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Experimental studies of air entrainment by breaking bow waves are essential

for advancing the understanding of these flows and creating valid models. This

experimental research is part of a larger project whose broad goal is to improve

our understanding of the dynamics of breaking bow waves including the entrain-

ment of air bubbles into the flow and the generation of turbulence and vorticity.

A mechanical wave maker creates waves similar to those formed at the bow of a

moving ship, utilizing the 2D+T approximation. The primary mechanisms for air

entrainment are the impact of the plunging wave jet and individual droplets in the

splash region on the free surface. The air entrainment process is observed in small

scale stationary model experiments, and the air bubbles are entrained in spatially

periodic bubble clouds. The specific objectives of this project are to develop a shad-

owgraph technique for measurement of bubble size distributions and motions and

to measure and analyze the void fraction as a function of the equivalent forward

speed of the ship model. Three key bubble characteristics that will be emphasized



and studied in particular detail are bubble distributions and motions, void fractions

and relationships between the properties of bubble and the geometrical character-

istics of the wave. The air entrainment in ship bow waves simulated by a 2D+T

technique and the methods used to analyze these phenomena are all novel aspects

of this particular study and should provide a valuable set of data and analyses for

the study of breaking bow wave mechanics.
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Chapter 1

Introduction

Ship bow waves have been an active area of research for many years. As

the ship speed is increased, these waves begin to break at moderate speeds (about

16.5 knots in the present experiments) where they form splling breakers. The break-

ers become stronger as the ship speed is increased further and begin to plunge at

high speeds (above about 22 knots in the present experiments). The strength of

these plunging breakers also increases with futher increases in ship speed. Breaking

bow waves are important in a number of ways. First, they cause a drag on the ship

and this drag must, of course, be overcome by the ship’s propulsion system. Sec-

ond, large breaking waves such as these entrain air bubbles which create underwater

sound. For naval ships, this sound is important because it can interfere with ship-

board sonar systems and may be detectable by external sonar systems. Third, the

breakers create bubbly wakes that extend far behind the ship. These bubbly flows

are detectable by external active sonar systems and so make the ship vulnerable to

attack. The white water, indicative of air bubble entrainment, in the flow field of a

naval ship is shown in Figure 1.1.

In this study, we explore the generation of bubbles by breaking ship bow

waves in a series of laboratory experiments. There are two main difficulties in

designing these laboratory experiments. First, it is important that the experiments
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Figure 1.1: Example of bow waves created by a US Navy Frigate.

be performed at relatively large scale. This is necessary since in order to entrain air

and make bubbles that are similar to small scale, the water flow must have sufficient

kinetic energy to overcome surface tension. In small scale, three-dimensional ship

model testing, it is well know, that surface tension can make weak, non-entraining

spilling breakers in the laboratory where at corresponding conditions in the field,

the wave might create vigorous air entrainment. The second difficulty is that the

experiments should be performed in water with sea salt concentrations similar to

that found in the open ocean, about 35 parts per thousand. This is necessary

because the presence of salt dramatically increases the number of small bubbles in

an entrainment event. Salt water is corrosive and can easily damage laboratory

equipment.

In this thesis, a series of experiments on the entrainment of air bubbles by

breaking waves is described. The bow waves are simulated using a technique know

as 2D+T (two dimensions plus time). In this technique, a wave maker with a
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flexible surface (called the wave board) was programmed so that it created a time

series of surface shapes that simulated the line of intersection between one side of

the hull of a slender ship model moving at constant speed and an imaginary vertical

plane oriented normal to the ship model track. This wave maker simulates a large

three-dimensional ship model with a draft of 0.91 meters and a length of 21 m and

produces waves with lengths for about 2 m, considerably larger than in typical ship

model tests, even at the worlds largest ship model basins. Further, the wave tank

in the present work was filled with artificial sea water at a salt concentration of 35

parts per thousand while almost all ship model basins are filled with fresh water.

The organization of this thesis is as follows. In Chapter 2, the literature on

breaking waves and the associated air entrainment is reviewed. This review includes

previous work on breaking bow waves as well as breaking waves in the open ocean

and on beaches. The experimental setup and techniques employed in the present

research are described in detail in Chapter 3 and 4, respectively. This is followed

by a description and dicussion of the experimental results in Chapter 5. Finally, in

Chapter 6, the conclusions of the study are given.
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Chapter 2

Literature Review and Overview

There are two major types of breakers: plunging and spilling. The most

dramatic breakers are plunging breakers. For these waves, the breaking commences

when a forward-moving sheet of water, referred to as the jet, plunges down from

the crest onto the front face of the wave causing splashing, air entrainment, and

turbulence. In spilling breakers, turbulence appears spontaneously at the crest due

to poorly understood mechanisms. This turbulent fluid then spills down the front

face of the wave, entraining air and creating water drops as it spills. In waves with

short wavelengths, surface tension tends to prevent drop and bubble formation.

Waves can break in open deep water due to a variety of effects including inherent

instabilities of deep water waves, wave-wave interaction, wave-current interaction,

wind-wave interaction, or steepening due to external bodies such as ships. These

latter breakers are somewhat simpler than wind waves since, in a calm sea, the

forcing motion is well defined and there is no vorticity in the water except for that

found in the breaking zone itself.

2.1 Wave Research

Research in the behaviour of non breaking waves has benefited from well-

developed potential flow theories. Wave breaking, however, includes a highly com-
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plex vortical fluid motion that cannot be adequately modeled with potential flow.

There are no closed form analytical theories available to describe the flow, thus

researchers have typically resorted to theoretical models and numerical methods.

Longuet-Higgins & Turner (1974) developed a model for a spilling breaker. They

considered an entraining plume model of the breaking zone, originating from the

wave crest and riding down the front face of the wave. Later, Peregrine & Svendsen

(1978) proposed a model for the flow field in steady and quasi-steady breaking flows.

Longuet-Higgins and Turner’s model may be applicable to the initial stages of the

wave breaking, which is inherently unsteady, and that of Peregrine and Svendsen

to the later stage, in which a quasi-steady flow has developed. Based on Peregrine

and Svendsen’s model, Battjes and Sakai (1981) investigated the turbulent wake in-

duced by a breaking wave generated by a submerged hydrofoil. The dynamics of the

steady breaking waves generated above a submerged hydrofoil were first explored

experimentally by Duncan (1981, 1983), who made systematic measurements of the

breaker shape and the mean flow in the wake of the breaker. He determined the re-

sistance associated with the breaker and found that this resistance was proportional

to the component of the weight of the breaking region that was tangent to the front

face of the wave. Cointe & Tulin (1994) presented a theory of steady breakers based

on the experimental results of Duncan (1981, 1983). They modeled the breaking

zone as a weak eddy remaining in place on the forward face of the wave by shear

stresses from the underlying flow. It was assumed that these stresses balance the

down slope component of the weight of the breaking region as was found experi-

mentally by Duncan (1981 and 1983). Lin & Rockwell (1994) measured the flow
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Figure 2.1: The vorticity field which is dominated by positive vorticity
with high levels in the mixing layer and low levels of negative vorticity
in the region close to the free surface. From Lin & Rockwell (1994).

structure of a stationary spilling breaker that was generated by a submerged hydro-

foil. They used high-image-density particle image velocimetry to provide the shape

of the free surface and the velocity field beneath it. The vorticity field from Lin and

Rockwell’s work, shown in Figure 2.1, is dominated by positive vorticity with high

levels occurring in the mixing layer between the nearly stationary breaking region

at the surface and the upslope laminar flow underneath it. Low levels of negative

vorticity are detectable only in the region adjacent to the free surface. Coherent

concentrations of vorticity are evident in the upstream region of the mixing layer.

Later, Lin & Rockwell (1995) studied all stages of the evolution of a quasi

steady breaker from the onset of a capillary pattern to a fully developed breaking

wave, using the same technique. A flow field in the toe region for a breaking wave

length of 0.15 m is shown in Figure 2.2. Note that the leading edge of the breaking

region is located near the minimum surface height in the trough, indicating that

this is a strong breaker for the given flow speed (Duncan 1981).
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Figure 2.2: A flow field of the toe region for wavelength of 0.15 m by Lin
& Rockwell (1995).

2.2 Breaking Bow Wave Research

The two primary components of ship resistance are friction and wave making,

which can be thought of as shear and normal forces, respectively. Friction results

from the development of a viscous boundary layer around the hull and can be mod-

eled to first order as flow over a flat plate with area equal to that of the ship’s wetted

surface. Wave making resistance results primarily from the dynamics pressure the

water exerts on the hull as the ship as the ship moves through the water. These

waves transport energy away from the ship. William Froude was the first to appre-

ciate the separate components of ship resistance and advocated the use of towing

tanks to determine the resistance of ships. Froude’s innovations roughly coincided

with the fundamental studies of linear and nonlinear water waves by Stokes (1847),

only a decade earlier. In 1887, Lord Kelvin (William Thomson) derived the pattern

of waves created by a moving infinitesimal disturbance, known as the Kelvin wave

pattern, shown in Figure 2.3. The Kelvin wave pattern is comprised of divergent
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Figure 2.3: Kelvin wave pattern (as drawn by William Froude)

(roughly perpendicular to direction of motion) and transverse (following the mo-

tion) waves. A decade later, Michell (1898) developed the first analytical expression

for wave resistance using a technique commonly known as thin-ship theory. This

technique models the ship as a straight line of pressure sources moving through

a calm, inviscid fluid. Additional developments by Stokes, Osborne Reynolds and

Lord Rayleigh in the 1870’s completed the basic linear theory of ship waves that is

still used today.

The wave pattern around the bow of a ship mainly depends on the shape of the

ship, the draft and the Froude number. For blunt shapes, breaking occurs ahead of

the bow, whereas for fine ships with a sharp stem, the free surface flow, after passing

the stem,rises along the hull surface downstream of the stem, and then falls down.

A comprehensive experimental study of the divergent bow waves were made by Inui

(1970) and his colleagues in Tokyo; see also Inui et al. (1979) and Miyata (1980).

Miyata claimed that these waves are non dispersive and nonlinear and called them

free surface shock waves. Nonlinear wave formation depends on the configuration

of the ship hull. Baba (1969) noticed the singular free surface phenomena around
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Figure 2.4: Wave patterns around a fine ship model with the draft of
0.105 advancing at Fn = 0.267. The water surface, covered with an
aluminum powder film, is split near and behind the model.

the bow of the ship and interpreted that as the breakdown of waves. Miyata & Inui

(1984) have reviewed and summarized most research done on the ship-generated

waves by that time. They have done a comprehensive experimental and numerical

research on the free surface flow structure and wave pattern around several ship

models. They used aluminum powder for visualization purposes and consequently

they were able to observe wave patterns around the models. A typical wave pattern

of a fine ship model being towed in their tank is shown in Figure 2.4. In their

experiments, they observed the bow waves of sharp-ended models and found that

the strength of the breakers and the slope of the forward face of the bow waves

increased with an increase in Froude number.

The flow field in three-dimensional breakers, observed around ship bows were

not quantitatively studied in detail until the late 1990s, when Particle Image Ve-
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locimetry (PIV) techniques came in to play. Perhaps the first detailed study of the

structure of the flow field within the breaking waves generated by a ship model was

made by Dong et al. (1997). In their experiments, PIV was employed to obtain

velocity distributions in the near field of a ship model bow. The results show that

the formation of a breaking bow wave involves considerable production of vorticity

originating from the toe of the breaker; similar to what was already reported for two-

dimensional spilling breakers (Banner & Peregrine 1993; Lin & Rockwell 1994, 1995;

Dabiri & Gharib 1997). In the bow waves, most of the vorticity remains close to the

forward face of the wave. Ship generated waves have a powerful counter-rotating

vertical structure concentrated near the wave crest. Vorticity with opposite signs

are much stronger than their two-dimensional counterpart. The vorticity generated

at the wave crest is fed into the flow behind in a series of distinct filaments that

create a series of elongated bumps on the free surface. In the larger Froude number

case of the study, the bow wave plunges on the forward face of the wave and creates

a bubbly wake. Roth et al. (1999) also conducted an experimental investigation of

the flow field around a ship model. In their experiments, PIV was used to obtain ve-

locity distributions in the near field of the models and measurements were repeated

many times at several locations in order to obtain statistical information about the

turbulent flow field of the breaker. They found that the average vorticity contours

are in many respects qualitatively similar to the instantaneous vorticity contours for

an unsteady two-dimensional spilling breaker that is dominated by surface tension

(Figure 2.5).

A series of studies by Waniewski et al. (1997, 2001 and 2002) simulated
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Figure 2.5: Contours of average vorticity in a tilted plane through the
breaking bow wave of a ship model. Negative vorticity is directed into
the page. Fr = U/

√
gL = 0.3, where U = 2.51 m/s is the model speed

and L = 7.01 m is the model length. From Roth et al. 1999.

a plunging bow wave by placing a deflecting plate in a supercritical free-surface

flow. Surface profiles of the resulting waves were measured and used to investigate

scaling and dependence on geometric parameters. In general, the profiles of for

all conditions agreed near the leading edge of the plate but deviate significantly

thereafter. Scaling was typically done as an empirical function of Froude number,

Reynolds number and draft (Figure 2.6). Air entrainment in the wave was also

investigated using impedance probes. Surface disturbances were observed on the

plunging jet that are qualitatively similar to those described by Longuet-Higgins

(1995).

Surface disturbances downstream of the breaking bow waves are addressed in

great detail by Olivieri et al. (2007), who were primarily interested in the phenomena
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Figure 2.6: : Nondimensional bow wave profile data comparing tow-
ing tank data (open symbols) and flume data (closed symbols). From
Waniewski et al. (2002).

of “scars” , sudden changes in surface elevation forming streamwise streaks within

the wave pattern (Figure 2.7). Results showed that these streaks are the result of

counter-rotating vortex pairs generated by the breaking bow waves. The downward

flow between the vortices creates a depression in the surface, which appears as a scar.

Near surface counter-rotating vortex pairs are known to be a source of instability

and surface striations in other flows as well (Sarpkaya and Suthon, 1991).

2.3 2D+T Approximation

The 2D+T (Two Dimensions plus Time) approximation is a method for sim-

plifying a three-dimensional system using a two-dimensional model. For ship waves,
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Figure 2.7: Presence of scars in the shoulder wave of a ship model (from
Olivieri et al. 2007).

three-dimensional bow flow can be approximated by a two-dimensional, time evolv-

ing flow in which the hull is replaced by a deforming wall which at any time t (t = 0

is the moment of passage of the stem at the mean water level) takes on the shape of

the cross section of one side of the hull at the streamwise (x) location corresponding

to x = Ut where U is the equivalent speed of the three-dimensional ship model.

This method is applicable only to ships with fine bows moving at constant forward

speed and only divergent wave components are produced. The flow is unaware of

any longitudinal effects such as the stagnation point at the bow that would result

in elevated water upstream of the hull. The impact of the stagnation point on up-

stream elevation is substantial for blunt-bow ships such as tankers; however, for

narrow bows, the effect is relatively weak and thus not a major source of error.

Previous studies by Tulin & Wu (1997) and Shakeri et al. (2009a) have accounted

for this with a small longitudinal shift of the resulting wave pattern. Tulin & Wu

(1997) used 2D+T technique for calculations of a Wigley hull. Figure 2.8 shows
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a comparison of the wave pattern for a ship hull. The same individual divergent

waves, bow and stern, can be seen in each calculation, and their origins and extent

match well. It shows the prominent rooster tail behind the stern and the resulting

diverging waves. There are differences between the two patterns. The 2D+T waves

are less dispersive, and transverse waves are absent. A comparison has been made

for a typical Wigley hull with the exactly fully nonlinear 3D calculation of Raven at

MARIN, as shown in Figure 2.8. The general appearance of the multi-wave system

is identical in each simulation (splash, three divergent bow waves, rooster tail, two

divergent stern waves on each side of the hull). The origin of each feature and gen-

eral extent are similar. However, the crests of the 2D+T waves are much sharper.

For typical fine ship slenderness, the crest of the divergent bow waves tends to be

straight and their inclination decreases with increasing Froude number.

The similarity between breaking bow waves and two-dimensional deep-water

breaking waves when examined in a 2D+T context was explored experimentally by

Duncan (1999). In this work, a traditional plunging-type wave maker was used to

create a series of short wavelength spilling breakers generated from dispersively fo-

cused wave packets. These waves were carefully observed and measured and plotted

in a 2D+T manner, i.e., in the plot each successive wave profile in time was plotted

at a location shifted upward and to the left by fixed succesive distances. As can

be seen in (Figure 2.9), the resulting surface shape show a strong resemblance to a

breaking bow wave on the starboard side of the ship model.

The success of the Duncan (1999) study led to the construction of a 2D+T

wave maker in the Hydrodynamics Laboratory at the University of Maryland. A
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(a)

(b)

Figure 2.8: A comparison between (a) 2D+T: L/B = L/d = 10; FL =
0.30, and (b) exact nonlinear (RAPID) wave prediction. The RAPID
calculation is by Dr. Hoyte Raven of MARIN.
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(a)

(b)

Figure 2.9: Comparison of 2-D wave profiles with a 3-D wave. (a) 3-D
representation a spilling dispersively focused breaker using 2-D wave pro-
files (from Duncan et al. 1999) compiled according to 2D+T technique.
(b) Overhead view of model test bow wave (from Dong 1997).
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Figure 2.10: 3-D representation of a plunging bow wave created by a
2D+T wave maker (from Shakeri, 2009a). Profiles compiled by offsetting
each 2-D surface profile by a fixed distance along the vertical axis.

detailed description of this device can be found in Section 3.1. Shakeri (2005) and

Shakeri et al. (2009a) used the wave maker to simulate waves from a naval ship

hull form (Model 5415 from NSWC Carderock). Using a similar plotting technique

as Figure 2.9, profiles from a plunging breaker were plotted in a 3-D representa-

tion in Figure 2.10. In addition, comparison of the maximum height of the water

contact line in the bow region with data from 3-D model tests and the theoretical

considerations of Noblesse et al. (2006) are presented.

The contact point of the water surface on the surface of the wave maker were
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tracked and the rise of the wave was found to increase with increasing ship speed.

As the point of maximum water height moved away from the wave maker, thus

becoming the crest of the wave, it moved at about 1.8 times that of the speed of

the wave board (i.e. transverse speed of the hull surface) at high Froude numbers.

The water jet produced by the plunging breaker entrained significant amounts of air

as it crashed into the upstream water surface. Comparisons with three-dimensional

model experiments were made in Shakeri et al. (2009b). The 2D+T wave maker

was used to simulate bow waves produced by the R/V Athena (Model 5365 from

NSWC Carderock). These waves were then compared with previous towing tank

tests. The shape the contact lines for the 2D+T and three-dimensional model data

sets were found to be quite similar (see Figure 2.11) for the highest Froude numbers,

but the profiles tend to diverge downstream of the bow region point. As mentioned

previously, a small longitudinal shift in the data was needed to account for the

stagnation point of the three-dimensional model. The similarity of the wave profiles

between the two sets of data improved with increasing Froude numbers as is to be

expected with the 2D+T approximation.
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2.4 Air Entrainment and Bubble Production

The interest in bubble entrainment and behavior in breaking ship bow waves

stems from ship detection issues. The bubbles entrained by the breakers enter the

wake of the ship and this bubbly wake can last for very long distances downstream.

Various acoustic sensors are able to detect bubbly flows, thus making the ship vul-

nerable to attack via its long bubbly wake. In examining the literature, it was found

that there has been very little research on air entrainment in breaking bow waves.

Thus, in the following we review primarily air entrainment in breaking waves in

open water and on beaches.

The breaking process may or may not entrain air. In particular, in short

wavelength breakers ( say, wavelength less than 1 m) the crest region is dominated by
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surface tension. When the wave length is short enough, the surface tension prevents

overturning motions of the water surface and air entrainment is suppressed (Banner

and Peregrine 1993). Lamarre and Melville (1991), among others, suggested that as

the wave length increases, inertial effects dominate over surface tension effects and

the breaking process produces air entrainment and for the wave heights of 50 mm or

more; the effects of surface tension and viscosity on this process can be reasonably

neglected (Couriel et al. 1998). At the sea surface, the entrained air generates

whitecaps which are visible for wavelengths of about 1 m and longer, (Melville,

1996).

In deep water, the breakers are generally described as spilling and plunging

breaking waves. In a spilling wave, the breaking process may be started by the

appearance of a rough surface, or by the appearance of a small jet at the wave

crest (Duncan, 2001). After this initial stage, a small region of turbulence forms

at the crest of the wave and this region grows as water spills down the face of the

wave (Duncan et al. 1994). In a plunging breaking wave, the first stage is the

formation of a water jet at the wave crest. Thereafter, the falling water jet collides

with the undisturbed water on the forward face of the wave and two processes occur

simultaneously: the creation of a cavity of entrapped air beneath the water jet, and

the water splash up (Bonmarin, 1989) upstream of the jet impact site. The air

cavity entrapped by the jet is unstable and collapses, evolving into a bubble cloud.

Simultaneously, the splash up created by the jet impact also entrains air resulting

in a second cloud of bubbles.

Air entrainment can play an critical role in the dynamics of breaking waves.
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The breaking process can dissipate up to about 40% of the initial wave energy and

between 30% and 50% of the dissipated energy is used initially to force air below the

water surface (Lamarre and Melville, 1991 and Hoque, 2002). In naturally occurring

breaking waves on beaches and in the open ocean, air entrainment is an important

phenomenon primarily due to its role in enhancing transfer processes between the

atmosphere and the ocean. Bubbles can carry air down to depths on the order of

the wave height and dramatically increase the interfacial area between the air an

water, thereby increasing the mass transfer rate. There have been several studies

comparing the bubble size distribution beneath breaking waves in freshwater and

saltwater. Cartmill and Su (1993), Haines and Johnson (1995), Loewen, et al. (1996)

and recently Blenkinsopp and Chaplin (2007) observed that the shape of the bubble

size distributions for bubbles larger than r ∼ 1.0mm was the same in freshwater

and saltwater; however, they found that a greater number of small bubbles (bubble

smaller than r ∼ 1.0mm) per unit volume occurred in saltwater than in freshwater.

Many previous authors have made estimates of void fraction in the bubbly

flow beneath breaking waves in either the laboratory or the field (Loewen et al.

1996; Deane 1997; Vagle & Farmer 1998; Kalvoda et al. 2003). However, these

measurements have generally been taken at a single often undefined location in the

flow using instruments that average void fractions over regions and intervals that

are not small in comparison with the wave’s characteristic length and time scales.

Several researchers including Hwung et al. (1992), Hoque (2002), Cox & Shin (2003)

and Hoque & Aoki (2005) have carried out more detailed laboratory investigations

of the void fraction field in breaking waves, providing useful information about
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the vertical and horizontal distributions of void fraction. Lamarre (1993) used a

conductivity probe to produce contour plots of the time-varying void fraction field

beneath both two- and three-dimensional focused laboratory breakers as well as

making some further measurements in deep water ocean waves. The results showed

that the bubble plumes generated by breaking waves undergo rapid transformations

and lose 95% of their initially entrained air volume during the first wave period.

The interpretation of the present measurements calls for an appreciation of

scale effects. Deane & Stokes (1999, 2002) measured the size distribution beneath

breaking waves in a laboratory flume (filled by seawater) and in the open ocean.

They observed two primary mechanisms responsible for air entrainment in labora-

tory breaking waves; larger bubbles with a radius greater than 1 mm are formed by

the fragmentation of the air vortex, while smaller bubbles are formed by the impact

and subsequent splashing of the overturning jet. It seems probable that the volume

of air trapped within the vortex and then entrained into the water column depends

predominantly on the geometry of the overturning wave. They also found a change

in the size distribution slope at r ∼ 1.0 mm. They found that the bubble density

(number of bubbles per m3 per micrometer radius increment) was proportional to

the bubble radius to the power of -3/2 for small bubbles (r less than 1.0mm) and

to the power of -10/3 for large bubbles. Based on Deane and Stocks (1999, 2002),

Blenkinsopp and Chaplin (2007) argued that the bubble size distribution of large

bubbles will be similar at all scales because the same bubble creation mechanisms

operate in the laboratory and in the field. Therefore, it is expected that laboratory

studies of large transient bubbles conducted in freshwater will be applicable not only
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to the open ocean but also to waves in fresh water under similar breaking conditions

(Leifer et al. 2007).

Oguz et al. (1995) and Prosperetti & Oguz (1997) developed potential flow

models of an impacting planar jet and falling water mass, respectively, and showed

that, for strong impacts, the effects of surface tension and viscosity were negligible

and the process of air entrainment was dominated by gravity and inertia effects.

They suggested that the volume of air entrained by a single jet impact was de-

pendent on the jet Froude number. Based on these studies it seems reasonable to

assume that there should be no significant scale effects associated with the plunging

jet entrainment mechanism and that the total volume of entrained air will scale

geometrically. These findings suggest that the more important effects of scale are

probably linked to the subsequent processes of bubble fragmentation, coalescence

and rise. However, in air entrainment in breaking waves, scale (wavelength) has a

dramatic effect on the geometrical and kinematic characteristics of the wave crest

as it approaches breaking and the shape of the surface over the turbulent breaking

region. Through these effects, scale will certainly affect even the initial amount of

air entrained by the breaker.

Detailed knowledge of the distribution of entrained air and the behavior of

the entrained bubble clouds would contribute to a better understanding of wave

breaking in general as well as the influence of air entrainment on these processes.

However, largely due to the practical difficulties of making measurements in a violent

two-phase flow, the existing information is limited.
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Chapter 3

Experimental Setup

3.1 Test Facilities

3.1.1 The Wave Tank

The experiments are carried out in a wave tank that is 14.80 m long, 1.15 m

wide, and 2.20 m deep (water depth 1.83 m). A schematic of the wave tank is shown

in Figure 3.1. The tank is supported by a row of steel columns on either side with

1.2 m spacing between columns. The side walls of the tank are made of 3.5-cm-thick

clear acrylic plates to allow for flow visualization and optical measurements. The

acrylic plates are supported by the steel columns and a set of horizontally oriented

steel beams at several heights. The wave maker has an effective keel depth of 0.91 m,

and the total water depth used all experiments reported herein was 1.83 m.

The 2D+T wave maker occupies about 2.8 m of the tank length at one end.

This leaves about 12 m from the retracted position of the wave board (the mid

plane of the equivalent ship) to the far end of the tank. The waves are expected to

break and generate bubbles close to the wave maker. To allow sufficient time before

reflected waves from the far end of the tank interfere with the flow and bubble

measurements, the tank must be sufficiently long. As is shown below, in the present

experiment the reflected wave will not arrive at the measurement site before a time
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Figure 3.1: A schematic showing the tank and the wave maker.

equivalent to the passage of the stern in the full, three-dimensional model. The

equivalent time of the passage of the stern of the ship model (∆Tm) is given by

∆Tm =
Lm

Um

=
1

Fr

√
Lm

g
(3.1)

where g is gravity, Lm is the equivalent 3D ship model length, Um is the equivalent

3D ship model forward speed, and Fr = Um/
√

gLm = Us/
√

gLs is the Froude

number and Us and Ls are the equivalent full-scale ship speed and ship length,

respectively. Using the above equation at Us = 27.5 knots (the faster equivalent

ship speed for the tests described herein, Fr = 0.379 ), we find ∆Tm = 1.931 s. Also

with Us = 22.5 knots (the slower ship speed for the experiments described herein,

Fr = 0.310) we find ∆Tm = 2.361 s. Observations of the simulated bow waves

have shown that the dominant wave component is about 2 m long. Using the linear

dispersion relationship for deep water gravity waves, the group (energy) velocity of
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these waves is

c =
1

2

√
g

k
=

1

2

√
gλ

2π
= 0.88m/s. (3.2)

At this speed, a wave can traverse the 12-m-long distance from the wave maker

to the end of the tank and the 12-m-long return in a time of Tr = 27s. This is

about four times the model time scale, ∆Tm, even at the slower equivalent ship

speed studied herein. Thus, these reflected waves are not expected to affect the

measurements before the equivalent time of the passage of the stern. The highest

possible surface wave speed in a tank of water of depth H is
√

gH or 4.24 m/s for

the present case with H = 1.83 m. This is both the energy and phase speed of a

wave whose length is many times greater than the water depth. At this speed, a

wave can traverse the 12-m-long distance from the wave maker to the end of the

tank and the 12-m-long return in a time of ∆Tw = 5.66 s which is longer than∆Tm

, even at the slower equivalent three-dimensional ship model speed. Thus, for the

range of Froude numbers used for the experiments described herein, waves reflected

from the far end of the tank are not expected to influence the measurements before

the equivalent time of passage of the stern of the 3D ship model.

3.1.2 The 2D+T wave generation system

A schematic drawing of the wave maker is shown in Figure 3.2. The wave maker

is powered by four servomotors which through gear reducers, drive four vertically

oriented shafts. Each shaft drives a toothed pulley, which drives a piston through

a rack and pinion system. The pistons, in turn, drive horizontally oriented drive
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Figure 3.2: A schematic drawing of the wave maker designed and man-
ufactured by MTS Systems Corporation.

plates that are as wide as the tank (1.14 m) and are guided along the tank walls by

tracks. Position sensors and motor-shaft optical encoders are used in a computer-

based feed back control system to achieve the desired motion of each piston. The

feedback system adjusts the velocity of each drive piston in real time to achieve the

desired wave board motion. The frame of the device is bolted to the bottom and

sidewalls of the tank. Most of the device is submerged and is made of appropriate

materials to resist corrosion. The main component of the 2D+T wave maker is

the flexible wave board which is attached to the four drive plates via hinges. The

wave board, which spans the width of the wave tank, is constructed from interleaved
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1/16-inch-thick stainless steel plates of various lengths. The plates are slotted and

riveted together in such a way that does not allow any flow of water through the

wave board via a straight path. The stainless steel plates are thin enough to bend

elastically under the differential action of the pistons. Each piston is attached to a

different layer of stainless steel so that as the pistons move out at different speeds,

the changing distance between the hinge points is accommodated by the stainless

steel plates sliding relative to each other.

The keel depth of the 2D+T wave maker is created by bending the wave board

over a fixed horizontal surface, called the keel bar, that spans the width of the tank.

The keel bar depth serves as the effective draft, dm, for the model. The keel bar is

supported by a steel structure which is bolted to the floor of the tank. A Delrine

block forms the top surface of the keel bar where it comes in contact with the

wave board. This block is used to prevent the wave board from being scratched

or otherwise damaged as it slides over the keel bar. For all tests in this study, the

top surface of the keel bar is fixed at a depth of 0.91 m (36 inches) below the free

surface.

In the tests, the 2D+T wave maker simulates the actual shape of half of a

ship model (say the starboard side) from stem to mid-ship, aft of which the ship is

assumed to be effectively parallel up to the stern. Even if this section is not parallel

on the actual ship, it likely has negligible influence on the bow waves and can be

safely ignored. As shown in Figure 3.3, the wave board is extended and bent at

each time step, t, to mimic the corresponding half hull shape at a given longitudinal

location, given by x = Ut. Figure 3.4 shows four photographs of the wave maker in
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operation in the wave tank.

As mentioned above, the 2D+T wave maker is used to simulate the 5415

ship model built at the Naval Surface Warfare Center, Carderock. The 5415 hull

profile was modified in two ways for use in the 2D+T simulations. First, the bulb

that appears below the model keel depth was removed. This is necessary since the

2D+T approximation requires a slender bow while the bulb has a very blunt profile.

Second, the stem region of the 5415 hull form was modified as is explained below.

Figure 3.5(a) shows a plan view of the stem region at the mean water line. As can

be seen in the figure, the stem of the 5415 hull shape has a small rounded nose.

Simulation of this nose shape with the 2D+T wave maker would require the wave

board to accelerate from zero to finite speed in one wave-maker control time step.

When the wave maker attempts to create this motion it sets up an oscillation in

the velocity of the drive channels and this in turn creates short wavelength surface

waves. To remedy this problem the rounded stem was replaced with the sharp stem

created from a third order polynomial as shown in Figure 3.5(a). Profiles of the

wavemaker input to the four drive channels are given in Figure 3.5(b). Measurement

of the time histories of the positions of the four drive channels for three runs at the

highest equivalent ship speed indicates that the wavemaker reproduces these profiles

with an rms error of at most 6 mm during the piston displacements which range

from 1.44 m for the top drive channel to 0.87 m for the bottom drive channel. The

corresponding run-to-run repeatability of the wave maker drive channel motion was

within ±0.8 mm rms at any instant during a run.

The 5415 ship model is a destroyer type hull. The beam to draft ratio of the
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Figure 3.3: Overview of the 2D+T technique. The shape of the wave
board at each time simulates the shape of the line of intersection of the
port side of an imaginary ship model and the sidewall of the wave tank
as the ship model moves forward at constant speed. In the top row of
drawings, the wave board is fully retracted and the stem of the imaginary
ship model is just touching the sidewall of the wave tank. In the bottom
row of drawings, the wave board is in an extended position simulating
the shape of the hull-tank wall line of intersection when the imaginary
model has moved further into the tank. (From Maxeiner E. 2009).
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5415 model is 3.11 and the length to draft ratio is 23.11. Thus, with a draft of

0.91 m, the half-beam of the 2D+T model and the equivalent 3D model is 1.41 m

and the equivalent 3D model length is 21.03 m.

3.1.3 Instrument carriage

An instrument carriage rides on rails mounted on top of the tank. This system

consists of the drive assembly, cables, tracks, instrument carriage, and position

sensor. The carriage is controlled by the same computer and software that controls

the wave maker. The carriage is powered by a servomotor which drives a horizontally

oriented shaft. The motor and drive shaft are mounted on top of the tank about 8 m

from the retracted position of the wave board. The drive system can supply force

to the carriage in both forward and backward directions. The carriage is supported

by four hydrostatic oil bearings that ride on precision rails, one on either side of the

tank. When high-pressure oil is supplied to the bearings, a thin film of oil is forced

between the bearings and the tracks. This oil layer dramatically reduces vibration

and friction levels when the carriage is in motion.

In previous measurements of the bow wave profiles, the camera and light sheet

optics for a laser-induced fluorescence measurement system were mounted on the

carriage which was set to follow the motion of the top drive channel of the wave

maker during each run. In the present measurements, the shadowgraph bubble-

measurement system was mounted on the carriage which was held at a fixed location

in the tank during each run.
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(a) (b)

(c) (d)

Figure 3.4: Photographs of the 2D+T wave maker in operation at four
different times for equivalent ship speed of 16:5 knots. The time of each
photograph relative to the start of the wave maker motion is (a) 0 , (b)
0.59 s, (c) 1.17 s, (d) 1.76 s.
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Figure 3.5: Profiles of the 5415 hull form in the horizontal (x-y) plane.
(a) Profile of the starboard side of the stem region of the 5415 hull form
at the water line and the approximation to it used in the 2D+T wave
maker: • - waterline profile of the 5415 hull form, • - waterline profile
of the equivalent hull form used by the 2D+T wave maker. (b) Profiles
of the starboard side of the 5415 model from stem to midships at the
elevations of the four drive channels of the 2D+T wave maker. The
wave maker input signals are obtained by converting the horizontal axis
to time via the transformation t = x/U . —– drive channel 1, · · · · · drive
channel 2 , – · – · –drive channel 3 , — — — drive channel 4 .
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3.1.4 Water treatment

In order to obtain bubble populations that are similar to those generated

by breaking bow waves of ocean going ships, laboratory experiments must be per-

formed in salt water and surfact levels in the tank must be controlled. The following

describes the procedures used to prepare and treat the water in the present experi-

ments.

At the beginning of each measurement series, the tank is filled with tap water

through two cartridge filters and a diatomaceous earth filter. Hypochlorite is then

added to the water (10 ppm) to neutralize organic materials. In order to create

simulated sea water 1,500 Lb of Instant Ocean salt was mixed with the tank water.

The resultant tank water had a density of 1.025 and a salt concentration of 35 parts

per thousand. This artificial seawater is the same as that used in the Baltimore

Aquarium.

In order to keep the water clean and relatively free of surfactants, a recir-

culation skimmer/filtration system was used. In this system, the surface water is

removed through a surface skimmer. The skimmer has a cylindrical shape and is

mounted horizontally on the side wall of the tank at the same height as the undis-

turbed water surface at the far end of the tank from the wave maker. Water enters

the skimmer through a 2 cm high by 1.2 m long slot with a smooth lower edge (See

Figure 3.6). The skimmer was positions so that the lower edge of the slot was about

2 mm below the mean free water surface in the tank. Water from the skimmer flows

to a small tank and from there is pumped through a diatomaceous earth filter and
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Figure 3.6: A picture of the skimmer system.

sent back into the wave tank at a point in the tank bottom near the wave maker.

When fresh water was needed, tap water is sent through a separate filter before en-

tering the wave tank. There is second diatomaceous filter whose suction and return

lines are both below the water surface in the region behind the wave board. This

filter is used to remove particulates that are generated by corrosion and operation

of the wave maker. The filter/skimming systems are run nearly continuously dur-

ing the experiments in order to maintain a low surfactant level. However, they are

turned off about five minutes before each run of the wave maker on order to reduce

residual tank water motions.

3.2 Experimental techniques

In order to make qualitative observations of the air entrainment process,

movies were taken with the high-speed movie camera looking under the free sur-
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face through the clear side walls of the wave tank. White back-light illumination

was used for these movies. Figure 3.7 shows a sequence of two photographs extracted

from a movie taken during the experiment with an equivalent ship speed of 25 knots.

The camera is mounted on the instrument carriage and is looking up toward the free

surface from below with a horizontal field of view of about 1.2 m. The instrument

carriage is moving along the tank with the approximate speed of the breaking wave.

The most important features seen in the air entrainment process are two clouds of

bubbles under the free surface after the jet impacts the forward face of the wave and

the splash forms. The cloud closest to the wave maker (the left cloud of bubbles

Figure 3.7(a) is due to air entrapped by the plunging jet and the other cloud results

from the impact of the splash. The cloud from the splash moves away from the

wave maker at a higher speed than the cloud due to the plunging jet; therefore, the

separation between the clouds increases as time goes on, see Figure 3.7(b).

Photographs of the bubble clouds were also taken with a stationary camera

looking horizontaly with a field of view of about 2.2 m (wider than the field of view

for the images discussed above). The camera was located 2 m from the inital position

of the wave board as shown in the schematic in Figure 3.8. The corresponding

photographs in Figure 3.9 show the bubble clouds for an equivalent ship speed of

27.5 knots at two times corresponding to equivalent positions of 0.375Lm and 0.50Lm

downstream of the stem. Also shown are the theoretical shapes of the hull at these

streamwise locations. The two clouds of bubbles, the left one from the entrapment

under the crest at jet impact and the right one from the splash, can clearly be seen

in the images. Comparison of the images shows the rapidly increasing separation of
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(a) (b)

Figure 3.7: Air entrainment process at two different times for equivalent
ship speed of 25 knots.

the two clouds.

3.2.1 Available methods for measuring bubble sizes, bubble velocities

and void fraction

In the current investigation, the generated wave, breaks by the formation of

a plunging jet and creates a turbulent two-phase flow. The flow field beneath the

breaker can be measured by different techniques depending on the void fraction in

different stages in breaking process. In the first stage, big irregular shaped bubbles

entrap and the void fraction is high. In the second stage, big bubbles rise up due to

buoyancy force and leave the water field and small bubbles of the order of a few tens

of microns will be left in the flow. A variety of techniques have been developed by

researchers during the past several decades for measuring bubble size and velocity
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Figure 3.8: The schematic view of white light movie.

distributions within a flow.

In the early stage of the breaking process,void fractions and bubble distribu-

tions can be measured with an impedance measurement technique. This technique

measures over a large poorly defined volume and has very poor spatial resolution;

however, it is practically a technique capable of making measurements at high void

fractions that are expected close to the breaking event. Theoretical analysis is used

to determine the characteristics of the bubble population. Stokes & Deane (1999)

developed an optical method for measuring bubble distributions at this stage. The

system is consisted of a submerged camera, optical components, and a strobe light

mounted within a transparent sealed case with a diameter of 11.4 cm. The case

is then immersed in the interrogation flow field to perform bubble measurements.
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Figure 3.9: Air entrainment process at two times for an equivalent ship
speed of 27.5 knots and the corresponding waveboard shape at each
time. The photographs and profiles correspond to streamwise positions
of 0.375Lm and 0.50Lm (midship) from the stem in the top and bottom
rows, respectively.
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The advantage of this system is that it does not have to look through a dense cloud

of bubbles to take photographs of the area of interest. The disadvantage of this

method is that it is strongly intrusive. In the second stage, acoustical methods are

appropriate for void fractions from 10−8 to 10−3 and bubble sizes ranging from tens

of micrometers to a few millimeters. For higher void fractions and bubble sizes, they

seem to be impractical (Stokes & Deane 1999). In addition, they do not perform

measurements very well in the region close to the free surface since acoustical waves

are reflected by the interface at the free surface. As a result, useful information may

not be extracted from the measurements in the vicinity of the free surface (Vagle &

Farmer 1998). Acoustical methods only provide general information about the void

fraction in space in the entire field. However, they have a good resolution in time.

These techniques are unable to make any bubble size and velocity measurements.

For this stage, where the void fraction is reasonable for photographic techniques, a

shadowgraph technique is used to capture the flow field and bubble distributions.

The shadpwgraph technique can provide information about void fraction as well as

size distributions and velocity. In this work shadowgraph technique is chosen as

explaned in the next section.

3.2.2 Shadowgraph measurement system

The shadowgraph system used to measure the bubbles is shown in Figure 3.10

and Figure 3.11. This system is similar to that developed by Jahne and Geiβler

(1994). The light used for the imaging is created by a double-pulsed Nd:YAG PIV
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laser. The laser head and the power supply remain on table on the floor beside the

tank. The laser produces pairs of 9-ns-long pulses of green light (532 nm wavelength)

with an energy of 160 mJ per pulse. The light is directed through two sets of half-

wave plates and polarizing beam splitters to reduce and control the beam intensity.

The light is then directed through two spherical lenses to focus the beam. At the

focal point of these lenses, a pin hole with 200 micron diameter is used as a spatial

filter and after that the light is passed through two achromatic doublet lenses which

expand and collimate the beam. These two lenses are separated by a distance equal

to the sum of their focal lengths. A periscope consisting of two mirrors facing

eachother and tilted 45◦ from the horizontal in same direction sends the beam to

the top of the tank and from there to the carriage. Two other mirrors, which are

mounted on the carriage, are used to send the beam across the tank and vertically

downward. The bubble measurements are made across a narrow section of the tank

formed by placing a vertically oriented 1.8-m-by-1.2-m lexan plate in the tank 10 cm

from one of the tank side walls, see Figure 3.11. The Lexan plate is attached to the

instrument carriage and stainless steal bars are used as supports to keep the plate

vertical. A sealed box 10 cm wide, 30 cm long and 45 cm deep is attached to the

lexan plate on the side farthest from the near wall of the tank. A beam splitter

and a mirror are mounted on a vertical traverse, which is in turn mounted to the

instrument carriage, see Figure 3.11. The mirror and beam splitter can move up

and down inside the box.

The beam encounters the splitter first and half of the light is reflected hori-

zontally across the 10-cm gap between the lexan plate and the sidewall of the tank
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Figure 3.10: : A schematic showing the laser and optical devices used to
create the exapnded parallel light beam.
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while the remaining light continues downward to the mirror where it is also reflected

toward the 10-cm gap. After passing through the gap horizontally, the light beams

enter two Nikon 200 mm Microscope lenses with magnification of one to one at

minimum focal distance connected to two PIV CCD cameras. The two light beams

and cameras are used to reduce the number of experimental runs. The lenses are

focused on the vertical center plane inside the 10-cm gap. The cameras (Kodak

Megaplus ES 2020) have an image plane of 1600 horizontal pixels by 1200 vertical

pixels and are shuttered to capture 14 image pairs per second. The two images in

each pair are captured with a very small time delay. A timing signal is produced by

the cameras at the beginning of each image pair. This signal is sent to a function

generator which sends two pulses to the trigger input of the laser. The time delays

for the two pulses from the function generator are adjusted so that one light pulse

occurs in each image with a time delay between the two pulses of typically 2 ms.

The result of the above system is a double-pulsed movie of shadowgraph images of

the bubbles.

43



Figure 3.11: A schematic showing an end view of the tank (facing the
wave board) along with the lexan plate, the cameras, the mirrors and
the beam splitter.
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Chapter 4

Measurement Techniques

Shadowgraph measurements of the bubble distributions created by the 2D+T

wave maker were performend at two equivalent ship speeds, 22.5 knots and 27.5 knots.

A white light photograph of the bubble distribution a the 22.5 knot speed is shown in

Figure 4.1. At this speed, there is a weak plunging breaking and there is a relatively

uniform bubble distribution in a narrow band near the surface. A corresponding

photograph of the bubble distribution at the 27.5-knot speed is shown in Figure 4.2.

Figure 4.1: A sample white light image for 22.5 knots 2.5 seconds after
starting the wavemaker.

At this speed, there are two clouds of bubbles, the first cloud (on the left) created

by the air entrapped under the crest by the plunging jet and the second cloud (on
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Figure 4.2: A sample white light image for 27.5 knots 2.5 seconds after
starting the wavemaker.

the right) entrained by the splash created by the jet impact. This section gives

a summary of the detials of the techniques and procedures used to measure these

bubbles.

4.1 Instrument calibration

The objective of the optical setup described in the previous subsection is to

obtain the diameters and velocities of the bubbles from each image pair. A two-step

calibration procedure was required. In the first step of the calibration, a ruler was

inserted into the focal plane and imaged to calibrate the viewing area in terms of

pixels per millimeter. The viewing area, was fixed at 11.84 mm by 8.88 mm (135

pixels/mm) for all measurements. In the second step, targets of known physical
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Figure 4.3: Bubble Sampling Volume.

sizes were imaged in and out of the focal plane of the camera lenses to determine

how the distance from the focal plane affects the focus and the computed size of

the targets in comparison with their actual sizes. This data is used with the field of

view of the image to determine the measurement volume, which varies with target

or bubble diameter, see discussion below and Figure 4.3.

The target is a Patterson globe reticle consisting of glass slide with 9 black

circles of diameters from 21 µm to 450 µm etched onto its surface. The target is first

attached to a motorized linear traverse system (Neat 310 Programmable Stepping

MotorController) and placed in the span-wise center of the tank in the camera’s field

of view below the water surface. The camera is focused on the target, and this point

becomes the focal plane. The target is then moved both toward and away from the

camera in small finite steps out of the focal plane using the linear traverser. At each

step, an image of the target is taken. As the target moves out of the focal plane, the
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Figure 4.4: Two sample images of the calibration target. In the top
image, the target is in the focal plane of the camera lens. In the bottom
image, the target is 20 mm from the focal plane.

circles, which are sharp black dots in the focal plane, fade to grey intensities with

fuzzy edges. Fresnel intensity patterns are also visible. The radius and intensity of

the circles were determined using an axisymmetric two-dimensional function fit to

the image intensity pattern. This function is of the form:

F = A0(1− tanh(A1(
√

(x− x0)2 + (y − y0)2 − A2)) (4.1)

Where the An parameters and the position parameters x0 and y0 are modified

through a nonlinear least-squares method to obtain a best fit to the image data.

These An parameters are: A0 intensity, A1 Sharpness , A2 = d/2 radius, where d is

the diameter. Sample images of the calibration target in and out of the focal plane

of the camera lens are shown in Figure 4.4.
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Figure 4.5: Intensity of the images of the various dots on a Patterson
globe reticle as a function of distance of the recticle from the focal plane
of the lens.

Figure 4.5 shows a plot of the average intensity of each dot (given as 255 -

Ī, where Ī is the average intensity of any dot, which ranges from 0 to 255) on the

calibration target versus distance (x) from the focal plane (x = 0) of the camera

lens. As can be seen in the figure, the intensities of all dots decrease as the reticle

is moved out of the focal plane in either direction. This effect occurs more rapidly

for the smaller dots than the larger ones. Figure 4.6 shows the effect of the target

distance from the focal plane on the computed normalized diameters d/d0, where

d is the diameter of the image of a dot with the target at any distance (x) from

the focal plane (x = 0) and d0 is the similar diameter with the target at the focal

plane. As can be seen from the figure, d/d0 increases with increasing distance from

the focal plane and this effect more rapidley for the smaller dots.

Careful analysis of the data in Figures 4.5 and 4.6 shows that limiting the
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Figure 4.6: Normalized diameter of the images of the dots on the Patter-
son globe reticle as a function of the distance of the reticle from the focal
plane. For all the data points below the red line, the image intensity was
greater than or equal to 180.

dot (or bubble) images analyzed to those with intensities greater than or equal to

the same value for all dot diameters results a maximum error in the estimation of

the dot diameter from the images. This maxium error increases with decreasing

intensity threshold. In the present work, the limiting intensity value was chosen as

180 (see the horizontal line in Figure 4.6), which resulted in a maximum error in

estimation of dot diameter of 8% .

As can be seen in Figure 4.6, the range of x values for which the dot intensity

values are above the threshold increases with increasing dot diameter. This range of

x values is called depth of field (DOF ). A plot the depth of field versus dot (bubble)

diameter corresponding to the intensity threshold of 180 is shown in Figure 4.7. As

can be seen, the maximum error in measure the depth of field is 6.3%. Using this
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Figure 4.7: Depth of field (DOF ) versus dot or bubble diameter (d).The
vertical error bars indicate the error in the depth of field.

curve, the fluid sample volume (V OF ) for each bubble size is given by:

V OF = Av ×DOF (4.2)

where Av is the area of the field of view of the camera.

4.2 Sample air bubble measurements

To determine the characteristics of the entrained air in the wake of breaking

wave, the tank and optics were configured as shown in Section 3.2. A sample image

of a shadowgraph of bubbles from a breaking wave is shown in Figure 4.8 where

the bubbles are the black dots. Note the similarity of the in-focus and out-of-focus

bubble images to the in-focus and out-of-focus images of the dots on Patterson
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Figure 4.8: A sample shadowgraph image for 27.5 knot, t=3.15 sec at
336 cm away from the wave board and 8cm below.

reticle shown in Figure 4.4. Images like the one in Figure 4.8 were processed using

a Matlab program to determine the radius and intensity level of each bubble image

using the two-dimensional function fit described in Section 4.1. Through visual

examination of the bubble images, the majority of the bubble images were circular,

indicating that the bubbles themselves were very likely to be spherical. Shown in

Figure 4.9 is an image of a bubble close to the focal plane. Also shown is a plot of

the intensity (255 is completely black and zero is white) and a plot of the resulting

nonlinear surface fit of Equation 4.1 to the bubble. As can be seen from the figure,

the sides of the intensity plot are very steep and the top is a flat plateau-like form.

The corresponding plot of Equation 4.1 is very similar to the image data. This is

indicative of a sharply focused bubble which is confirmed by the high intensity value

of the plateau.
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Figure 4.9: Intensity graph of a sample bubble close to the focal plane
before and after fit a function.

Figure 4.10: Intensity graph of a sample bubble away from focal plane
before and after fit a function.

Shown in Figure 4.10 is an identical set of figures except that the imaged

bubble is out of the focal plane. Here the sides of the intensity pattern are gently

sloped and the top has a lower intensity value than the in-focus bubble and contains

a divot in the center. This formation is indicative of a bubble that is out of the focal

plane. Because the bubble position, radius and intensity are computed based on the

nonlinear fit of Equation 4.1 to the intensity plot, the importance of the fit is easily

seen. Figure 4.9 and Figure 4.10 illustrate the ability of Equation 4.1 to apply to
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bubbles at all focal depths. Using Equation 4.1 and the depth of focus calibration

data of Figure 4.7, the statistics for the bubbles imaged within the correct depth of

focus were determined.

4.3 Velocity Measurements

Bubble velocities are determined in two step procedure. In the first step, a

bubble in first image of one image pair is selected and the location of this bubble in

the second image is determined to pixel accuracy as its approximate position. This

is accomplished by correlation between images to find the nearest bubble with the

same size and same intensity. This method utilizes a square interrogation window

that has a length of 1.2 times the bubble diameter around each bubble. The idea

behind this method is to make a copy of the interrogation window, and displace this

copy to each x and y location corresponding to the expected displacement of the

bubbles, which is 5 times of the bubble diameter in both the x and y directions in

the second image. For each set of displacements, the first interrogation window is

correlated with the new position of the interrogation window in the second image.

The results of this are summed, and the largest total is the best estimate of the

average displacement of the interrogation window.

The second step is accomplished by determining the position of each bubble

image to sub-pixel accuracy by fitting Equation 4.1 to the intensity data obtained

from the first step are used as the approximate position of each bubble. The bubble

velocity is computed from the displacement between bubble positions in two images
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and the known time delay.

The accuracy of this method was determined by using a sample image which is

include several bubbles with different sizes (30 µ m to 1 mm) and giving it the known

displacement of 20 pixels at each directions (x and y) to create the second image

. Two above steps were applied to compute the new position of the bubbles.The

accuracy of this method is based on the size of the bubble. For large bubbles,

this method is more accurate compared to the small ones. For the smallest bubble

accuracy is 0.1 pixel ,so for 20 pixels displacement the error is 0.5 %. Since at this

time, the approximate position of each bubble is known this part of work is much

faster than the initial one.

4.4 Experimental Test Matrix

Since the field of view for the bubble measurement is small (8.88mm X 11.9mm),

we need to take bubble measurements at many locations vertically and along the

tank to cover the whole bubbly area. In this experiment, there will be two equivalent

ship speeds studied, 22.5 knots and 27.5 knots. The side view of the tank is shown in

Figure 4.11 for both speeds, with the resulting bubble clouds visible. Also shown on

the images are the measurement grids for the bubble measurements (shadowgraph

movies were taken at line intersections). For the first cloud of bubbles downstream

of the waveboard at 27.5 knots, there needs to be 9 measurement points in both the

y- and z-directions. However, for the second cloud of bubbles downstream of the

waveboard, there needs to be 14 sections in the y-direction and 9 sections in the
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z-direction. For 22.5 knots, since the distribution of bubbles are roughly uniform

and shallow there needs to be the same points of measurement in y-direction but 5

sections in z-direction.

(a) (b)

Figure 4.11: Measurement regions for (a) 22.5knots and (b) 27.5 knots..
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Chapter 5

Results and Discussions

The air bubble data was taken and processed to determine the detailed dis-

tributions and behavior of the air bubbles entrained by breaking bow waves. In

the following, the 2D+T bow wave generation process as shown by previous surface

profile measurements is presented first. This is followed by a description of the re-

sults of tests of the repeatability of the waves and bubble distributions. Finally, the

main experimental results of the present work, including bubble distributions, void

fractions, mean bubble diameters and bubble velocity fields are presented.

5.1 The 2D+T bow wave generation process

Casual observation of the bubbly flow created by the bow waves simulated

by the 2D+T wave maker indicate that the number of bubbles and depth of pene-

tration of the bubble clouds increase with the equivalent ship speed corresponding

to the wave maker motion. In these first measurements of the bubbles produced

by 2D+T bow waves, cases with plunging breakers and substantial air entrainment

were chosen. The first condition corresponds to an equivalent ship speed of 22.5

knots where a weak plunging breaker is found. This breaker has a small plunging

jet; if the equivalent ship speed of the wave maker is reduced to below 20 knots,

a strong spilling breaker is found. The second condition is for an equivalent ship
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speed of 27.5 knots, the highest ship speed available with the 2D+T wave maker.

At this speed, a very strong plunging breaker with a large plunging jet is found.

In Shakeri (2005), water surface profiles were measured with a cinematic LIF

technique as described there and in the following paragraph. Due to the large

horizontal extent of the breaking process, movies were recorded in zones of about 80

cm in width with zone one next to the wave board and zone two starting at about

70 cm away from the wave board.

In the LIF technique, the wave was illuminated with a light sheet from an

argon-ion laser operating at 7 W. The light sheet was oriented vertically along the

center plane of the tank. Fluorescein dye was mixed into the tank water. The

camera (Phantom v9, Vision Research) was set to record 1632× 1200-pixel images

with 8-bit grey levels at 256 images per second. The camera and light-sheet optics

were mounted on the instrument carriage. The intersection of the light sheet and

the water surface was viewed by the camera from the side and above the water

surface. Wave profiles were extracted from each image using gradient-based edge-

detection methods. A detailed description of this measurement system and the

data-processing methods can be found in Shakeri (2005) and Shakeri et al. (2009).

LIF photographs taken from the high-speed movies are given in Figure 5.1

and 5.3. These images show various aspects of the wave generation process for

22.5-knot and 27.5-knot equivalent ship speeds at zone1. For both speeds, the

selected photographs were taken at 0.0, 0.371, 0.586 and 0.738 s after the start of

the wave maker motion, corresponding to x/L = 0.0, x/L = 0.054, x/L = 0.091 and

x/L = 0.144, respectively. The images in Figure 5.2 and 5.4 show various aspects
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of the waves after breaking point for both speeds in zone 2. The photographs were

taken 0.816, 0.926, 1.020 and 1.160 s after the start of the wave maker motion,

corresponding to x/L = 0.181, x/L = 0.181, x/L = 0.227 and x/L = 0.285 ,

respectively. Detailed examination of the zone 1 photographs for the 22.5-knots and

27.5-knots speed cases indicate that there is a plunging jet that produces the main

part of the air entrainment in both cases. The size and apparent strength of the main

jet increases with the equivalent ship model speed. Though the motion of the wave

maker is highly two-dimensional, three dimensionality begins to appear in the free

surface after the jet formation process is well underway. This three-dimensionality

appears first as ripples on the underside of the jet and the jet tip. Later, after jet

impact, the flow becomes fully turbulent and three-dimensional. During this time,

the cylinder of air entrapped under the crest at the moment of jet impact breaks

down into a cloud of bubbles. Also, a splash region is formed ahead of the jet impact

site and drops and bubbles formed, see Figure 5.2(c) and (d) for the 22.5-knot case

and Figure 5.4(c) and (d) for the 27.5-knot case. The splash goes as high as the

wave crest and becomes more violent as the equivalent ship speed increases (Shakeri

2005). Its likely that a portion of the water in the splash comes from the jet which

bounces off the front face of the wave. No specific measurement has yet been made

to quantify the source of the water in the splash.
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(a) (b)

(c) (d)

Figure 5.1: LIF images of the wave formation process at four different position
along the ship hull in zone 1 ((a) x/L = 0.0, (b) x/L = 0.054, (c) x/L = 0.091 and
(d) x/L = 0.144) for an equivalent ship speed of 22.5 knots. Each image shows a
70 × 45 cm section. The high-contrast boundary between the black region on the
top of each image and the lighter region on the bottom is the intersection of the
laser light sheet and the water surface. The light source for the intensity pattern
below this high-contrast boundary is the glowing dye within the subsurface portion
of the light sheet. This light either serves to illuminate features like the portion of
the plunging jet between the camera and the light sheet as seen in (c) or creates a
varied intensity pattern as the subsurface light sheet is viewed through the curved
water surface between the camera and the light sheet. More details can be found in
Shakeri (2005).
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(a) (b)

(c) (d)

Figure 5.2: LIF images showing the splash formation process for an
equivalent ship speed of 22.5 knots at four different position along the
ship hull, zone 2 ((a) x/L = 0.181, (b) x/L = 0.181 (c) x/L = 0.227 and
(d) x/L = 0.285))
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(a) (b)

(c) (d)

Figure 5.3: LIF images of the wave formation process at four different
position along the ship hull, zone 1 ((a) x/L = 0.0, (b) x/L = 0.054, (c)
x/L = 0.091 and (d) x/L = 0.144) for an equivalent ship speed of 27.5
knots.
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(a) (b)

(c) (d)

Figure 5.4: LIF images of the splash formation process for an equivalent
ship speed of 27.5 knots at four different position along the ship hull,
zone 2 ((a) x/L = 0.157, (b) x/L = 0.181 (c) x/L = 0.227 and (d)
x/L = 0.285.
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5.2 Repeatability

In order to obtain bubble measurements over the breaking wave and to obtain

statistically significant data, the bubble measurements have to be done for many

runs for the same breaking wave. Thus, the repeatability of the breaking wave is

exceedingly important. In Shakeri (2005), the repeatability of the wave profiles

was measured. To this end, wave measurements at each equivalent ship speed were

repeated three times and the resulting profiles compared. Three such measured

profiles are plotted in Figure 5.5 for the case with equivalent ship speed of 27.5

knots. In addition to the curves from individual runs, curves obtained by averaging

the data from the three runs are also presented.

As can be seen in the figures, in regions before the plunging jet impact or

away from the ensuing turbulent impact site and splash, the three realizations of

the wave profile are nearly identical (to with ±0.8 mm rms at any instant during a

run) and nearly equal to the average profile except for the regions around the jet tip

where there are only slight deviations. This shows that the wave maker produces

highly repeatable wave motions from run to run. In the impact and splash regions

turbulence is created and this adds randomness to the surface profile shapes. Thus,

there is a larger run-to-run variation in these regions. To ensure that the same

repeatability was encountered in the present experiments, the position versus time

of the four drive channels of the wave maker was recorded in every run of the wave

maker. It was found that the run to run variations of the difference between the

actual drive channel displacement and the desired displacement never varied by
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more than 0.8 mm rms at any instant during a run.

The bubble measurements for each ship speed were taken at approximately

200 y-z locations. Since there were only two measurement cameras, this requires

100 experimental runs for each ship speed even if only one bubble image is used at

each x-y-z location along the equivalent ship model hull. Since it is only possible to

have about 12 runs per day (due to the long wait time required between runs), the

time needed to obtain the bubble measurements is prohibitive. Also, subsequent

image processing time is long as well. Because of these difficulties, it is important

to take only as few repetitions of measurements at each location as are needed

to obtain appropriate bubble statistics. In order to determine the number of runs

required, repeatability tests with 15 runs were taken for two different x-y-z locations

for the 27.5 knot case. At the positions and times chosen, each shadowgraph image

contains about 100 bubbles and this is typical of most measurement locations in the

subsequent experiments. Figure 5.6 and 5.6 show plots of the average number of

bubbles measured versus bubble diameter at the two locations. In each plot, curves

are shown for averages of the data from 3, 5, 10 and 15 runs. As can be seen in

each plot, the curves obtained from the various numbers of runs are quite close to

one another and the maximum error between the curves for the average of three

runs compared to the curve for the average of 15 runs occurs at the smallest bubble

size and is about 3 bubbles out of 27. Given the relatively small error between the

data for 3 runs and 15 runs and the large cost in increasing the number of runs, it

was decided to repeat all measurements three times in the subsequent measurement

program.
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Figure 5.5: Profile histories of the bow wave generated by the 2D+T wave maker at
equivalent ship speed of 27.5 knots from three different runs along with the averaged
profile from (a) plunging zone (b) Splash zone ; Time interval between the profiles
is 0.078 s; beam(b)=2.82 m and draft(d)=0.914 m.(Shakeri 2005)
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Figure 5.6: Bubble distributions for Us = 27.5 knots at 275 cm away from initial
position of the wave maker, 12 cm below the undisturbed water level at x/L = 0.75.
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Figure 5.7: Bubble distributions for Us=27.5knots at 377 cm away from initial
position of the wave maker, 08 cm below the undisturbed water level at x/L = 0.75.

5.3 Bubble measurements

For each of the two equivalent ship speeds used in this study (22.5 knots

and 27.5 knots), the measurements were taken at many locations. As described in

chapter 4, at each ship speed, these measurement locations were clustered in two

measurement areas that were selected to cover the main parts (bubble clouds) of the

bubbly flows. A total of about 90 image pairs were taken during each experimental

run at each measurement location and at least three runs were performed for each

measurement position, see previous section. From each image pair, the diameter,

position, and velocity of the bubbles were measured as described in Chapter 4. In

the following, the bubble size distributions are given and discussed first in Section

5.3.1. This followed by void fractions, mean diameters and velocities in Section

5.3.2, Section 5.3.3 and Section 5.3.4 respectively.
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5.3.1 Bubble size distributions

The distribution with bubble diameter of the number of bubbles averaged over

three runs and over all measurement locations in a given cloud as measured directly

from the images are shown in Figure 5.8 . The plots for the first and second clouds

for 27.5 knots are shown in Figure 5.8(a) and (b), respectively, while those for 22.5

knots are shown in Figure 5.8(c) and (d), respectively. In each distribution, the

number of bubbles measured with diameters in the range to was used with . The

raw bubble number distribution was computed from the size estimates by counting

bubbles which lay in a chosen range of diameters. The distributions in Figure 5.8

were normalized by the total number of bubbles in each cloud. The data is given

for x/L = 1.00, corresponding to the location of the stern in the equivalent three-

dimensional ship model.

In the raw data plotted in Figure 5.8, the measurement volume is equal to the

image area times the depth of field, which varies with bubble diameter, see Section

4.2.1. In order to obtain distributions with the same measurement volume for all

bubble diameters (Figure 5.9), the raw data at each bubble diameter in Figure 5.8

is first multiplied by the total number of bubbles measured and then multiplied

by the ratio VT /V where, VT is the measurement volume for the largest bubbles,

VT = Av×dT where Av is the area of the field of view of the image and dT = 100 mm

(the total measurement depth) and V = Av × dz , where dz is the depth of field for

each bubble diameter. The shape of the depth of field curve in Figure 4.7 indicates

that the density of small bubbles will increase relative to the density of the larger
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bubbles due to this data manipulation. Finally, the corrected distribution is divided

by the total number of bubbles corrected for depth of field to obtain the probability

density distribution. The maximum error in computing this probability density

distribution is 6.3% which is come from the error in the depth of field measurement.

Figure 5.9 shows the probability density distributions at x/L = 1.00 for 27.5 knots

(subplots (a) and (b)) and 22.5 knots (subplots (c) and (d)) for the first and second

clouds. Also shown in each plot are curves of the lognormal distribution,

P (d) =
exp[−1

2
( ln(d)−m

s
)2]

sd
√

2π
(5.1)

fitted to the experimental data, where d is the bubble diameter,m is the mean

diameter and s2 is the variance as computer from the experimental data. The blue

curves are the lognormal distribution fitted to the experimental data. As can be

seen from the figure, the lognormal distribution is fairly good fit to the data for 22.5

knots but not as good for the 27.5 knot data.

The number density of bubbles nd is the number of bubbles per unit volume

which have diameter in the range d to d + δd, and is therefore a function of the

chosen diameter increment (bin width) δd as well as the bubble diameter .

Figures 5.10 to 5.13 show the number density of bubbles for δd = 40µ m for

five different positions along the ship hull (x/L = 0.5, 0.63, 0.75, 0.87, 1.0), with

Figures 5.10 and 5.11 for the first and second cloud, respectively, for the 27.5-knot

speed, and Figures 5.12 and 5.13 for the first and second cloud, respectively, for the

22.5-knot speed. The number density of bubbles is obtained from the probability
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Figure 5.8: Raw bubble distributions directly from shadowgraph images at the stern
(x/L = 1.00) for two ship speeds for the first and second clouds. (a) 27.5 knots,
first cloud, (b) 27.5 knots, second cloud, (c) 22.5 knots, first cloud, (d) 22.5 knots,
second cloud.
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Figure 5.9: Bubble distributions after applying the depth of field correction to the
data in Figure 5.9 (x/L = 1.00) for two ship speeds for the first and second clouds.
(a) 27.5 knots, first cloud, (b) 27.5 knots, second cloud, (c) 22.5 knots, first cloud,
(d) 22.5 knots, second cloud. The blue curves are the lognormal distribution fitted
to the corrected experimental data.
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density distributions like those in Figure 5.10 by multiplying by the total number of

bubbles time the ratio of one cubic meter to VT . Also shown in each plot are curves

of the lognormal distribution (red curves),

nP (d) = (
exp[−1

2
( ln(d)−m

s
)2]

sd
√

2π × Vt

)× nt (5.2)

fitted to the experimental data, where d is the bubble diameter, m is the mean

diameter and s2is the variance as computer from the experimental data,nt is total

number of bubbles at each case and Vt is total measurement volume. Again, it can

be seen the lognormal distribution is a better fit to the data for the 22.5-knot ship

speed than it is for the 27.5-knot ship speed.

Figure 5.14 and 5.15 show log-log plots of the bubble size distributions (the

data given in Figure 5.10 to 5.11) for the first and second bubble clouds, respectively,

at five different positions along the ship hull for the 27.5-knot case. In log-log

coordinates, the bubble distributions show two distinct regions (d < dH and d > dH)

where the data roughly follows separate straight lines. Straight lines in log-log

coordinates imply

nd = n0

(
d

dH

)α

20µm ≤ d < dH (5.3)

nd = n0

(
d

dH

)β

dH < d ≤ 2000µm (5.4)

where dH is the intersection of the straight lines and n0 is the value of n at the

intersection point. (It should be kept in mind that the lognormal distribution would
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Figure 5.10: Bubble density distributions for a ship speed of 27.5 knots in the first
cloud at five times corresponding to five positions along the ship hull ((a) x/L = 0.5,
(b) x/L = 0.63, (c) x/L = 0.75, (d) x/L = 0.87, (d) x/L = 1.00). The red curves
are the lognormal distribution fitted to the experimental data.
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Figure 5.11: Bubble density distributions for a ship speed of 27.5 knots in the second
cloud at five times corresponding to five positions along the ship hull ((a) x/L = 0.5,
(b) x/L = 0.63, (c) x/L = 0.75, (d) x/L = 0.87, (d) x/L = 1.00). The red curves
are the lognormal distribution fitted to the experimental data.
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Figure 5.12: Bubble density distributions for a ship speed of 22.5 knots in the first
cloud at five times corresponding to five positions along the ship hull ((a) x/L = 0.5,
(b) x/L = 0.63, (c) x/L = 0.75, (d) x/L = 0.87, (d) x/L = 1.00). The red curves
are the lognormal distribution fitted to the experimental data.
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Figure 5.13: Bubble density distributions for a ship speed of 22.5 knots in the second
cloud at five times corresponding to five positions along the ship hull ((a) x/L = 0.5,
(b) x/L = 0.63, (c) x/L = 0.75, (d) x/L = 0.87, (d) x/L = 1.00). The red curves
are the lognormal distribution fitted to the experimental data.
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appear as a single straight line in a log-log plot.) Similarly shaped bubble density

distributions were found in deep-water dispersively focused plunging breakers by

Deane and Stokes (2001). In the two regions of the bubble density distribution

values of α and β were obtained by least squares fit of a straight line to the log-

log data in the appropriate range of d with the boundary (dH) between the two

regions (called the large-bubble region and the small-bubble region) determined by

an iteration method. In this method, dH is given an initial guess (typically about

1,000 µm), the data in the two regions is segregated and the straight lines are fitted

to the data in the two regions. Next, the value of d at the intersection point of

the two straight lines is computed and used as a revised value of dH . The original

data set is then segregated into two regions with the revised dH . The procedure

is repeated until the difference between the newly computed value of dH and the

previously computed value of dH do not differ by more than 3 µm. The final values

of α, β and n0 are then obtained from the fitted functions.

Plots of dH and n0 versus x/L for Us = 27.5 knots are shown in Figure 5.16

(a) and (b), respectively. Data is given for the first and second bubble clouds in

each plot. As can be seen from the figure, dH decreases linearly with x/L and has

nearly same value for both clouds for all x/L. The value of dH decreases slightly

from about 875 µm at x/L = 0.5 to about 800 µm at x/L = 1.0. The n0 versus x/L

data also form nearly straight lines for each bubble cloud. Again the lines are nearly

horizontal; however, the values of n0 are considerably larger for the second bubble

cloud, about 800 for the second cloud and about 600 for the second cloud . n0 is the

number of bubbles per unit volume at d = dH and data show that there are about
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30% more bubbles per unit volume of this diameter in the second cloud. In order to

examine the differences in the bubble distribution in the two clouds, Figure 5.17(a)

show a log-log plot of the bubble density versus d for Us = 27.5 knots at x/L =

1.0 for the two clouds. A magnified view of the intersection point is given in Figure

Figure 5.17(b). As can be seen in the plots, the values of d at the intersection point

for the two clouds are nearly the same while the value of n are quite different.

Figure 5.18 and 5.19 show the bubble size distributions on log-log plots for

five different positions along the ship hull for the 22.5-knot equivalent ship speed at

the first and second clouds. At this speed, since there are few bubbles larger than

1 mm at each position along the ship hull, the bubble distribution forms nearly a

single straight line indicating a power law with exponent a as drawn in the plot.

Given the fit of the two power laws to the bubble density distributions for the

27.5 knot case and the single power law for the 22.5-knot case, we now consider the

variation of the power law exponents with x/L. For the 27.5-knot case, the variation

of the power-law exponents α and β with distance along the hull (x/L) are shown

in Figures 5.20(a) and (b), respectively. Each plot contains data for both the first

and second clouds. The values of α for the first (second) bubble cloud shown in

Figure 5.20(a) (the exponent for d < dH) start at -2.8 (-2.75) at x/L = 0.5 and

decrease very slowly, reaching -2.75 (-2.95) by x/L = 1.0. The straight lines in the

plot (separate lines for the first and second bubble clouds) are least-squares fits to

the data. The fact that α is nearly independent of x/L in both clouds indicates

that though these small bubbles may move about due to the fluid motion, the

effect of buoyancy is insufficient to cause them to leave the flow through the free
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Figure 5.14: Bubble density distributions in log scales for a ship speed of 27.5 knots
in the first cloud at five times corresponding to five positions along the ship hull
((a) x/L = 0.5, (b) x/L = 0.63, (c) x/L = 0.75, (d) x/L = 0.87, (d) x/L = 1.00).
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Figure 5.15: Bubble density distributions in log scales for a ship speed of 27.5 knots
in the second cloud at five times corresponding to five positions along the ship hull
((a) x/L = 0.5, (b) x/L = 0.63, (c) x/L = 0.75, (d) x/L = 0.87, (d) x/L = 1.00).
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Figure 5.16: Variation of dH (subplot (a)) and n0 (subplot (b)) with distance along
the ship hull (x/L) for the 27.5-knot equivalent ship speed for the first and second
clouds.

81



10
2

10
3

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
7

Bubble Diameter 

B
ub

bl
e 

D
en

si
ty

−2.757
−5.059β (Red) =

α(Red) =

β (Blue) = −4.921
−2.690α(Blue) =

(a)

800 820 840 860 880 900 920 940 960 980 1000
400

450

500

550

600

650

700

750

800

d
H

n 0

(b)

Figure 5.17: Bubble density distributions for Us = 27.5 knots at x/L = 1.0. Data
points: first cloud, Data points: second cloud. The lines are from least squares fits
of straight lines to the experimental data. (a) full plot. (b): Blow up of the region
around the intersection point (dH , n0).

82



surface. Also, it is interesting that the values of α are nearly the same for the two

bubble clouds. In contrast, the values of β for the first (second) cloud shown in

Figure 5.20(b) (the exponent for d > dH) decrease dramatically (from -3.9 (-6.4) at

x/L = 0.5 to -4.2 (-6.5) at x/L = 1) . The straight lines in the plot are least-square

fits to the data. This large rate of decrease of β with x/L in both clouds indicates a

significant reduction in the number of larger bubbles, probably due to the influence

of degassing caused by their large buoyancy. The values of β are also nearly equal

for the two clouds.

The variation with x/L of the exponent (α) in the bubble distribution equation

for the 22.5-knots equivalent ship speed is shown in Figure 5.21 for both the first

and second bubble clouds. Both slopes are practically constant and nearly equal

to one another. Again, the nearly constant value of α is consistent with the idea

that most of these small bubbles are not strongly affected by gravity and therefore

remain in the flow.

5.3.2 Void Fraction Distribution

In order to obtain the void fraction distribution at each x/L location, the first

step was to compute the volume of each bubble (assumed to be spherical) found

in the shadowgraph images and then divide by the measurement volume associated

with this bubble diameter (Av × dz). From this data, the void fraction per unit

bubble diameter, per unit bin width (void fraction distribution) was obtained using

a logarithmic distribution of bin widths . The logarithmic bin-width distribution
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Figure 5.18: Bubble density distributions in log scales for a ship speed of 22.5 knots
in the first cloud at five times corresponding to five positions along the ship hull
((a) x/L = 0.5, (b) x/L = 0.63, (c) x/L = 0.75, (d) x/L = 0.87, (d) x/L = 1.00).
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Figure 5.19: Bubble density distributions in log scales for a ship speed of 22.5 knots
in the second cloud at five times corresponding to five positions along the ship hull
((a) x/L = 0.5, (b) x/L = 0.63, (c) x/L = 0.75, (d) x/L = 0.87, (d) x/L = 1.00).
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Figure 5.20: Variation of bubble diameter distribution exponents α (subplot (a)) and
β (subplot (b)) with distance along the ship hull (x/L) for the 27.5-knot equivalent
ship speed for the first and secend cloud.
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Figure 5.21: Variation of bubble diameter distribution exponents α) with distance
along the ship hull (x/L) for the 22.5-knot equivalent ship speed for the first and
second cloud.

was used because it has a large bin width at large bubble diameters were the void

fraction distribution is large and the measurement sample only includes a few bub-

bles. Thus, the logarithmic bin-width distribution reduces the noise in the void

fraction distribution at large bubble diameters. The normalized void fraction per

unit bubble diameter per unit bin width was then obtained by dividing the void

fraction distribution by the total void fraction at each position along the ship hull.

Figure 5.22 to 5.25 show the void fraction distributions (subplots (a)) and

the normalized void fraction distributions (subplots (b)) at different locations along

the ship hull. Figures 5.22 and 5.23 show the distributions for Us = 27.5 knots

for the first and second clouds, respectively., while Figures 5.24 and 5.25 show the

corresponding data for Us = 22.5 knots.

As you can see for 27.5-knot cases there is a strong double peak distribution
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with d at roughly 150 µm for the first peak and about 800 µm for the second peak

with a minimum between the peaks at roughly d = 325 µm for all positions along

the ship hull. Initially the peaks at larger bubble diameter (second peaks) are bigger

than the peaks at the smaller bubble diameters (first peaks), however the second

peak drops much more rapidly than the first peak and eventually they become the

same height. For the 22.5-knot case, there is plateau for the smaller bubble diameters

and there is one peak for the larger bubble diameters. These peaks also drop very

fast and become smaller than the void fraction for smaller bubble diameters. Also,

the distributions are fairly independent of x/L for the small bubbles, but decrease

rapidly with increasing x/L for the larger bubbles. This behavior is predictable

from the bubble density distributions in Figure 5.14 and 5.15 , as is discuss below.

Comparing the bubble density distribution in Figure 5.14 to the void fraction

distribution in Figure 5.22 it can be seen that the second peak in the void fraction

distribution occurs roughly at d = dH and that the minimum between the two

peaks in the void fraction distribution occurs at about the same bubble diameter

as the slight dip in the bubble density distribution at d approx equal to 325 µm.

Finally, the first peak in the void fraction distribution correspond to the slight curve

in the bubble density distribution between d of 20 and 325 µm. To understand

the behavior of the second peak we consider how the void fraction distribution is

computed from the bubble density distribution. The void fraction within a bubble-

diameter bin is defined as the ratio of the volume of air for the bubbles in that bin

to the volume of the measurement region in space, and is given by
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V − F =
Vb

V
=

π

6V

∫ d1

d0

ndd
3 δd (5.5)

where VF is the void fraction,Vb is the volume of air for bubbles within the

bin with diameter d, V is the measurement volume,d0 and d1 , respectively, are the

diameter of the largest and smallest bubbles present within the bin. The peak in the

void fraction distribution at dH (second peak) comes about because of the values

of the exponents in the bubble density distribution, Figures 5.20. As shown above,

the bubble density distribution scales as d−α for d < dH and d−β for d > dH where

α and β are positive constants.

Since bubble volume scales as diameter cubed, the scaling law for the size

distribution (times d3) determines whether large or small bubbles play a dominant

role in determining the void fraction. For the 27.5-knot case, just to the right of

dH (d > dH), the bubble density distribution is proportional to d−β and β is always

bigger than 3 and starts at roughly (3.9) for mid ship and end up at (6.4) for

stern, see Figures 5.20. Since the integrand of the above void fraction integral is

ndd
3 = d3−β and β is greater than 3, smaller bubbles dominate in determining the

void fraction for d > dH . Also, since β increases with x/L, the void fraction decays

faster with increasing d as x/L increases. To the left hand side of the maximum at

dH (d < dH), the bubble density distribution is proportional to d−α , and α is nearly

constant with a value a little less than 3 for all x/L. In this case ndd
3 = d3−α and

since α is smaller than 3, larger bubbles dominate in determining the void fraction.

In the 22.5-knot case (Figure 5.21), where a single power law defines the bubble
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density distribution, for x/L < 0.75, since α < 3 the larger bubbles are dominant

in the calculation of the void fraction. However, for x/L > 0.75, since α > 3 , the

smaller bubbles are dominant.

Subplots (b) of figures 5.22 to 5.25 show the normalized void fraction for

27.5-knot and 22.5-knot cases for the first and second bubble clouds. In contrast

to the void fraction plots (subplots (a)), the normalized void fractions at various

x/L are different from each other in the range of small bubbles and close to each

other for the larger bubbles. Also, the normalized void fraction distribution for the

smaller bubble diameters increase with x/L; however, it decreases with x/L for the

largest bubble diameters.

The vertical distributions of void fraction at various streamwise locations (x/L)

for the first and second bubble clouds for 27.5-knot and 22.5-knot are given in

Figure 5.26. For the 27.5 knot case, At all measurement locations there is a peak

void fraction located between about 4 cm and 10 cm below the free surface. Below

this peak the void fraction tends to zero as the depth increases. The void fraction

begins to decrease as depth increase above the depth of maximum void fraction.

The void fraction magnitudes and the depths of the void fraction peak are generally

larger for smaller x/L.

Figure 5.27 shows the average void fraction for each of the two bubble clouds

for the 27.5-knot (subplot (a)) and 22.5-knot (subplot (b)) equivalent ship speeds.

As can be seen in Figure 5.27 (a), the average void fraction for the first (second)

cloud in the 27.5-knot case decreases from 5.2 × 10−4(6.0 × 10−4) at x/L = 0.5 to

2.5×10−4(3.4×10−4) at x/L = 1.0. The straight lines in the plot, which have nearly
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Figure 5.22: (a) Void Fraction and (b) Normalized void fraction distributions vsersus
bubble diameter for a ship speed of 27.5 knots in the first bubble cloud for various
values of x/L.
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Figure 5.23: (a) Void Fraction and (b) Normalized void fraction distributions vsersus
bubble diameter for a ship speed of 27.5 knots in the second bubble cloud for various
values of x/L.
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Figure 5.24: (a) Void Fraction and (b) Normalized void fraction distributions vsersus
bubble diameter for a ship speed of 22.5 knots in the first bubble cloud for various
values of x/L.
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Figure 5.25: (a) Void Fraction and (b) Normalized void fraction distributions vsersus
bubble diameter for a ship speed of 22.5 knots in the second bubble cloud for various
values of x/L.
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Figure 5.26: Void Fraction versus depth below the mean water level at various values
of x/L. (a) 27.5 knots, first bubble cloud, (b) 27.5 knots, second bubble cloud, (c)
22.5 knots, first bubble cloud, and (d) 22.5 knots, second bubble cloud.
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the same slope, are least-square fits to the data. The data indicates a nearly 50%

reduction in void fraction over the last half of the ship and from the bubble density

distributions in Figures 5.14 and 5.15 it can be seen that this void fraction reduction

is due primarily to a reduction in the number of large bubbles. It is also interesting

to note that the average void fraction of the second bubble cloud is greater than that

of the first cloud by about 0.15× 10−4 at all x/L. As can be seen in Figure 5.27(b),

the average void fractions of the two bubble clouds in the 22.5-knot case are nearly

equal at all x/L. The void fraction decreases linearly from about 3.5 × 10−4 at

x/L = 0.5 to about 1.1× 10−4 at x/L = 0.75 and thereafter decreases more slowly

to about 0.9×10−4 at x/L = 1.1. This break in slope may indicate that most of the

large bubbles have left flow by x/L = 0.75 and this hypothesis is explored below in

the discussion of the distributions of the Sauter mean diameter.

Figures 5.28to 5.31 show the void fraction contours in planes of constant x/L

for the first and second bubble clouds for the 27.5-knot (Figures 5.28 and 5.29) and

22.5-knot (Figures 5.30 and 5.31) cases for five different positions along the ship

hull (x/L=0.5, 0.63, 0.75, 0.87, 1.0). It should noted that in spite of the very long

measurement campaign in the present experiments, while there are many bubbles in

the samples for the entire bubble clouds and in the distributions of various quantities

with depth, the number is bubbles in a sample at a given y-z location at each x/L

is much smaller, particularly for the numbers of larger bubbles. Thus, the average

void fraction at each location is a bit noisy. In spite of this deficiency, some patterns

can be detected in the contour plots. In particular, in the first cloud for the 27.5-

knot case (Figure 5.28) the orientation of the void fraction contours are more or less
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tilted at 45 degrees. This may be related in some way to the strong plunging jet in

this case. This 45-degree orientation is not apparent in the contours for the second

cloud of the 27.5-knot case (Figure 5.30) and this may be related to the more diffuse

entrainment process under the splash. No specific patterns are identifiable in the

contours for either cloud in the 22.5-knot case.
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Figure 5.27: (a) Void Fraction and (b) Normalized void fraction distributions vsersus
bubble diameter for a ship speed of 22.5 knots in the second bubble cloud for various
values of x/L.
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(a) (b)

(c) (d)

(e)

Figure 5.28: Void fraction contours in y − z planes for Us = 27.5 knots in the first
bubble cloud for values of ((a) x/L = 0.5, (b) x/L = 0.63, (c) x/L = 0.75, (d)
x/L = 0.87, (d) x/L = 1.00).
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(a) (b)

(c) (d)

(e)

Figure 5.29: Void fraction contours in y−z planes for Us = 27.5 knots in the second
bubble cloud for values of ((a) x/L = 0.5, (b) x/L = 0.63, (c) x/L = 0.75, (d)
x/L = 0.87, (d) x/L = 1.00).
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Figure 5.30: Void fraction contours in y − z planes for Us = 22.5 knots in the first
bubble cloud for values of ((a) x/L = 0.5, (b) x/L = 0.63, (c) x/L = 0.75, (d)
x/L = 0.87, (d) x/L = 1.00).
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Figure 5.31: Void fraction contours in y−z planes for Us = 22.5 knots in the second
bubble cloud for values of ((a) x/L = 0.5, (b) x/L = 0.63, (c) x/L = 0.75, (d)
x/L = 0.87, (d) x/L = 1.00).
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5.3.3 Mean Diameters Distribution

There are several methods to calculate the mean diameter of the bubbles,.

Here we compute both the arithmetic mean diameter (called the mean diameter

below) and the Sauter mean diameter. The mean diameter was calculated from

the bubble diameter measurements by summing the diameter of each bubble in a

give sample and dividing by the number of bubbles. The Sauter mean diameter

is called ”volume-surface mean diameter”, and is commonly abbreviated as ” d32”

or ”SMD”. It is defined as 6 times the diameter of a sphere that has the same

volume/surface area ratio as the bubble sample of interest. The SMD is computed

by first computing the the surface diameter, ds, where

ds =

√
Ab

π
(5.6)

and Ab is the sum of the surface areas of all the bubbles in sample, and dv,

where

dv = (
6Vb

π
)

1
3 (5.7)

and Vb is the sum of all the bubble volumes in the sample. The Suter mean

diameter of the given bubble sample is then given by

SMD = d32 =
(dv)

3

(ds)2
=

6Vb

Ab

(5.8)

In the present experiment, the mean diameter is dominated by the small bub-

bles since the number of small bubbles is many times larger than the number of
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large bubbles, see the bubble density distributions in Figures 5.14 to 5.13. On the

other hand, the Sauter mean diameter is dominated by larger bubbles since it is

computed from the bubble volumes and surface areas and these are dominated by

the larger bubbles.

Figure 5.32 and 5.33 show the mean diameter and the Sauter mean diameter

versus x/L for the first and second bubble clouds for Us equal to 27.5 knots and 22.5

knots, respectively. As can be seen in the plots, the mean diameter and the Sauter

mean diameter are a little larger in the first cloud. Further, the plots show that

the mean diameter and Sauter mean diameter decrease with increasing x/L. For

Us = 27.5 knots, Figure 5.32, the mean diameter (subplot(a)) and the Sauter mean

diameter (subplot (b)) decrease nearly linearly with increasing x/L. The mean

diameter decreases by about 10% from x/L = 0.5 to 1.0 in both bubble clouds.

However, over the same range of x/L, the Sauter mean diameter decreases by about

40%. The nearly constant mean diameter and the large decrease in the Sauter

mean diameter are consistent with the number of larger bubbles decreasing and the

number of smaller bubbles being relatively unchanged with increasing x/L as was

seen in the bubble distributions in Figures 5.14 and 5.15. For Us = 22.5 knots,

Figure 5.33, the mean diameter decreases nearly linearly with increasing x/L, but

the Sauter mean diameter at first decreases rapidly until x/L = 0.75 and then more

slowly. Similar behavior was seen the plot of average void fraction versus x/L in

Figure 5.27(b) which is also for Us = 22.5 knots.

Vertical distributions of the mean diameter and Sauter mean diameter for

Us = 27.5 and 22.5 knots at various values of x/L between 0.5 and 1.0 are shown
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in Figures 5.34 and 5.35, respectively. At Us = 27.5 knots, the shapes of the

distributions for the mean diameter and the Sauter mean diameter are similar. For

the first could the dimeters are relatively constant with depth until about z = 24 cm

while for the second cloud, there is a maximum at z ≈ 4 cm to 10 cm below the

undisturbed water level. This means that the average diameter of the small bubbles

is nearly constant with depth inside the bubble cloud while the average diameter

of the larger bubbles increase, i.e., there are more larger bubbles, as the surface is

approached from below. Similar curve shapes were found in the corresponding plots

of void fraction versus depth, see Figures 5.26(a) and (b).
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Figure 5.32: (a) Mean diameter and (b) Sauter mean diameter versus x/L for Us =
27.5 knots for the first and second bubble clouds.
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Figure 5.33: (a) Mean diameter and (b) Sauter mean diameter versus x/L for Us =
22.5 knots for the first and second bubble clouds.
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Figure 5.34: Mean Diameter vs. depth below the water surface at five times cor-
responding to five positions along the ship hull (a) 27.5 knots, first cloud, (b) 27.5
knots, second cloud, (c) 22.5 knots, first cloud, (d) 22.5 knots, second cloud.
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Figure 5.35: Sauter Mean Diameter vs. depth below the water surface at five times
corresponding to five positions along the ship hull (a) 27.5 knots, first cloud, (b)
27.5 knots, second cloud, (c) 22.5 knots, first cloud, (d) 22.5 knots, second cloud.

5.3.4 Velocity Distribution

To calculate the velocity distributions at each x/L, the horizontal and vertical

velocities of the bubbles in each diameter bin are summed and divide by the number

of bubbles in that bin. Figures 5.36 and 5.37 show the horizontal and vertical

velocity distributions with bubble diameter at different locations along the ship

hull. Subplots (a) and (b) show the distributions for Us = 27.5 knots for the first
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and second clouds, respectively, while subplots (c) and (d) show the corresponding

data for Us = 22.5 knots. As can be seen in the plots, for all cases the horizontal and

vertical velocities are relatively constant for the smaller bubble diameters; however,

they start to fluctuate at the larger bubble diameters. This fluctuation is caused

by the fact there are only a small number of the larger bubbles in each bin. The

logarithmic bin-width distribution was used because it has a large bin width at large

bubble diameters were the void fraction distribution is large and the measurement

sample only includes a few bubbles. Since there are so many smaller bubbles than

larger bubbles, see Figure 5.10 and 5.11, the average velocity of each bubble cloud

is roughly equal to the average velocity of the smallest bubbles.

Figure 5.38 and 5.39 show the average horizontal and vertical velocity (sub-

plots (a) and (b), respectively) versus x/L for the 27.5-knot and 22.5-knot cases,

respectively, in both the first and second bubble clouds. The general trend is for

the horizontal velocity to decrease with increasing x/L for all cases, while the ver-

tical velocity generally increases with increasing x/L. For the 27.5-knot case, Fig-

ure 5.38, the horizontal velocity decreases significantly and then becomes constant

after x/L = 0.75 for both clouds. By subtracting the horizontal velocity of the

second cloud from that of the first cloud, the relative velocity of the two clouds was

calculated and ploted in Figure 5.38 (a), for the 27.5-knot case. As can be seen in the

figure, the relative velocity is nearly zero initially, increases until about x/L = 0.75

and then becomes constant. This positive relative velocity distribution means that

the two bubble clouds are moving apart with a speed that increases initially but

then settles down to a nearly constant value.
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It is well known that the smaller bubbles tend to follow the water flow while

larger bubbles, due to large buoyancy forces, large added mass, and other effects, do

not. This can be seen in the bubble velocity distributions of Figures 5.36 and 5.37

where bubbles with diameters below about 150 µm all move with the same velocity,

which must be the velocity of the water flow. The largest bubbles that will move

with the water can be estimated by determining the largest bubbles that can follow

the smallest scales of the turbulent flow. When the flow is turbulent, the smallest

scales are described by the Kolmogoroff length and time scales. The Kolmogoroff

time scale can be expressed as:

ts = (
ν

ε
)

1
2 (5.9)

where ν is the kinematic viscosity (0.013 cm2/s) and ε is the rate of dissipation of

turbulence kinetic energy per unit mass of fluid. Reliable measurements of ε in the

present flow are exceedingly difficult and were not attempted here. A rough estimate

of ε can be calculated in the following manner. As a measure of the total mechanical

energy of the wave, the estimate of Longuet-Higgis (1975) for the maximum energy

of a single wavelength of a two-dimensional uniform wave train is used:

E = 0.8088πρgλa2 (5.10)

where ρ is the density of the water and λ and a are the length and amplitude of

the wave, respectively. In the 27.5-knot case, λ ≈ 2 m and a ≈ 0.36 m (Shakeri et

al. 2009). In this case, if it is estimated that 40% of the total energy of the wave
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is dissipated in a breaking event (Lamarre and Melville (1991)) over a time of one

period (T = 1.13 sec , which is calculated base on linear wave theory) and that the

turbulent region has a size of 50 cm by 32 cm for the first cloud and 90 cm by 32 cm

for the second cloud (measured dimensions of the bubble clouds from white light

images, see Figure 4.11), then the estimated dissipation rate is:

ε =
E × 40%

(90× 32 + 50× 32)× 1.13
= 5.041× 103 cm4

s3
(5.11)

The estimated Kolmogoroff time scale t corresponding to this dissipation rate is

then ts = 1.59 ms which is equal to a frequency of f = 622 Hz.

To determine the ability of the bubbles to follow the fluid motion, the work

of Kiger (1995) was used. Base on this work, the motion of particles in a turbulent

flow was studied theoretically. It was found that the bubbles would closely follow

the fluid if the Stokes number,

St =
d2f

18νγ
(5.12)

(where ν is kinematic viscosity of the fluid, γ is the ratio of the fluid density to

bubble density and f is the frequency of the velocity fluctuations), is smaller than

10−4 . For the present case, with f = 622 Hz and γ = 1000 and ν = 0.013 cm2/s,

it was found that bubbles with diameters smaller than about 69 µm should follow

the turbulent flow quite well. This estimate is roughly a factor two of below the

values of the limiting bubble diameter (150 µm) as determined from the bubble

velocity distributions in Figures 5.36 and 5.37. This rough level of agreement is
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to be expected based on the rough approximation of the energy dissipation in the

theory.
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Figure 5.36: Horizontal velocity components versus bubble diameter at five times
corresponding to five positions along the ship hull. (a) 27.5 knots, first cloud, (b)
27.5 knots, second cloud, (c) 22.5 knots, first cloud, (d) 22.5 knots, second cloud.
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Figure 5.37: Vertical velocity components versus bubble diameter at five times cor-
responding to five positions along the ship hull. (a) 27.5 knots, first cloud, (b) 27.5
knots, second cloud, (c) 22.5 knots, first cloud, (d) 22.5 knots, second cloud.
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Figure 5.38: : Mean Velocities versus position along the ship hull at first and second
cloud for 27.5 knot equivalent ship speed (a) Horizontal mean velocity (b) Vertical
mean velocity.
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Figure 5.39: : Mean Velocities versus position along the ship hull at first and second
cloud for 22.5 knot equivalent ship speed (a) Horizontal mean velocity (b) Vertical
mean velocity.

Figure 5.40 and 5.41 show the average horizontal velocity and vertical velocity,

respectively, versus x/L for different ranges of bubble diameters. In each figure,

subplots (a) and (b) are for the first and second bubble clouds, respectively, for

Us = 27.5 knots and subplots (c) and (d) are for the first and second bubble clouds,
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respectively, for Us = 22.5 knots. As was discussed above, the bubbles smaller than

150 µm in diameter have the same velocity and it can be assumed that this is the

velocity of the water. For Us = 27.5 knots (subplots (a) and (b) in both figures), data

is presented with velocities averaged separately over bubbles with various ranges of

bubble diameters (all the bubbles, d ≤ 150 µm, 300 µm ≤ d ≤ 700 µm, d ≥ 700 µm

and d ≥ 1000 µm). For Us = 22.5 knots (subplots (c) and (d) in both figures), data

is presented with velocities averaged separately over bubbles with various ranges of

bubble diameters (all the bubbles, d ≤ 150 µm, and d ≥ 500 µm).

As can be seen in the figures, since there are so many more bubbles with

diameters less than 150 µm, the average velocity of all the bubbles is nearly equal

to the velocity averaged over of all the bubbles with diameters less than 150 µm.

The velocities of the various ranges of bubble diameters greater than 150 µm differ

from the water velocity by as much as 30 cm/s in the vertical velocity component

and 14 cm/s in the horizontal velocity component for the 27.5-knot case. In the

22.5-knot case, the velocities of the all bubbles with diameters larger than 500 µm

also differ from the water velocity by as much as 10 cm/s in the vertical velocity

component and 5 cm/s in the horizontal velocity component. These differences

are greatest for the largest bubbles and increase with increasing x/L for both ship

speeds. In all cases, the horizontal velocity of the larger bubbles are less than the

water velocity, while the vertical velocity of the larger bubbles are greater than the

water velocity. In contrast, the bubbles with diameter 300 µm ≤ d ≤ 700 µm in the

27.5-knot case generally have a horizontal velocity component that is bigger than

the water velocity and a vertical velocity component that is smaller than the water
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velocity. Thus, it seems that there is a transition region between the velocities of

bubbles with small diameter (d ≤ 300 µm) and the velocities of bubbles with larger

diameter (d ≥ 700 µm).

The slip velocity of the larger bubble relative to the water can be calculated by

subtracting the velocity of the bubbles smaller than 150 µm from the velocity of the

larger bubbles. Figure 5.42 and 5.43 show the vertical slip velocity (rise velocity)

for the large bubbles for the 27.5-knot and 22.5-knot ship speeds, respectively, for

the first and second bubble clouds. As can be seen in the figures, the rise velocity in

both cases increases with increasing x/L. In the 27.5-knot case, the rise velocity is

calculated for the bubbles larger than 700 µm and the bubbles larger than 1000 µm

and as expected the larger bubbles (1000 µm) have the larger rise velocity.

Figure 5.44 to Figure 5.47 show the velocity fields in planes of constant x/L

for the first and second bubble clouds for the 27.5-knot case (Figure 5.44 and 5.45)

and the 22.5-knot case (Figure 5.46 and Figure 5.47) for five different positions

along the ship hull (x/L=0.5, 0.63, 0.75, 0.87, 1.0). It should noted that in spite

of the very long measurement campaign in the present experiments, while there are

many bubbles in the samples for the entire bubble clouds, the number of bubbles

in a sample at a given y-z location at each x/L is much smaller. Thus, the average

velocity vector at each location is a bit noisy. In spite of this deficiency, some

patterns can be detected in the velocity vector plots. In all cases, the velocity

vectors at x/L=0.5 and x/L=0.63 have roughly the same direction and magnitude

in all locations. However, at x/L=1.00 the flow appears more random in all cases

and the velocity vectors change in both direction and magnitude. This contrast may

118



indicate that the flow fields at the smaller values of x/L are dominated by the wave

motion, while those at larger x/L show a stronger influence of the turbulent flow

field.
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Figure 5.40: Horizontal velocity components versus x/L. (a) 27.5 knots, first cloud,
(b) 27.5 knots, second cloud, (c) 22.5 knots, first cloud, (d) 22.5 knots, second cloud.
Data is shown for averages over various ranges of bubble diameters.
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Figure 5.41: Vertical velocity components versus x/L. (a) 27.5 knots, first cloud,
(b) 27.5 knots, second cloud, (c) 22.5 knots, first cloud, (d) 22.5 knots, second cloud.
Data is shown for averages over various ranges of bubble diameters.

120



0.5 0.6 0.7 0.8 0.9 1 1.1
−30

−20

−10

0

10

20

30

40

50

x/L 

R
is

e 
ve

lo
ci

ty
 (

cm
/s

)

 

 

d > 1000 micron
Linear Fit
d > 700 micron
Linear Fit

(a)

0.5 0.6 0.7 0.8 0.9 1 1.1
−30

−20

−10

0

10

20

30

40

50

x/L 

R
is

e 
ve

lo
ci

ty
 (

cm
/s

)

 

 

d > 1000 micron
Linear Fit
d > 700 micron
Linear Fit

(b)

Figure 5.42: Rise Velocities (relative to the water) versus x/L for Us = 27.5 knots
for bubbles with diameters larger than 1000 µm and bubbles with diameters larger
than 700 µm at (a) the first bubble cloud and (b) the second bubble cloud.
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Figure 5.43: Rise Velocities (relative to the water) versus x/L for Us = 22.5 knots
for bubbles with diameters larger than 1000 µm and bubbles with diameters larger
than 700 µm at (a) the first bubble cloud and (b) the second bubble cloud.
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Figure 5.44: Velocity vectors in y − z planes for Us = 27.5 knots in the first bubble
cloud: (a) x/L = 0.5, (b) x/L = 0.63, (c) x/L = 0.75, (d) x/L = 0.87, (d)
x/L = 1.00.
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Figure 5.45: Velocity vectors in y − z planes for Us = 27.5 knots in the second
bubble cloud: (a) x/L = 0.5, (b) x/L = 0.63, (c) x/L = 0.75, (d) x/L = 0.87, (d)
x/L = 1.00.

124



250 260 270 280 290 300 310
−30

−25

−20

−15

−10

−5

0

5

10

Distance from Center of the Ship(cm.)

D
ep

th
 fr

om
 M

ea
n 

W
at

er
(c

m
.)

250 260 270 280 290 300 310
−30

−25

−20

−15

−10

−5

0

5

Distance from Center of the Ship(cm.)

D
ep

th
 fr

om
 M

ea
n 

W
at

er
(c

m
.)

(a) (b)

255 260 265 270 275 280 285 290 295 300
−30

−25

−20

−15

−10

−5

0

5

Distance from Center of the Ship(cm.)

D
ep

th
 fr

om
 M

ea
n 

W
at

er
(c

m
.)

255 260 265 270 275 280 285 290 295 300
−30

−25

−20

−15

−10

−5

0

5

Distance from Center of the Ship(cm.)

D
ep

th
 fr

om
 M

ea
n 

W
at

er
(c

m
.)

(c) (d)

255 260 265 270 275 280 285 290 295 300
−30

−25

−20

−15

−10

−5

0

5

Distance from Center of the Ship(cm.)

D
ep

th
 fr

om
 M

ea
n 

W
at

er
(c

m
.)

(e)

Figure 5.46: Velocity vectors in y − z planes for Us = 22.5 knots in the first bubble
cloud: (a) x/L = 0.5, (b) x/L = 0.63, (c) x/L = 0.75, (d) x/L = 0.87, (d)
x/L = 1.00.
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Figure 5.47: Velocity vectors in y − z planes for Us = 22.5 knots in the second
bubble cloud: (a) x/L = 0.5, (b) x/L = 0.63, (c) x/L = 0.75, (d) x/L = 0.87, (d)
x/L = 1.00.
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Chapter 6

Conclusions

6.1 Summary

In this thesis, a technique known as 2D+T that is used in numerical analy-

sis was adapted to the laboratory in order to produce waves that are large enough

to correctly model the effects of surface tension and therefore produce realistic air

entrainment. In the 2D+T technique, a two-dimensional wave maker moves horizon-

tally and deforms in a manner that mimics the time varying profile of the intersection

of one side of a three-dimensional ship model hull moving forward at constant speed,

U , and a fixed imaginary vertical plane oriented perpendicular to the ship’s path.

The wave profile at each instant in time (t with t = 0 the time of passage of the ship

model stem) corresponds to the wave profile in the three-dimensional ship model

at a cross-stream plane located at x = Ut. The experiments were performed in

artificial sea water, which is known to dramatically increase the number of small

bubbles when compared to fresh water.

For the equivalent full-scale ship speeds, Us, chosen in this study, the primary

mechanisms responsible for air entrainment in the 2D+T experiments are the en-

trapment of a large air bubble under the wave crest at the instant when the plunging

jet hits the front face of the wave and the turbulent flow and impact of the splash

created by the plunging jet impact. Qualitative observations of the air entrainment
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process were made using white-light back-lit high-speed movies and measurements of

the diameters and velocities of the entrained bubbles were made using shadowgraph

images captured by two PIV cameras viewing the flow through the clear plastic wall

of the wave tank and using a parallel light beam from a PIV laser for illumination.

An extensive series of measurements were made for two equivalent full-scale ship

speeds, Us = 22.5 and 27.5 knots. Detailed accomplishments and conclusions of this

work are given below.

• For Us = 22.5 knots, a weak plunging breaker with a small plunging jet was

found. (If Us is reduced to 20 knots, a strong spilling breaker is found.) The

bubbles entrained by this breaking wave are distributed in a relatively uniform

bubble distribution in a narrow band near the water surface reaching a depth

of about D/6, where D is the keel depth of the 2D+T wave maker.

• For Us = 27.5 knots, the highest ship speed available with the 2D+T wave

maker, a very strong plunging breaker with a large plunging jet is found. The

air entrainment process produces two clouds of bubbles near the free surface.

The bubble cloud closest to the wave maker (called the first bubble cloud) is

due to air entrapped under the wave crest by the impact of the plunging jet

and the bubble cloud farthest from the wave maker (called the second bubble

cloud) results from the turbulent motion and impact of the splash. Bubbles

are entrained to depths approximately equal to about D/3.

• For Us = 27.5 knots, the bubble cloud from the splash moves away from the

wave maker at a higher speed than the bubble cloud created under the crest by
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the impact of the plunging jet; therefore, the separation between the bubble

clouds increases as time goes on.

• Bubble density distributions (number of bubbles, n, per unit volume per unit

bin width versus bubble diameter, d) in log-log coordinates form approximately

straight lines. For Us = 27.5 knots, the data show two distinct regions (d < dH

and d > dH) where the data roughly follows separate straight lines, n =

n0(d/dH)α for d < dh and n = n0(d/dH)β for d > dH . For Us = 22.5 knots,

there are only a small number of large bubbles and the data approximately fit

a single straight line n = n0(d/dH)α.

– Conclusions for Us = 27.5 knots:

∗ The value of dH was found to be about 800 µm for both the first and

second bubbble clouds.

∗ At a bubble diameter d = dH , the number of bubbles per unit volume

in the second bubble cloud is about 30% greater than that in the first

bubble cloud.

∗ The values of α are nearly the same in the two bubble clouds. The

values of β are nearly same as well.

∗ The exponent α is nearly independent of x/L in both clouds, indi-

cating that though these small bubbles may move about due to the

fluid motion, the effect of buoyancy is insufficient to cause them to

leave the flow through the free surface.

∗ There is a large rate of decrease of the exponent β with x/L in
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both clouds indicating a significant reduction in the number of larger

bubbles, probably due to the influence of degassing caused by their

large buoyancy.

– Conclusions for Us = 22.5 knots:

∗ The power law exponent α for both measurement regions (termed

the first and second bubble clouds even though they are part of a

single layer of bubbles) are practically constant and nearly equal to

one another.

• Void fraction distributions.

– For Us = 27.5 knots, the average void fraction of the second bubble cloud

is about 20% greater than that of the first bubble cloud.

– For Us = 27.5 knots, the void fraction is relatively constant with depth

to about 20 cm below the mean water level for the first bubble cloud, but

shows a strong peak at 4 to 10 cm below the undisturbed water level for

the second cloud. This is probably due to the very different entrainment

mechanisms in the two bubble clouds: entrapment by the jet impact for

the first bubble cloud and more diffuse entrainment in the splash for the

second bubble cloud. The void fraction magnitudes and the depths of

the void fraction peak generally decrease with increasing x/L.

– For Us = 22.5 knots, the layer of appreciable void fraction extends to a

depth of about 10 to 15 cm with a peak generally at about 4 cm. The void
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fraction magnitudes and the depths of the void fraction peak generally

decrease with increasing x/L.

– The data indicates a nearly 50% reduction in void fraction over the last

half of the ship. From the bubble density distributions for both speeds,

this void fraction reduction is due primarily to a reduction in the number

of large bubbles.

• Bubble diameters.

– The mean diameter and the Sauter mean diameter decrease nearly lin-

early with increasing x/L for both speeds. The mean diameter decreases

by about 10% from midship to stern in both bubble clouds. However,

over the same range of x/L, the Sauter mean diameter decreases by about

40%. The nearly constant mean diameter and the large decrease in the

Sauter mean diameter are consistent with the number of larger bubbles

decreasing and the number of smaller bubbles being relatively unchanged

with increasing x/L.

– The ratio of the Sauter mean diameter to the mean diameter is about 5

at x/L = 0.5 but decreases to about 3 at x/L = 1.0.

• Bubble velocity:

– For both ship speeds, the bubble velocity distributions indicate that for

bubbles with diameters below about 150 µm move with the same velocity,

which must be the velocity of the water flow.
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– The rise velocity for the larger bubbles (larger than 500 µm for Us =

22.5 knots and larger than 700 µm for Us = 27.5 knots) relative to the

water (i.e., the vertical component of the bubble slip velocity) increases

with x/L.

– For Us = 27.5 knots, the rise velocity for bubbles with diameters larger

than 1000 µm is bigger than that of the bubbles larger than 700 µm and

increases with x/L.

6.2 Future Work

As mentioned before, this thesis is part of a larger project. A few ideas for

future work are listed as below:

• A detailed investigation of air entrainment by scaling with geometric hull shape

parameters for ships with flat side walls at various angles of inclination to the

undisturbed water surface using the current wave maker.

• Flow field measurements in the breaking waves using particle image velocime-

try.

• Employment of a bore scope system to see inside the cavity under the plung-

ing jet in order to obtain information about the jet thickness and the air

entrainment process.

• Employment of the holographic PIV system for bubble size and motion mea-

surements.
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• Development of an impedance-based probe for bubble measurements in the

early stages of breaking when large bubbles exist in the flow.
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