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Recent technological advances have generated interest in using a field emission

cathode in a radio-frequency (RF) electron gun. One of the necessary steps towards

the realization of this concept is to establish a comprehensive understanding of the

electron distribution produced by such a cathode, and the goal of this work is to

expand this body of knowledge. For the specific case of ungated field emitter arrays,

we investigate aspects of the temporal and transverse electron distribution, as well

as the relationship between emission timing and the ensuing acceleration of the

electrons.

We show that an upper bound can be placed on the magnitude of the trans-

verse momentum imparted to the electrons by the nonlinear accelerating forces that

exist close to the emitter tips. This establishes a limit on the cathode’s intrin-

sic emittance, an important determining factor for beam quality. We examine the

consequences of this result in the context of relevant theoretical and experimental



studies reported in the literature. This is followed by a series of calculations based

on a simple emitter model, which are used to study specific aspects of the transverse

momentum distribution. Our focus then shifts to the longitudinal beam dynamics.

An examination of the on-axis trajectories demonstrates that it is possible to design

a gun such that essentially all of the field-emitted current reaches the exit of the

cavity. This indicates a source of this type may be capable of producing high average

beam power. In the final chapter, the properties of ungated field emission cathodes

are compared with the properties of cathodes that are typically used in RF guns.

This gives some insight into how the field emission cathode might perform in this

setting.
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Chapter 1

Introduction

1.1 Motivation

This dissertation describes the exploration of a field emission electron source

in a radio-frequency (RF) electron gun. High energy, short pulse electron beams

have important technological applications, such as particle colliders and beam-based

light sources. The electron source is a critical component of the accelerators used

to produce these beams. The RF gun, which consists of a cathode mounted in

an RF cavity, is a commonly used type of electron source. This configuration has

the advantage that a very strong accelerating field, typically from several MV/m

to 100 MV/m, can be generated at the surface of the cathode. As a result, the

electrons are rapidly accelerated to relativistic energies, which makes the bunch less

susceptible to the deleterious effects of interelectron forces and stray fields.

There are three main mechanisms for electron emission: thermionic emission,

field emission, and photoemission. Thermionic cathodes and photocathodes are both

frequently used in RF-guns. Though guns based on both of those cathode types

have many desirable characteristics, each has inherent limitations. For thermionic

cathode RF guns, peak current is limited by thermal emission and average current

is limited by potential back-bombardment that can destroy the cathode as the field

reverses. Photocathode RF guns can produce very high peak current, but metal
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photocathodes require high laser powers to overcome the low quantum efficiencies

and non metal photocathodes have low lifetimes often caused by contamination in

the high field environments with less than optimal/compatible vacuum.

Until now, technological limitations have precluded the use of field emission

cathodes in RF guns, but new fabrication techniques have been developed that

produce cathodes that appear to be suitable for this application. A field emission

cathode gun has the potential to generate higher peak and average currents than the

thermionic cathode gun, and its simplicity (for example, a drive laser is not needed)

would exceed either existing gun type.

To build a gun based on a field emission cathode, the characteristics of its

emission must be well understood. In this dissertation, we study the dynamics of

electrons emitted from field emission cathodes – specifically for the case of bare

(ungated) emitters in an RF gun – using both analytical calculations and numerical

examples. This information will be useful for identifying applications for which this

type of gun could be used, for designing appropriate cavities, and for interpreting

experimental results.

1.2 Electron sources for RF accelerators

1.2.1 Beam requirements for RF acceleration

RF acceleration is fundamental to the the generation of high quality high

energy electron beams. In this approach, an RF cavity is excited with a mode

with a longitudinal electric field component along its axis. Electron bunches are
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synchronized to arrive when the polarity of the field pushes the electrons in their

direction of travel. The electrons exit the cavity before the polarity of the field

reverses. In this manner, the electrons experience a strong push over an extended

distance. Cavities are added in series to achieve the desired beam energy.

Because the magnitude of the field is continuously changing as the electron

passes through an accelerating cavity, the momentum gain imparted to a given elec-

tron is a function of the time it enters the cavity. Therefore, the pulse length of

the beam must be short compared to the RF period in order to preserve a limited

momentum spread. In practical terms, the maximum bunch length is limited to a

little more than one degree of phase. This translates to about 5 ps for the popular

2.85 GHz (S-band) frequency. 1.3 GHz (L-band) accelerators correspondingly sup-

port pulses roughly twice as long. Electron sources for RF accelerators are required

to produce pulses with this temporal profile.

1.2.2 Sources of bunched beams

One common electron source consists of a gun with a DC or pulsed field and a

thermionic cathode. Once generated, the beam must be chopped and compressed to

the necessary length (RF bunching). The disadvantage of this approach is that much

of the charge is discarded, and the beam quality is degraded during the conditioning

process. A significant advantage in this regard can be gained by replacing the

thermionic cathode with a photocathode. A short pulse laser can than be used to

generate a similarly short pulse directly from the cathode.
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An alternate type of electron source is the thermionic cathode RF gun [1]. In

the usual case, a cylindrical (pillbox) cavity is excited at the TM010 mode, which

has a longitudinal electric field component on-axis that accelerates the electrons.

Current is extracted from the cathode following the sinusoidal oscillation of the

field. However, the path each electron takes depends strongly on the phase of the

field when it is emitted, and most of the charge does not escape the cavity. The

result is a steady stream of pulses, the details of which are determined by properties

such as the magnitude of the field and the length of the cavity. Because higher fields

are possible in an RF cavity than can be achieved in a DC gun, the peak current

is greater, and because the bunch spends less time at low energy, the beam quality

is better. A thermionic cathode RF gun is usually followed by a device called an

α-magnet, which compresses the pulse, and can also remove part of the beam to

reduce the energy spread.

Yet another type of electron source is the RF photocathode gun [2], illustrated

in figure 1.1. Instead of a thermionic cathode, a photocathode is installed in the

Figure 1.1: Components of an RF gun.

4



RF cavity. By gating the emission with a short-pulse laser, short, very high current

pulses with low energy spread are generated. These are highly desirable properties

for many beam applications, notably the generation of coherent radiation, where

peak current drives the efficiency of the process. The timing of the emission can

be controlled relative to the RF phase to optimize the beam dynamics, and the

profile of the laser pulse can be adjusted to tailor the beam distribution. The

main disadvantage of the photocathode gun is complexity. Sophisticated lasers are

required to drive the cathode, and many types of photocathodes require extensive

preparation.

1.3 Pillbox cavities

Most RF guns are some variation on a pillbox cavity, which is simply a right

circular cylinder capped at both ends. The modes supported by the cavity are

determined by solving the Helmoltz equation for this geometry with conducting

boundary conditions. Two distinct types of solutions are possible: transverse electric

(TE) modes and transverse magnetic (TM) modes. TM modes have an axial electric

field component; it is this component of the field that accelerates the electrons in

an RF gun. The order of the mode is specified by the set of three numbers m, n,

and p. m specifies the azimuthal component, m and n together specify the radial

component, and p specifies the longitudinal component. The TM010 mode is the

lowest order TM mode. This mode has a longitudinal electric field component Ez

that does not depend on z. This is the specific mode that is used in RF guns. The
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fields are [3]

Ez = E0 J0

(

2.405
r

R

)

cos (ωt) (1.1)

Hφ = −
√

ε0

µ0

E0 J1

(

2.405
r

R

)

sin (ωt) (1.2)

where R is the radius of the cavity and 2.405 is an approximation for the first

root of the Bessel function of order zero. The resonant frequency of this mode is

ω010 = 2.405c/R where c is the speed of light. We see that the resonant frequency

for this mode is independent of the cavity length.

1.4 Beam transport and beam quality

1.4.1 Beam transport concepts

In a rough sense, beam quality is usually thought of in terms of how readily

the beam can be confined in the spatial dimensions during its flight and the closely

related question of how small a spot the beam can be focused to. These properties

determine, for instance, how many collisions occur when two beams intersect in

a collider, and how efficiently the electron beam interacts with the optical mode

in a free electron laser. In this section, we will look at how beam quality can be

defined quantitatively. We will explain why it is generally difficult or impossible to

improve certain measures of beam quality during transport. This issue underlies

the importance of understanding the mechanics of emission of electrons from the

cathode.

For the transport of relativistic beams, magnetic lenses are used. The most
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common elements are dipoles for steering and solenoids and quadrupoles for focusing.

To first order, these are linear elements; they give the electron a transverse kick in

linear proportion to its transverse position. In many cases, these lenses can be

approximated as thin lenses, where the details of the dynamics are ignored, and

the electron is viewed as receiving an instantaneous push as it crosses the center of

the lens. When, in addition to this, space charge forces are neglected, the electrons

travel in straight lines between lenses, and they behave the same as the rays used in

geometric optics. In this case, the techniques familiar from geometric optics, such

as the use of transfer matrices, can be employed without modification.

Though useful, the limitations on the analogy between optics and beam trans-

port are quickly reached in practical applications. Many elements which exist only in

one context or the other, and even “equivalent” elements are often only identical in

a low-order approximation. In addition to these specific differences in their techno-

logical building blocks, there are also substantial differences way they are assembled

into systems. Generally, the problem in optics is to create an image of an object to

a certain degree of accuracy. In beam transport, instead of preserving the details

of the distribution, the usual goal is to preserve the quality of the distribution in a

statistical sense. We next discuss how beam quality is quantified.

1.4.2 Emittance

A particle is identified by its coordinates in the six-dimensional space corre-

sponding to its six mechanical degrees of freedom. An ensemble of particles in this
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space constitutes a beam. By definition, the motion of the beam is predominantly

in one direction. It is therefore convenient to consider the transverse coordinates

as a set and to treat the longitudinal coordinate separately. In this context, the

beam can also be defined in four-dimensional trace space where, if x and y are the

transverse coordinates and z is the longitudinal one, the coordinates of a particle in

trace space are x, dx/dz, y, and dy/dz.

Emittance [4] is a statistical measure of how well-behaved a beam is. Here,

we will discuss how it is calculated and why it is significant. Several definitions

for emittance are used, but the one we will use is the rms emittance. For each

dimension, this quantity is defined as

ε̃x =

√

x2 x′2 − xx′
2

(1.3)

where x′ = dx/dz. In statistical terms, xx′ is the covariance of x and x′. Pearson’s

correlation coefficient, which normalizes the covariance to fall between -1 and 1, is

a measure of the linear dependence between two variables. Is is given by ra,b =

ab/
(√

a2

√

b2

)

. Expressed in terms of correlation, the rms emittance becomes

ε̃x =
√

x2

√

x′2

√

1 − r2
x,vx

(1.4)

As an example, during free drift the beam expands, but the effect of the increase

in beam size on the rms emittance is offset by the increased correlation between

position and velocity. This situation is illustrated figure 1.2.

The rms emittance as defined above changes when the beam is accelerated or
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Figure 1.2: x-x′ trace space distribution for a beam expanding during drift at three
points in time. Initially, the distribution is upright; there is no correlation between
position and velocity – the beam is at a waist. As time increases, the distribution
tilts, resulting in a widening of the beam in x and increased correlation between x
and x′.

decelerated. This can be shown by using the substitution

x′ =
vx

vz
=

γmvx

γmvz
=

px

pz

in equation 1.3, where γ is the Lorentz factor and m is the mass of the electron,

yielding

ε̃x =

√

x2

(

px

pz

)2

− x

(

px

pz

)2

.

For a beam, pz is nearly the same for all particles. Furthermore pz � px, so

pz ' p = const. With this approximation,

ε̃x =
1

p

√

x2 p2
x − xpx

2.

The effects of acceleration and deceleration only influence this expression through

changes in p. With the relationship p = mcβγ where c is the speed of light and
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β = v/c, the rms emittance becomes

ε̃x =
1

mcβγ

√

x2 p2
x − xpx

2.

From this expression, the normalized rms emittance,

ε̃n,x = βγεx =
1

mc

√

x2 p2
x − xpx

2

is defined, which contains the same information about the transverse dynamics as

the unnormalized value but does not depend on the beam energy. Normalized rms

emittance can be used to characterize the intrinsic emittance of a source. Normalized

emittance is also referred to as invariant emittance.

Emittance determines the smallest size to which a beam can be focused [4],

analogously to the way wavelength determines the minimum possible beam waist

in Gaussian optics. For a linear system, emittance is conserved [5]. Nonlinear

forces, including space charge interactions and nonlinear external fields, can lead

to emittance growth, which may be reversible or irreversible. In the context of the

RF accelerator, typical normalized rms emittance values are in the range of microns.

1.4.3 Intrinsic emittance of a source

At the source, the velocity distribution is generally independent of position.

This will be true for all the cases we consider. In this case, the correlation term is

zero. Also, the motion is nonrelativistic, so px = mvx. The intrinsic, normalized

rms emittance of the source is therefore

ε̃s,x =
1

c

√

x2

√

v2
x =

1

c
x̃ ṽx (1.5)
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where the tildes denote rms values. As an example (see p. 11 of [4]), for a round,

thermionic cathode, x̃ = a/2 where a is the radius, and, assuming Maxwell-Boltzmann

statistics, ṽx =
√

kT/m, so

ε̃s,x =
a

2

√

kT

mc2
(thermionic cathode) (1.6)

For typical thermionic cathode temperatures, kT is on the order of 100 meV. For a

cathode with a radius of 5 mm, this corresponds to ε̃s,x = 1.1 µm.

1.4.4 Brightness

By passing a beam through an aperture, its emittance can be improved at

the expense of current. For applications where being able to achieve high current

density is necessary, emittance alone does not determine the utility of a beam. For

these cases, beam brightness is a valuable figure of merit. The exact expression for

brightness depends on the details of the beam distribution and whether the peak or

average value is being considered [6, 7]. The general form is

B =
1

κ2π2

2I

ε̃xε̃y

where κ is on the order of 3-5. By replacing the emittance with normalized emit-

tance, a normalized brightness is defined:

Bn =
1

κ2π2

2I

ε̃n,y ε̃n,y
.

As an example of the importance of brightness, for an FEL, it determines the effi-

ciency of the interaction between the electron beam and the optical mode. Though

thermionic guns are capable of producing low emittance beams, photocathode guns

11
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Figure 1.3: Field emission is the emission of electrons that tunnel through the
surface barrier with the application of a strong electric field. This figure illustrates
the Schottky lowering ∆φ of the barrier by the field, where φ is the work function
of the metal.

have a significant advantage in producing bright beams because a very large number

of electrons can be generated in an extremely short pulse.

1.5 Field emission and FEA cathodes

1.5.1 Fowler-Nordheim equation

Field emission describes the escape of electrons into the vacuum by tunneling

through the surface barrier 1.3. The central equation describing field emission is the

Fowler-Nordheim equation. A basic version of the Fowler-Nordheim equation that

applies to flat, metallic surfaces at zero temperature, is (see, for example, [8]):

J (F ) =
e3

16π2h̄

1

t(y)
2

F 2

φ
exp

(

−4

3

√
2m

eh̄
v(y)

φ
3

2

F

)

,
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where F is the applied field, e is the electron charge, and φ is the work function

of the metal. The functions t(y) and v(y) incorporate the effects of Schottky bar-

rier lowering on the electron escape probability [9], where the parameter y is the

magnitude of the barrier lowering as a fraction of the work function:

y =
1

φ

√

e3F

4πε0

.

t and v must be computed numerically. Various approximations have been developed

for situations where an analytic expression is needed, and we will use the crudest of

these [10]:

t(y)2 = 1.1, v(y) = 0.95 − y2

N .

With these substitutions, the approximate field emission current density is

J (F ) ≈ e3

16π2h̄

1

1.1

F 2

φ
exp

(

4

3

1

4πε0

e
√

2m

h̄

1√
φ

)

exp

(

−0.95
4

3

√
2m

eh̄

φ
3

2

F

)

The utility of the approximation is seen to be that it simplifies the term in the

exponential by separating it into two components, only one of which has a field de-

pendence. The reader is referred to chapter 2, section C2 of the book by Jensen [11]

for a discussion of this and other relevant approximations. Because the field is a

rapidly changing function of position near a field emitter tip, having a simplified

expression for the field emission equation makes calculations involving the current

density distribution more manageable (for more context, see section 3.2.2.4 of [12]).

In numerical terms, the equation is

J (F ) ≈
(

1.4 × 10−6
eV V2

m2

)

F 2

φ
exp

(

9.8 eV
1

2

√
φ

)

exp

(

−6.5 × 109
m

eV
3

2 V

φ
3

2

F

)

(1.7)

13



if the field is measured in volts per meter and the work function is measured in

electron volts. This equation is plotted in figure 1.4. We note that in this approxi-

mation the basic shape of the curve is fixed, with the work function serving to scale

the curve in the horizontal and vertical directions.
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Figure 1.4: Behavior of field emission (Fowler-Nordheim equation) from a flat, metal
surface in the low-temperature limit for two values of work function. 4.5 eV is
roughly the work function of molybdenum. 1012A/m2 is considered a very high cur-
rent density for pulsed operation; 1011A/m2 is high for DC operation (the limitation
is often the melting point of the material). See, for example, chapter two of [13].

As we alluded to above, this form of the Fowler-Nordheim equation is based

on several assumptions. When these assumptions are not met, the results break

down with various degrees of severity. For instance, this version assumes the metal

is at zero temperature. However, the correction at room temperature is minimal.

Another issue is that the image charge approximation used to calculate the barrier
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lowering breaks down for extremely sharp points [14], though this effect is masked

by the fact that the effective emission area is strongly field dependent in this regime.

A further qualification is that the derivation assumes a metallic density of states,

but it is usually the case that the equation in the above form adequately describes

emission from other types of materials [15, 16]. A thorough discussion of all of the

conditions and assumptions that lead to the various forms of the Fowler-Nordheim

equation and its generalizations can be found in the book by Jensen [11].

1.5.2 Field emitter arrays

For many materials, especially metals, significant field emission requires fields

in the range of several gigavolts per meter. Field emission usually only occurs, in-

tentionally or unintentionally, where field enhancement due to sharp features occurs

in the presence of a strong applied field. Early experiments in this field used metal

wires sharpened into needles by polishing or chemical etching.

Field emitter arrays (FEA) are arrays of tips formed by using deposition and

lithography. They were first developed in the middle of the last century following

the advent of vacuum deposition techniques. The first FEA was demonstrated by

Spindt based on work by Buck and Shoulders (for a historical overview, see, for

example, [17, 18]). Spindt cathodes, with tips made of molybdenum, are generally

conical in shape, as can be seen in figure 1.5. The processes used to fabricate these

cathodes, and others that followed, can produce much sharper tips than earlier field

emission sources. As a consequence, lower extraction fields are required. Most FEAs
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Figure 1.5: Scanning electron microscope (SEM) micrograph of a Spindt cathode.
(Courtesy of Capp Spindt, SRI International.)

have integrated gates that are spaced very closely to the tips. This allows high fields

to be generated at reasonable voltages, typically on the order of 100 V, though for

some types the number is lower.

Since their invention, FEA cathodes have been made from numerous materials

using a wide variety of processes. Much of the research had been centered around

their potential commercial application as a flat panel display technology [8]. Silicon

FEAs are one notably well investigated category of device [16]. Silicon tips can

be made sharper than metal ones, and emission occurs at lower fields. Aspects of

silicon FEAs that require further development are reliability and the capability to

produce devices of larger size. A wide variety of issues related to the fabrication

and application of FEAs are reviewed in [19].

The focus of this dissertation is the use of ungated cathodes in an RF gun.
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Figure 1.6: SEM micrograph of a diamond pyramid FEA at various degrees of
magnification. The nanotip generates significant field enhancement. (Courtesy of
Jonathan Jarvis, Vanderbilt University.)

Metal cathodes are not suitable for this application because the fields they require

are greater than the peak electric field generated in an RF gun [15]. The main

obstacle to the realization of this concept is the lack of a cathode with the requisite

combination of ruggedness and low turn-on field. However, recent generations of

diamond field emitter arrays (DFEAs) seem to meet those requirements. Diamond

is insensitive to surface degradation, and though the emission process is not fully

understood, the barrier to emission is lower than most FEA materials [20]. Chemical

vapor deposition (CVD) is used to fabricate pyramid shaped structures with sharp,

filament-like microtips that provide substantial field enhancement [21]. A CVD

diamond DFEA is illustrated in figure 1.6 Current of 15 µA DC per tip and 25 µA

pulsed have been demonstrated; values which are reported to be limited by the

measurement apparatus [22]. Average current densities above 100 A/cm2 have been

reported [23]. A process for ensuring emission is uniform from tip to tip has been

described [24]. The largest array reported was 224×224 [22]. Lastly, the application

of these cathodes for a FEL, including their use in an RF gun, has been proposed [23].
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1.5.3 Operation of FEAs at microwave frequencies

The operational characteristics of FEA cathodes at microwave frequencies has

long been a topic of interest [25]. The interest continues today, particularly related

to their use in microwave tubes [26]. FEAs offer several benefits, including high

current density and fast switching time. For use in space, FEAs have the advantage

of not requiring a power-consuming heating element. Low emittance is a particu-

lar advantage at the highest frequencies, where the feature sizes of the tubes get

very small [27]. Often in RF applications, capacitance between the tips and the

gate, which puts a limit on the attainable modulation frequency, is a primary con-

cern. Because we are considering ungated cathodes, this is not an issue for us. A

result from this area of research that does have implications for our investigation

is the demonstration that the emission process itself is not altered at microwave

frequencies [13].

1.5.4 Physical properties

The results we will describe are highly dependent on the geometry of the emit-

ters. FEA tips exist in a very wide variety of shapes and sizes. Spindt emitters are

roughly conical [10], whereas many silicon FEAs [28] and some diamond emitters [21]

are pyramid-shaped. Carbon nanotubes, whose small tip radii lead to very high field

enhancement factors, are another well investigated species of emitter. For descrip-

tions of a wide variety of emitter types, see [19]. Spindt emitters and the pyramid

shaped structures have tapered cross sections, often with a sharp protrusion at the
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apex known as a microtip or nanotip (see figure 1.5). The small radius of curvature

of the microtip gives these emitters their high field enhancement factors. We will, in

general, concentrate on structures that are roughly 1 µm tall with moderate aspect

ratios, which is representative of many of the most common FEAs. An exception

will be made for TaSi2 rods, which are very tall relative to their radius, because

their intrinsic emittance has been measured [39]

1.6 Concept of a field emission cathode-based RF gun

The idea of using a field emitter cathode in an RF gun has been suggested, but

no successful implementation has been reported. In many cases, even the concepts

that have been proposed have appeared in the literature only indirectly [30]. In the

1990’s, the design of a reentrant half cell S band cavity intended as a test bed for this

application was reported by researchers from Dortmund University and University

of Wuppertal [31], but no later mention of this project could be found.

In many ways, the properties of an FEA cathode-based RF gun would be

intermediate between the thermionic cathode gun and the photocathode gun. Com-

pared to the thermionic cathode case, there is potential for higher brightness, and

the phenomenon of back bombardment would be reduced or, possibly, eliminated.

Compared to the photocathode gun, the brightness would be lower, and there would

not be the same degree of control over the pulse shape and timing. In simplicity

of operation, the FEA based gun would have an advantage over either existing

technology.
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The possible approaches for incorporating a field emission cathode in an RF gun

can be broadly divided into two categories: those based on gated cathodes, and those

based on ungated ones. The advantages of gated cathodes for this application are

independent control of the timing of the emission, general separation of the field in

the gun from the field used to drive the cathode, and the potential to use the gate

electrode or electrodes as a lens to collimate each beamlet individually, which would

greatly improve overall beam quality. A possible impediment to this approach is

that, as discussed above, the capacitance between the tips and the gate limit the

switching frequency (Jensen [15] has discussed this issue in this context). Also, the

current absorbed by the grid could be of a magnitude where thermal management

would become a challenge. In general, the gated case is more complex, though not

necessarily prohibitively so.

The work reported in this dissertation is entirely focused on the ungated case,

the advantages and disadvantages of which are basically opposite to those of the

gated emitter. The setup is simpler, but there is no way to control the emission

independently of the accelerating field. Emission is peaked at the crest of the field,

which is not optimal for the beam dynamics. Though the emittance of each beamlet

is small because the emission area is small and the transverse velocity is correlated

with position, there is no mechanism for collimating the beamlets before they merge,

at which point the correlation is lost leading to an irreversible increase in the emit-

tance.

In a recent paper, Lewellen and Noonan [32] proposed a novel RF gun design

based on a field emission cathode that exhibits many of the desirable characteristics
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of both thermionic cathode and photocathode-based RF guns. The idea is to add

a second RF mode at the third harmonic of the fundamental. Because significant

field emission occurs only above a threshold field, the amplitudes of the modes can

be selected to activate the emitter only once for each period of the fundamental,

when the two waves interfere constructively and with the correct polarity to extract

electrons. The result is a pulse that is short (determined by the period of the third

harmonic), and the timing of which can be shifted over some range by changing the

phase relationship between the modes (generally, beam dynamics are optimized by

launching the bunch ahead of the crest of the field). A gun based on this concept

could potentially use gated or ungated emitters.

Though not based on an RF gun, we mention here a current project at the

Paul Scherrer Intitute that would use a field emission source coupled to an RF ac-

celerator [33, 34]. The goal in this case is to develop an ultra low emittance source

to drive an x-ray FEL. Both single tips and gated arrays with integrated focusing

are being evaluated. The beam from the cathode will be accelerated across a 4 mm

gap by a pulsed 1 MV voltage. From there, the beam enters an RF accelerator,

where ballistic and magnetic bunch compression are used to produce the required

bunch length.

1.7 FEAs and emittance: survey of the literature

Though limited in extent, there are some studies in the literature regarding

the emittance of FEAs, mostly tied to their use in microwave tubes, and mostly
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dealing with gated arrays. In this section, we will discuss several studies that are

directly related to our work. For a broader sampling, see section 3.3.8 of [12] and

section 4.4.1 of [18].

Liu and Lau [35] studied the emittance of a two-dimensional wedge shaped

emitter. Approximating the cross section of the wedge by a Lorentzian function,

they are able to restate the problem in a dimensionless form. The dimensionless

trajectories are then solved numerically, leading to a general solution that can then

be scaled based on the parameters of the problem.

Recently Jensen [15], in a significant extension to his earlier work [36], has

developed a theory to determine the emittance of beams generated from structures

of varying geometries. With analytic and numerical components, it is based on the

“point charge model” [37], which gives a balance between accurate depiction of the

emitter shape and computational efficiency. The point charge model has scaling

properties that can be used to predict how altering the tip shape from a given

baseline will affect the results [38, 15]. In the paper, comparisons are made between

the theory and experimental results from the literature, and other topics related

to the use of FEAs in accelerators (current density, switching frequency, effects of

space charge) are discussed.

Two experimental studies are of particular interest. In 1992, Kirkpatrick et al. [39]

measured the angular distribution of electrons emitted from ungated TaSi2 rods. The

diameter of the rods was 1 µm, and their heights ranged from 1–60 µm. Numerical

calculations were also carried out to predict how the emittance would vary across a

range of emitter sizes and operating voltages. More recently, Jarvis et al. [22, 40]
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have measured the emittance of beams generated from ungated diamond pyramid

FEAs. The results of these studies will be discussed in chapter 3.

For the general situation where multiple beamlets merge to form a single beam,

Rhee and Boulais [41] have studied the way in which the characteristics of individual

beamlets determine the emittance of the combined beam. As intuition would predict,

for a large, dense, uniform array of the type we are considering, the emittance of the

combined beam reflects the total area filled by the beamlets (including any empty

space between them), and the velocity distribution is spatially uniform and equal

to the velocity distribution of a single beamlet, reflecting the loss of correlation

between position and velocity once the beamlets overlap.

1.8 Outline

The goal of this dissertation is to explore some of the issues most critical to

predicting how a field emission cathode-based RF gun would perform. As discussed

above, either gated or ungated FEAs could be considered for this application, and

the design issues and mode of operation would be different between the two cases.

Here, we limit the discussion to ungated cathodes.

In the second chapter, we describe the prolate spheroidal boss model of a field

emitter tip. The main utility of this model is that it can be solved analytically by

separation of variables. At the beginning of the chapter, the parameters associated

with the model are defined. Next, the properties of the electrostatic solution are

discussed. At the end of the chapter, we illustrate the effect of emitter shape on
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field enhancement across the surface of the boss.

In chapter 3, an upper bound on the transverse momentum of an electron

emitted from an ungated field emitter is derived. This in turn defines an upper

bound on the intrinsic emittance of the FEA. We emphasize that the result is not

specific to the geometry of the prolate spheroidal boss. In fact, only a few general

conditions must be met for this upper bound to apply. In the next part of the

chapter, theoretical and experimental studies of field emitter emittance from the

literature are examined in relationship to each other and to the upper bound, and

several trends are identified that are later investigated.

In chapter 4, numerical calculations based on the prolate spheroidal boss model

are used to investigate the behaviors seen in chapter 3 and to otherwise develop

a better understanding of the properties of the transverse velocity distribution of

emission from an FEA cathode. More insight is gained into the relationship between

emitter shape and the velocity distribution. Two hypothetical emitters are defined

based on the requirements imposed by the RF gun, and for these examples, the

evolution of the beam properties over the duration of the pulse (caused by the

varying magnitude of the RF field) is described.

In chapter 5, the focus shifts to the temporal emission profile for an FEA in an

RF field, and the connection between emission timing and the longitudinal dynamics

of the electrons as they are accelerated in the cathode cell. As a consequence of

the shape of the Fowler-Nordeim current-voltage relationship, the fraction of the

RF period over which emission occurs is nearly independent of the characteristics

of the emitter and the frequency of the cavity. It is shown that the RF gun can
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be designed so that electron back bombardment does not occur, indicating that an

FEA cathode gun may be able to produce high average beam current.

Chapter 6 covers several topics. The relationship between our theoretical

results and other theoretical models is reconsidered, and the complementary aspects

of the models are emphasized. Predictions of how FEA cathodes will perform in

an RF gun are formulated based on comparisons to the proven RF gun cathodes.

After that, new results we have obtained are enumerated, follow-on research topics

are suggested, and some concluding remarks are made.
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Chapter 2

Properties of the prolate spheroidal boss model of a field emitter

This chapter introduces the prolate spheroidal boss model of a field emitter.

Its associated geometry is defined, and its electrostatic solution is given, as is the

electric field at the surface, which is needed to calculate the field emission current

distribution.

2.1 The prolate spheroidal boss and other emitter models

A number of simplified geometries have been employed in analytic studies of

field emitter tips: concentric spheres [42], sphere on cone [43], floating sphere [44],

hyperboloid [45, 46], paraboloid, Saturn model [47], etc. We will use one of the

simpler models, the conducting prolate spheroidal boss on a conducting plane [48].

This surface, formed by rotating an ellipse around its major axis, is illustrated

in figure 2.1. In this chapter, we will discuss the properties of the electrostatic

solution of the prolate spheroidal boss in an external field applied perpendicular to

the plane. These properties will be used in later chapters to examine the dynamics

of electrons emitted from the surface of the boss. Because this is a greatly simplified

representation of an actual physical structure, there are many limitations to how

well it can be made to reflect the properties of real emitters. Some of the relevant

limitations will be noted.
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Figure 2.1: Cross section of a prolate spheroidal boss on a conducting plane.

The electrostatic solution for this problem can be solved in closed form by

separation of variables in prolate spheroidal coordinates. The solution can then be

transformed to Cartesian coordinates. It is therefore, for our purposes, not necessary

to go into the details of the properties of spheroidal coordinate systems. Here,

though, we define some of the parameters which describe the ellipses and hyperbolas

that make up the spheroidal coordinate system, as they come up frequently in the

results derived from the model.

2.2 Notation for the ellipse and hyperbola

Given a pair of focal points, an ellipse is defined as the set of all points such

that the sum of the distances from each of the focal points to a given point on the

ellipse is constant. Using the notation as defined in the figure 2.2, we have

dt + db = ke
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Figure 2.2: Geometry of the ellipse and hyperbola

where ke is a constant. In terms of Cartesian coordinates, which we name r and z,

this condition becomes

√

r2 + (z − f)
2
+

√

r2 + (z − (−f))
2

= ke.

The equation for the ellipse can be written alternately as

z2

a2
e

+
r2

b2

e

= 1, (2.1)

where ae is the semimajor axis and be is the semiminor axis. These two forms are

related in the following way [49]. As can be shown by comparing the two equations

at the point where the ellipse crosses the major axis,

ke = 2ae. (2.2)
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By considering the point where the ellipse intersects the minor axis, it can be shown

that f2 + b2

e = (ke/2)
2, so given ke = 2ae,

f2 = a2

e − b2

e. (2.3)

The hyperbola is closely related to the ellipse. It is a set of points such that

the difference between the distances from the two foci to a point on the hyperbola

is constant. Using the notation from figure 2.2, the definition for the hyperbola is

written

db − dt = kh,

or, in Cartesian coordinates,

√

r2 + (z − (−f))2 −
√

r2 + (z − f)2 = kh.

The equation for the hyperbola can also be written in the form

z2

a2

h

− r2

b2

h

= 1 (2.4)

where again ah is the semimajor axis and bh is the semiminor axis. The semimajor

axis is the height of the point where the hyperbola intersects the axis. Given a value

for the semimajor axis, the semiminor axis sets the slope of the asymptotes. This

can be seen by considering the behavior of equation 2.4 when r and z are large,

where z ≈ (ah/bh) r, as can be seen in figure 2.2.

The relationship between these two definitions of the hyperbola is as follows.

By considering the point where the hyperbola intersects the major axis, it can be

seen that kh = 2ah. Next, bh can be related to f and kh by comparing the asymptotic
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forms of the two equations. The result is

bh =

√

f2 −
(

kh

2

)2

.

This is equivalent to the useful identity f2 = a2

h
+ b2

h.

2.3 Elliptic coordinate system

In three dimensions, the natural coordinate system for this problem is the

prolate spheroidal coordinate system, which is formed by rotating an elliptic coor-

dinate system around the major axis of its coordinate ellipses. Because the problem

at hand has azimuthal symmetry, it reduces to a problem in two dimensional elliptic

coordinates (also known as elliptic-cylindrical coordinates). An elliptic coordinate

system is illustrated in figure 2.3. This coordinate system is comprised of confocal

families of ellipses and hyperbolas. One difference between an elliptic coordinate

system and more familiar ones is that its “shape” must be specified by giving the

focal distance f. This focal distance supplies one of the parameters needed to lo-

cate the ellipse or hyperbola a point is located on, the other is given by specifying

kh or ke. Unfortunately, there is no universal convention for how the coordinates

are defined and named. We use the notation of Smythe [50], except we we use f

for the distance from the origin to a focus (Smythe uses c2). In this notation, the

coordinates are defined as

η =
ke

2f
=

ae

f
=

dt + db

2f
(2.5)

ξ =
kh

2f
=

ah

f
=

db − dt

2f
. (2.6)
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Figure 2.3: An elliptic coordinate system

The geometric significance of η and ξ is illustrated in figure 2.4. We note that 1/η

is called the eccentricity of the ellipse; 1/ξ is the eccentricity of the hyperbola.

The inverse transformation, from elliptic coordinates into Cartesian coordi-

nates, is

r =
bebh

f
= f
√

(1 − ξ2) (η2 − 1) (2.7)

z =
aeah

f
= fηξ (2.8)

It is easily confirmed that substitution of these relationships into equations 2.1 and

2.4 yields the identities a2
e − b2

e = f2 and a2

h
+ b2

h = f2 respectively.

An alternate parameterization for the elliptical coordinates is formed with the
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Figure 2.4: Definitions for η and ξ

substitutions [51]

η = coshχ and ξ = cos θ

(where again, many combinations of symbols are in use). In this system, the trans-

formation back to Cartesian coordinates (corresponding to equations 2.7 and 2.8)

are

r = f sinh η sin θ and z = f cosh η cos θ (2.9)

θ = acos ξ is analogous to the angle coordinate in polar coordinates (η f is similar

to the radius). The coordinates defined by equations 2.3 can be convenient to use

because the lines of constant θ are evenly distributed, as illustrated in figure 2.5.

A full description of elliptic and related coordinate systems can be found in

many older textbooks. See, for example, chapter 5 of Morse and Feshbach [52].
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Figure 2.5: Alternate parameterization for an elliptic coordinate system. The el-
lipses are lines of constant χ; the hyperbolas are lines of constant θ. In particular,
θ = acos ξ is plotted every 5◦ between 0◦ (z axis) and 90◦ (r axis). We will often
plot data as a function of this variable.

2.4 Electrostatic solution for the prolate spheroidal boss on a con-

ducting plane

The electrostatic solution for the problem of the conducting prolate spheroidal

boss on a conducting plane can be found, for instance, in the electrodynamics book

by Smythe [50]. A somewhat more detailed version of the solution is provided in

Kosmahl [53]. Little insight into the solution is gained by delving into the mechanics

of separation of variables in elliptic coordinates, so we simply state the solution.

Φ (η, ξ) = E0fb P1 (ξ)

[

P1 (η) − P1 (ηb)

Q1 (ηb)
Q1 (η)

]

where P1 and Q1 are degree-one Legendre functions of the first and second type

respectively. As we saw above, the η coordinate describes an ellipse; ηb is the
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Figure 2.6: Electrostatic solution for the prolate spheroidal boss in a uniform applied
field: equipotentials and electric field vectors.

value η takes on the surface of the boss. We see immediately the two terms in

the brackets cancel when η = ηb corresponding to the condition that the boss is

grounded. It should be pointed out that the focal distance, which appears explicitly

in this expression, also enters the equation implicitly through its appearance in the

definitions of η and ξ. As mentioned above, this is one of the peculiarities of elliptical

coordinate systems: the shape of the coordinate system itself must be chosen to fit

the geometry of the problem. We have added the subscript “b” to emphasize that

fb is determined by the dimensions of the boss. If the emitter has height ab and

base radius bb, fb =
√

a2

b
− b2

b by equation 2.3. Finally, ηb = ab/fb as defined in

equation 2.5.

Next, we use the definitions of the Legendre functions to restate the potential

using more familiar functions.

P1(x) = x and Q1 (x) =
1

2
x ln

(

x + 1

x− 1

)

− 1 = x acoth (x) − 1.
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Figure 2.7: The functions acoth (x) and Q1(x)

acoth (x) and Q1(x) are plotted in figure 2.9. the solution stated above becomes

Φ (η, ξ) = E0fbξ

[

η − ηb

η acoth (η) − 1

ηb acoth (ηb) − 1

]

. (2.10)

On the z = 0 plane, ξ = 0 so Φ = 0. Far above the emitter, η is large, causing the

second term in the brackets to vanish, and we are left with Φ ≈ E0fbηξ. From equa-

tion 2.8 we have fb ξη = z, so Φ ≈ E0z in accordance with the uniform applied field.

Returning to the exact solution, rearranging terms and employing the relationship

fb ξη = z, we end up with

Φ (r, z) = E0z



1 −
η acoth (η) − 1

η
ηb acoth (ηb) − 1

ηb



 (2.11)

with

η (r, z) =

√

r2 + (z − fb)
2
+
√

r2 + (z + fb)
2

2fb

where, summarizing from above,

fb =
√

a2

b
− b2

b and ηb =
ab

fb
=

ab
√

a2

b
− b2

b

where ab is the height of the boss and bb is the radius of the base.
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2.5 Electric field at the surface of the boss

Kirkpatrick studied the effective emission area (the area factor) for sharp

tips by integrating the distribution of field emission across the surface of a pro-

late spheroidal boss [48]. Later, in order to calculate velocity distributions, we will

need to know this emission distribution. We describe it here.

Because the surface of the boss is a surface of constant η, the normal vector

is in the direction of the unit vector η̂. The electric field is

E = −∇Φ

so the magnitude of the surface field is

Eη0
= [−η̂ · ∇Φ]η=ηb

.

The general expression for the gradient operator in curvilinear coordinates as well

as the scale factors for elliptic coordinates can be found, for instance, in Morse and

Feshbach [52] (sections 1.4 and 5.1 respectively):

∇Φ =
1

h1

∂Φ

∂ω1

â1 +
1

h2

∂Φ

∂ω2

â2

ω1 = η, h1 = hη = f

√

η2 − ξ2

η2 − 1
and â1 = η̂

ω2 = ξ, h2 = hξ = f

√

η2 − ξ2

1 − ξ2
and â2 = ξ̂.

For our η they use µ in their notation, and, confusingly, our ξ is their η. Our f is

their d. The gradient in elliptic coordinates is therefore

∇Φ =
1

f

√

η2 − 1

η2 − ξ2

∂Φ

∂η
η̂ +

1

f

√

1 − ξ2

η2 − ξ2

∂Φ

∂ξ
ξ̂
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so the quantity we seek

Eη0
= [−η̂ · ∇Φ]η=ηb

=

[

− 1

fb

√

η2 − 1

η2 − ξ2

∂Φ

∂η

]

η=ηb

where, from equation 2.10, we find

∂Φ

∂η
= E0fbξ





ηb

ηb acoth (ηb) − 1

1

η (η2 − 1)
+



1 −
η acoth (η) − 1

η
ηb acoth (ηb) − 1

ηb







 .

At η = ηb, the second term is zero, leaving

[

∂Φ

∂η

]

η=ηb

= E0fbξ
1

(η2

b
− 1)

1

ηb acoth (ηb) − 1
,

and the final result is

Eη0
= −E0

1

ηb acoth (ηb) − 1

ξ
√

(η2

b
− 1) (η2

b
− ξ2)

. (2.12)

The maximum field enhancement, β = Eη0
/ (−E0) occurs at the apex of the boss,

where ξ = 1, giving

β (ηb) =
1

(η2

b
− 1) (ηb acoth (ηb) − 1)

.

As a caution, the field enhancement factor for gated FEAs is usually defined instead

as the ratio of apex field to gate voltage.

2.6 Curvature of the tip and field enhancement

In most cases, the characteristic of an emitter with the strongest influence on

field enhancement is the radius of curvature of the tip (see, for example, section 4.3.1

of [18]), which we will call cr. The radius of curvature of the tip can be determined

by finding a sphere of radius cr, centered at ab − cr, whose contour matches that
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of the boss near the apex. This configuration is illustrated in figure 2.8. The cross

sections of the two structures are given by

��

�
�

��

Figure 2.8: A circle whose radius of curvature equals that of the tip of the ellipse

ellipse:
z2

a2
e

+
r2

b2

e

= 1 circle: r2 + (z − (ab − cr))
2 = c2

r

Expressed as functions of z, these equations become

ze = ab

√

1 −
(

r

bb

)2

zc = cr

√

1 −
(

r

cr

)2

+ ab − cr.

Near the apex, r is small compared to both bb and cr, so we can use approximation

based on the Taylor series expansion for
√

1 + x at x = 0,
√

1 + x ≈ 1 + 1

2
x, to

rewrite the equations as

ze ≈ ab

[

1 − 1

2

(

r

bb

)2
]

zc ≈ cr

[

1 − 1

2

(

r

cr

)2
]

+ ab − cr.

or

ze ≈ ab −
1

2

abr
2

b2

b

zc ≈ ab −
1

2

r2

cr
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which are equivalent when

cr =
b2

b

ab

. (2.13)

In figure 2.9, we plot field enhancement factors for bosses with fb = .5 µm

and cr = 5, 25, and 100 nm. Most microfabricated emitters have cr < 100 nm.

Spindt cathodes generally fall in the range of 10-50 nm, while silicon emitters can

have cr < 10 nm (see section 1.5.4 for references). The diamond pyramid FEAs we

have emphasized have cr = 20 nm [21]. The figure is not exactly representative of

these examples because height and other features of their geometry will also affect

field enhancement, but it correctly illustrates the general trend.
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Figure 2.9: Field enhancement for three prolate spheroids with fb = .5 µm. For
the emitter with cr = 5 nm, ab = .503 µm, ab = .05 µm, and ηb = 1.005. For the
emitter with cr = 25 nm, ab = .51 µm, ab = .11 µm, and ηb = 1.025. Finally, for
the emitter with cr = 100 nm, ab = .55 µm, ab = .24 µm, and ηb = 1.105. See
figure 2.5 for a depiction of the coordinate θ = acos ξ.
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Chapter 3

An upper limit on transverse momentum for electrons emitted from

an ungated field emitter

In the first chapter, we described the importance of emittance as a measure

of beam quality. In this chapter, we will show that it is possible to determine an

upper bound on the emittance of an ungated field emitter.

In section 1.4.3, it was shown how the intrinsic emittance of a thermionic

cathode is determined. Because, at the source, there was no correlation between

electron position and velocity, the intrinsic emittance was the product of the rms

spatial distribution of the electrons and the rms velocity distribution. For an FEA,

a similar condition holds. Though position and velocity are correlated in close

proximity to each tip, the beamlets rapidly merge, and the correlation is lost. A

detailed study of the emittance of beams formed by the merger of multiple beamlets

was conducted by Rhee and Boulais [41], but for a dense, uniform array of sources,

the correlation is negligible, and the emittance of the array can be calculated in the

same way it was for the thermionic cathode.

The problem of calculating the intrinsic emittance of an FEA is therefore

reduced to calculating the velocity distribution of the electrons emitted from a single

tip. Determining the velocity distribution accurately requires both the distribution

of emission across the tip and the final transverse momentum of the electrons as
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a function of point of emission to be know. This approach has been taken as the

foundation for studies combining analytical and computational methods [15, 35].

Below, we will show that an upper bound on the transverse momentum, and hence

intrinsic emittance, can be found analytically. This result will complement the more

exact methods.

Qualitatively speaking, electrons emitted away from the apex of a tip receive

a transverse momentum kick due to the strongly distorted fields in the close vicinity

of the tip. Because the magnitude of the field is large and the energy of the electrons

is small, their trajectories closely follow the field lines [15]. Conversely, farther from

the emitter, the field lines flatten out and the electrons have greater momentum, so

the potential for transverse momentum gain diminishes rapidly. Electrons emitted

near the apex experience little transverse acceleration, but because emittance is

an rms measure, trajectories that accumulate greater transverse momentum receive

greater weighting. Ultimately, it is the distribution of emission across the tip that

determines how close the true emittance is to the upper bound. No general rule will

be given to quantify this dependence, but comparisons will be made to experimental

results and numerical examples will be presented that will give some indication of

the relationship.

3.1 Simplifying approximations

In the analysis that follows, we will make two simplifying approximations when

considering the effects of the tips on the trajectories: first, that relativistic effects
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can be ignored, and second, that the RF field can be approximated as a static field

Here, we discuss the validity of these approximations.

The degree to which relativistic effects are important can be determined by

comparing the electron’s kinetic energy to the energy corresponding to its rest mass.

The peak accelerating fields achievable in an RF gun are on the order of 100 MV/m,

or 100 V/µm. Typical field emitter tips are one to a few microns tall, so, at a

distance of ten times the emitter height from the cathode, the kinetic energy of the

electron can not be much greater than several thousand electron volts, compared

to an electron rest mass of 511 keV. Therefore, relativistic effects can safely be

neglected.

To show that the time dependence of the field can be neglected, we make the

a priori assumption that this is the case, then demonstrate that the assumption has

lead to a reasonable result. For non-relativistic acceleration, the trajectory of the

particle in the field uniform field Ez is

z =
eEz

2m
t2 or t =

√

2m

eEz
z.

Emission occurs only when the accelerating field is near its maximum. Even if the

field drops as low as 10 MV/m during this initial period of acceleration, the electron

takes no more than 7.5 ps to travel 50 µm, where it is far from the region where the

field is distorted by the FEA. The maximum rate at which the field changes occurs

at the zero crossing, where

d

dt
[E (t)]t=0

=
d

dt
[E0 sin (ωRFt)]t=0

= ωRFE0 or
d

dt
[E (t)]t=0

= 2π
E0

τRF

.

For accelerators, 2.85 GHz is the highest frequency in common use. At that fre-
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quency, τRF = 351 ps. 7.5 ps thus corresponds to 2% of the RF period. The

maximum the field can change during this time is (dE/dt) ∆t = 2πE0×2% or about

12% of the peak field. The actual change will be significantly less because of the

fact that emission occurs near the crest where the field is changing less rapidly. The

error introduced by neglecting the changing field will be negligible in the context of

the level of accuracy we hope to achieve.

3.2 Calculating the upper bound

If the force acting on a particle as a function of time is known, the change

in the particle’s momentum caused by the force can be calculated using Newton’s

second law. Here, the electric field is known, so the force is known as a function

of position, but the connection between position and time is only known once the

equations of motion have been solved. As is generally the case, the equations of

motion for this problem are a coupled set of differential equations with no apparent

closed-form solution. We are therefore led to seek an approximate solution. We will

now show that a upper bound for the transverse component of the momentum can

be found.

A useful relationship between force as a function of position and transverse

momentum gain can be found in analogy with the derivation of the equivalence

between work done on a particle and the change in its kinetic energy from Newton’s

second law in one dimension. Specifically, we consider the following series of steps.
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Recasting

F =
dp

dt
as F =

dp

dx

dx

dt
and using

dx

dt
= v =

1

m
p

leads to

F =
dp

dx

(

1

m
p

)

, or
1

m
pdp = Fdx.

Integrating along a section of the particle’s trajectory of the particle starting at the

point xI and ending at the point xF ,

∫ pF

pI

1

m
pdp =

∫ xF

xI

F(x)dx or
p2

F

2m
− p2

I

2m
=

∫ xF

xI

F(x)dx;

the work done on the particle results in an equivalent change in the particle’s kinetic

energy. Although this derivation ostensibly applies to motion in one dimension, we

note that the mathematics behind it applies equally well to the motion in each indi-

vidual dimension of a multidimensional Cartesian coordinate system. Of particular

interest for the case at hand,

p2
r,F

2m
−

p2
r,I

2m
=

∫ rF

rI

Fr(r, z(r))dr

where Fr is the r̂ (transverse) component of the force. We write z as z(r) to empha-

size that we are considering this a problem in the single dimension r, although the

dependence of z on r remains an unknown. Because the equipotentials wrap around

the emitter, the field vector’s transverse component is always directed outward, at

least for any reasonably simple emitter geometry. Because the electron is always

being pushed away from the axis, an increase in z will always be accompanied by

an increase in r, so we are justified to say z is a function of r.

We will now show that, although we do not know z(r) and consequently do not

know Fr, we can set an upper bound on Fr at each point r. If Fr is always positive,
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as we have just argued is reasonable to assume, the upper bound of the integral is

simply the integral of the upper bound at each point. This, in turn, leads to an

upper bound on the accumulated transverse momentum.

The condition we assume which leads to an upper bound on Fr (r, z) is that,

for fixed r, Fr (r, z) decreases with increasing z. In other words, no matter what

the actual value of z is when the trajectory reaches a certain r, the true value of

Fr seen by the electron is less than Fr (r, z0). This is true for the prolate spheroidal

boss model, and it seems likely to hold for similarly simple, pointed geometries, but

it would need to be verified for each case.

We consider an electron emitted from a point (r0, z0) on the surface of the boss.

Field-emitted electrons are, in most cases, emitted with very low kinetic energy [54].

We assume this initial energy can be neglected, and set pr,I = 0, so

U.B.

[

p2

r

2m

]

=

∫

∞

r0

Fr(r, z0)dr.

The integral is recognized as the work that must be done to move an electron

from the point where it is emitted to r = ∞ along a line in the z = z0 plane,

which is equal to the difference between the potential at the emission point and the

point (r = ∞, z0):

U.B.

[

p2

r

2m

]

= Φ (r = ∞, z0) − Φ(r0, z0) .

The emitter is grounded, so Φ (r0, z0) = 0. Φ (r = ∞, z0), far from the distortions

induced by the boss, is eE0z0, so we are simply left with

U.B.

[

p2

r

2m

]

= eE0z0.
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The upper bound on the transverse velocity is now

U.B.[ vr ] =

√

2
eE0z0

m
. (3.1)

If emission is radially isotropic, the upper bound on the rms value of either Cartesian

component of the velocity vector is

U.B.[ ṽx ] =

√

√

√

√

√

√

√

√

√

∫
π
2

−π
2

(U.B.[ vr ] × cos φ)2 dφ

∫

π
2

−π
2

dφ

= U.B.[ vr ]

√

√

√

√

√

√

√

√

√

∫
π
2

−π
2

cos2φ dφ

∫

π
2

−π
2

dφ

=
1√
2

U.B.[ vr ]

=

√

eE0z0

m
. (3.2)

By equation 1.5, the upper bound on the source (normalized intrinsic) rms emittance

is x̃ ṽx/c, so

U.B.[ ε̃s,x ] = x̃

√

eE0z0

mc2

and if the emitters are uniformly distributed on a circular cathode of radius a,

x̃ = a/2, therefore

U.B.[ ε̃s,x ] =
a

2

√

eE0z0

mc2
.

We see then, from equation 1.6, the emittance of an FEA source can be no more

than that of a thermionic cathode at temperature kT = eE0z0. Because this is an

upper bound, we do not immediately make comparisons to the intrinsic emittance

of other cathode types. In the following section, we will begin to consider typical

FEA emittance values, an investigation that is continued in chapter 5. The relative

performance of different cathode types will be discussed in chapter 6.
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3.3 Comparison with experiments

We begin by considering the experimental measurements on DFEA structures

conducted by the group at Vanderbilt University. In their most recently reported

experiments [22], electrons are extracted from diamond pyramids with a height of

.75 µm (inferred from figure 6 of [40]) by a 1.3 kV potential applied across a 1.3 kV

gap (E0 = 5.7 MV/m). The measured rms angular beam divergence in x, corrected

for the defocusing effect of the pepperpot aperture, was θ̃x = 46 mrad. For a 1.3 keV

electron, v0 = 2.1 × 107 m/s, so ṽx = θ̃xv0 = 9.8 × 105 m/s.

For z0 = .75 µm and E0 = 5.7 MV/m, equation 3.1 predicts an upper bound

on the transverse velocity of U.B.[ vr ] = 1.2 × 106 m/s, and equation 3.2 predicts

an upper bound on the rms x component of the transverse velocity of U.B.[ ṽx ] =

8.7×105 m/s when the emission distribution is symmetric around the axis. Because

the pyramids are not radially symmetric, the fact that this second limit is exceeded is

not a contradiction. Still, other examples we will examine do not fall as close to the

upper bound. One possible explanation is that space charge forces, which would tend

to expand the beamlet, are non-negligible. Another observation is that the FWHM

intrinsic energy spread of the electrons, measured in separate experiments [55], was

found to be approximately 1.3 eV. This value, which is higher than that seen for field

emission from most materials, is not negligible compared to the effective temperature

of the transverse distribution implied by the relationship ṽx =
√

kT/m, which is

kT = 5.5 eV in this case. Finally, it is possible that the conditions imposed in the

derivation of the upper bound are not met for this geometry.
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A second comparison to experiment can be made with the results of Kirk-

patrick et al. for TaSi2 rod emitters. The emitters that were tested were excep-

tionally tall and narrow, with diameters of roughly 1 µm and heights ranging from

20–60 µm. A triangle wave pulse with a peak voltage of 10 kV was applied across a

roughly 1 mm gap to extract the current, corresponding to a peak E0 of 10 MV/m.

The divergence of the envelope of a beamlet originating from a small aperture was

found to be 30 mrad. At 10 keV, v0 = 5.8× 107 m/s, so ṽx = θ̃xv0 = 1.8× 106 m/s.

Depending on the distribution of tip heights, the predicted upper bound would

fall between the value for the shorter tips in the array (h = 20 µm), which is

U.B.[ ṽx ] = 5.9× 106, or 3.3 times the measured value, and that for the 60 µm tips,

which is
√

3 times higher.

3.4 Comparison to other theories

There is a connection between the upper bound determined above and Liu

and Lau’s [35] calculations for the two-dimensional wedge. For the average of the

normalized divergence, they find

γβθ = 0.0442 V x

(

ε, b
)

[(

E0

109 V/m

)(

h

1 µm

)]1/2

(Liu and Lau)

where h is the emitter height (our z0) and V x

(

ε, b
)

is a dimensionless, numerically

calculated parameter with a maximum value of .5 that describes the average prop-

erties of the velocity distribution. To compare this result to ours, we state it in the

low energy (unnormalized) form, γβθ ≈ βθ = vx/c, in other words, we must mul-

tiply γβθ by c to state the result as an average velocity. Combining the numerical
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terms leaves vx = 4.2×105 V x

(

ε, b
)√

E0h. This equation should be compared to our

equation 3.1 for U.B.[ ṽr ] instead of the one for U.B.[ ṽx ] because the equation for

U.B.[ ṽx ] is corrected for the radial distribution of the velocity vectors, which does

not apply in the case of the wedge where there is only one transverse coordinate.

In numerical terms, equation 3.1 is U.B.[ ṽr ] = 5.9 × 105
√

E0z0. Because Liu and

Lau’s expression is for the average velocity, we have not shown that their result falls

below the upper bound. It does, however, illustrate the relationship between the

upper bound and a more detailed calculation.

Because Jensen’s method [15] is a very flexible approach, it is more challenging

to elucidate the relationships that may exist between it and this work. Further

investigation will be required to determine any possible connections.

3.5 Comments

The upper bounds that were determined do not give any indication of what

effect the aspect ratio of the emitter has on the trajectories. In the next chapter,

we will calculate the exact solution numerically for several sets of conditions to see

what role aspect ratio plays. We will then discuss, qualitatively, how the results

would be expected to change for a real emitter shape as opposed to the idealized

geometry of the prolate spheroidal boss.

The transverse velocity distribution is determined by convolving the trans-

verse velocity of a particle emitted from a given point on the emitter surface with

the distribution of current density across the surface. Like the trajectories, the
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current density is determined by the emitter shape and applied field, a topic we

will address in the next chapter. Generally, though, the analysis presented in this

chapter suggests that a stronger field near the emitter surface, whether achieved

by increasing the applied field or by increasing the height of the emitter, leads to

greater transverse momentum gain for electrons emitted off-axis, and thus would

suggest increased emittance. This was the conclusion reached by Liu and Lau [35]

in their investigation of the two-dimensional wedge. They further observed that

higher field would lead not just to higher emittance but also to higher current, so

the brightness could be increased or decreased depending on how the competing

effects balance out.
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Chapter 4

Numerical calculations based on the prolate spheroidal boss model

For a field emission cathode, the transverse velocity distribution, and hence

the emittance, is determined by the convolution of the emission distribution with

the distribution of final transverse velocities for the trajectories. The emission distri-

bution effectively determines how close the actual emittance is to the upper bound

determined in the previous chapter. In this chapter, we will use numerical examples

to examine the relationship between the role of the emission distribution and the

trajectory properties in determining the velocity distribution. The implementation

of the calculations is described in appendix A.

Because azimuthal symmetry is assumed, for a given boss shape, each trajec-

tory is uniquely defined by a single parameter: the distance between the apex and

the emission point. The characteristic of the trajectories which is of interest to us

is the final transverse velocity. We will label the distribution of final transverse ve-

locities as a function of emission location the vr–ξ distribution. vx–ξ will represent

the analogous relationship for the x component of the transverse velocities.

For the calculations, the prolate spheroidal boss model will be used. This

model is simple to implement, and it narrows the otherwise vast parameter space.

In reality, it is too simple to model almost any real emitter with accuracy, first

and foremost because the tip shape of a prolate spheroid is tied directly to its
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macroscopic dimensions, and in practice small changes to the shape of the tip can

significantly impact the emission distribution. To account for these effects, a more

sophisticated model (such as the point charge model [15]) or exact calculations using

a beam code are required. Nevertheless, for our purpose, which is primarily to gain

greater insight into the results from the previous chapter, the prolate spheroidal boss

model is sufficient. In some cases, the aspect ratios are greater than those seen with

common emitter types. These examples are used to illustrate the characteristics of

very sharp tips, which could not otherwise be represented with this model.

We start the chapter by considering the impact of emitter shape on the tra-

jectories. Then, two sample emitter parameter sets are defined, each related to a

specific hypothetical operating point for an RF gun. For these emitters, the emission

distribution and vr–ξ distribution are calculated and plotted for several values of

applied field. Finally, the rms x component of the transverse velocity (ṽx) is plotted

as a function of applied field. This data is found to imply a modest variation in

emittance over the duration of the pulse when an RF extraction field is used.

4.1 Relationship between transverse velocity and emission location

In this section, examples of the influence of emitter shape on the vr–ξ rela-

tionship are given. To give a qualitative indication of how the trajectories behave,

trajectories are plotted for two emitter shapes in figure 4.1. Close to the tip, the

field is strong and the inertia of the electrons is low, so the trajectories closely follow

the field lines [15].
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Figure 4.1: Trajectories of electrons emitted from different points on a prolate
spheroidal boss. The launch “angle” corresponds to acos ξ. The boss on the left
has a height of 1 µm and a base radius of .25 µm. The emitter on the right has
a height of 1 µm and a base radius of .1 µm. The applied field in both cases is
50 MV/m. The electrons have little inertia relative to the strength of the field, so
they follow the field lines closely.
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Because the upper bound on transverse momentum from the previous chapter

gives no indication of the effect base radius has on the trajectories, we begin our

discussion there. Figure 4.2 illustrates this dependence for two emitter heights. It

is seen that reducing the base radius relative to the height causes the final velocities

of the trajectories to converge with the upper bound more rapidly as the point of

emission moves away from the apex. An initial consideration of this plot might

imply that reducing the base radius leads to increased emittance values, but, at

least for the prolate spheroidal boss, narrowing the base results in a smaller radius

of curvature for the tip, which, as we will see below, confines the emission to a smaller

area near the apex. These two trends have opposite effects. The experimental and

theoretical results discussed at the end of the previous chapter reinforce the fact that

there is not a direct connection between aspect ratio and the intrinsic emittance of

the cathode.

Varying the emitter height (figure 4.3) or the applied field (figure 4.4) have

little effect on the shape of the vr–ξ relationship. Furthermore, the transverse ve-

locities are seen to scale in nearly direct proportion to the upper bound. The upper

bound was found to have a square root dependence on both emitter height and ap-

plied field, so the transverse velocity curves will have roughly that dependence. This

dependence for the applied field follows from the fact that the electrons follow the

field lines. Because the field lines are determined only by the geometry, the shape

of the trajectories do not change in this case.

54



¼½¾¼¾½¿¼¿½À¼À½Á¼Á½¼Â¼ÃÄ¼¼
½Â¼ÃÄ¼½
¾Â¼ÃÄ¼Å
¾Â½ÃÄ¼Å
¿Â¼ÃÄ¼Å
¿Â½ÃÄ¼Å
ÀÂ¼ÃÄ¼Å
ÀÂ½ÃÄ¼Å
ÁÂ¼ÃÄ¼Å

ÆÇ
ÈÉ
ÊË
ÌÍ
ÎË
Ï
ÐÑ
ÊÒ
ÓÔÕÖ×ØÙÚ

ÖÛÜÙÚ

ÖÝÙÚ

¼½¾¼¾½¿¼¿½À¼À½Á¼Á½
ÞßàáâãäâåÃæçÃÃáä

¼Â¼ÃÄ¼¼

¾Â¼ÃÄ¼Å

¿Â¼ÃÄ¼Å

ÀÂ¼ÃÄ¼Å

ÁÂ¼ÃÄ¼Å

½Â¼ÃÄ¼Å

ÅÂ¼ÃÄ¼Å

ÆÇ
ÈÉ
ÊË
ÌÍ
ÎË
Ï
ÐÑ
ÊÒ
ÓÔÕÖèéÙÚ

ÖÝÙÚ

ÖØÙÚ

Figure 4.2: Effect of base radius on the trajectories for two emitter heights. The
corresponding upper bound (see equation 3.1) is also plotted The emitter height is
.8 µm in the top figure and 1.6 µm in the bottom figure. For both cases, the applied
field is 50 MV/m.
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Figure 4.4: Effect of the magnitude of the applied field on the trajectories. Each
calculated curve is paired with the corresponding upper bound (equation 3.1). For
each case, the emitter height is 1.25 µm and the base radius is .25 µm
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4.2 Sample emitter parameters

In the following sections, we examine how the properties of the emission dis-

tribution interact with the properties of the vr–ξ distribution to determine the char-

acteristics of the resulting transverse velocity distribution. The discussion is first

narrowed to two sets of emitter parameters, each chosen to be paired with a certain

peak cavity field. Here, the rationale behind the choice of examples is explained.

A combination of requirements must be taken into account in order to to

define an appropriate emitter. A key limitation for field emission is the available

field strength. For RF guns this is on the order of 100 MV/m at 2.85 GHz; for

lower frequency structures, the limit is lower. Spindt cathodes are therefore ruled

out because they require higher fields [15]. We instead focus on an emitter loosely

resembling a diamond pyramid FEA as they operate at lower field, and their char-

acteristics have been discussed specifically in the context this application [55]. The

geometry we use is based on the diamond pyramid structures as described in [40].

These emitters consist of a pyramidal base with a narrow protrusion extending from

the top. With only two parameters to adjust, the prolate spheroidal boss will be an

extremely rough approximation of the true geometry.

The diamond pyramid we use as a reference has a height of .75 µm comprised

of a .5 µm base and a .25 µm tip. The width of the base is .94 µm. The radius of

curvature of the tip is reported to be 20 nm [21]. We choose the height and base

radius of the boss so that its height and tip curvature match that of the diamond

pyramid. As a result, the shape near the base is the least-well-modeled feature
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of the real device. We justify this choice with the argument that, because of the

distance between the tip and the base, the details of the geometry of the base

would be expected to have the least effect on the fields near the tip. Applying this

compromise, the base radius of a prolate spheroidal boss with height .75 µm and

tip curvature of 20 nm is .12 µm (equation 2.13). The resulting field enhancement

factor at the apex is 24.

The mechanism for field emission from diamond is theoretically more complex

than for metals (see chapter 5 of [19]). In many instances, however, the basic Fowler-

Nordheim equation is found to describe the current-voltage dependence for other

materials with accuracy (see, for example, section 5.3 of [19]). Evidence that this

is true for the diamond pyramids we are discussing, at least over a range of applied

voltage, can be found reference [21], where a Fowler-Nordheim plot for these devices

is shown. Using this simplification requires a value to be chosen for the work function

parameter. We emphasize that there is no direct connection between the material

properties of this diamond surface and the work function as it appears in the Fowler-

Nordheim equation for metals. To get a rough estimate for this parameter, we note

that the Vanderbilt group reports a single tip current of 15 µA at an applied field

of 30 MV/m. Using the geometry of the boss we have established, the tip current

can be found by numerical integration as described in appendix A, and by varying

the work function it is found that a value of 1.15 eV results in a current of 18 µA.

Because of the gross differences between the shape of the prolate spheroidal boss

and the diamond pyramids, this value is more than likely not a close match to the

true value, but it will serve as an adequate basis for the following discussion.
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The emitter just described, which we will call emitter a, is designed to turn

on at the lowest possible field. RF guns, particularly those that operate at higher

frequencies, are capable of producing fields in excess of 100 MV/m. Because of

the steep slope of the Fowler-Nordheim relationship, the first emitter would suffer

damage well before that level is reached. Therefore, as a second example, we consider

the hypothetical case of an emitter with material properties similar to the previous

one, but with the field enhancement factor reduced by increasing the radius of

curvature of the tip in order to facilitate its use at a higher applied field. Choosing

a targed field of 80 MV/m, an emitter with height .75 µm, base radius .3 µm, and a

work function of 1.15 eV will produce 33 µA. The radius of curvature of the tip for

this geometry is 120 nm, and the field enhancement factor at the apex is 7.4. This

emitter will be referred to as emitter b.

The parameters for the two emitters are compiled in table 4.1.

4.3 Emission distribution and vr–ξ distribution for the sample emit-

ters

As mentioned above, the transverse velocity distribution is the convolution of

the current distribution and the vr–ξ distribution. These distributions are plotted

in matching pairs for selected magnitudes of the applied field in figures 4.5 and 4.6

for emitter a and emitter b respectively. As a consequence of the nearly vertical

current-voltage relationship for field emission, for a given FEA, measurable emission

only begins to occur as the applied field closely approaches the RF peak field. As
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Figure 4.5: Current density distribution (top) and vr–ξ distribution for emitter a

plotted for three values of the applied field chosen to illustrate cases where the
integrated current is low, intermediate, and high.
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Figure 4.6: Current density distribution (top) and vr–ξ distribution for emitter b

plotted for three values of the applied field chosen to illustrate cases where the
integrated current is low, intermediate, and high.
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Physical parameters

emitter a emitter b

Height ab .75 µm .75 µm
Base radius bb .122 µm .3 µm
Tip radius cr 20 nm 120 nm

Peak field
enhancement

β(0◦) 24 7.4

Effective work
function

φ 1.15 eV 1.15 eV

“Operational” parameters

Operating field E0 30 MV/m 80 MV/m

Peak current
density

J(0◦) 8.3 × 1010A/m2 5.2 × 109A/m2

Total current I 18 µA 33 µA

Table 4.1: Parameters for the sample emitters.

a result, two electrons launched at different RF phase but from the same point on

the tip have nearly identical trajectories. A second observation is that, whereas the

magnitude of the emission distribution changes significantly with applied field, the

change in the width of the distribution is relatively modest. Taken together, these

two observations suggest that the emittance will not change much during the pulse

— a supposition which will later be confirmed.

Another useful piece of information can be ascertained from these figures. By

considering a given pair of curves, it is possible to estimate the width of the result-

ing transverse velocity distribution. As an example, in figure 4.5, for the highest

field case, the bulk of the current distribution falls within about 4◦ of the apex.

Referencing this angle to the corresponding vr–ξ distribution, the final transverse

velocity for an electron emitted at 4◦ is roughly 8 × 105 m/s. We would therefore
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expect the rms value of the transverse velocity distribution to be on this order.

4.4 Characterization of the transverse velocity distribution

Distributions for the transverse velocity as well as its Cartesian component vx

were calculated as described in appendix A.6. The results are plotted at different

applied fields for emitter a in figure 4.7. Each curve is paired with a Maxwell-

Boltzmann distribution with equivalent rms velocity. This data was also plotted

for emitter b and other parameter sets; the qualitative characteristics of the dis-

tributions were found to be similar in all cases. The most striking feature is the

close resemblance between the calculated distributions and the Maxwell-Boltzmann

distributions. There is no obvious reason for this correspondence, although it seems

to hold fairly generally for the prolate spheroidal boss model. Interestingly, though,

experimental measurements on a DFEA cathode have found the same correspon-

dence [22]. Still, there is no clear reason to expect this to be a universal characteristic

of FEAs.

For the cases presented in the figure, we can compare the calculated value

for ṽx to the theoretical upper bound given by equation 3.2. In the 25 MV/m case,

the theoretical upper bound is U.B.[ ṽx ] = 1.8 × 106 m/s, 3.8 times the calculated

value of 4.8 × 105 m/s. For the 30 MV/m case, the upper bound is U.B.[ ṽx ] =

2.0 × 106 m/s, 3.5 times the calculated value of 5.7 × 105 m/s.
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Figure 4.7: (top) Distribution of the x component of the velocity (blue) and one-
dimensional Maxwell-Boltzmann distribution with equivalent ṽx (red) for emitter a

at two operating points. At 25 MV/m, the emitter is just beginning turn on. Here,
ṽx = 4.8× 105 m/s, corresponding to kT = 1.3 eV. At 30 MV/m, a value chosen to
represent the peak field that might be used with this emitter, ṽx = 5.7 × 105 m/s,
corresponding to kT = 1.8 eV. (bottom) Distribution of ṽr, the magnitude of
the two dimensional transverse velocity vector (blue), and for the rms equivalent
two-dimensional Maxwell-Boltzmann distribution (red). For the two dimensional
case, the rms velocities are

√
2 times greater than the one-dimsional case, ṽr =

6.8 × 105 m/s at 25 MV/m and ṽr = 8.0 × 105 m/s at 30 MV/m. The equivalent
temperature is the same.
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4.5 Evolution of the velocity distribution during the RF cycle

Figure 4.8 illustrates how the beam properties evolve during the pulse for each

sample emitter. As the current rises as the peak field is reached, the emittance

increases as well. As had been inferred from earlier results in the chapter, the

magnitude of the change in the emittance is not very large. The average emittance

of the bunch is weighted towards the higher values because this is where the current

is highest. Because the emittance is a function of field, an intrinsic emittance for

a given FEA can not be precisely defined. The variation is small enough (on the

order of 10% in these examples) as to be negligible in practice.
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Figure 4.8: Variation of ṽx during the pulse for emitter a (top) and emitter b.
Emittance depends linearly on ṽx. The right-hand axis gives the integrated single-
tip current.

67



Chapter 5

Temporal emission distribution and beam transport in the cathode

cell

Until now, we have focused on properties of the transverse distribution. In

this chapter, longitudinal dynamics will be considered. As with a thermionic cath-

ode gun, for an ungated field emitter, the cavity field determines both the timing

of emission and the resulting electron trajectories. Because the current-field rela-

tionship is more complex for field emission than for thermionic emission, we will see

that the cavity design will determine certain specifications which must be met by

the FEA. In other words, the cathode and cavity must be designed as a single unit.

Furthermore, because field emission rises so sharply, there are constraints on the

range of peak cavity field that can be used for a given cathode-gun combination.

For thermionic cathode guns, electrons emitted late in the RF cycle do not

reach the exit and are accelerated back into the cathode. This back bombardment

limits the duration of the RF pulse due to runaway heating of the cathode, and it

is an unwanted source of beam loading. For FEA cathodes, the risk of damaging

the emitters would be the main concern. It will be seen, though, that field emission

can be constrained to occur over a short enough range of RF phase that, with the

proper choice of cavity length, back bombardment will not occur.

Although, with an RF extraction field, emission occurs over a shorter time
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period for field emission than for thermionic emission, the field-emitted pulse is still

long in the sense that the bunch will exit the cathode cell with a large longitudinal

energy spread. The best approach to manage this would depend on the requirements

of the application. Several possibilities, both simple and more sophisticated, are

mentioned at the end of the chapter.

5.1 Temporal distribution of emission

As a foundation for studying the longitudinal beam dynamics, the relationship

between field-emitted current and RF phase must be known. The exact relationship

depends on the details of the emitter, but a simplified analysis leads to reasonable

expectations for the pulse duration. It is based on the behavior of the Fowler-

Nordheim equation, which was plotted in figure 1.4. Because of the steep rise of

the emission current with field, the emission is strongly peaked near the crest of the

field. The range of phase over which the bulk of current is emitted is related to the

ratio of the peak field to the threshold field by the sinusoidal time dependence of

the cavity field as illustrated in figure 5.1. We must choose a value for the peak field

for the analysis. For this purpose we will use the field where the current density

predicted by the Fowler-Nordheim equation is 5 × 1011 A/cm2, which represents

a very strongly driven cathode (see chapter two of [13]). The cathode will emit

over a larger region of phase the more strongly it is driven, but because of the

steepness of the current-voltage relationship, the dependence is not strong. Another

caveat is that, for sharp tips, the current-voltage relationship rises more even more
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Figure 5.1: Field emission occurs once the field exceeds a given threshold. For a
sinusoidal field, the range of phase over which emission occurs is the inverse cosine
of the ratio of the threshold field to the peak field, as illustrated in this figure.

steeply than the one dimensional Fowler-Nordheim equation predicts because area

over which emission occurs increases with increasing field (see section 3.3.1 of [12]).

If the statistical distribution of emitter properties within the array is taken into

account (some tips turn on before others because of slight their slight variations),

the emission will be still more peaked [56]. This characterization based on the one

dimensional theory can therefore only be used as a point of reference.

We use, as examples, the two values of work function plotted in the figure1.4.

For the case of 2.5 eV work function, a current density of 5× 1011 A/cm2 is reached

at a field of 3 GV/m (as a reminder, this refers to the field taking into account the

field enhancement due to the sharp tip). The onset of significant emission occurs

at roughly 2.5 GV/m. The bulk of the current is therefore emitted in the range of

phase between ± acos (2.5/3.0) ≈ ±30◦ of the crest. For the emitter with φ = 4.5 eV,
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5 × 1011 A/cm2 is reached at a field of 7.5 GV/m, whereas emission begins to rise

steeply at about 6.26 GV/m. The resulting range of phase is roughly the same.

Becuase the general shape of the Fowler-Nordheim relationship is not very sensitive

to the work function, it is not surprising that this calculation leads to the same

results for a wide range of work functions. In the following analysis, it will thus be

assumed the the pulse occupies the range of phase ±30◦ of the crest.

As was demonstrated by Fontana and Shaw [57], the shape of the current

pulse due to the RF field is approximately Gaussian. For the range of voltage where

field emission current density is significant, the change in current with voltage in the

approximate one dimensional Fowler-Nordheim equation (equation 1.7) is dominated

by the exponential term, in other words

J (F ) ≈ C1 exp

(

−C2

φ
3

2

F

)

where C2 = 6.5× 109 and C1 is not needed in what follows. To avoid ambiguity, we

use F for the field at the surface of the cathode (taking into account field enhance-

ment), whereas we will use E to denote the “macroscopic” field of the cavity. If the

RF field at the cathode is given by F = F0 cos (ωRFt), this relationship becomes

J (F ) ≈ C1 exp

(

−C2φ
3

2

F0

sec (ωRFt)

)

.

Most emission occurs near the crest of the field, near t = 0. In this neighborhood,

the Taylor series expansion for the secant function is sec x ≈ 1 + .5x2, so

J (F ) ≈ C ′

1 exp

(

−C2φ
3

2

F0

(ωRFt)2

2

)

,
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in other words, the pulse is Gaussian with

1

2σ2
=

C2φ
3

2

F0

ω2
RF

2
or

2σ

τRF

=
F

1

2

0

πC
1

2

2 φ
3

4

This quantity varies over a fairly limited range for realistic values of F0 and φ. For the

lower work function we have considered, φ = 2.5 eV, substantial emission occurred

in the neighborhood of F = 2.75 GV/m, so the range within ±σ covers about 10% of

the RF period. For the higher work function emitter, where φ = 4.5 eV, substantial

emission occurred in the neighborhood of 7 GV/m, indicating ±σ covers roughly

11% of the RF period. In other words, the range between ±σ extends over about

±36◦ of phase, a result, in the context of the approximations we have made, that

does not vary much with work function or field strength. Other factors we have not

considered, such as the aforementioned change of emission area with field for very

sharp tips, could be expected to modify this result somewhat.

The pulse width as we have defined has turned out to to correspond to ap-

proximately 2σ in the Gaussian approximation. For a Gaussian curve, about 95% of

the distribution falls within ±2σ, so the pulse width we have defined encompasses

roughly that percentage of the total emission. Qualitatively speaking, if the cath-

ode is driven harder, the pulse will be more sharply peaked, and it will also cover

a greater phase range, whereas if the peak field is closer to the threshold, the pulse

will be less peaked and also shorter relative to the RF period.
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Figure 5.2: Pulse shape of electrons emitted from a field emission cathode in an
RF field. The blue curve represents the RF field. The green curve is the current
density as calculated using the approximate, one dimensional Fowler-Nordheim the-
ory, where the green arrow shows the pulse width as defined above in the text.
The red curve is the Gaussian approximation, where the red arrow shows the range
covering one standard deviation to each side of the center.

5.2 Longitudinal dynamics in the cathode cell

In this section, we use the information about the timing of emission found in

the previous section to study the longitudinal dynamics of the resulting bunch in

the cathode cell of an RF gun.

As was discussed in the first chapter, most RF gun cavities are variations on a

generic cylindrical pillbox excited at the TM010 mode. This mode has a longitudinal

electric field component on the axis which is constant along the length of the axis

and has a sinusoidal dependence on time,

Ez (t) = E0 cos (ωRFt) .
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It is this field that accelerates the electrons. The Hφ field component influences

the off-axis electrons, but to a lesser degree than Ez. Here we consider only the

dynamics associated with the primary accelerating field. Another caveat is that this

field is only uniform along the axis for an ideal pillbox. Practical considerations (for

instance, the necessity for a beam exit port) mean that this cavity geometry is never

truly realized. Nevertheless, the results should give a fairly good representation of

the expected behavior for a simple single-cell RF gun.

For an electron emitted at phase φL relative to the crest, the momentum after

time t is

p (t) =

∫ tmax

t (φL)
eE0 cos (ωRFt′) dt′ =

eE0

ωRF

[sin (ωRFt) − sin (φL)] (5.1)

From the relativistic relationship p = mcβγ, we have

β =
v

c
= p

√

1

p2 + m2c2
.

The trajectories can be found by integrating this equation with respect to time

using the momentum given in equation 5.1. A closed form solution for this integral

is only possible for this integral when φL = 0. In other cases, approximations must

be used [58]. Therefore, we turn to numerical solutions.

5.3 Longitudinal dynamics: numerical solutions

Figures 5.3, 5.4, and 5.5 show the on-axis longitudinal dynamics for electrons

emitted from a field emission cathode for three different RF cavity configurations. In

each case, the position of electrons emitted at various initial phases is plotted versus
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phase. Paired with each of these is a corresponding plot of electron energy versus

phase. The examples are chosen to illustrate gun design considerations specific to

field emission cathodes. From the figures, several important pieces of information

about the beam can be determined as a function of cavity length (or, more generally,

distance from cathode to exit port in the case of a reentrant cavity), such as pulse

length, beam energy and energy spread, and electron back-bombardment. It is

assumed a separate FEA is chosen to match the conditions of each scenario in

line with the discussion earlier in the chapter. In other words, an FEA that is

appropriate when the peak field is 30 MV/m would not be suitable when the peak

field is 80 MV/m.

Figure 5.3 shows that, for a 2.85 GHz cavity operated at a peak field of

80 MV/m, a quarter-cell cavity (where the length is one eighth of the free space

wavelength) would allow virtually all of the emitted current to exit the cavity, im-

plying little or no back-bombardment. Electrons at the head of the pulse would exit

the cavity with the highest energy, 1 MeV, while electrons at the tail would exit

with the lowest energy, 310 keV. Electrons emitted at the crest, where the current

is highest, reach 800 keV. At the exit of the gun, the pulse length is essentially

unchanged from when it is emitted, 2σ ≈ 30◦ of phase ≈ 30 ps, though after exiting

the gun, the pulse would expand rapidly due to the large energy spread.

Figure 5.4 is a solution for a 1 GHz cavity operated at a peak field of 30 MV/m

(Lower frequency cavities are limited to lower peak fields [29]). The result is qualita-

tively similar to the previous example. Again, little or no back-bombardment would

occur. We again consider a quarter-cell cavity. At the exit, electrons at the head
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Figure 5.3: Trajectories (top) and kinetic energy (bottom) for electrons accelerated
in an 2.85 GHz pillbox cavity with a peak field of 80 MV/m. The phase of the
RF field is superimposed on the top figure. The central trajectory corresponds to
an electron launched at the crest of the field. The separation between the trajectories
is 5◦. The leftmost trajectory is launched 30◦ ahead of the crest, while the rightmost
is emitted 30◦ behind. Over 90% of the total current is emitted within this time.
Distance is normalized to the free space wavelength, which, at 2.85 GHz, is λFS =
.11 m. The period is 350 ps.
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of the bunch would reach 1.1 MeV, at the tail, 350 keV, and electrons emitted on

crest, 950 keV. The pulse length at the exit of the gun is 2σ ≈ 30◦ of phase ≈ 80 ps.

Figure 5.5 shows a solution at the same frequency as the first example (2.85 GHz),

but with a lower peak field (30 MV/m). The effect of the interrelationship between

emission timing and particle dynamics inherent to field emission cathodes used in

combination with RF acceleration is seen. For a photoinjector, the pulse would be

triggered further in advance of the crest, so that the electrons would experience

greater total acceleration. For a thermionic cathode RF gun, some current is guar-

anteed to be emitted at the optimal phase. For the FEA, emission occurs only

near the crest, which in this case leads to a low energy beam and the occurrence of

back-bombardment.

5.4 Discussion

Some of the principles that must be considered when designing a cavity for an

FEA cathode-based electron gun have been highlighted. An important observation

is that the gun can be designed so that back bombardment, which limits the average

beam power produced by a thermionic cathode RF gun, is eliminated. It therefore

may be possible to run this type of gun at high average power. To be cautious,

it should be noted that the emission profile has short tails, so it is not out of the

question that some small amount of current would return to the cathode. It is not yet

known how cathodes such as DFEAs would be affected by electron bombardment.

We conclude this chapter by mentioning a few possible configurations for an
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Figure 5.4: Same as figure 5.3, except the cavity frequency is lower and the peak field
is lower. Trajectories (top) and kinetic energy (bottom) for electrons accelerated in
an 1 GHz pillbox cavity with a peak field of 30 MV/m. The phase of the RF field is
superimposed on the top figure. The central trajectory corresponds to an electron
launched at the crest of the field. The separation between the trajectories is 5◦. The
leftmost trajectory is launched 30◦ ahead of the crest, while the rightmost is emitted
30◦ behind. Over 90% of the total current is emitted within this time. Distance
is normalized to the free space wavelength, which, at 1 GHz, is λFS = .3 m. The
period is 1 ns.
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Figure 5.5: Same as figure 5.3, but the peak field is lower — the cavity frequency
is again 2.85 GHz. Trajectories (top) and kinetic energy (bottom) for electrons
accelerated in an 2.85 GHz pillbox cavity with a peak field of 30 MV/m. The
phase of the RF field is superimposed on the top figure. The central trajectory
corresponds to an electron launched at the crest of the field. The separation between
the trajectories is 5◦. The leftmost trajectory is launched 30◦ ahead of the crest,
while the rightmost is emitted 30◦ behind. Over 90% of the total current is emitted
within this time. Distance is normalized to the free space wavelength, which, at
2.85 GHz, is λFS = .11 m. The period is 350 ps.
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FEA-based injector.

1. The simplest approach would be to operate an FEA cathode-based gun like

a thermionic cathode RF gun. In this case, the gun is followed by an α-

magnet [59] to compress the bunch. Within the α-magnet, the transverse

location of each electron is correlated with its energy, so it is possible to

scrape off part of the beam to reduce its energy spread. Potential advantages

over the thermionic cathode would be the elimination of back-bombardment,

and the fact that field emission cathodes may be capable of producing higher

current density.

2. A second possibility would be the dual-frequency design suggested by Lewellen

and Noonan [32] (described in section 1.6). Here, the bunch length is deter-

mined by the period of the third harmonic, so it is one third the length it

would be if it were gated by the cavity fundamental. Because the bunch is

shorter compared to the period of the fundamental, there is less variation in

the trajectories from the head of the bunch to the tail, so the energy spread is

lower. Also, by advancing the phase of the third harmonic relative to the fun-

damental, the beam dynamics can be optimized. There do, however, remain

challenges to designing and coupling power into a dual-frequency cavity.

3. A third option might be to operate the gun at the third harmonic of the

injector, and to follow it with a cavity that kicks every third bunch into the

injector. The bunch length would be shorter relative to the RF period of the

rest of the accelerator and thus more manageable, but the energy spread would
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be large compared to the dual-frequency approach, and it is unlikely that all

the current could be captured. Still, this configuration could potentially yield

some advantages over the first approach.
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Chapter 6

Observations, future work, and conclusions

We begin this chapter by making several observations that combine results

from earlier chapters.

6.1 General conclusions about the intrinsic emittance of FEAs

Over the course of chapters 3 and 4, emittance measurements based on two sets

of experiments for two different cathode types were evaluated, as were calculations

based on two different emitter models. The upper bound we have described provides

a context within which to make comparisons between these diverse examples. For

instance, the intrinsic emittance of the DFEA pyramids was quite close to the upper

bound for that geometry, whereas the intrinsic emittance of TaSi2 rods was several

times below their corresponding upper bound. This type of comparison will be

useful in identifying possible connections between emitter properties and intrinsic

emittance, which could then be verified with simulations. As a specific example,

compared against a TaSi2 rod, the tip of a DFEA pyramid is sharper relative to

the dimensions of its base. Based on this observation, Jensen’s model [15] could be

used to study the effect of varying the tip curvature while holding other parameters

constant, a type of analysis for which that model is ideally suited. This could in

turn be used to optimize the design of the emitters.
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6.2 Comparisons between cathode types

In chapter 5, it was seen that field emission is distributed over a narrower

range of phase than thermionic emission but a much broader range of phase than

photoemission. In this sense, an FEA gun is more aptly compared to a thermionic

cathode gun than a photocathode gun. It was seen that the intrinsic emittance

of an FEA cathode scales roughly with the square root of field; considering a tip

height of 1 µm, an applied field of 30 MV/m, and taking the emittance to be

one third of the upper bound (consistent with the majority of the examples we

have seen), the effective temperature of the distribution is on the order of 5 eV.

At 80 MV/m, the effective temperature would be about 2.6 times higher. Although

these temperature values are much higher in absolute terms than the thermionic case

(where kT ≈ 100 meV), emittance scales as the square root of effective temperature,

so for the 30 MV/m case the emittance is expected to be
√

5/.1 ≈ 7 times higher (or

11.5 times higher in the 80 MV/m case). In practical terms, this analysis overstates

the difference in performance between the two cathodes, because the extremely low

intrinsic emittance exhibited by a thermionic cathode can not be perfectly preserved

during acceleration.

So far, we have assumed the two emitters are the same size, but Diamond

pyramid FEAs have demonstrated current densities 10 times higher than the typical

thermionic cathode (over 100 A/cm2 [23] versus a typical value of 10 A/cm2 [4], p. 12).

By reducing the radius of the FEA cathode by a factor of
√

10 ≈ 3, its emittance

is reduced by the same factor, and the same current as the original size thermionic
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cathode is generated. With the caveat that high current density DFEAs are still a

young technology, the gap between the emittance performance of the two cathodes

is quite narrow.

In cases where low emittance is not a limiting factor, the much higher potential

current densities for FEAs is a significant advantage. Also, thermionic cathode guns

have average power limitations due to back bombardment, whereas this does not

appear to be an issue for field emission cathodes. On the other hand, the reliability of

thermionic cathodes is beyond question, but DFEA cathodes have never been tested

in an RF gun. In principle, the diamond surface is chemically inert, a property that

tests in DC and pulsed guns has confirmed. As experience with photocathodes has

amply demonstrated, however, an RF gun can be a troublesome environment in

which to maintain the properties of an emitting surface.

As a final point of reference, we compare FEA cathodes with photocathodes.

Because these emission mechanisms are not as closely related as thermal emission

and field emission, the comparisons to be made are of a more general nature. In

practical applications, the effective temperature of an electron bunch generated by

photoemission is in the range of 100 meV–1 eV. The beam brightness that can be

achieved with a photocathode gun is much greater than for field emission sources.

In fact, the limitation on brightness for a photoemission source is not the emission

process itself, the limit is instead reached when space charge forces cause unman-

ageable expansion of the beam. A significant drawback for photocathode guns is

complexity. They require sophisticated drive lasers, and many photocathode types

must be fabricated in-situ.
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6.3 Summary of key results

• An upper bound on the intrinsic emittance of an FEA cathode was found. In

many cases, this will allow an immediate determination of whether or not an

FEA could be used for a specified application.

• The upper bound was compared against emittance data reported in a variety

of experimental and numerical studies. A wide variety of emitter types were

represented in the examples. The upper bound was found to fall 1–4 times

above the exact values in these cases, but there is not sufficient evidence to

consider that range a general rule.

• As Liu and Lau [35] determined from their study of the two-dimensional wedge,

our results for general two or three-dimensional structures indicate the emit-

tance scales by the square root of the emitter height and applied field. (Liu and

Lau added the caveat that the effect of these parameters on beam brightness

is indeterminate.)

• In chapter 4, it was found that the transverse velocity distribution for elec-

trons emitted from a prolate spheroidal boss-shaped emitter is very similar to

the Maxwell-Boltzmann distribution. This relationship was also observed in

experiments conducted by Jarvis et al. [22].

• Field emission extracted with an RF field has a characteristic temporal dis-

tribution. By calculating on-axis electron trajectories based those initial con-

ditions, it was shown that it is possible to design an FEA cathode gun where
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back bombardment does not occur. Therefore, high average power operation

appears to be feasible.

6.4 Future work

The investigations carried out to date lead naturally to several areas for future

study:

• The prolate spheroidal boss model employed in chapter 5 is relatively limited.

Jensen’s model for FEA emittance calculation should be used to gain an im-

proved understanding of the connection between emitter characteristics and

the upper bound on emittance.

• Because of the extremely high electron density that exists near the emitter

tips, the effect of Coulomb collisions on the distribution can become significant.

This is known as the Boersch effect [60, 4]. The impact of the Boersch effect

should be investigated.

• Space charge can affect both the emitted current density and the electron

trajectories. In the first case, a dense space-charge cloud can reduce the field

at the emitter surface, limiting the emission. Jensen [61] and others have

studied this effect. The effect on the electron trajectories can be separated

into two regimes: near the tip, where the charge density is large, but the

external field is very strong, and downstream from the cathode, where both

are lower in magnitude. Jensen has estimated that the impact of the first of
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these is minimal [15]. The second effect, the expansion of the beamlets due to

space charge during transit in the cavity, must still be investigated.

6.5 Conclusions

The application of field emission cathodes to RF guns, interest in which has

been recently been spurred by advances in FEA fabrication techniques, is a tech-

nology primed for rapid development. Already, novel gun concepts exploiting the

unique characteristics of field emitters have been proposed [32]. For this type of

gun to be built, one prerequisite is that a full understanding of the temporal and

transverse properties of emission from FEA cathodes must be attained. Knowing

these characteristics will give an initial indication of the applications for which FEA

guns would be well suited. Furthermore, they will determine certain aspects of the

cavity design. In this dissertation, we have summarized the known characteristics

of FEA emission that are relevant to this application, and we have begun to fill in

some of the gaps in that knowledge. As a result, a clearer picture of how an ungated

FEA cathode based gun might be implemented has begun to take shape.
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Appendix A

Numerical solutions using Python

In chapter 6, numerical solutions for the equations of motion for an electron

accelerated in the electrostatic field created in the presence of a prolate spheroidal

boss were presented. In this appendix, we describe how these calculations were

carried out. The programs or scripts used were implemented in Python, making use

of the Numpy and Scipy packages.

A.1 Solving the equations of motion

The Python odeint function was used to integrate the equations of mo-

tion [62]. odeint is a wrapper for the LSODA ODE integrator [63], which is part

of the odepack package developed at Lawrence Livermore National Laboratory [64].

In all cases, the default arguments were used.

The equations of motion are

d2r

dt2
=

Fr

m
= −eEr

m

d2z

dt2
=

Fz

m
= −eEz

m

The ODE solver requires the equations to be rewritten in standard form, as a system
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of first-order equations:

dr

dt
= vr

dvr

dt
= −eEr

m

dz

dt
= vz

dvz

dt
= −eEz

m
.

The electric field is found by taking the gradient of the potential,

E (r, z) = −∇Φ(r, z) =

(

− ∂

∂r
Φ

)

r̂ +

(

− ∂

∂z
Φ

)

ẑ.

The potential, equation 2.11, is

Φ (r, z) = E0z



1 −
η acoth (η) − 1

η
ηb acoth (ηb) − 1

ηb





η (r, z) =

√

r2 + (z − fb)
2 +

√

r2 + (z + fb)
2

2fb

giving

Er (r, z) = −E0

z

ηb acoth (ηb) − 1
ηb

(

1

η2 (η2 − 1)

)

×

1

2fb





r
√

r2 + (z − fb)
2

+
r

√

r2 + (z + fb)
2





and

Ez (r, z) = −E0







1 −
η acoth (η) − 1

η
ηb acoth (ηb) − 1

ηb

+

z

ηb acoth (ηb) − 1
ηb

(

1

η2 (η2 − 1)

)

1

2fb





z − fb
√

r2 + (z − fb)
2

+
z + fb

√

r2 + (z + fb)
2











89



The function odeint takes as input a user-supplied function that, given the

state variables of the system at the current time step, returns a vector comprised of

the time derivatives of the variables. For this problem, the state variables are r, vr,

z, and vz. odeint uses the time derivatives to calculate the state of the system at

the next time step. This process is repeated until the specified final time is reached.

We have implemented the required function as follows.

def calcTimeDerivs(state_vec, time, E0, f, nb0):

r, vr, z, vz = state_vec

Q1 = lambda x: x*.5*math.log((x+1.0)/(x-1.0))-1.0

dt = lambda x,y: math.sqrt(x**2+(y-f)**2)

db = lambda x,y: math.sqrt(x**2+(y+f)**2)

nb = (.5/f)*(dt(r,z)+db(r,z))

Eta = z/(Q1(nb0)/nb0)

Etb = 1.0/((nb**2)*((nb**2)-1.0))

Ert = r/dt(r,z) + r/db(r,z)

dvrdt = (q/m)*E0*Eta*Etb*(.5/f)*Ert

Ezt1 = (Q1(nb)/nb)/(Q1(nb0)/nb0)

Ezt2 = (z-f)/dt(r,z) + (z+f)/db(r,z)

dvzdt = (q/m)*E0*(1.0-Ezt1+Eta*Etb*(.5/f)*Ezt2)

time_derivs = [vr, dvrdt, vz, dvzdt]

return time_derivs

A.2 Determining the final transverse velocity of a trajectory

After the ODE solver is used to calculate a trajectory, the final transverse

velocity for the trajectory is simply the vr component at the final time step. Because

the electric field is discontinuous at the surface of the boss, it is necessary to nudge
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the electron’s initial position off of the boss by a small factor. The ODE solver

takes the initial values for the state variables, together with an array of time values,

and returns the values of the state variables at each time. For the calculations

we carried out, the trajectories were calculated to a time of 1.5 ps, for which vr

converged within an acceptable margin in all cases. The implementation of this

process is shown below.

def VrMax(xi, nb, f, E0, t_max):

nudge = 1.000000001

t_npts = 100

t_array = numpy.linspace(0,t_max,num=t_npts)

r0 = nudge*f*math.sqrt((1.0-xi**2)*(nb**2 - 1.0))

z0 = nudge*f*nb*xi

state_vec_init = [r0, 0, z0, 0]

ode_soln = spi.odeint(calcTimeDerivs, state_vec_init, t_array,

args=(E0, f, nb))

return ode_soln[-1,1]

A.3 Area integrals in prolate spheroidal coordinates

Certain calculations, such as velocity distributions and the total current emit-

ted from a tip, require integration over a section of the spheroidal surface. The

differential area element for this case (η = constant) is given by

dA = hξhφdξdφ
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where φ is the azimuth angle. The scale factors hξ and hφ are (see p. 1284 of

reference [65])

hξ = fb

√

η2

b
− ξ2

1 − ξ2
and hφ = fb

√

(η2

b
− 1) (1 − ξ2)

where the roles of η and ξ are reversed from the reference. Therefore,

dA = f2b

√

(η2

b
− 1) (η2

b
− ξ2).

When integrating a generic surface density δ (η, φ) over a surface S, we thus have

∫∫

S

δ (η, φ) f2b

√

(η2

b
− 1) (η2

b
− ξ2) dξdφ.

In Python, we have implemented the expression f2b
√

(η2

b
− 1) (η2

b
− ξ2) as

def dA_factor(xi, f, nb):

return 2*math.pi*(f**2)*math.sqrt((nb**2-xi**2)*(nb**2-1.0))

When the problem has azimuthal symmetry, the azimuthal integral can be

carried out immediately, leaving

∫∫

S

δ (η, φ) dA = 2π

∫ ξ2

ξ1

δ (η) f2
b

√

(η2

b
− 1) (η2

b
− ξ2) dξ.

A.4 Current density and integrated current

The current density at a given point, given by the Fowler-Nordheim equation,

is determined by the applied field and the field enhancement factor. The field

enhancement factor for the prolate spheroidal boss was given in equation 2.12. It is

implemented as

def beta(nb, xi):

return (1.0/(nb*.5*math.log((nb+1.0)/(nb-1.0))-1.0))*xi/ \

math.sqrt((nb**2-1.0)*(nb**2-xi**2))
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We use the simplified version of the Fowler-Nordheim equation as defined in

equation 1.7, implemented as

fnc1 = 1.4e-6

fnc2 = 9.8

fnc3 = 6.5e9

def current_density(xi, E0, nb, wrkfn):

F = E0*beta(nb, xi)

t1 = fnc1*(F**2)/wrkfn

t2 = math.exp(fnc2/math.sqrt(wrkfn))

t3 = math.exp(-1.0*fnc3*(wrkfn**1.5)/F)

return t1*t2*t3

The total current emitted by a tip is found by integrating the current den-

sity determined by the Fowler-Nordheim equation across the surface of the emitter.

Because the emission falls off rapidly as the distance from the apex increases, it is

possible to integrate over a restricted range of θ. Choosing theta max to be 20◦ was

sufficient for all of the cases we encountered. This integral is implemented as

didxi_fn = lambda xi: current_density(xi, E0, nb, wrkfn) * \

diffA_factor(xi, f, nb) * 2.0 * math.pi

total_current = spi.quad(didxi_fn, math.cos(theta_max), 1)

A.5 Calculating RMS velocity

When the mean of a distribution is zero, its rms value is equal to its standard

deviation. The standard deviation of a function f(x) defined on a two-dimensional

surface S, weighted by an unnormalized density function δ(x), is defined by

σ2 =

∫∫

S

f(x)
δ(x)

∫∫

S

δ(x)dA
dA =

∫∫

S

f(x)δ(x)dA
∫∫

S

δ(x)dA
, (A.1)
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where the integral in the denominator normalizes the density function so that it

takes the form of a probability density function.

To calculate the rms velocity of the electrons emitted from an emitter, f(x)

becomes the distribution of final transverse velocities vr(ξ, φ), and the weighting

function δ(x) becomes the current distribution j(ξ, φ). The scale factors for the

surface integral were given in the previous section. Equation A.1 becomes

ṽr
2 =

∫∫

S

vr(ξ, φ)2 j(ξ, φ) f2b

√

(η2

b
− 1) (η2

b
− ξ2) dξdφ

∫∫

S

j(ξ, φ) f2b

√

(η2

b
− 1) (η2

b
− ξ2) dξdφ

.

The transverse velocity distribution has azimuthal symmetry, so the φ integral sim-

ply contributes a factor of 2π to both the numerator and denominator, such that

ṽr
2 =

∫ ξ2

ξ1

vr(ξ, φ)2 j(ξ, φ) f2
b

√

(η2

b
− 1) (η2

b
− ξ2) dξ

∫ ξ2

ξ1

j(ξ, φ) f2
b

√

(η2

b
− 1) (η2

b
− ξ2) dξ

,

where ξ1 = cos 0◦ = 1 and ξ2 = cos θmax. As described in section A.4, θmax is chosen

to speed the processing time, with θmax = 20◦ used for our computations.

To find ṽx, ṽr
2 is replaced by (ṽr cosφ)2. This is the only φ dependence in the

numerator, so the integral in φ becomes
∫

2π

0
(cos2 φ)dφ = π. The integral in φ in the

denominator again contributes a factor of 2π. In other words, ṽ2
x = .5 ṽ2

r .

The calculation of ṽr is implemented in Python as

Evr2_integrand = lambda xi: (VrMax(xi,nb,f,E0,t_max))**2 * 2 * math.pi \

current_density(xi, E0, nb, wrkfn) * diffA_factor(xi, f, nb)

Evr2 = spi.quad(Evr2_integrand, math.cos(theta_max), 1)

didxi_fn = lambda xi: current_density(xi, E0, nb, wrkfn) * \

diffA_factor(xi, f, nb) * 2.0 * math.pi

total_current = spi.quad(didxi_fn, math.cos(theta_max), 1)

v_rms = math.sqrt(Evr2[0]/total_current[0])
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A.6 Calculating the velocity distributions

The velocity distributions were calculated in a straight forward if inelegant

manner. The range covered by the velocities was broken into bins, and the emit-

ting surface was broken into small area elements. For each element, a contribution

proportional to the total current emitted from that element was made to the bin

corresponding to the final transverse velocity for trajectories originating in the cen-

ter of the element. For the vx distribution, the area elements were sectioned in both

ξ and φ, and vx for each element was set to vr cos φ. The implementation of this is

shown below. The implementation for vr, not shown, is essentially the same, except,

because vr is independent of φ, the area simply consisted of strips corresponding to

small ranges of ξ, therefore the inner loop is not required.

nbins = 100

vr_xi_array = numpy.cos(numpy.linspace(math.cos(xi_max), 0, 400))

vr_list = [VrMax(xi, nb, f, E0, t_max) for xi in vr_xi_array]

vr_array = numpy.array(vr_list)

max_vrmax = numpy.amax(vr_array)

phi_max = math.pi/2.0

N_phi = 2000

d_phi = phi_max / N_phi

N_xi = 2000

xi_array = numpy.cos(numpy.linspace(math.acos(xi_max), 0, N_xi))

v_values = numpy.linspace(0, max_vrmax, num=nbins)

v_bin_locs = numpy.linspace(0, max_vrmax+max_vrmax/

(nbins-1), num=nbins+1)

vx_weights = numpy.zeros(nbins)

for i in range(N_xi - 1):

xi_mid = (xi_array[i] + xi_array[i+1]) / 2.0

d_xi = xi_array[i+1] - xi_array[i]

vr = numpy.interp([xi_mid], vr_xi_array, vr_array)[0]

95



cd = current_density(xi_mid, E0, nb, wrkfn)

dA = diffA_factor(xi_mid, f, nb) * d_xi * d_phi

for j in xrange(N_phi):

phi_mid = (float(j)+.5) * d_phi

vx = vr * math.cos(phi_mid)

weight = cd * dA

vx_bin = numpy.digitize([vx], v_bin_locs)[0] - 1

vx_weights[vx_bin] += 2 * weight
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