafe creates a new definition for the loaded value and assigns

it the result of a %-function, which indicates the set of values to which the loaded

184

value may potentially be equal. For a pointer ptr whose pointed-to location is loaded

in defining another pointer p, MemSafe retrieves from the pointer metadata facility

the required pointer metadata for p with the lookup operation pmd(ptr). MemSafe

performs this operation according to the following metadata rule for pointer loads.

Numbered lines indicate original code.

Metadata Rule B.4—Pointer loads (spatial safety):

1: int **ptr1, *p0, *p1, ...;
2: ...
3: p0 = *ptr1; � MemSafe models in-memory data-flow with
4: p1 = %(a0, b0, ...); the %-function

addrp1 = pmd(ptr1) (B.4.1)

In this example, an in-memory pointer is loaded and assigned to pointer p0. MemSafe

then creates a new pointer p1 and assigns it the result of a %-function indicating

the values the in-memory pointer may potentially equal. The address of the pointer

metadata for p1 is retrieved from the pointer metadata facility with the pmd(ptr1)

lookup operation (B.4.1), and all uses of p0 are replaced with uses of p1.

For each argument of the %-function, MemSafe saves the location of the pointer’s

metadata in RP at the point where it is is stored to memory. MemSafe updates the

pointer metadata facility for pointer stores according to the following metadata rule.

Numbered lines indicate original code.

Metadata Rule B.5—Pointer stores (spatial safety):

1: int **ptr2, *a0;
2: ...
3: *ptr2 = a0; � ptr2 may alias ptr1 from above

RP = (RP \ {(ptr2, pmd(ptr2))}) ∪ {(ptr2, addra0)} (B.5.1)

185

In this example, pointer ptr2 is assumed to potentially alias with pointer ptr1 from

the previous example. Thus, pointer a0 appears in the %-function defined above for

pointer p1 because of the pointer store in line 3. Here, MemSafe maps pointer ptr2 to

the address of the pointer metadata of a0 in RP (B.5.1).

B.1.2.5 NULL and manufactured pointers

Pointers defined as NULL or as a cast from a non-pointer type must have their base and

bound addresses set to NULL. An exception to this rule is made for memory-mapped

I/O locations, and MemSafe requires a target’s backend to specify the base and bound

address of all memory-mapped address ranges. MemSafe defines the pointer metadata

for NULL and manufactured pointers according to the following rule. Numbered lines

indicate original code.

Metadata Rule B.6—NULL and manufactured pointers (spatial safety):
1: int *p;
2: ...
3: p = (int*) 42;

M [addrp ∈ A]← 〈NULL, NULL〉 (B.6.1)

In this example, pointer p is defined as a type-cast from the integer 42. Thus, MemSafe

obtains an address to store the pointer metadata of p and defines its base and bound

addresses to be equal to NULL (B.6.1).

B.1.2.6 Function arguments and return values

Just as the pointer metadata facility had to be modified to account for the simpli-

fied pointer metadata representation required to achieve spatial safety, the function

186

metadata facility RF must be modified as well. Recall that MemSafe uses RF for

propagating pointer metadata for pointers passed as arguments to functions or re-

turned from functions. Let callee values refer to formal pointer arguments and pointer

values that are returned from functions. Similarly, let caller values refer to actual

pointer arguments and local pointer values to be returned from functions. The function

metadata facility maps a callee value to the location of the pointer metadata of its

corresponding caller value and is defined by the partial function:

fmd : C → A

callee 7→ addrcaller

where C is the set of caller values, A are memory addresses, and callee is a tuple

〈&f, i〉 indicating the ith pointer associated with function f. The function fmd is also

represented as the relation RF , where (callee, addrcaller) ∈ RF . Refer to Section 4.3

for additional details regarding the function metadata facility.

For function calls, MemSafe creates an entry in the function metadata facility for

pointer arguments passed to the function. Similarly, MemSafe defines the pointer

metadata of a pointer returned from the function call by performing a lookup operation

of RF . MemSafe updates and defines pointer metadata for function calls according to

the following metadata rule. Numbered lines indicate original code.

Metadata Rule B.7—Function calls (spatial safety):
1: int *p0, *p1;
2: ...

RF = (RF \ {(〈&f, 1〉, fmd(〈&f, 1〉))}) ∪ {(〈&f, 1〉, addrp0)} (B.7.1)

3: p1 = f(p0);

addrp1 = fmd(〈&f, 0〉) (B.7.2)

187

In this example, a pointer p0 is passed as an argument to function f and pointer p1

is assigned the returned value. The return value of f is statically associated with

the index “0,” and its single pointer argument is given an index of “1.” Thus, before

the function call, the address of the pointer metadata of p0 is associated with the

tuple 〈&f, 1〉 in RF (B.7.1). Similarly, after the call returns, the address of the pointer

metadata for p1 is retrieved from RF with the tuple 〈&f, 0〉 (B.7.2).

For the declaration of a function with pointer arguments, MemSafe retrieves from

RF the address of each incoming pointer’s metadata. Similarly, if a function returns

a pointer value, MemSafe creates an entry in the function metadata facility for the

location of its pointer metadata just before the function returns. MemSafe updates

and defines pointer metadata for function declarations according to the following

metadata rule. Numbered lines indicate original code.

Metadata Rule B.8—Function declarations (spatial safety):

1: int* f(int *q) {
2: int *r;
3: ...

addrq = fmd(〈&f, 1〉) (B.8.1)

2: . . .

RF = (RF \ {(〈&f, 0〉, fmd(〈&f, 0〉))}) ∪ {(〈&f, 0〉, addrr)} (B.8.2)

3: return r;
4: }

In this example, pointer q is a formal argument of function f, and pointer r is returned

at the end of the procedure. Since q is declared to be the first pointer in the function’s

argument list, MemSafe retrieves the address of the pointer metadata for q from

188

RF with the tuple 〈&f, 1〉 at the beginning of the procedure (B.8.1). Similarly, since

MemSafe statically assigns pointer return values the index “0,” the address of the

pointer metadata of r is associated with the tuple 〈&f, 0〉 in RF before the procedure

exits (B.8.2).

B.2 Segmentation

Often times low-end embedded systems do not have any form of hardware memory

protection. For these systems, MemSafe can be used to achieve a low-overhead,

yet weaker form of spatial memory safety called segment-level protection, or simply

memory segmentation [76]. To understand how MemSafe can be used to enforce

memory segmentation, it is important to consider the layout of a program’s memory.

The address space available to a program is typically organized into four basic

segments, which are described below.

1. Code Segment: The code segment (sometimes called the “text segment”) is the

portion of memory allocated to a program for holding its executable instructions.

This segment has a statically known size and is typically marked read-only.

2. Globals Segment: The globals segment of memory contains the statically allocated

objects that are both initialized and uninitialized by the programmer. The globals

segment also has a statically known fixed size, but unlike the code segment, it is

not read-only. The portion of memory containing uninitialized global data is

also known as the “BSS segment,” which historically was an acronym for “Block

Started by Symbol”. The globals segment is usually placed above and adjacent

189

to the code segment in memory.

3. Heap Segment: The heap segment is the portion of memory used for storing

a program’s dynamically allocated objects. It begins adjacent to the globals

segment and grows to larger addresses from there. Objects are allocated to the

heap segment by the malloc family of standard library functions.

4. Stack Segment: The stack segment is reserved for maintaining the program’s

execution stack. Objects are allocated to the stack segment automatically by

a programmer declaring variables as being local to a particular function. The

base of the stack is typically located at a high address in memory, and the stack

then usually grows towards lower addresses (i.e., towards the heap segment).

Since the code and globals segments are fixed in size, and since the stack segment

has a statically known base address, the base and bound addresses of each of the

above segments is known at compile-time. The only exception to this statement is

the division between the heap and stack segments, which is managed by the brk and

sbrk standard library functions.2

For a program to be spatially safe at the granularity of segments, all memory

accesses must fall within bounds of a data segment (i.e., the globals, heap, and stack

segments). For example, the dereference of a pointer to a stack-allocated object must

access memory within bounds of the stack segment, and the dereference of a pointer

to a heap-allocated object must access memory within bounds of the heap segment,

2The address of the boundary between the heap and stack segments can be determined by the
return value of the statement sbrk(0).

190

etc. MemSafe can enforce segment-level spatial safety using the approach defined

above in Section B.1. However, instead of propagating the base and bound addresses

of individual objects, MemSafe must propagate the base and bound addresses of the

corresponding data segments.

B.2.1 Propagation of the required metadata

This section describes changes to the metadata propagation rules presented above

that are required for MemSafe to enforce segment-level protection. Only the metadata

rules that define the base and bound addresses of pointer metadata must be updated;

all other rules remain the same.

B.2.1.1 Memory allocation

For automatic memory allocation, metadata is neither created or propagated since

such allocation does not define a new pointer value. However, recall that MemSafe

identifies statically allocated objects by their location in memory (see Section 4.1).

For these global pointer values, MemSafe initializes their pointer metadata at the

beginning of the main procedure to refer to the base and bound addresses of the

globals segment. For dynamic memory allocation, MemSafe creates pointer metadata

according to the following metadata rule. Numbered lines indicate original code.

Metadata Rule B.9—Dynamic memory allocation (segmentation):

1: int *p;
2: ...
3: p = (int*) malloc(size);

191

〈base, bound〉p =

〈NULL, NULL〉 if p = null,
〈base, bound〉heap otherwise

(B.9.1)

M [addrp ∈ A]← 〈base, bound〉p (B.9.2)

In this example, MemSafe sets the base and bound addresses associated with p equal

to NULL if the value returned by malloc is equal to NULL. Otherwise, the pointer

metadata is defined such that it refers to the base and bound addresses of the entire

heap segment (B.9.1). Finally, MemSafe obtains an address addrp for holding the

pointer metadata of p and stores the metadata at this location (B.9.2).

B.2.1.2 Address-of operator

MemSafe sets the pointer metadata of a pointer defined in terms of the address-of

operator (&) according to the following metadata rule for achieving segment-level

protection. Numbered lines indicate original code.

Metadata Rule B.10—Address-of operator (segmentation):

1: struct { ... int array[100]; ... } s;
2: int *p;
3: ...
4: p = &(s.array[42]);

M [addrp ∈ A]← 〈base, bound〉stack (B.10.1)

In this example, pointer p is assigned the address of a stack-allocated object. Thus,

MemSafe obtains a new address for locating the pointer metadata of p and stores

the base and bound addresses of the entire stack segment at the specified address

(B.10.1).

192

Bibliography

[1] Martín Abadi, Mihai Budiu, Úlfar Erlingsson, and Jay Ligatti. Control-flow
integrity. In Proceedings of the 12th ACM Conference on Computer and Commu-
nications Security, pages 340–353, 2005.

[2] Periklis Akritidis, Cristian Cadar, Costin Raiciu, Manuel Costa, and Miguel
Castro. Preventing memory error exploits with WIT. In IEEE Symposium on
Security and Privacy, pages 263–277, 2008.

[3] Periklis Akritidis, Manuel Costa, Miguel Castro, and Steven Hand. Baggy bounds
checking: An efficient and backwards-compatible defense against out-of-bounds
errors. In Proceedings of the 18th USENIX Security Symposium, 2009.

[4] L. O. Andersen. Program Analysis and Specialization for the C Programming
Language. PhD thesis, University of Copenhagen, 1994.

[5] James P. Anderson. Computer security technology planning study. Technical
Report ESD-TR-73-51, Vol. II, United States Air Force Electronic Systems
Division, 1972.

[6] Apache HTTP Server. Apache Software Foundation. http://httpd.apache.org/.

[7] Andrew W. Appel and Maia Ginsburg. Modern Compiler Implementation in C.
Cambridge University Press, 1998.

[8] ARM Holdings. ARMv5 Architecture Reference Manual, 2007.

[9] Todd M. Austin, Scott E. Breach, and Gurindar S. Sohi. Efficient detection of all
pointer and array access errors. In Proceedings of the ACM SIGPLAN Conference
on Programming Language Design and Implementation, pages 290–301, 1994.

[10] David F. Bacon, Perry Cheng, and David Grove. Garbage collection for embedded
systems. In Proceedings of the 4th ACM International conference on Embedded
Software, pages 125–136, 2004.

[11] Thomas Ball and Sriram K. Rajamani. The SLAM project: Debugging system
software via static analysis. In Proceedings of the 29th ACM SIGPLAN-SIGACT
Symposium on Principles of Programming Languages, pages 1–3, 2002.

193

http://httpd.apache.org/

[12] Emery D. Berger and Benjamin G. Zorn. DieHard: Probabilistic memory safety
for unsafe languages. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 158–168, 2006.

[13] Dirk Beyer, Thomas A. Henzinger, Ranjit Jhala, and Rupak Majumdar. The soft-
ware model checker BLAST: Applications to software engineering. International
Journal on Software Tools for Technology Transfer, 9(5-6):505–525, 2007.

[14] Surupa Biswas, Thomas Carley, Matthew Simpson, Bhuvan Middha, and Rajeev
Barua. Memory overflow protection for embedded systems using run-time checks,
reuse, and compression. ACM Transactions on Embedded Computing Systems, 5
(4):719–752, November 2006.

[15] Rastislav Bodik, Rajiv Gupta, and Vivek Sarkar. ABCD: Eliminating array
bounds checks on demand. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 321–333, 2000.

[16] Hans-Juergen Boehm and Mark Weiser. Garbage collection in an uncooperative
environment. Software: Practice & Experience, 18(9):807–820, 1988.

[17] Miguel Castro, Manuel Costa, and Tim Harris. Securing software by enforcing
data-flow integrity. In Proceedings of the 7th USENIX Symposium on Operating
Systems Design and Implementation, pages 147–160, 2006.

[18] Satish Chandra and Thomas Reps. Physical type checking for C. In Proceedings of
the 1999 ACM SIGPLAN-SIGSOFT Workshop on Program Analysis for Software
Tools and Engineering, pages 66–75, 1999.

[19] Fred Chow, Sun Chan, Shin-Ming Liu, Raymond Lo, and Mark Streich. Effec-
tive representation of aliases and indirect memory operations in SSA form. In
Proceedings of the International Conference on Compiler Construction, pages
253–267, 1996.

[20] James Clause, Ioannis Doudalis, Alessandro Orso, and Milos Prvulovic. Effective
memory protection using dynamic tainting. In Proceedings of the IEEE/ACM
International Conference on Automated Software Engineering, pages 284–292,
2007.

[21] Jeremy Paul Condit. Dependent Types for Safe Systems Software. PhD thesis,
University of California, Berkeley, 2007.

[22] Christopher L. Conway, Dennis Dams, Kedar S. Namjoshi, and Clark Barrett.
Pointer analysis, conditional soundness, and proving the absence of errors. In
Proceedings of the International Symposium on Static Analysis, pages 62–77, 2008.

[23] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and Clifford Stein.
Introduction to Algorithms. MIT Press, 2 edition, 2001.

194

[24] John Criswell, Andrew Lenharth, Dinakar Dhurjati, and Vikram Adve. Secure
virtual architecture: A safe execution environment for commodity operating
systems. In Proceedings of the 21st ACM Symposium on Operating Systems
Principles, pages 351–366, 2007.

[25] Ron Cytron and Reid Gershbein. Efficient accommodation of may-alias infor-
mation in SSA form. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 36–45, 1993.

[26] Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and F. Kenneth
Zadeck. Efficiently computing static single assignment form and the control
dependence graph. ACM Transactions on Programming Languages and Systems,
13(4):451–490, 1991.

[27] Manuvir Das, Sorin Lerner, and Mark Seigle. ESP: Path-sensitive program
verification in polynomial time. In Proceedings of the ACM SIGPLAN 2002
Conference on Programming language design and implementation, pages 57–68,
2002.

[28] Joe Devietti, Colin Blundell, Milo M. K. Martin, and Steve Zdancewic. Hard-
Bound: Architectural support for spatial safety of the C programming language.
In Proceedings of the 13th International Conference on Architectural Support for
Programming Languages and Operating Systems, pages 103–114, 2008.

[29] Dinakar Dhurjati and Vikram Adve. Efficiently detecting all dangling pointer
uses in production servers. In Proceedings of the International Conference on
Dependable Systems and Networks, pages 269–280, 2006.

[30] Dinakar Dhurjati and Vikram Adve. Backwards-compatible array bounds checking
for C with very low overhead. In Proceedings of the 28th International Conference
on Software Engineering, pages 162–171, 2006.

[31] Dinakar Dhurjati, Sumant Kowshik, and Vikram Adve. SAFECode: Enforcing
alias analysis for weakly typed languages. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 144–157,
2006.

[32] Isil Dillig, Thomas Dillig, and Alex Aiken. Static error detection using semantic
inconsistency inference. In Proceedings of the ACM SIGPLAN Conference on
Programming Language Design and Implementation, pages 435–445, 2007.

[33] Frank Ch. Eigler. Mudflap: Pointer use cheking for C/C++. In Proceedings of
the GCC Developers Summit 2003, pages 57–70, 2003.

[34] Dawson Engler, David Yu Chen, Seth Hallem, Andy Chou, and Benjamin Chelf.
Bugs as deviant behavior: A general approach to inferring errors in systems code.
In Proceedings of the 18th ACM Symposium on Operating Systems Principles,
pages 57–72, 2001.

195

[35] Manuel Fähndrich, Jeffrey S. Foster, Zhendong Su, and Alexander Aiken. Par-
tial online cycle elimination in inclusion constraint graphs. In Proceedings of
the ACM SIGPLAN 1998 Conference on Programming Language Design and
Implementation, pages 85–96, 1998.

[36] Björn Franke and Michael O’boyle. Array recovery and high-level transformations
for DSP applications. Transactions on Embedded Computing Systems (TECS), 2
(2):132–162, 2003.

[37] Keir Fraser. Practical lock-freedom. Technical Report UCAM-CL-TR-5769,
University of Cambridge, 2004.

[38] Edward Fredkin. Trie memory. Communications of the ACM, 3(9):490–499, 1960.

[39] GNU Core Utilities. GNU Project. http://www.gnu.org/software/coreutils/.

[40] GNU Compiler Collection. GNU Project. http://gcc.gnu.org/.

[41] Rajiv Gupta. Optimizing array bound checks using flow analysis. ACM Letters
on Programming Languages and Systems, 2(1-4):135–150, 1993.

[42] Rajiv Gupta. A fresh look at optimizing array bound checking. In Proceed-
ings of the ACM SIGPLAN Conference on Programming Language Design and
Implementation, pages 272–282, 1990.

[43] Reed Hastings and Bob Joyce. Purify: A tool for detecting memory leaks and
access errors in C and C++ programs. In Proceedings of the USENIX Winter
Technical Conference, pages 125–138, 1992.

[44] Institute of Electrical and Electronics Engineers, Incorporated. IEEE Std 1003.1c-
1995, 1996.

[45] Intel Corporation. Intel XScale Core: Developer’s Manual, 2004.

[46] International Organization for Standardization. ISO/IEC 9899: Programming
Languages—C, 1999.

[47] Barnaby Jack. Vector rewrite attack: Exploitable NULL pointer vulnerabilities on
ARM and XScale architectures. Technical report, Juniper Networks, Incorporated,
2007.

[48] Trevor Jim, J. Greg Morrisett, Dan Grossman, Michael W. Hicks, James Cheney,
and Yanling Wang. Cyclone: A safe dialect of C. In Proceedings of the USENIX
Annual Technical Conference, pages 275–288, 2002.

[49] Richard W. M. Jones and Paul H. J. Kelly. Backwards-compatible bounds checking
for arrays and pointers in C programs. In Proceedings of the 3rd International
Workshop on Automatic Debugging, pages 13–26, 1997.

196

http://www.gnu.org/software/coreutils/
http://gcc.gnu.org/

[50] Brian W. Kernighan and Dennis M. Ritchie. The C Programming Language.
Prentice Hall, 2nd edition, 1988.

[51] Gary A. Kildall. A unified approach to global program optimization. In Proceed-
ings of the 1st Annual ACM SIGACT-SIGPLAN Symposium on Principles of
Programming Languages, pages 194–206, 1973.

[52] Donald E. Knuth. The Art of Computer Programming, Volume 3: Sorting and
Searching. Addison-Wesley Professional, 2 edition, 1998.

[53] Priyadarshan Kolte and Michael Wolfe. Elimination of redundant array subscript
range checks. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 270–278, 1995.

[54] William Landi. Undecidability of static analysis. ACM Letters on Programming
Languages and Systems, 1(4):323–337, 1992.

[55] Chris Lattner. Macroscopic Datastructure Analysis and Optimization. PhD thesis,
University of Illinois, Urbana-Champaign, 2005.

[56] Chris Lattner and Vikram Adve. LLVM: A compilation framework for lifelong
program analysis & transformation. In Proceedings of the International Symposium
on Code Generation and Optimization, pages 75–87, 2004.

[57] Thomas Lengauer and Robert Endre Tarjan. A fast algorithm for finding domina-
tors in a flowgraph. ACM Transactions on Programming Languages and Systems,
1(1):121–141, 1979.

[58] Shin-Ming Liu, Raymond Lo, and Fred Chow. Loop induction variable canoni-
calization in parallelizing compilers. In Proceedings of the 1996 Conference on
Parallel Architectures and Compilation Techniques, page 228, 1996.

[59] V. Benjamin Livshits and Monica S. Lam. Tracking pointers with path and
context sensitivity for bug detection in C programs. In Proceedings of the 9th
European Software Engineering Conference Held Jointly With the 11th ACM
SIGSOFT International Symposium on Foundations of Software Engineering,
pages 317–326, 2003.

[60] Shan Lu, Zhenmin Li, Feng Qin, Lin Tan, Pin Zhou, and Yuanyuan Zhou.
BugBench: Benchmarks for evaluating bug detection tools. In Workshop on the
Evaluation of Software Defect Detection Tools, 2005.

[61] Bhuvan Middha, Matthew Simpson, and Rajeev Barua. MTSS: Multitask stack
sharing for embedded systems. ACM Transactions on Embedded Computing
Systems, 7(4):46:1–46:37, August 2008.

[62] Santosh Nagarakatte, Jianzhou Zhao, Milo M. K. Martin, and Steve Zdancewic.
SoftBound: Highly compatible and complete spatial memory safety for C. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 245–258, 2009.

197

[63] Santosh Nagarakatte, Jianzhou Zhao, Milo M.K. Martin, and Steve Zdancewic.
Cets: Compiler enforced temporal safety for C. In Proceedings of the 2010
International Symposium on Memory Management, pages 31–40, 2010.

[64] George C. Necula, Jeremy Condit, Matthew Harren, Scott McPeak, and Westley
Weimer. CCured: Type-safe retrofitting of legacy software. ACM Transactions
on Programming Languages and Systems, 27(3):477–526, 2005.

[65] Nicholas Nethercote and Julian Seward. Valgrind: A framework for heavyweight
dynamic binary instrumentation. In Proceedings of the ACM SIGPLAN Con-
ference on Programming Language Design and Implementation, pages 89–100,
2007.

[66] Yutaka Oiwa. Implementation of the memory-safe full ANSI-C compiler. In
Proceedings of the ACM SIGPLAN Conference on Programming Language Design
and Implementation, pages 259–269, 2009.

[67] Karl J. Ottenstein, Robert A. Ballance, and Arthur B. MacCabe. The program
dependence web: A representation supporting control-, data-, and demand-driven
interpretation of imperative languages. In Proceedings of the ACM SIGPLAN
Conference on Programming Language Design and Implementation, pages 257–271,
1990.

[68] Harish Patil and Charles Fischer. Low-cost, concurrent checking of pointer and
array accesses in C programs. Software: Practice & Experience, 27(1):87–110,
1997.

[69] Bruce Perens. Electric fence malloc debugger. http://perens.com/FreeSoftware/
ElectricFence/.

[70] Dennis M. Ritchie. The development of the C language. In The second ACM
SIGPLAN Conference on the History of Programming Languages, pages 201–208,
1993.

[71] Anne Rogers, Martin C. Carlisle, John H. Reppy, and Laurie J. Hendren. Support-
ing dynamic data structures on distributed-memory machines. ACM Transactions
on Programming Languages and Systems, 17(2):233–263, 1995.

[72] Atanas Rountev and Satish Chandra. Off-line variable substitution for scaling
points-to analysis. In Proceedings of the ACM SIGPLAN 2000 Conference on
Programming Language Design and Implementation, pages 47–56, 2000.

[73] Radu Rugina and Martin C. Rinard. Symbolic bounds analysis of pointers,
array indices, and accessed memory regions. ACM Transactions on Programming
Languages and Systems, 27(2):185–235, 2005.

[74] Olatunji Ruwase and Monica S. Lam. A practical dynamic buffer overflow detector.
In Proceedings of the Network and Distributed System Security Symposium, pages
159–169, 2004.

198

http://perens.com/FreeSoftware/ElectricFence/
http://perens.com/FreeSoftware/ElectricFence/

[75] Julian Seward and Nicholas Nethercote. Using Valgrind to detect undefined value
errors with bit-precision. In Proceedings of the USENIX Technical Conference,
pages 17–30, 2005.

[76] Matthew Simpson, Bhuvan Middha, and Rajeev Barua. Segment protection for
embedded systems using run-time checks. In Proceedings of the International
Conference on Compilers, Architecture, and Synthesis for Embedded Systems,
pages 66–77, 2005.

[77] Matthew S. Simpson and Rajeev K. Barua. MemSafe: Ensuring the spatial and
temporal safety of C at runtime. In Proceedings of the Tenth IEEE International
Working Conference on Source Code Analysis and Manipulation, pages 199–208,
2010.

[78] Daniel Dominic Sleator and Robert Endre Tarjan. Self-adjusting binary search
trees. Journal of the ACM, 32(3):652–686, 1985.

[79] SPEC CPU Benchmarks. Standard Performance Evaluation Corporation. http:
//www.spec.org/.

[80] US-CERT Vulnerability Notes Database. U.S. Computer Emergency Readiness
Team. http://www.kb.cert.org/vuls/.

[81] Hongwei Xi and Frank Pfenning. Eliminating array bound checking through de-
pendent types. In Proceedings of the ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 249–257, 1998.

[82] Wei Xu, Daniel C. DuVarney, and R. Sekar. An efficient and backwards-compatible
transformation to ensure memory safety of C programs. In Proceedings of the
12th ACM SIGSOFT International Symposium on Foundations of Software Engi-
neering, pages 117–126, 2004.

[83] Suan Hsi Yong and Susan Horwitz. Protecting C programs from attacks via invalid
pointer dereferences. In Proceedings of the 9th European Software Engineering
Conference Held Jointly With the 11th ACM SIGSOFT International Symposium
on Foundations of Software Engineering, pages 307–316, 2003.

[84] Benjamin Zorn. The measured cost of conservative garbage collection. Software:
Practice & Experience, 23(7):733–756, 1993.

199

http://www.spec.org/
http://www.spec.org/
http://www.kb.cert.org/vuls/

200

	Introduction
	Motivation
	Contributions
	Organization of Dissertation

	C Language Compilation and Analysis
	The C Programming Language
	History
	Common use
	Low-level features

	Compilation
	Analysis
	Control-flow and call graph construction
	Data-flow analysis
	SSA form
	Alias analysis

	Memory Safety Violations and Prior Enforcement Methods
	Memory Safety Violations
	Bounds violations
	Uninitialized pointer dereference
	Null pointer dereference
	Manufactured pointer dereference
	Dereference of dangling stack pointers
	Dereference of dangling heap pointers
	Multiple deallocations

	Prior Enforcement Methods
	Spatial safety
	Temporal safety

	MemSafe
	Language Extensions and Assumptions
	Memory deallocation
	Pointer stores

	The Required Checks and Metadata
	Pointer metadata
	Pointer bounds check
	Object metadata
	Object bounds check

	Propagation of the Required Metadata
	Memory allocation
	Memory deallocation
	Address-of operator
	Pointer copies and arithmetic
	Rho-functions
	NULL and manufactured pointers
	Function arguments and return values

	Memory Safety for Multithreaded Programs
	Declaration of the required locks
	Object bounds check
	Memory allocation
	Memory deallocation
	Rho-functions
	Function calls

	Example Application

	Reducing the Runtime Cost of Enforcing Memory Safety
	A Data-flow Graph for Pointers
	Construction
	Connectivity
	Properties
	Example application

	Optimizations of the Basic Approach
	Dominated dereferences optimization
	Temporally safe dereferences optimization
	Non-incremental dereferences optimization
	Monotonically addressed ranges optimization
	Partitioned metadata optimization
	Unused metadata optimization

	MemSafe Implementation
	MemSafe's Analysis and Transformation
	Metadata Facilities
	Implementation alternatives

	Metadata Allocation
	Limitations
	Separate compilation
	NULL and manufactured pointers

	Results
	Effectiveness in Detecting Errors
	Runtime Performance
	Increase in runtime
	Increase in memory consumption
	Effectiveness of optimizations
	Additional cost of temporal safety

	Static analysis

	Related Work
	Spatial and Temporal Safety
	Spatial Safety
	Temporal Safety
	Software Debugging Tools
	Other Methods of Memory Protection
	SSA Extensions

	Future Work
	Performance Enhancements and Evaluation
	Specification and Verification
	Additional Uses

	Conclusion
	Metadata Propagation for the C Standard Library
	Memory Copying Functions of string.h
	Variadic Function Macros of stdarg.h

	Spatial Safety and Segmentation
	Spatial Safety
	The required checks and metadata
	Propagation of the required metadata

	Segmentation
	Propagation of the required metadata

