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The exceptional thickness control (atomic scale) and conformality (uniformity 

over nanoscale 3D features) of atomic layer deposition (ALD) has made it the process 

of choice for numerous applications from microelectronics to nanotechnology, and 

for a wide variety of ALD processes and resulting materials.  While its benefits derive 

from self-terminated chemisorbed reactions of alternatively supplied gas precursors, 

identifying a suitable process window in which ALD’s benefits are realized can be a 

challenge, even in favorable cases. 

In this work, a strategy exploiting in-situ gas phase sensing in conjunction 

with ex-situ measurements of the film properties at the wafer scale is employed to 

explore and optimize the prototypical Al2O3 ALD process.  Downstream mass-



 

 

spectrometry is first used to rapidly identify across the [H2O x Al(CH3)3] process 

space the exposure conditions leading to surface saturation.  The impact of precursor 

doses outside as well as inside the parameter space outlined by mass-spectrometry is 

then investigated by characterizing film properties across 100 mm wafer using 

spectroscopic ellipsometry, CV and IV electrical characterization, XPS and SIMS. 

Under ideal dose conditions, excellent thickness uniformity was achieved 

(1σ/mean<1%) in conjunction with a deposition rate and electrical properties in good 

agreement with best literature data. As expected, under-dosing of precursor results in 

depletion of film growth in the flow direction across the wafer surface.  Since 

adsorbed species are reactive with respect to subsequent dose of the complementary 

precursor, such depletion magnifies non-uniformities as seen in the cross-flow 

reactor, thereby decorating deviations from a suitable ALD process recipe. 

Degradation of the permittivity and leakage current density across the wafer was 

observed though the film composition remained unchanged. Upon higher water dose 

in the over-exposure regime, deposition rates increased by up to 40% while the 

uniformity degraded.  In contrast, overdosing of TMA and ozone (used for 

comparison to water) did not affect the process performances. These results point to 

complex saturation dynamics of water dependent on partial pressure and potential 

multilayer adsorption caused by hydrogen-bonding. 
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Chapter 1: Introduction 

1.1 - Background on Atomic Layer Deposition 

ALD is a gas phase process for synthesizing thin solid films by sequentially 

exposing a substrate to 2 or more gas reactants. It is widely accepted that high quality 

films with thickness control at the atomic level (Fig. 1), excellent thickness 

uniformity and conformality (Fig.2) can be produced by Atomic Layer Deposition.[1-

3]  In addition, precise control of the film composition in multi-component systems 

allows engineering the physical and electronic film properties in nanolaminate and 

alloy structures. (Fig.3) These key attributes are inherent to the self-limited nature of 

ALD reactions where reactants are sequentially pulsed to initiate saturated 

chemisorbed surface reactions in order to achieve growth, one (sub)monolayer at a 

time .   

 

Figure 1 – Linear correlation 
between cycle number and 
deposited thickness in ZrO2 ALD 
at 275˚C. [4] 

Figure 2 – TEM image of 210 
Å hafnium aluminate film 
deposited by ALD into high 
aspect ratio SiO2 features. [4]  

Figure 3 – Example of 
nanolaminate TiO2 / Al2O3 
ALD nanolaminate.[5] 
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ALD was first developed in Finland in the mid 70’s for ZnS epitaxial film growth to 

be used in electroluminescent flat panel display (and was therefore called atomic 

layer epitaxy at the time).[6] It initially received limited attention as it could not 

fulfill the stringent standards for throughput that are critical in semiconductor 

manufacturing.[4] The current renewed interest in ALD, as illustrated in Figure 4  by  

the sharp increase of yearly publications, 

stems primarily from the drive by the 

semiconductor industry in scaling down 

feature size of logic and memory devices 

while increasing aspect ratio and 

complexity. Since 1995, the International 

Technology Roadmap for  

Semiconductors (ITRS)[7] had clearly 

indicated that the continued transistor 

downscaling predicted by Moore’s law would require new processes and materials 

with higher permittivity to replace the ubiquitous SiO2 gate dielectric in MOSFET1 

devices. With a permittivity of 3.7, the physical oxide thickness of SiO2-based gate 

dielectrics were predicted to measure less than 4 atomic layers (<1 nm) at the 0.45 nm 

technology node (implemented in 2009) which would result in leakage currents in 

excess of 1A/cm2 at 1MV/cm and cause unacceptable power dissipation.[8] 

                                                 

1 Metal Oxide Semiconductor Field Effect Transistor (MOSFET) 

 

Figure 4 – Yearly publications related to 
ALD. Based on online search in ISI Web of 
Science,  (Sept. 2009) 
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Conventional deposition methods used in manufacturing, primarily CVD and thermal 

oxidation, were also becoming inadequate to control the thicknesses of such thin 

films. 

 Due to its ability for unprecedented thickness control, ALD has emerged over 

the past 10 years as a key enabling technology, resulting with the introduction of the 

first ALD-based sub-nm HfO2 dielectric in volume production at Intel in 2006.[9] 

Memory manufacturers have also taken advantage of ALD excellent conformality to 

deposit metal-insulator-metal (MIM) stacks films in high aspect ratio DRAM2 

structures.[10]   

With the technology becoming more mature, the range of applications has 

expanded far beyond the field of conventional CMOS3 logic and memory devices, 

and is now permeating fields as varied as optoelectronics[2], microelectromechanical  

systems (MEMS)[11-15], energy storage [16], or catalysis[17, 18] to cite a few. ALD 

has become a key enabler in the field of nanotechnology where complex 3 

dimensional structures can be filled or coated to produce nano-particles[18-20], nano-

tubes[16, 21, 22] and nano-wires[23-27].  

To support the rapidly expanding field of applications, a broad selection of 

precursors suitable for ALD has also been developed in the last few years by 

chemical supplier [3, 28, 29] allowing for the deposition of a wide variety of oxide, 

nitride, semiconductor and elemental materials (Table 1).  

                                                 

2 Dynamic Random Access Memory (DRAM) 

3 Complementary Metal-Oxide-Semiconductor (CMOS) 
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1.2 - Details of ALD process sequence 

Similarly to CVD, ALD is based on chemisorbed surface reactions where 

adsorbate species will form strong chemical bonds with atoms on the surface4. While 

in CVD the precursors are flown simultaneously, the precursors are pulsed 

sequentially in ALD to initiate self-limited chemical reactions so that for each 

reactant exposure only one (or less than one) monolayer will chemisorb. To illustrate 

                                                 

4 Chemisorption, i.e., chemical adsorption, is to be distinguished from physisorption, i.e., physical 

adsorption. Chemisorption involves a chemical reaction between the adsorbing molecules and the 

surface with the formation of strong chemical bonds. Physisorption originates from weak Van der 

Waals interactions where minimal changes occur in the structure of the adsorbing molecule. 

Physisorption can occur over multiple layers as the interaction is not specific to surface-molecule 

interactions. For water used as a precursor, an intermediate hydrogen bonding configuration (between 

hydrogen from one water molecule and oxygen from a neighboring one) is also a possibility, directly 

relevant to the interpretation of results presented here. 

Oxides Nitrides Sulfides Semiconductors Elements 
Al2O3 [11, 20-

22, 30-40] 
TiN SrS GaAs Si 

In2O3 NbN CaS Si Ge 
ZrO2 TaN BaS InAs Cu 
HfO2 Ta3N5  InP Mo 
Ta2O5 MoN  GaP W 
SiO2 WN  InGaP Ta 
TiO2 BN   Ti 
SnO2    Pt 

Nb2O5    Ru 
ZnO    Ni 
RuO     

Table 1 – Short list of materials deposited by ALD.[41]  Puurunen listed more than 75 elements 
and 125 compounds that could be deposited by ALD in its 2005 review.[3] 
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the basic concept of the ALD process cycle, we can consider the prototypical example 

of the Al2O3 deposition resulting from the sequential exposures of the metal precursor 

trimethylaluminum Al(CH3)3 (TMA) and water. During the first Al(CH3)3  exposure, 

the molecules will adsorb on the active ligands present on the surface, in this case 

hydroxyl –OH* groups. A thermally activated reaction will occur where the Al(CH3)3   

 

molecules are split on the surface. The CH3 ligands combine with hydroxyl surface 

groups to form a volatile compound, i.e., methane CH4, that will desorb from the 

surface. The remaining part of the molecule chemisorbs to the surface to chemically 

bound aluminum atoms to oxygen. This type of reaction is referred to as a ligand-

exchange reaction.  It should be noted that the Al(CH3)3 molecule can react with 

either one or two hydroxyl groups in order to achieve the stoichiometric Al2O3. This 

 

Figure 5  –Sequence of alternating reactant exposures and purges during one Al2O3 ALD 
cycle with TMA and water. In this specific case, the reaction by-product is the same for 
both half reactions, i.e., methane CH4.  
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first “half” reaction stops when all the hydroxyl active sites that are physically 

accessible by the larger Al(CH3)3  molecules have been reacted.  

First half reaction: Al-(OH*) + Al(CH3)3 → Al-O-Al(CH3)2* + CH4 

    where the asterisks denotes the active surface species [36, 42]  

Excess TMA molecules as well as desorbed reaction by-products are purged out of 

the reactor and the surface is left chemically complementary to the 2nd precursor, in 

this case water.  Similarly water will bind to the methyl groups via another ligand-

exchange reaction causing the release of the remaining methyl bonds as CH4 

molecules.  

Second half reaction: Al-O-Al(CH3)2* + H2O → Al-OH* + CH4 

 

The essential aspect of ALD is that after completion of the 2 half reactions, 

the surface is once again reactive to TMA and therefore a new layer can be deposited  

by repeating the same sequence. This sequence of 4 steps constitutes a reaction cycle 

which adds a fixed amount of material to the surface, referred to as the growth per 

cycle (GPC). It must be noticed that in most processes the GPC is less than one 

monolayer. This is a direct consequence of steric hindrance as the methyl ligands 

from the chemisorbed Al(CH3)2
* species shield part of the surface from being 

accessible the TMA molecules. In the case of Al2O3, the growth rate is ~ 0.1 nm/cycle 

or less than half the atomic spacing.  

 It should be noted that the Al(CH3)3 / H2O process is considered “ideal” for 

ALD as the reactants are highly reactive but at the same time thermally stable, and the  
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gaseous byproduct, methane, does not interfere with the growth. Nevertheless, even 

in this “ideal” case,  complex surface reactions can occur in parallel with the ligand 

exchange reactions described above. For example, Al(CH3)3 can react dissociatively 

with coordinatively unsaturated (c.u.s.) Al-O pairs of alumina to produce Al-(CH3)* 

and O-(CH3)2
* surface species. [3, 42] Hydroxyl groups can also recombine to form a 

water molecule. This temperature-induced dehydroxylation  can significantly impact 

the surface OH concentration and therefore the GPC. 

1.3 - Process requirements to achieve self-terminated ALD  

Self-limited reactions are the foundations for the excellent characteristics of 

films deposited by ALD. However a number of factors, often interdependent with one 

another, can impact the performances of the process. The following section offers an 

overview of some of the key requirements and challenges found at the process level. 

1.3.1 Precursors 

In order to achieve ALD, the chemical precursor must fulfill a number of 

requirements. (1) Their volatility must be high enough (at least above 0.1 Torr) so 

that they can be easily transported in gas phase to the reaction zone. Gases and high 

vapor pressure liquids are preferable. However a majority of the ALD precursors are 

low vapor liquids or even solids at room temperature and will therefore require 

heating to raise their vapor pressure.  (2) Precursors must exhibit a good thermal 

stability and not decompose either in the source or on the substrate. Decomposition  
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reactions are likely to induce non self-

limited reactions and higher GPC as well as 

film contamination from the incorporation 

of C, N, H or halide atoms depending 

on the precursor. Metal organic compounds 

start usually decomposing around 300-

350˚C limiting the temperature process 

window.  (3) To achieve self-terminated 

reactions, the precursor must react aggressively and completely with the species left 

on the surface during the previous exposure and not react with its own adsorbates.  

1.3.2  Sample preparation 

The ALD process being based on surface reactions, initial surface conditions 

sensitively affect the ALD film. Like in chemical and physical vapor deposition 

(CVD and PVD), a nucleation must occur preliminary to the growth phase. In the 

nucleation regime, only a fraction of the molecules will actively react on the surface 

resulting in smaller GPC. Minimizing the nucleation retardation is critical to achieve 

not only good thickness control at the atomic level but also to minimize the impact of 

film discontinuities and roughness present in the island growth regime. One of the 

key benefits of ALD over conventional deposition methods is that such nucleation 

regime can be extremely short, i.e., 1 or 2 cycles, assuming that the right ligands are 

uniformly present on the surface. (Figure 6) In less favorable conditions, e.g., 

hydrogen-terminated surfaces for oxide growth, poor reactivity of the reactants or low 

Table 2 – Key  precursor requirements [43] 

Volatility 
Aggressive and complete reactions 
No-self decomposition 
No etching of the film or substrate 
No dissolution into film or substrate 
Sufficient purity 
Non-reactive volatile byproducts 
Inexpensive 
Nontoxic 
Easy to synthesize 
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temperature, the nucleation delay can increase significantly to 30-50 cycles or 

more.[44]  

 

 
 

 

1.3.3  Saturating exposures  

In order to achieve thickness uniformity and conformality across the 

deposition zone, the precursor exposures must be sufficient to fully saturate the active 

sites on the surface. Determining the proper saturating dose is usually the first step 

when optimizing an ALD process. This time consuming procedure is achieved by 

incrementally increasing the dose of one precursor and measure ex-situ the GPC. 

Upon dose saturation, the growth rate will reach a plateau corresponding to an “ideal” 

ALD regime. (Figure 7) In many cases, the dose used will be about 50% higher than 

Figure 6  - Nucleation retardation in HfO2 
ALD. Hf surface coverage measured by RBS 
based on different surface preparations 
(circles: Hf-last, squares: chemical oxide, stars: 
rapid thermal oxides, plus: rapid thermal 
oxinitride). Source: [44] 

Figure 7 – Al2O3 deposition rate as function of 
purge time and H2O exposure time. Saturating 
self-limited reactions ensure that the 
deposition rate reaches a plateau once the 
reactant doses are at or above saturation level. 
Source: [45] 
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the exact saturating dose. Overdosing the materials will require increased purge times 

and waste expensive precursor while underdosing will result in thickness non-

uniformity and lower GPC. 

Depending on the precursors, saturation of the surface in a self-terminated 

reaction can be limited by steric hindrance of the ligands, the number of reactive sites 

or the reactant partial pressure (more on this subject in section 1.5). 

 

1.3.4  Purge window 

A purge time too short to fully exhaust  previous precursor from the reactor 

will result in an overlap of the precursors (e.g., simultaneous presence of both 

precursors), allowing the ALD process to  transition to a CVD mode. If the overlap 

occurs prior to the deposition zone, the reactants are likely to be consumed before 

reaching the substrate, resulting in a lower deposition rate. Alternatively if the 

temperature is too low, multilayer adsorption may occur in which case the excess of 

reactant will react with the next precursor resulting in a higher growth rate. (Figure 7, 

Figure 8a)  Polar molecules such as water or ammonia are especially prone to this 

type of behavior due to weak hydrogen bonding and do require longer purge times. 

However, too long a purge can result in thermal decomposition of the adsorbed 

species leading to possible film contamination or composition changes in the films 

depending if the decomposed molecules remain on the surface and potentially react 

with the next precursor or if they desorb. (Figure 8a) 
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1.3.5  Temperature window 

Similarly to the purge window, a temperature window can be identified where 

the ALD deposition rate remains constant. (Figure 8b) Outside this window, low 

temperature is likely to result in a decreased deposition rate as the reactant cannot 

overcome the activation energy required for the chemisorption. In some cases, the 

low temperature may result in precursor physisorption and higher growth rate if the 

purge is insufficient. High temperature on the other hand may cause precursor 

decomposition if the precursor exhibits thermal instability [46], or desorption of the 

adsorbates before they get exposed to the 2nd reactant. The latter case is known to 

occur with water through dehydroxylation where the adsorbed –OH* groups 

recombine at high temperature to form H2O.[38]  

Figure 8 – Process windows showing deposition rate as a function of (a) purge time and (b) 
process temperature. These figures illustrate potential trends that can be found in ALD, 
depending on a variety of factors including process chemistries, reactor designs or operational 
conditions. 
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It should be noted that ALD processes have a relatively low thermal budget, a 

majority of the processes being run below 350˚C. As a consequence, ALD films are 

typically amorphous. This can be an advantage for dielectric oxides as grain 

boundaries in crystalline structures provide a preferential pathway for leakage 

current. However the low temperature may induce residual impurities and defects 

which can affect device reliability. Post-deposition annealing is therefore often 

required to achieve device-quality films. 

1.4 - Impact of reactor design on film deposition 

1.4.1  Cross-flow channel vs. top injection design 

Because of its self-terminating nature, ALD is often assumed to be a surface-

controlled process where process parameters other than the reactants, substrate and 

temperature have little impact on the process performances. It is true that GPC, 

uniformity and conformality, the gold standards of process performance, are not as 

dependant on flux dynamics as in CVD as long as the saturating exposures are 

provided. Therefore most reactor designs primarily focus on achieving fast cycle 

times while ensuring that there is no overlap of reactants which would lead to CVD-

type reactions.  

To ensure rapid cycling of the gases, most ALD reactors are flow-type 

systems operating in the 0.1-10 Torr pressure regime. Inert purge gases such as argon 

or nitrogen are typically used in between pulses since purging is faster than 

evacuating the reactor. Two different types of reactors can be distinguished 
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 depending on how the precursor flow is directed to the substrate: (1) the flow 

channel type where reactants flow across the length of the substrate [31, 47, 48] and 

(2) the top injection type (or showerhead) where the reactant flow is perpendicular to 

the surface.[4, 49, 50] The flow type systems usually have a smaller volume that 

leads to shorter residence times of the molecules in the chamber and thus shorter 

cycle times. As the molecules flow along the narrow channel, they will impinge on 

the wall multiple times, increasing the probability of finding an open adsorption site 

and therefore minimizing the exposure and reactant consumption.  

Reactant depletion along the flow direction is however a concern if the 

exposure is insufficient. Also re-adsorption of by-products molecules is more likely to 

occur as they travel in front of the precursor pulse.  Adsorbed by-product molecules 

will block reactants from potential reaction sites and will affect the uniformity as their 

concentration increases downstream to the flow.[51] On the other hand, in top 

injection systems, reactant molecules should impinge the surface at the same time 

before the byproducts can (possibly) re-adsorb. However by-product re-adsorption is 

usually limited even in the more prone halide-based chemistry and can be avoided by 

using the right precursors. Also top injection systems have usually a larger volume to 

accommodate the shower head and are therefore slower to purge. As a consequence, 

the simpler and “faster” flow channel reactor design is usually favored.  

Because flow-type reactors operate in the 0.1-10 Torr, roots blowers and 

mechanical rotary pumps rather than high vacuum turbo molecular pumps are 

typically used on commercial and custom-built tools. The assumption is that purging  
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with an inert gas is more efficient to remove gas molecules than low base pressure. 

Use of load-lock systems to minimize the exposure of the chamber walls to air 

appears mainly limited to manufacturing tools used for the most stringent gate 

dielectric applications where minor contamination of the film can impact the quality 

of the device. As water is the most commonly used ALD oxidant, not much effort is 

made to prevent water moisture to enter the system in the first place (at least for oxide 

film deposition). Reactor walls are kept at sufficient temperature to minimize the 

physisorption of the polar water molecules but not so hot that gas desorption could 

affect the ALD chemistry. As a result, reactor walls are often kept at the same 

temperature as the wafer. 

From a vacuum perspective, requirements for ALD are therefore less stringent 

than for evaporation and sputtering-based techniques (e-beam or thermal evaporation, 

molecular beam epitaxy, RF/DC sputtering) where ultra high vacuum conditions are 

required in order to achieve mean free path larger than the geometrical size of the 

chamber. Considering that these techniques are also line of sight and result in poor 

uniformity and conformality, the benefits of ALD can be significant. 

1.4.2  Precursor delivery  

Achieving accurate and reproducible delivery of minute reactant doses, i.e., a 

few micromoles per dose, is arguably one of the most challenging aspects of an ALD 

reactor design. Most of the precursors used for ALD are typically liquids or solids at 

room temperature. While the vapor pressure of water, a commonly used oxidant, is 

relatively high, 23 Torr at 25˚C, the vapor pressure of most ALD metalorganic 
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precursors will range from 10 to as low as <0.01 Torr. Though the vapor pressure 

exhibits an exponential behavior with temperature, the temperature window is often 

narrow as most precursors start thermally decomposing at 100-150˚C.[28, 46] 

Additionally achieving homogeneous temperature distribution to avoid “cold spot” 

and possible reactant condensation in the delivery line is difficult in a vacuum system 

that includes many parts of different thermal masses, e.g., valves, filters, orifices, ¼” 

lines.  

For reactant whose vapor pressures can be safely increased above ~1 Torr, 

e.g., water or Al(CH3)3, (Appendices, Fig. VI)  the exposure  can be controlled by 

simply timing the actuation of a fast-switching ALD valve mounted between the 

source vessel and the delivery line. This method is commonly used for its simplicity 

and low cost. The self-termination can be conveniently observed by monitoring the 

deposition rate as a function of exposure time. A needle valve can also be added to 

regulate the flow and concentration of the precursor in the reactor. This method 

however lacks accuracy as the dose is determined by the vapor pressure of the source. 

The vapor pressure of the source can be affected not only by minor external 

temperature but also from the endothermic vaporization of the liquid. In addition, it is 

difficult to quantitatively determine the accurate amount of precursors delivered.  

For reactant with a vapor pressure less than ~1 Torr, an inert gas can be 

bubbled into the source vessel in order to increase the surface exchange between 

liquid and gas and facilitate the reactant evaporation.  However such approach makes 

it difficult to measure and control accurately the precursor dose being delivered as the 
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dose will vary not only with the pulse time, inert gas flow rate and temperature but 

also the geometry of the bubbler and the amount of precursor left in the vessel.  

The lack of accuracy of the previous two methods is usually addressed by 

operating in an over-exposure mode, relying on the self-limited nature of ALD 

reactions to compensate for small exposure variations. 

Liquid injection systems that vaporize liquid are also available though their 

lack of accuracy to deliver the very small doses needed for ALD, as well as concerns 

about thermal decomposition of the precursor in the high temperature vaporizer has 

hampered their use.  

As we will see throughout the upcoming work, the type of the delivery system 

can significantly impact the process performances at the wafer scale. Its design may 

not only depend on the choice of reactants (and their vapor pressures) but also on the 

type of applications. For example, the design requirements to deposit a uniform gate 

dielectric film on a planar wafer with cycle times of less than 1s or so will likely be 

different than to deposit conformal films in high-aspect ratio and high surface area 3D 

structure. This issue will be discussed in further details. 

1.5 - Impact of reactant partial pressure on adsorption  

1.5.1 Examples 

Water is the most commonly used oxidant in ALD, primarily because it is 

inexpensive, inherently safe, with a high vapor pressure (25 Torr at room 

temperature) and reacts energetically with many metal precursors either halide or  
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metalorganic-based. Using a commercial cross-flow reactor, Matero and al. 

investigated in Al2O3 ALD the growth rate dependence with the water dose in the 

Al(CH3)3 / H2O process. In this case the water dose was controlled by adjusting the 

flow rates through a needle valve and regulating the pulse time. As shown in Figure 

9, under high and low flow rate conditions, extending the pulse time beyond 2.5s did 

not yield further increase of the GPC. This suggests that in both cases the reaction 

were self-terminated. However the growth rate increased by 22% from 0.95 to 1.16 

Å/cycle at higher flow rate. Matero and al. reported the same trend with different 

materials systems including Ta2O5, TiO2, ZrO2 and the effect of precursor 

concentration on GPC was also reported by other groups.[52, 53] The purge time did 

not affect the GPC indicating that the higher growth rate was not due to a CVD-like 

reaction and the origin of the higher GPC was attributed without further details to a 

density increase of the hydroxyl groups on the surface upon higher flow rates.  

  

Figure 9 – Dependence of the Al2O3 growth rate 
with the H2O pulse length at (a) small (8x10-6 
g/s) and (b) large  (2x10-4 g/s) water flow rates. 
[38] 

Figure 10 – Thickness profile of Al2O3 films 
as a function of process pressure.[54] 
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Though the flow rate of water appeared to change the GPC, Matero’s results showed 

that the film composition, density as well as electrical and optical properties remained  

unchanged at higher water doses. Similarly Li and al. investigated the impact of 

process pressure on GPC and thickness uniformity in an Al2O3 ALD process using 

Al(CH3)3  and O3 in a Genus manufacturing tool for 300 mm diameter wafers.[54]  

As shown in Figure 10, higher process pressure lead to higher GPC and uniformity 

and the authors suggested that it was caused by a higher conversion of the surface 

sites.  

1.5.2 Adsorption equilibrium in ALD 

These two examples illustrate an important issue of ALD reactions which is not often 

emphasized, namely that a distinction should be made between self-termination and 

saturation. The self-terminated nature of ALD is linked to the fact that a reactant in 

the gas phase can only chemisorb with a complementary active chemical species 

present on the surface. The fact that this gas reactant cannot react with its own 

adsorbed species, e.g., Al(CH3)3 cannot react on CH3*, guarantees that the reaction 

will be self-limited.  However in all chemisorption processes, the amount of adsorbed 

material is based on a gas-surface chemical equilibrium that converges toward a 

constant value when the partial pressure is increased.[55] This means that upon 

extended pulse time, the reaction doesn’t necessarily terminate because of all the 

active sites have been consumed. Rather reaction saturates when an equilibrium 

between desorption of additional precursor (beyond the reacted species) and 

adsorption of further species from the gas phase has been reached at a given 
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temperature and partial pressure. However, if all surface sites have been converted or 

are occupied with a chemisorbed species preventing further adsorption (via steric 

hindrance for example), then increasing the partial pressure will have no effect. 

1.6 - Motivation and objectives 

While the favorable consequences of the self-limiting, saturative nature of 

ALD precursor adsorption/saturation is striking, chemisorption processes in general 

can be complex. This is particularly true for the kinds of precursor species employed 

in ALD (organometallics, halides, water), inviting deviations from ideal monolayer 

self-limiting behavior through steric hindrances, complex molecular geometries to 

satisfy mass balance constraints and resulting crystal structure, subsidiary or parasitic 

reactions, or weaker interactions involving hydroxyl species.  As in other chemical 

processes, the challenge is thus to identify the parameter regime that constitutes an 

“ALD process window”, i.e., in which the benefits of ALD are realized. Thus, 

development of ALD processes requires a set of experiments to identify minimum 

precursor doses that cause saturation of growth rate, demonstrate that higher doses do 

not alter growth rate, and confirmation that these indicators are validated by across-

wafer uniformity and perhaps conformality studies, as well as analysis of the material 

properties sought (electrical, etc.). It is striking that despite hundreds of publications 

and other reports, from a variety of industry sources as well as university and 

government laboratories, few convey a rigorous evaluation of true ALD process 

windows where superb uniformity and conformality are achieved. 
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Identifying an ALD process window can be nontrivial, since a variety of 

factors can have a direct effect on the process outputs - growth rates, uniformity, step 

coverage, and material quality. Examples of such factors include (but are not limited 

to):  precursor choice, substrate selection and preparation, process parameters  

(reactant dosage, cycle purge, process temperature or pressure) or reactor designs. 

Due to the number of variables involved and the interdependency between some of 

these variables, the procedure to optimize an ALD process for a given 

chemistry/reactor can prove time consuming, and even more so as we consider a shift 

towards ternary and quaternary materials systems or the application of ALD to 

production-size substrates where uniformity requirements present a stringent test for 

ALD process performance. 

To investigate new methodologies aiming at the optimization of ALD process 

and materials performance, an ALD reactor was designed and implemented. This 

cross-flow wafer-scale system enables accurate end-point pressure control of reactant 

exposures in order to achieve spatial distribution of reactant flux across the reactor 

leading to spatial gradient in thickness and materials properties.  

The overall strategy focuses around two concepts: (1) to implement in-situ 

sensing to rapidly delineate the contours of the ALD process space that lead to 

saturating self-terminated reactions and uniform monolayer growth; (2) to 

characterize within that space the film properties across the wafers in order to 

understand the physicochemical contributions that impact process and materials 

performances under different reactant exposure regimes. 
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To achieve the first goal, we implemented in-situ quadrupole mass-

spectrometry (QMS) downstream to the ALD reactor. We have previously used this 

approach as a means for real-time monitoring and thickness metrology in tungsten 

ALD. [56, 57] By sampling and quantifying reaction product concentrations during  

individual ALD precursor doses, the progress of the ALD reaction within a dose cycle 

and from one cycle to another was observed. Time-dependent mass spectrometry 

signals can therefore be used to reveal the dynamics of surface adsorption, reaction, 

and saturation within a dose cycle, providing essentially real-time estimation of 

saturation dose levels needed for each precursor. As such, the QMS approach was 

used to map out the ALD process space over a wide range of reactant exposures.  

Within the QMS-defined region-of-interest, we then investigated the 

correlations between key process metrics, i.e., reactant exposures and purge times, 

and film properties at the wafer scale, both extrinsic (GPC, thickness uniformity) and 

intrinsic (electrical, optical, compositional). 

An important aspect of this research is that the ALD processes are to be run in 

a cross-flow system that mimics larger systems commonly found in manufacturing 

(further details in Chapter 2). The impact of the spatial distribution of the reactant 

flux is investigated on 100 mm wafers rather than on chip-size samples as commonly 

done in academic and small R&D ALD systems. 

This work focuses on the prototypical case of Al2O3 ALD using Al(CH3)3 as a 

metal precursor, and water and ozone as oxidants. Al2O3 ALD is considered an 

“ideal” ALD process as the precursors are highly reactive but at the same time  



 

22 

 

thermally stable, and the gas reaction byproduct, methane, does not interfere with the 

growth. The robustness of the Al2O3 ALD process in conjunction with good thermal, 

electrical and mechanical properties of this oxide has resulted in steady interest for 

this system both in research and manufacturing.[2, 4, 34, 35, 39] However, as  

mentioned by Puurunen in his extensive review paper[3], despite the broad number of 

publications and applications related to Al2O3 ALD, many physicochemical behaviors 

that govern Al2O3 processes  are still not fully understood, particularly at the wafer 

scale.  

Of particular interest is the impact of water dosage on film growth and the 

dose interactions between TMA and water. Matero and al. showed that higher GPC 

was achievable at higher water concentrations and attributed this effect to an 

increased density of hydroxyl groups. Water is the most commonly used ALD 

oxidant but the impact of water dosage on key process performance metrics such as 

thickness uniformity has not been established at the wafer scale. Water has long been 

known in the vacuum technology community for its propensity to multilayer 

adsorption by hydrogen bonding. In order to better understand the physicochemical 

contributions of water on film growth, we have compared water- and ozone-based 

chemistries. Ozone is usually favored in manufacturing as it can result in higher 

quality films with lower carbon contamination levels since it is more prompt to react 

with the organic ligands on the surface.[37, 50, 54, 58, 59] Ozone, a non-polar 

molecule, is also not prone to hydrogen-bonding and follows a different reaction 

pathway than water.[60] As such, it provides an interesting case for comparison. 



 

23 

 

1.7 - Organization of the thesis 

This thesis consists of five chapters in addition to the first Introduction 

chapter. The summary of each chapter is given below. 

Chapter 2: This chapter reviews experimental setups that were implemented 

to carry out this research. It focuses primarily on the design and upgrade of the UHV 

ALD reactor, the integration of an in-situ mass-spectrometer, the construction of an 

automated CV and IV probe station and the implementation of a new commercial 

Sopra GES5 spectroscopic ellipsometers. 

Chapter 3: This chapter focuses on the use of mass-spectrometry for in-situ 

process diagnostic and optimization in the case of the Al2O3 ALD process using water 

and TMA. The results build on contributions from prior works in which I was closely 

involved related to real-time wafer-state metrology in CVD [61-65] and ALD [56, 57] 

processes. A few key results from the prior ALD study are summarized in the 

introduction of this chapter. The new data illustrate how in-situ sensing can be used to 

rapidly determine the exposure conditions that lead to saturation, a requisite for ALD 

process optimization. 

 Chapter 4: The impact of reactant exposures on thickness uniformity are 

investigated within the ALD process window identified in-situ in Chapter 3. The 

results focuses on the Al(CH3)3 / H2O system and the impact of the polar H2O 

molecule on the film growth. A comparative study with Al(CH3)3  / O3 is also be 

presented to illustrate how different chemistries can impact process performances at 

the wafer scale. 
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Chapter 5: In this chapter,   the intrinsic film properties are studied to address 

their relation to ALD process chemical conditions. The impact of reactant exposure 

on film composition and contamination is investigated using XPS and dynamic SIMS 

measurements. IV and CV measurements made on Metal Insulator Semiconductor 

(MIS) and Metal Insulator Metal (MIM) capacitor structures are presented to evaluate 

the film electrical properties.  

Chapter 6: The thesis is concluded with a summary of the contributions of 

this research and some thoughts regarding the future works.  
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Chapter 2: Experimental setup 

 

The following chapter focuses on the tools that had to be implemented in 

order to carry out the proposed research. The ALD reactor used in this study was the 

first ALD prototype to be implemented in our research group. It was designed in 2003 

and built with the help of Wei Lei, a prior doctoral student5.  The primary objective of 

this work was to investigate the use of mass-spectrometry in W ALD processing for 

in-situ  sensing and real-time wafer-state metrology.[56, 57]  After completion of this 

work in 2006, a funded collaboration with equipment supplier MKS Instruments was 

initiated to investigate new venues for ALD process optimization. The tool was 

overhauled with donated equipment, including a MKS Vision1000C mass-

spectrometer, an O3megaTM ozone generator and a liquid injection system for low 

vapor pressure precursors (not used in this work).  Additionally a new delivery 

system was built to accommodate low vapor pressure precursors whose mode of 

delivery was radically different than those used in the W ALD work6.  

Being able to characterize in-house the films deposited was also essential to 

evaluate and optimize rapidly the ALD process performances at the wafer scale.  An 

automated probe station was designed and built to measure CV and IV characteristics 

                                                 

5 Contributions to design and implementation of equipment are listed in Appendices #1 

6 W ALD precursors, tungsten hexafluoride and silane, are both gases above atmospheric pressure at 

room temperature. 
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of up to several hundred capacitors on a single wafer. A Sopra GES5 spectroscopic 

ellipsometer was also acquired to provide maps of thicknesses and optical properties 

across the wafer on a run-to-run basis.  

2.1 - ALD system 

2.1.1  Reactor design 

A custom-built ALD reactor was used for this study, shown in Figure 11 

(detailed drawings in Appendices, Fig. I to IV). This ultra high vacuum system 

integrates two large 8”-diameter 6-way UHV conflat (CF) chambers used respectively 

as a loadlock and ALD process chambers. The stainless steel walls of the ALD 

process chamber are maintained at 150˚C using heating tapes to minimize water 

physisorption while a Pfeiffer TPU261 TMP with a nominal pumping speed of 260 l/s 

allows a base pressure below 1E-8 Torr with no gas load. A smaller 50 l/s TMP is 

used for the loadlock leading to a pressure below 1E-5 Torr within 5 minutes of pump 

down from atmospheric pressure.  The loadlock is essential to rapidly load/unload a 

wafer without exposing the main process chamber to atmosphere and minimizing 

potential contamination of the ALD reactor environment and wall memory effects. 

The relatively large volume of the process chamber, i.e., 16 liters, is inadequate for a 

fast cycling of reactant gases required for ALD. A smaller mini-reactor was therefore 

embedded in the UHV process chamber as shown in Figure 11b. The volume of this 

mini-reactor is only 0.2 liters allowing for rapid gas exchange during ALD exposure 

and purge cycles.  In the sub-torr pressure regime, short residence time of less than 
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one second was estimated. This design also reduces the ratio of wall to wafer surface 

areas to about 3 to 1. Earlier work showed that such low ratio was essential in 

achieving in-situ process sensing for wafer-state metrology using mass-spectrometry 

and minimizing “memory effects” associated with adsorption/desorption from the 

mini-reactor walls.[56, 57] 

The mini-reactor features a stainless cap that is vertically actuated so that a 

wafer can be transferred from the loadlock onto the substrate heater. In the down 

position, the cap provides a rough vacuum seal between the mini-reactor and main  

ALD mini- reactor

a)

b)
100 mm wafer

Substrate 

heater

Z-axis pneumatic

actuator

ALD chamber

0.1-1 Torr

10-5 Torr

Gas InletGas Outlet

Moveable cap

c)

Load-lock

 

Figure 11 – UHV ALD reactor – a) ALD platform with load-lock and ALD chamber. b) 
Embedded mini ALD reactor in UHV chamber. c) Schematic of ALD chamber. 
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chamber allowing for a pressure differential respectively from ~0.1-1 to 1E-5-1E-4 

Torr under gas load conditions, typically 10 to 100 sccm. 

In order to run wafer-scale substrates, i.e., 100 mm diameter wafers, a 

stainless steel substrate heater was custom-designed and built at the UMD physics 

shop. (Figure 12) 1/4” diameter gas inlet and outlet lines are integrated directly into 

the base of the heater. Process gases are introduced and exhausted through two 

diametrically opposed slits at the upstream and downstream positions of the mini-

reactor, each positioned 3 mm above the wafer and measuring 1mm wide by 100 mm 

long. (Figure 13)  The mini-reactor is typically operated at 100 mTorr, the gases 

being exhausted to a 20 ft3/min mechanical pump.  A MKS capacitance pressure 

gauge located on the exhaust line provides the pressure reading for the mini-reactor. 

   The heater temperature is regulated by a proportional integral derivative (PID) 

control loop based on the feedback of a thermocouple attached on the bottom side of 

the heater. Based on the reading of a 100-mm 13-point SensArrayTM thermocouple 

 

12

Substrate 

heater

 

Figure 12 – Cross-section of mini-reactor  Figure 13 – View of the 100 mm diameter 
substrate heater with visualization of flows 
across the wafer. 
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 wafer, the temperature non-uniformity at 250 ˚C and 0.1 Torr was measured to be 

less than 5% across the wafer (based on 1σ/mean). The use of a thermocouple wafer 

is critical to calibrate the actual substrate temperature vs. the control temperature as 

pressure will significantly impact the thermal coupling between heater and wafer. 

(Appendices, Fig. V)) All temperatures indicated in this work will therefore refer to 

the estimated wafer temperature. It is to be noticed that the mini-reactor is a relatively 

isothermal environment, the cap being conductively heated via contact with heater. 

The cap temperature is about 20˚C lower than the heater temperature and is therefore 

subject to deposition as well. 

2.1.2   Gas delivery and reactant dose control 

Beside water and ozone (gas) oxidants, trimethylaluminum (TMA) and 

titanium tetraisopropoxide (TTIP) were used as metal precursors with respective 

vapor pressure of 11 Torr and 0.04 Torr at 25˚C. Each liquid precursor vessel was 

heated in order to achieve a desired vapor pressure (see Table 3). Since in the context 

of this work it is critical to accurately and reproducibly control the doses, a novel 

approach was used. Reproducible precursor dosage was achieved by implementing a  

pressure end-point control scheme 

where each precursor vapor was inlet 

through a needle valve into a 

temperature-controlled volume. (Figure 

14)   Upon reaching a given pressure setpoint, the inlet valve between the precursor 

source and the volume was closed and the gases released into the chamber for 0.3 s. 

Reactant Water TMA TTIP 
Vessel temperature [˚C] 25 25 60 
Vapor pressure [Torr] 23.1 11.4 0.6 

Table 3 – Reactant control temperatures and 
vapour pressures 
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By monitoring the minimal and maximal pressures during each cycles, the doses were 

approximated from the ideal gas law, pV=nRT (where p is the pressure, V the 

volume, n the amount of substance, R the gas constant and T the absolute 

temperature). Using a LabView-based software to control the pulse sequence, doses 

as small as 0.3 µmol were controlled within ±1.5% over the run duration. (Figure 15) 

After each pulse, the gas remaining between the fill valve and needle valve, whose 

pressure is typically higher than the setpoint pressure, were dumped via a bypass 

valve.  

It is important to notice that by controlling the dose via end-point pressure 

control rather than by regulating the exposure time (as seen in Chapter 1.4.2), when a 

higher dose/pressure setpoint is selected, the reactant partial pressure and 

concentration of the precursor over the wafer also increase. In other words, this is 

similar to increasing the flow rate of water as in Matero’s example [38] reported in 

Chapter 1.5.1. 

An MKS O3mega™ ozone generator was also implemented. O2 (Grade 5 or 

better, Praxair) flowing at 200 sccm was converted up to 20 wt% ozone (300 g/m3) in 

a single electrical discharge cell operating at 20 psig. The high flow and high pressure 

required for the operation of the O3mega™ required a different control scheme of the 

ozone exposure. The O2/O3 mixture was flowed continuously into an HA-series 

catalytic ozone destruct from Ozone Engineering to deactivate ozone into 

oxygen.(Figure 14) A fraction of the total flow was pulsed into the reactor using a fast 

action ALD valve. A Swagelok medium flow metering valve was implemented  
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upstream to the ALD valve to regulate the flow.  For a given needle valve 

conductance, the ozone doses in µmol were estimated by integrating the pressure 

peaks measured in the mini-reactor for different exposure times and comparing them 

to integrated peaks from known doses achieved by end-point pressure control in the 

TMA and water vessels.  

2.1.3  Process control 

An automated PC-based control platform was implemented to accurately 

control the valve sequences for precursor exposure and purges. A National 

Instruments LabView™ program was written to monitor and control the ALD process 

including the sequencing of the 16 valves for reactant delivery, the reading of the 

pressure signals in the delivery volumes and reactor as well as the mass-spectrometry 

signals (detailed in the in-situ sensing section). Recipes loaded from Excel 

spreadsheets were created to easily define the process setpoints for each precursors at 
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Figure 14 – Schematic of gas delivery setup. 
TMA and water vapours are introduced in 
volume V until pressure P is reached prior to 
release through dose valves.  

Figure 15 – Record of maximum and 
minimum pressures in TMA delivery volume 
over 100 cycles. Estimated doses (open 
diamonds) are shown on the right axis.  



 

32 

 

each cycles as well as to determine the sequence of pulses for each cycle. For 

example, assuming A, B and C correspond to 3 different precursor pulses, H2O, TMA 

and TTIP, possible pulse sequences could be: 

[A-B]n for a 2 component oxides where n defines the number of cycles  

[A-B-A-C]n for an aluminum titanium oxide alloy structure 

[ (A-B)m, (A-C)n]p for an Al2O3 – TiO2 nanolaminate where m, n define the thickness 

of each individual oxide layer, and therefore the composition, and p defines the total 

number of supercycles and therefore the total thickness. 

From a hardware perspective, all 16 solenoid-actuated pneumatic valves 

(Swagelok ALD diaphragm valves, P/N 6LVV-ALD3TFR4-P-C ) were driven by a 

24V DC signal actuated via a National Instruments external solid-state-relay board 

(SSR-16 backplane) configured with 16  DC output relay (ODC5) modules. The 

timing of the valves was controlled by LabView with a 10 ms timing loop increment 

for optimal accuracy. Analog 0-10V input signals for pressure readings and analog 

output signal for flow control of carrier gas were handled by a NI-6014 universal data 

acquisition board. All signals, i.e., valve actuation, pressures, mass-spec sensing, 

were monitored in real-time providing direct feedback to the user for potential fault 

diagnostic and proved extremely valuable in troubleshooting and optimizing both tool 

operation and process. 
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2.2 - Quadrupole mass spectrometry  

2.2.1  Operational principles 

Quadrupole mass spectrometry (QMS) is a semi-quantitative microanalytical 

technique with high sensitivity and chemical selectivity requiring only a few nano-

moles of sample to obtain characteristic information regarding the molecular weight 

and the structure of gas-phase molecules. QMS has been widely implemented as an 

invaluable analytical tool for process contamination identification, gas purity 

analysis, vacuum system leak detection, chemical reaction verification, photoresist 

detection, endpoint detection, tool diagnostics, and preventative maintenance in 

semiconductor manufacturing.  

Quadrupole mass spectrometer consists of the 

ion source (ionizer), the quadrupole mass filter 

and the ion detector.(Figure 16) Some of the 

gas molecules are ionized in the ion source and 

separated by mass/charge ratio in the mass 

filter. The partial pressures of the respective 

gases can be determined from the ion current measured in the ion detector.  

Inside the ion source, a heated filament emits electrons, which bombard the 

incoming gas molecules, giving them an electrical charge. The filament usually is 

made of iridium with either a thorium-oxide or yttrium-oxide coating, which can be 

turned on in high pressure without undergoing instantaneous combustion. The term 

Filament 

(cathode)

Anode Focus 

lens

Exit

lens

Mass-filterIonizer Detector  

Figure 16 – Schematic of quadrupole 
mass spectrometer (QMS) 
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"emission current" refers to the stream of electrons emitted by the heated filament and 

usually is below several thousand microamperes. The anode is positive with respect 

to the filament and the potential between the anode and filament, called electron 

energy, will directly impact the degree of ionization of the molecules. By adjusting 

the electron energy, ions of the same mass but from different species can be 

distinguished. The ions exit the ion source through the source exit lens negatively 

biased with respect to anode. The ion energy characterizes the potential difference 

between source exit lens and anode.  

The mass filter in a quadrupole mass spectrometry consists of 4 cylindrical 

rods positioned in a square array. The trajectory of the ions will be subject to the 

electrical field in the mass filter and only those of specific mass/charge ratio will pass 

through the mass filter and reach the ion detector. A combination of DC and RF 

voltage is typically used at the two pairs of rods. 

The ion detector counts ions passing the mass filter. An Electron Multiplier 

(EM) is usually coupled to a Faraday Cup (FC) to achieve optimal measurements. 

The EM which acts as a preamplifier for sensitivity improvement usually is placed 

before the FC, which measure the electron output current of EM. The EM gain 

characterizes the ratio of the electron output current to the incident ion current. The 

drawback for EM is that its gain will degrade after being exposed to high pressure.  

Interpretation of mass spectrometry data requires a good understanding of the 

ionization process that gases undergo within the ion source. At electron energy above 

70 eV, dissociation and ionization mechanisms usually occur simultaneously for most 
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gas molecules. Illustrated below are just a few examples that may occur in the ion 

source. 

XYZ + e-  → XYZ+ + 2e- (single charged) 

      → XYZ2+ + 3e- (double charged) 

       → XY + Z+ + 2e-    (fragmentation) 

       → XY+ + Z + 2e-     (fragmentation) 

Libraries of the fragmentation patterns of the most common species are available and 

are very helpful in qualitative analysis. 

2.2.2  MKS Vision 1000C mass-spectrometer 

A Vision 1000C quadrupole mass-spectrometer was donated by MKS 

Instruments for this study. The sensor features a 300 amu closed ion source. The 

sampling platform includes a differential pumping setup with a proprietary fast 

response UniBloc™ inlet system allowing for sampling at both background and 

process pressure using orifices with carefully selected diameters, i.e., respectively 1 

mm for UHV and 50 µm for process conditions (see Fig VIII appendices for UniBloc 

configuration). The 50 µm orifice allows for a linear QMS response with regard to 

partial pressure up to 2.5 Torr total pressure. To avoid condensation of the reactants 

on the walls, the UniBloc and quadrupole are heated to 70˚C. 
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The Vision 1000-C includes Process Eye 

2000, a flexible 32-bit software 

application operating under Microsoft 

Windows. To analyze in real-time the 

QMS data, a Transmission Control 

Protocol (TCP) link was established 

between Process Eye and the LabView 

process control software. Upon request 

from Labview, Process Eye passes the 

data as 2 strings, one containing system status, e.g., valve and pump status, the other 

partial pressures for user-selected masses of interest. The strings are then parsed into 

LabView and the data plotted and integrated at completion of each half-cycle. In 

order to reduce the QMS acquisition time, 4 masses were usually monitored at a 

scanning rate down to 200 ms per spectra. 

2.3 - Spectroscopic ellipsometry (SE)  

2.3.1 Operational principles 

Ellipsometry is one of the key techniques to measure thickness and optical 

constants as it is fast, non destructive and accurate for films ranging from ~1 to 

~10000 nm. In addition it can also be applied to characterize composition, 

crystallinity, roughness, doping concentration, and other material properties 

associated with a change in optical response.  

Differential 

pumping

Gas

Inlet

Gas 

Outlet

50 µm orifice

0.1Torr

QMS

 

Figure 17 – MKS Vision 1000-C QMS 
integration downstream to ALD reactor. 
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Ellipsometry works by directing a linear polarized light to the surface and 

measuring how much ellipticity was induced from reflection. The measured changes 

in polarization from the reflected light can be correlated to the thickness of the film as 

well as its complex refractive index ñ=n+ik where n is the optical index and k the 

extinction coefficient. The complex dielectric function ε can also be determined 

where 1 2iε ε ε= +ɶ ɶ ɶ , with ε1=n2-k2 and ε2=2nk.   

The light source which provides unpolarized light over a broad spectral range, usually 

from near infra red to UV, is passed through a polarizer to only allow light to pass 

thru the direction of polarization.  The linear polarized light incident on the sample 

can be decomposed into 2 components: a s component for the oscillation contribution 

perpendicular to the plane of incidence and a p component for the contribution 

parallel to the plane of incidence. Ellipsometry essentially measure how p- and s-

components change in relation with one another upon reflection on the surface. In 

effect, the complex metric ρ is measured where ρ = tan(ψ) ei∆ . ∆ is the phase shift 

induced by the reflection and ∆=δ1-δ2 where δ1 and δ2 denote the phase difference 

between the p- and s-wave respectively before and after the reflection. tan(ψ) 

corresponds to the ratio of │Rp│over │Rs│where │Rp│ and │Rs│are the magnitudes 

of the amplitude diminution of the p- and s-waves before and after reflections (also 

referred to as complex Fresnel reflection coefficients). One of the advantages of 

ellipsometry is that it measures the ratio or differences of two values as opposed to 

measuring an absolute value, making this technique highly accurate and reproducible. 
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The main difficulty with ellipsometry resides in the fact that the film 

properties are not directly measured (only ψ and ∆ are) but instead must be must 

extracted from models. These models are constructed to describe the samples and 

allow fitting the data via regression analysis. One must recognize that the refraction 

index will change for very thin films.[67] As the number of unknown properties 

increases, so must the amount of information contained in the data. As such, variable 

angle spectroscopic ellipsometers such as the Sopra GES5 allow investigating 

complex structure as each wavelength and angle will provide a new set of (n, k) 

values and corresponding equations. 

Figure 18 – Ellipsometry measures the change of polarization upon reflection of a linear 
polarized light on a surface. Upon interference with the film, the reflected light is elliptically 
polarized. The measured phase change ∆ and amplitude change ψ reflect film properties, 
thickness and refractive index.[66] 
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2.3.2  Sopra GES5 ellipsometer  

To allow for rapid film characterization in-house, a Sopra GES5 ellipsometer 

was acquired. The GES5 is a spectroscopic ellipsometer using a 75W high intensity 

Xenon arc lamp to obtain a continuous spectrum of light from 1.2 to 6.5 eV (190-

1030 nm). The ultra-violet extended range is particularly suited to study high band 

gap materials.  A configuration with a rotating polarizer and a fixed analyzer is used  

(Figure 19).  At location A after the 

polarizer, the light is linearly 

polarized and the direction of 

polarization varies with time. Upon 

reflection, the light is elliptically 

polarized and the ellipticity changes with 

time (as polarizer rotates). The light is again linearly polarized in C but this time its 

amplitude varies with the relative position of the polarizer with the fixed analyzer. 

The detector used is a Charge Coupled Device (CCD) adapted to a grating 

spectrograph. The grating disperses the light on all 1024 pixels simultaneously. A 

goniometer allows varying the angle of incidence θ from 7˚ to 90˚ and 200 mm travel 

XY stages enables automated wafer mapping. The beam spot size can be reduced 

from its nominal 1-5 mm dimensions to 365x270 µm using microspot optics. 

Unpolarized

light source

Rotating

polarizer

Sample

Fixed

analyzer

CCD 

detector

A B

C

θ

 

Figure 19 - Configuration of the Sopra GES5 
ellipsometer.  
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2.4 - CV and IV electrical characterization 

2.4.1  Operational principles 

Electrical properties of Al2O3 oxide films are to be measured across the wafer 

to establish a correlation between process and materials performances over a set of 

process conditions. The objective is not to achieve an exhaustive characterization of 

the dielectric performance but instead to focus on two key metrics, capacitance and 

leakage currents. 

Oxide dielectric thin films are characterized by their capacitance C:  

 

 

 

where ε0 is the absolute permittivity, εr the relative permittivity of the dielectric (also 

called dielectric constant and noted K) , A the surface area of capacitor, and d the film 

thickness.  

To a large extent increasing the capacitance C of high-K dielectric has been 

the main driver for the scaling down of CMOS-based devices allowing for higher 

drive current between source and drain when used as a gate dielectric in transistor 

devices. Accordingly to Equation 1, larger capacitance is achieved by decreasing the 

thickness of the film or increasing the permittivity of the dielectric.  

The capacitance can be determined with an LCR meter (inductance (L), 

capacitance C, resistance R) by measuring the impedance of a device under test 

(DUT). An AC voltage is applied over the dielectric and the current through the DUT 

Equation 1      0 r
A

C
d

ε ε
=    
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is measured. LCR determines both the real and imaginary part of the impedance from 

which the capacitance is extracted. To take into account that the dielectric constant 

will vary with frequency as a result of different polarization mechanisms in the 

medium, e.g., ionic or electronic polarization, capacitance values are measured at 

different frequencies ranging from a few Hz to MHz. In MOS structures, the 

capacitance is measured as a function of voltage (CV characteristics) and the 

dielectric constant is determined in the accumulation regime where concentration of 

the majority carriers in the semiconductor has reached its maximum in response to the 

applied field across the dielectric. 

Another key performance metric of dielectric thin films is the leakage current 

density at a given electric field (usually 1MV/cm). Leakage current is caused by 

electron tunneling through the thin oxide layer. For gate dielectric applications, 

leakage currents are expected to be maintained below 1E-7A/cm2 at 1MV/cm field 

and 1E-2A/cm2 for DRAM applications.[8] Leakage currents are measured by 

sweeping a DC voltage (V) across the capacitor and measuring the current (I). The 

current density J is determined from the ratio of the measured current over the  

capacitor area. Due to the small current density involved, high precision parametric 

analyzers are required.  

2.4.2  Automated probe station for electrical characterization 

In order to map the electrical characteristics at the wafer scale, an automated 

probe station was implemented.  2 Newport ILS 150 motorized stages with 150 mm  
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travel and 0.5 µm resolution are used for x and y translation of the sample. A 

Newport 850G actuator with 50 mm travel is used to lower the probe onto the 

capacitor. A LabView application was written for motion control and data 

acquisition. IEEE-488 GPIB (General Purpose Interface Bus) connections and 

LabView VISA commands were used for communication and data transfer. (User 

interface shown in Appendices, Fig. IX) CV measurements were executed on an 

Agilent E4980A LCR precision meter using a 0.1V amplitude AC voltage signal over 

20 Hz to 1MHz frequency range. IV characteristics were performed on an HP4145 

parametric analyzer. Flexible 0.005” diameter tungsten tips (Micromanipulator 7S 

model) were used.  Full wafer maps can be achieved by automatically probing several 

hundred capacitor structures. (Figure 20) 
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Figure 20 – Matlab renditions of electrical properties for 15 nm Al2O3 film deposited under 
underdosed water conditions. CV/IV characteristics measured over 190 Au / Al2O3 / Si 
capacitors. a) Capacitance map based on measurement at 10kHz and -2V. b) Leakage current 
map. Current determined at -1MV/cm field. Flow direction is along vertical axis from bottom to 
top. 
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2.4.3  MOS and MIM capacitor fabrication 

The CV and IV characterization of dielectric films were achieved on MOS- 

and MIM-type capacitor structures fabricated in the cleanroom of the Nanocenter 

FabLab at the University of Maryland. (Figure 21) Several fabrication methods were 

investigated using different patterning techniques (shadow mask, lithography/wet 

 etch, lithography/lift-off), different 

metallization methods (thermal and e-

beam evaporation, DC sputtering) or 

electrode materials (aluminum, gold, 

platinum). The combination of thermal 

evaporation with use of a stainless steel 

shadow mask was the most 

straightforward and economic approach. However, shadowing effects resulting from 

the curving of the 0.2 mm thick mask and lack of resolution for dots smaller than 0.5 

mm diameter lead to inaccurate capacitor areas. An approach based on UV 

photolithography was favored using the Fablab Oriel 87436 or EVG 620 mask 

aligners.  Devices built using a lift-off based process rather than wet chemical etching 

showed up to 30% higher permittivity, indicating a possible reaction of the oxide film 

with the wet Transene etchants (TFA-type for gold and D-type for aluminum). 

(Appendices, Fig. X) 

An operating procedure using AZ® 5214E photoresist was developed to 

achieve image reversal with negative wall profiles which are suitable for releasing the  
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Figure 21 – Schematics of metal-insulator-
metal (MIM) and metal-oxide-semiconductor 
(MOS) capacitors. 
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photoresist and metal layers during the lift-off sequence . (Appendices XI) A 

standardized 5” diameter chrome photomask on soda-lime glass (0.1 µm spot size) 

was designed and fabricated by Microtronics Inc. (Appendices Fig. XII). It includes 

816 sets of features with 3 capacitor shapes (circular, square, crenel) and 4 surface 

areas corresponding to 0.5, 0.25, 0.1 and 0.05 mm diameter caps. Aluminum 

capacitor performances were noticed to degrade over several weeks in storage likely 

due to an oxidation of the metal surface. As a result gold capacitors deposited by 

thermal evaporation were ultimately favored over aluminum.  
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Chapter 3: In-situ process optimization using mass-

spectrometry 

3.1 - Introduction 

As with any deposition technique, determining an appropriate process window 

of parameters for which specified characteristics are achieved is a critical first step 

when optimizing a new ALD process.  This is usually accomplished by a limited 

number of deposition experiments combined with post-process thickness and 

uniformity measurements. In the case of ALD, an effective regime is typically 

indicated by a process parameter regime in which constant thickness per ALD cycle 

is obtained within a precursor dose range.  In some cases this is confirmed by wafer-

scale measurements of across-wafer uniformity. This approach based on ex-situ film 

characterization can prove excessively time consuming. As we have seen in Chapter 

1, the ALD process space includes many parameters that can impact the GPC. Even 

when limiting ourselves to the most obvious ones, reactant exposures, purge times 

and temperature, the task of finding an optimal set of conditions can take several 

dozen runs. The problem becomes even more challenging when dealing with 

chemistries that exhibit substantial nucleation retardation behavior or when 

depositing multi-component films such as ternaries and quaternaries.  

In order to address some of these challenges, we used downstream quadrupole 

mass spectroscopy (QMS) to infer process behavior from reaction products and 

reactant depletion and delineate the contour of the ALD process space.  The ability to 
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identify saturation conditions as a function of reactant exposure by this method 

provides an avenue to more rapid determination of ALD process regimes, since 

multiple dose recipes can be investigated on a single wafer, without having to remove 

it and make post-process measurements.  

3.2 - Review of in-situ sensing methodologies used in ALD 

A number of in-situ characterization methods have been applied to study the 

process chemistry and reaction mechanisms in ALD processes. It should be noticed 

that in general in-situ sensing is challenging in ALD due to the relatively high 

pressure regime (0.1-10 Torr), the transient nature of the flow where gases are rapidly 

pulsed in and out and the minimized volume of most ALD reactors to achieve short 

residence time which physically impedes sensor integration.  

Quartz crystal microbalance (QCM) is widely used in line-of-sight PVD 

technique at room temperature to monitor growth rate and thickness in in-situ and 

real-time. QCM is also used in ALD for process diagnostic.[31, 39, 68, 69] It is 

sensitive enough to detect mass variations caused by adsorption/desorption reactions 

during a single ALD half-cycle via measurement of the resonant frequency of a 

quartz crystal. QCMs are reliable sensors to monitor film growth in situ and as such 

have been used successfully as a process optimization tool to determine the exposure 

and purge times leading to saturating and self-limited growth.[31] 

QCMs however are fundamentally limited in several ways. (1) Due the temperature 

dependence of ALD growth, the sensor must be maintained at the same temperature 

as the substrate which mostly limits its use to isothermal furnace systems. QCMs are 
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difficult to implement in substrate heating ALD reactors usually found in 

manufacturing environment. (2) QCM measurements are sensitive to temperature, 

pressure variations, gas flow velocity and film stress.[31, 70] (3) QCM measures the 

mass change on gold-coated quartz and film deposition may differ between the wafer 

and sensor because surface status is initially different, especially during the 

nucleation phase. (4) Due to the absence of chemical-selectivity, QCMs can only 

provide limited information related to the chemistry. The overall mass changes during 

each half reaction can be measured and correlated to a stoichiometric mass balance as 

long as the chemistry of that reaction has been determined via other venues. [39, 69] 

 

Among in-situ techniques that measure the film directly on the wafer surface, 

spectroscopic ellipsometry is the most widely studied and is now offered as a 

characterization method on commercial and R&D tools. [71-73] In-situ SE has been 

shown to produce accurate measurements of growth rate and has been successfully 

used to determine the onset of ALD saturation with exposure and to study initial film 

growth during nucleation. Additionally optical properties such as refractive index and 

optical bandgap can be retrieved as well as information about the film 

crystallinity.[72] However as mentioned in Chapter I, the validity and accuracy of the 

information extracted from the measurement of the optical parameters Ψ and ∆ 

depend critically on the quality of the modeling.  This is particularly true in the case 

of very thin films (<10 nm) where thickness and optical constants are often 

correlated. For such thin films, SE results must be corroborated with other  
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measurements techniques.[74] From a hardware implementation perspective, SE 

benefits from not being directly affected by the ALD flow regime, pressure or 

temperature. However in-situ SE requires an optical access on the reactor and 

deposition of optically flat substrates that allow the reflection of the incident light. 

Such requirements not only seriously limit the type of reactor on which SE can be 

integrated but also the type of substrate/materials that can be probed. 

 

Other in-situ diagnostic methods, which employs optical, surface analytical, 

and electrical measurements, can also be used in-situ in ALD processing, including 

Fourier transform infrared (FTIR) spectroscopy[42, 60, 75, 76], Auger electron 

spectroscopy (AES)[33], X-ray photoelectron spectroscopy (XPS)[77, 78] or low and 

medium energy ion scattering (LEIS/MEIS)[79].  Though these techniques can 

provide very detailed physicochemical information about chemical bonding, atomic 

composition, microstructure, thickness or nucleation, they have been limited to a 

research context, due to their cost, integration and operational complexity.  

 

Quadrupole mass spectrometry (QMS) is a very sensitive sensing technique 

which can provide quantitative and chemically-specific information about gas 

molecules present at very low concentration  (down to 200 ppb or 2E-11 Torr partial 

pressure)7. QMS benefits from being a non intrusive technique as gases can be 

sampled downstream to the reactor without interference with the process. QMS has 

                                                 

7 Technical specifications for MKS Vision 1000C QMS.  
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been extensively implemented in semiconductor manufacturing mainly for fault 

detection, process diagnostic and end-point process control in CVD[64, 80] and 

plasma etching[81, 82].  By measuring reactant depletion and by-product generations 

in CVD, real time film thickness metrology using QMS has been demonstrated.[63, 

64, 80, 83] 

  Its implementation in ALD seems at this point more limited, maybe because 

of the perception that the self-limited nature of ALD warrants excellent thickness 

control and therefore limits its potential benefits. Also QMS integration on ALD 

processes add extra challenges over steady state processes such as CVD: (1) the 

transient nature of ALD pulses and purges which requires fast response times and 

high scanning rates in order to track accurately the reaction dynamics, (2) the low 

partial pressure variations induced by solely the desorption of one sub-monolayer, (3) 

the use of metalorganic precursors whose cracking pattern in the QMS ionizer will 

have identical signatures as the by-product species to be measured. 

Despite these challenges, the process chemistries of a variety of ALD 

processes have been successfully investigated by QMS including Al2O3[39, 60, 69], 

ZrO2[84], TiO2[68], Ta2O5 and Nb2O5[85], TiN[86], Ru and Pt[87], and W[56, 57, 

76]. Beyond using QMS to qualitatively identify the reaction mechanisms, semi-

quantitative QMS studies have been reported where saturation conditions based on 

reactant exposures were detected.[36, 39, 68, 84] However in these studies, all 

realized in an isothermal tube furnace reactor, QCM measurements were also 

performed and used as the primary metric to infer the GPC and optimize the process.  
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Beyond identifying the process chemistry, QMS was used to investigate the 

impact of process temperature on the reaction by monitoring trends in by-product 

generation at different temperatures. Also to compensate for the limited byproduct 

generation inherent to ALD, the total surface area was increased by loading multiple 

substrates, resulting to a 44x increase in surface area over a 100 mm wafer. Finally, 

the H2O oxidant was substituted with D2O in order to differentiate the actual reaction 

byproducts from potentially cracking pattern of the initial reactant.  

3.3 - Review of prior work in W ALD  

In 2003, following a series of publications related to the use of in-situ sensing 

in CVD for process diagnostic and wafer-state metrology [62-65, 80, 83, 88, 89], Wei 

Lei and myself started investigating the use of mass-spectrometry in ALD.  

 

  

 

 

Figure 22 - Mass-spec signals observed 
during one W ALD cycle. H2 and SiF4 by-
product generations, occurring respectively 
during the SiH4 and WF6 exposures, clearly 
reveal the self-limited nature of ALD 
chemistry. [56]   

Figure 23 - Integrated SiF4 mass-spec signals 
computed as function of respective cycle number. 
The nucleation regime from cycle 0 to 30 is clearly 
identified and followed by a plateau indicating a 
linear ALD growth regime. The QMS results are 
corroborated with 5 ex-situ runs.[56] 
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W ALD runs were carried in the UHV ALD reactor at 3 Torr using tungsten 

hexafluoride and silane. Sampling the gases downstream to the reactor into a  

differentially pumped 300-amu closed ion source mass-spectrometer, reactant  

depletion (SiH4 and WF6) and by-product generation were monitored in real-time 

(Figure 22). In this process the self-terminating behavior was clearly characterized as 

shown by the signature of the hydrogen and silicon tetrafluoride byproducts that 

decrease a few seconds after the reactants were introduced. ALD reactions being 

stoichiometric, the amount of reactant by-product generated over time was correlated 

to the amount of materials deposited on the surface. H2 and SiF4 by-product signals 

were automatically integrated over each half-cycles period (Figure 23). The transition 

from nucleation to linear growth mode was directly observed in a single run as the 

integrated signal reached a plateau after about 25 cycles. The validity of the in-situ 

diagnostic was corroborated by ex-situ film thickness measurements after 5 runs of 

different cycle lengths. Additionally, we showed that the integrated mass-spec signals 

could be summed up over the process length and provide an accurate metric 

correlated to the total film thickness.  

These results were significant as they were obtained without interfering with 

the process chemistry or the reactor design. They showed that direct observation of 

surface saturation for each half-cycle enables the optimization of exposure and purge 

times in order to minimize ALD cycle time, a critical requirement for ALD 

manufacturability. Second, the QMS sensing provided a means to assess more subtle 

interactions which occur in ALD, such as imperfect surface saturation caused during  
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the nucleation regime. Third, real-time QMS sensing, shown to be a useful indicator 

of the wafer state, e.g., thickness, deposition rate, provides a basis for metrology and 

process control applications.  

The objective of the upcoming work is to build on these foundations and 

demonstrate that QMS sensing can be used in the case of a new process, Al2O3 ALD 

from TMA and water, in order to identify the reactant exposures leading to surface 

saturation and to correlate these results with process performances at the wafer scale, 

i.e., cross-wafer uniformity. A QMS-based mapping over the [TMA dose x water 

dose] process space is to be implemented to investigate the impact of dose 

interactions over a wide range of dose conditions from under- to over-exposure. 

 

3.4 - Experimental setup 

For this process, trimethylaluminum (TMA) (Epichem, Electronic grade) and 

deionized (DI) water were used. The transition from W to Al2O3 ALD required a 

significant reconfiguration of the delivery system in order to accommodate for the 

low vapor pressures of the reactant (detailed in Chapter 2). Reproducible precursor 

dosage was achieved by implementing a pressure end-point control scheme allowing 

reproducible delivery doses. Exposures times were set at 500 ms with purge times 

usually set at 20 s. The process temperature was 275°C unless otherwise specified.  
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3.5 - QMS-based optimization for reactant exposures 

In order to identify the masses that offer 

the optimal characteristics during the 

Al2O3 process, full surveys from 0 to 

300 amu were acquired under various 

process conditions: TMA pulses only, 

water pulses only, and consecutive 

TMA/water pulses to deposit Al2O3.  

The results indicate that mass-16 or 

CH4
+ is the main chemical signature 

during both TMA and water half cycles, in good agreement with literature.[42] Other 

masses of interest were also identified: mass-17 (OH+), mass-18 (H2O
+), mass-57 

((CH3)2Al+), mass-72 ((CH3)3Al+) though the latter two could only be observed at 

high TMA doses and usually remained too close to  background levels for accurate 

measurements. Therefore only masses 16, 17 and 18 were tracked with a total scan 

time of 250 ms. Mass-16 spectrum during 8 consecutive ALD cycles is shown in 

Figure 24. 

In order to identify by mass-spectrometry the TMA and water exposures 

leading to saturation, an iterative process of varying one precursor dose while keeping 

the other fixed, then reversing the role, was implemented. A single Si wafer was 

loaded so that the reactor wall plus wafer surface area would be identical to a regular 

process. The dose of TMA was raised sequentially from 0.7 to 4.2 µmol with a fixed  

 

Figure 24 – Mass-16 (CH4
+) QMS spectra over 

eight consecutive ALD cycles. The higher peaks 
correspond to TMA pulses, the smaller to 
water. 
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4.9 µmol water dose. For each TMA dose, 20 ALD cycles were run.Mass-16 peaks 

were integrated over each half-cycle period (Figure 25) and averaged over the last 10, 

discarding the potential transient results from the first 10 cycles caused by the dose 

change.  

The results for TMA dosage in Figure 26a show that the average integrated 

signal reached a plateau above 3 µmol TMA dose, suggesting that this value may be a 

suitable saturation dose of TMA.  The next experiment was carried out at a fixed 4.5 

µmol TMA dose (or 1.5X the QMS-based saturating dose) while varying the water 

dose from 1.4 to 10.5 µmol. In this case, Figure 26b shows that the integrated mass-

16 signal nearly saturates at 10 µmol water dose. The fact that the saturation is not as 

definitive as a function of water dose is a likely indicator for more complex 

 
 

Figure 25 – QMS mass-16 (CH4) integrated 
during water half cycles.  20 cycles were run at 
5 TMA doses under a fixed 4.9 µmol water 
dose.  

Figure 26 – QMS mass-16 averaged over 10 
cycles (Figure 25) as a function of a) TMA dose 
(fixed H2O dose at 4.9  µmol) and b) H2O dose 
(fixed TMA dose at 4.5 µmol) 
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adsorption/desorption reactions of water 

on the surface, which will be discussed 

in further details. At this point, we take 

approximate saturation doses for this 

chemistry and temperature to be 10 

µmol water and 3 µmol TMA.  

Measurements of mass-17 and mass-18 

while varying the water dose also 

indicate a sharp increase of the 

integrated peaks during the water half-cycle beyond 8.6 µmol. (Figure 27) This 

suggests that the adsorbed -Al(CH3)2
* groups from the previous TMA exposure have 

been fully converted into hydroxyl groups, resulting in the rapid increase of mass-18 

from the excess of water.  

3.6 - In-situ exploration of ALD process space 

The optimization approach followed during the previous experiments was 

similar to the one followed in a conventional protocol where one precursor is set at a 

fixed dose while varying the dose of the other precursor. The in-situ approach 

however offers the benefits to yield the results within one single run rather than the 

dozen or so runs that would have been required if ex-situ measurements were 

undertaken.  Both approaches are however limited as they offer at best a cross-

sectional view of the multi-dimensional ALD process space. As such, complex 

 

Figure 27 - Averaged integrated mass-18 
during H2O dose. Mass 18 was integrated over 
H2O half-cycle period.  
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interdependencies between complementary half reactions that are likely to affect the 

process performances may not be revealed. 

A LabView program was therefore written to automatically span the process 

space by varying both water and TMA doses over the broadest range allowable within 

the physical constraints of the delivery system. The exposure sequence was 

programmed as such: the first set was done at a low 1.5 µmol TMA dose and the 

water dose was incrementally increased from 1.2 to 10.3 µmol every 30 cycles with a 

60 s purge time. At completion of this first “two-dimensional cross-section”, the tool 

was left idle for 20 min to help lowering the water background in the system which is 

likely to build up due to the large excess of water relative to TMA. A second set was 

then initiated at slightly higher TMA dose and so on. A total of 56 dose conditions (7 

TMA doses by 8 water doses) totaling 1680 cycles were explored over a single run. 

For each cycle, mass-16 peaks were integrated over the half-cycle periods and the 

results averaged over the last 15 of 30 cycles. 
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Figure 28 - QMS data for mass-16 (CH4) 
integrated over H2O half cycle periods and 
averaged over 10 cycles at different TMA 
and water doses.  

Figure 29 – Schematic of ALD regimes based on 
growth per cycle vs. reactant exposure: a) “ideal” 
ALD process with saturating self-limited growth, 
b) pseudo-ALD growth.  
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The results are shown in Figure 28 with some intermediary results left out for clarity. 

This graph provides a set of cross-sections of the ALD process space, each cross-

section being similar in nature to the one discussed in Figure 26. A number of 

comments can be made in relation to Figure 28: 

(1) For the first 5 cross-sections corresponding to TMA doses ranging from 0.6 to 

2.3 µmol, the generation of CH4 by-product does reach a plateau as the water 

dose is increased indicating saturation behaviors. 

(2) Based on the results from Figure 26b where a saturation of mass-16 was 

observed at 4.5 µmol TMA and ~9 µmol water, it was expected to see a 

similar trend on Figure 28 for the cross-sections at 3.2 and 4.1 µmol TMA 

when the water dose reaches 10 µmol or so. The 2 sets of data appear in 

disagreement. It is likely that the onset of saturation for these TMA doses has 

drifted beyond 10 µmol of water as a consequence of exposing repeatedly the 

system to high water doses over long period of time which can cause a 

buildup of water moisture in the reactor. If so, the TMA doses needed to 

achieve saturation would likely increase as parasitic reactions occurs in the 

system.  

(3) Interestingly a second set of observations can be drawn if one analyzes these 

data by looking at the amount of methane produced at a fixed water dose, i.e., 

along a vertical axis (such as the one represented by segment AB on Figure 

28). Mass-16 appears to saturate at 3.2 and 4.1 µmol TMA doses for water  
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doses up to 4.7 µmol, and diverge above 4.7.  The results at 4.7 µmol of water 

are in good agreement with those from Figure 26a that showed saturation at 

4.5 µmol of water for TMA doses above 3 µmol.   The divergence at higher 

water doses would be consistent with a mechanism where the density of 

hydroxyl reaches uniform coverage at ~4.7 µmol of water but keeps 

increasing at higher water exposures requiring in turn more TMA to reach 

saturation.  Such interpretation would be in agreement with the results from 

Matero and al. discussed in Chapter I. 

 

There is no question that the QMS results in Figure 28 are not consistent with 

ideally self-terminating and saturative reaction mechanisms where the GPC would 

remain constant at higher doses as depicted by curve (a) in Figure 29. Indeed under 

such ideal ALD growth, one should eventually observe an overlapping of the curves 

when the doses of TMA and water are high enough to saturate the surface. The fact 

that it does not occur could reflect a pseudo ALD regime where complex adsorption 

behavior of water at high exposures would result in increased growth rates. This 

behavior could be initiated by a combination of increased hydroxyl groups coverage 

at high water partial pressures as suggested by Kuse and Matero[38, 53] and/or 

multilayer water physisorption caused by hydrogen bonding. The problem may be 

compounded by the repeated exposures of excess water relative to TMA required to 

span the process space. Even the extended purge times set up in this experiment may 

not be sufficient to counteract the potential multi-layer adsorption of water over time 
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which would likely put off balance the delicate equilibrium between complementary 

ALD half reactions.  

 Despite these apparent flaws, these QMS results provide important clues 

regarding the saturation behaviors for both TMA and water and will be used in the 

next chapter as reference points when analyzing the process performances from an 

ex-situ perspective. The data from Figure 28 will be revisited in more details in 

Chapter 4 in comparison with ex-situ thickness measurements achieved across the 

TMA-water process space. 

3.7 - Prediction of thickness uniformity using QMS 

Downstream QMS sensing facilitates the tool/sensor integration and ensures 

that the process flow in the reactor is not disturbed by the gas sampling. However, 

contrary to QCM, in-situ ellipsometry or capillary-based QMS, downstream QMS 

cannot provide localized sensing information. We may therefore question if 

downstream sensing can help monitor trends such as thickness uniformity vs. reactant 

exposure.   

Four alumina films were therefore deposited over 100 ALD cycles at 275˚C 

using a fixed 6.5 µmol water dose and diminishing TMA doses ranging from 3.22 to 

0.29 µmol. The film thicknesses were then measured ex-situ at 9 points across the 

wafer in the direction of the cross-flow. The results shown in Figure 30a indicate a 

clear degradation of the thickness uniformity across the wafer with decreasing TMA 

doses. Mass-16 peaks were integrated over each water half-cycle and summed up 
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over the length of the run. The results shown in Figure 30b (left axis) indicate a 

decrease of mass-16 peaks at lower TMA doses. The thickness non-uniformity,  

  

calculated as 1σ/mean, is displayed on the right scale. It is apparent that ex-situ and 

in-situ data show a good agreement: while the non-uniformity decreases to 1.8% at 

1.9 µmol and 0.4% at 3.2 µmol, the corresponding methane generation does plateau. 

At the opposite, the sharply lower QMS signal at 0.3 µmol reflects the substantial 

decrease of uniformity as alumina is deposited over less than half of the wafer.  

 While downstream QMS cannot provide information on local growth 

behaviors, it can yield reasonably accurate feedback regarding the deposition 

behavior at the wafer scale. As such the technique could be useful to detect potential 

process faults resulting in non uniform growth. 

 

 

Figure 30 – Correlation between film thickness uniformity across 100 mm wafer and 
downstream QMS sensing. a) thickness profiles for four Al2O3 ALD runs at varying TMA doses 
and a fixed 6.5 µmol dose of water. b)  in-situ QMS data for mass-16, integrated over water half 
cycles and averaged over the whole run (left scale), and ex-situ thickness non-uniformity (right 
scale) as a function of TMA doses.  
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3.8 - Real-time monitoring of nucleation kinetics 

In order to investigate the impact of ALD growth delays induced by 

nucleation kinetics, 3 runs were carried out at 275˚C using 3.2 µmol TMA and 6.5 

µmol water using different sample preparation: 1) no cleaning (resulting in 2.5 nm 

native oxide), 2) dipped for 30 s in 5% HF solution and nitrogen blown dry, 3) dipped 

for 30 s in 5% HF solution, DI water rinsed and nitrogen blown dry. Mass-16 data 

were integrated at completion of each water half-cycle. The results shown in Figure 

31 indicate that regardless of the sample preparation, the amount of generated 

byproduct saturates within 5 to 7 cycles. After the 3rd cycle, the byproduct generation 

has already reached 94% of its maximal value, illustrating the high reactivity of the 

TMA / H2O system. The result on H-terminated Si surfaces, i.e., HF-cleaned, indicate 

that the process is sufficiently reactive to break the Si-H bonds and form Si-OH bonds 

instead on the whole Si surface. The fact that the 3 sets saturate at the same level is a  

 

 

Figure 31 – QMS mass-16 integrated over 
water half cycle vs. cycle number for Al2O3 
ALD runs at 3.2 µmol TMA and 6.5 µmol 
H2O exposures over 3 Si wafers: untreated, 
HF-cleaned last, HF-cleaned and DI water 
rinsed last. 

Figure 32 – Film thickness measured by 
ellipsometry for 4 ALD runs at 275˚C with 
varying number of cycles. Linear 
regression confirms the absence of 
nucleation-induced growth delay.  
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 likely indicator of similar GPCs in the linear growth regime. The excellent thickness 

control of the alumina process is clearly shown in Figure 32 where, under the same 

exposure conditions, 4 wafers with native oxide were processed over 50 to 500  

cycles. The GPC determined from the linear fit was 1.0 Å/cycle. Extrapolation to zero 

indicates no growth delay confirming the validity of the QMS data. 

 

The effect of process temperature on 

film growth was also surveyed by 

carrying out 3 runs at 200, 250 and 

300˚C.  The in-situ QMS data in Figure 

33 show a 6% decrease over the length 

of the 200˚C run which is good 

agreement with the decrease of growth 

rate measured by ellipsometry from 1.0 

Å/cycle at 300˚C to 0.95 Å/cycle at 

200˚C.  

3.9 - Discussion and conclusion 

Due to their good chemical selectivity and partial pressure sensitivity, QMS 

sensing has proved very valuable for fault detection and in-situ chemical diagnostics, 

helping to identify reaction pathways in CVD and ALD processes. Our work in W 

ALD was a significant contribution in the ALD field by showing that quantitative 

measurements of reactants and byproducts partial pressures could be correlated to 

 

Figure 33 – Integrated QMS data (mass-16) for 
3 runs at 200, 250 and 300˚C.  
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growth per cycle. This downstream approach allowed the monitoring of the process 

without tool or chemistry modification and provided real-time information about 

nucleation kinetics and wafer-state metrology. 

 The transition from the WF6/SiH4 to Al(CH3)3/H2O chemistry added 

substantial challenges. (1) The low vapor pressure of the precursors resulted in short 

(500 ms) pulse-type pressure bursts rather than relatively long (10 s) steady exposures 

delivered by mass flow controllers. Faster acquisition times achievable with the new 

MKS Vision 1000C were important to capture the pulse dynamics. (2) In the ion 

source, the metalorganic precursor Al(CH3)3 can crack in many organic compounds 

including CH4
+, the main reaction byproduct. Monitoring the methane byproduct 

generation during the water half cycle rather than during the TMA half cycle helped 

at minimizing the impact of TMA cracking but prevents measuring the depletion of 

the TMA reactant during reaction. (3) Parasitic surface reactions induced by water 

high polarity proved significant. While water is commonly used as an oxidation 

precursor in ALD, its complex adsorption/desorption behavior in low pressure reactor 

systems is well known resulting in “wall memory” effects.  In pursuing QMS 

experiments to identify a suitable ALD process window, the history of water dosing 

becomes a significant factor, especially because the relatively low wafer and wall 

temperatures employed in ALD do not allow rapid water desorption from the walls.  

Thus the amount of residual water in the ALD process ambient depends on the dose 

history of water, and dosing experiments like these are thus best carried out with 

monotonically increasing water doses, to minimize unwanted water background 

effects.  
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Despite these challenges the benefits of QMS sensing in the Al2O3 ALD were 

substantial from a tool and process optimization perspective. Similarly to the W ALD 

process, impacts of sample preparations or temperature on the film growth were 

readily observed. QMS sensing proved also crucial during the initial phase of the tool 

reconfiguration and process characterization by revealing unexpected condensation of 

the metal organic precursor in the delivery line which resulted in a deterioration of the 

process performance (unstable GPC, thickness non-uniformity). The condensation 

lead to a broadening of the mass 16 peaks as condensed TMA was slowly desorbing 

from the wall.  

In the next chapter we will investigate how dose exposures and purges did 

impact process performances at the wafer scale. The QMS results anticipating 

saturating conditions at 3 µmol TMA and 3-10 µml water will be reexamined in the 

context of the more complete ex-situ characterization.
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Chapter 4: Cross-wafer thickness uniformity in Al2O3 ALD  

4.1 - Introduction 

In the previous chapter, we used downstream mass spectroscopy to infer 

process behavior from reaction products and reactant depletion and delineate the 

contour of the Al2O3 ALD process space using TMA and water. In this chapter, we 

intend on using this parameter space as a starting point for a more detailed 

investigation of the ALD process regime based on ex-situ post-process uniformity 

measurements as a function of precursor dose conditions.  Our cross-flow ALD 

reactor design produces a spatially varying flux of ALD impingement by precursors 

and products across the wafer.  By measuring conditions from under-dosing to over-

dosing of precursors (compared to dose amounts that achieve ideal ALD behavior, i.e. 

excellent uniformity) under variable purge times, the cross-flow design highlights the 

limits of the appropriate ALD process window, thus using real wafer-level uniformity 

as a metric for true ALD behavior. 

It is worth noting that many publications on ALD identify a process window 

primarily from the dose at which growth rate saturates as measured on convenient, 

small “chip-size” samples and then investigate the film properties obtained at or 

slightly above the “ideal” saturating doses. In contrast, approaches conventional in 

industrial practice typically use design of experiments on full wafers.  While they 

ultimately provide a path to viable ALD processes, they do not provide useful 
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feedback on either the intrinsic process limits for a given ALD chemistry or the 

mechanisms involved. With a dramatically expanding field of applications for ALD 

in sight along with more complex multi components chemistries, we believe greater 

insight into ALD processes will be needed to reach their full potential. 

Water is arguably the most commonly used oxidant for ALD as it exhibits 

high chemical reactivity with ALD metal precursors, high vapor pressure at room 

temperature, is low cost and inherently safe. However water high molecular polarity 

is well known in vacuum technology to cause complex adsorption/desorption kinetics 

due to potential hydrogen bonding on substrate and reactor wall surfaces. As an 

alternative, hydrogen-free oxidants such as ozone or radical oxygen are favored in 

manufacturing. To illustrate the impact of water-based surface chemistry on process 

performances, the TMA/ozone system will be also investigated. 

4.2 - Experimental protocol 

The experimental setup for the Al2O3 ALD process has been described in 

details in chapters 2 and 3.  Maps of the film thickness and refractive index were 

obtained using the Sopra GES5 spectroscopic ellipsometer. Samples were measured 

near the Brewster incidence angle for silicon at 75°. In the case of very thin films (<5 

nm), measurements at additional angles were required to extract both thickness and 

refractive index. A Cauchy dispersion law was used for the modeling of the film 

optical properties. Al2O3 has an optical band gap of 8.8 eV and is non-absorbing 

(k=ε2=0) in the visible range. In this case, the dispersion of the refractive index can be 

described by a standard Cauchy relationship: 
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n = An + Bn / λ2 + Cn/λ4   where An, Bn and Cn are the Cauchy fit parameters. 

The thickness profiles were measured from 10 to 30 equidistant points across the 

wafer in the direction of the flow. The metric for non-uniformity was established 

from the ratio of the standard deviation over the mean value, 1σ/mean.  

4.3 - Results: across-wafer uniformity 

Measurements of across-wafer uniformity are in some sense the gold standard 

for ALD.  If the self-limited adsorption/reaction behavior of ALD is obtained for a 

given precursor in a specific ALD chemistry, then moderate overdosing of that 

precursor should not adversely affect ALD performance, but simply ensure the full 

surface saturation is achieved.  We follow this strategy in the following.  Here we 

investigate this metric by varying the dose of one precursor while holding the 

complementary dose of the other precursor constant. 

4.3.1 Effect of water dosing on thickness uniformity 

Using the previous QMS results as a reference for the TMA dose leading to 

saturation, five wafers were consecutively processed using a fixed TMA dose of 6.3 

µmol (about 2x the assumed saturation dose) while varying the water dose. The 

corresponding thickness profiles along the direction of gas flow (left to right) in our  

cross-flow ALD reactor are shown in Figure 34. The purge times were maintained 

constant at 20 s regardless of the water dose. As expected for self-terminated ALD 

reactions, excellent uniformity (<1% at 1σ/mean) could be achieved under the right 

conditions, namely at 3.1 µmol water dose, with a deposition rate of 0.95 Å/cycle, 
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in good agreement with the 

literature.[38] 

At the higher 10.7 µmol dose, 

Figure 34 reveals a substantially 

higher (30-40%) growth rate per 

ALD cycle. This result appears 

consistent with the observations by 

Matero, Li and Kuse that we 

reported in Chapter 1.2 [38, 53, 54] 

where higher water concentration 

resulted in higher conversion of the active methyl sites on the surface and higher 

GPC. It is important to emphasize at this point that in our reactant delivery scheme, 

higher doses are achieved not by increasing the exposure time but by increasing the 

setpoint pressure in the delivery vessel. The resulting higher amplitude gas pulse 

translated into a higher reactant partial pressure and concentration across the wafer, 

similar in behavior to the higher flow rate used by Matero or higher pressure in Li’s 

case. 

The suggestion at this point is that from 3 µmol and upward, water does 

saturate the surface under the equilibrium conditions governed by the partial pressure 

achieved upon the release of the pressure-controlled dose in the delivery vessel. But 

increasing doses beyond 3 µmol results in higher partial pressure that allows for 

adsorption to higher coverage and therefore enables higher growth rates per cycle.  

 

Figure 34. Across-wafer thickness profiles for five 
water doses with fixed TMA dose (6.3µmol). 
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The 6.3 µmol TMA dose used in Figure 34 being twice the saturation TMA dose 

inferred from Figure 26a, enough extra TMA is available to react with the increased 

concentration of hydroxyls on the surfaces resulting in the 40% higher GPC at 10.7 

µmol of water. 

Based on these observations, the leveling of the methane byproduct signal 

observed by QMS around 10 µmol (Figure 26b) is a likely indicator of the maximal 

saturation achievable on the surface. These results would also be in good agreement 

with the data obtained from the automated exploration of the [Al(CH3)3, H2O] process 

space (Figure 28) where we noticed the amounts of methane for Al(CH3)3 doses of 

3.2 and 4.1 µmol were diverging at water doses above 4.7 µmol. Retrospectively we 

can attribute this divergence to an increase of the hydroxyl surface coverage which in 

turn requires additional TMA to react. 

At lower water doses from 2.2 to 1.4 µmol, the thickness uniformity degrades 

progressively, as seen in Figure 34. As expected for chemisorbed surface reactions, 

without sufficient water to react the adsorbed TMA, we expect lower growth rates, as 

observed.  For our cross-flow ALD reactor design, we expect depletion of water 

coverage across the wafer.  Indeed, such a thickness gradient is observed, with a 

thicker film near the inlet (left) and thinning out towards the outlet of the reactor 

(right), with no sharp thickness discontinuity across the wafer.   

4.3.2  Effect of TMA dosing on thickness uniformity  

A complementary experiment was carried out at fixed water dose (3.9 µmol, 

i.e., 25% higher than the saturation dose determined from thickness uniformity 
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profiles in Figure 34) and varying TMA dose. As seen in Figure 35a, for TMA doses 

at or above ∼3 µmol, uniformity and deposition rate remained essentially unchanged.  

Since the water dose was slightly above saturation value, this finding confirms that 

for the TMA adsorption, the maximal surface coverage of Al(CH3)2
* species is 

independent of the partial pressure of TMA and is instead determined by steric 

hindrance of the adsorbate and the atomic arrangement on the surface. 

With decreasing TMA dose, uniformity degrades, first evidenced by moderate 

depletion across the wafer, lower thickness downstream (right) and higher thickness 

(left), shown in Figure 35a. Below 0.41 µmol, the thickness profile exhibits a more 

dramatic depletion with an abrupt drop near the downstream side of the wafer.  With 

further decrease in TMA dose, this behavior continues (Figure 35b), with the 

depletion edge shifting further upstream (left) and the deposition rate increasing 

substantially at the upstream (left) portion of the wafer.With the water dose somewhat 

a b 

 Figure 35.  Across-wafer thickness profiles for fixed water dose (3.9 µmol) and varying TMA 
doses. The data were split in 2 graphs for clarity (a) emphasis for TMA doses close to saturation  
(b) emphasis for TMA dose in under-exposure regime.  
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above (+30%) the ALD saturation dose, further water adsorption may be concentrated 

at the upstream end of the wafer. If the TMA can react with more than a single layer 

of water on the surface, as is likely, then the water will preferentially react with the 

limited TMA dose at the upstream end, which in turn may facilitate further water 

adsorption on the next cycle.  In other words the thickness profile anomalies in Figure 

35b may be regarded as deviations from “ideal” ALD behavior in which the cross-

flow ALD reactor design emphasizes or even exaggerates deviations caused by the 

synergistic effects of under-dosed TMA being depleted across the wafer and 

increased coverage with –OH at water doses above the initial saturation at 3 µmol. 

4.3.3  Effect of dose ratio 

In the two previous cases, one reactant had been underdosed while 

maintaining the other to a level that had initially been determined as sufficient to 

achieve optimal uniformity and growth rate. This led to striking non-uniformities, 

especially for fixed saturation water dose and decreasing TMA dose, seen in Figure 

35b. With strong underdosing of TMA, the question arises as to whether simultaneous 

underdosing of water would re-establish a reasonable measure of uniformity.  To test 

this, the TMA dose was maintained at 0.31 µmol, an underdose condition that 

resulted in sharp non-uniformity in Figure 35b, while the water dose was varied from 

an initially saturating level, 4.86 µmol, down to 0.56 µmol over 6 consecutive runs. 

As seen in Figure 36, uniformity under these TMA-starved conditions is partially 

restored when the water dose is decreased. Between 1.38 and 0.97 µmol water doses, 
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the thickness profile does not exhibit the sharp discontinuity observed earlier. Thus 

improved uniformity results, though with lower deposition rate as a balance was re- 

a b 

Figure 36. Uniformity for under-dose conditions of TMA (0.31 µmol) and water. (a) Thickness 
profiles show improved uniformity, though deposition rates are lowered and ALD uniformity is 
not achieved. (b) Area-averaged deposition rate as a function of r=water/TMA dose ratio.  
Height of vertical bars indicates extremes of deposition non-uniformity on the wafer. 
 

 

established between TMA and water availability at all points across the wafer.  

However, none of the profiles exhibit high uniformity as expected from ALD, 

because neither dose was adequate for surface saturation.  In addition, the cross-flow 

reactor design defined a clear depletion direction that is decorated by the reduction in 

thickness along the flow direction. 

In an attempt to better quantify the non-uniformities across the wafer, we 

determined growth rates averaged over the two-dimensional area of the wafer, which 

are shown as data points in Figure 36b as a function of the water/TMA dose ratio, r. 

The vertical bars reflect the non-uniformity measured across the wafer for each ratio 

r. The results show that the non-uniformity increases when water is in excess relative 
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to TMA, from about 30% non-uniformity at r=4 to >100% at r=14. The average film 

deposition rate reveals two distinct trends. For r<4, the average growth rate drops 

significantly, indicating that both doses were too low to achieve full saturation across 

the wafer and to sustain the optimal growth rate. For r >4, the average growth 

becomes nearly constant, reflecting a mass balance between the amount of materials 

lost from depletion in the back-end region of the wafer and what is gained closer to 

the inlet region. At the same time, the non-uniformity increases notably, indicative of 

the phenomena shown in across-wafer thickness profiles in Figure 35. 

4.3.4  Results: uniformity and purge times 

The uniformity data indicate that when the water dose (relative to saturation) 

is large compared to the corresponding metric for TMA, the growth rate increases 

significantly near the inlet zone, up to twice the nominal value of 0.1 nm/cycle. As 

mentioned above, this non-ideal ALD behavior is likely a consequence of the 

increased coverage of hydroxyl groups on the surface resulting from the relative 

excess of water and the availability of Al(CH3)2
* reaction sites at the upstream 

portion of the wafer when TMA is under-dosed. With the complex adsorption 

behavior of water, that can monolayer-chemisorb at different saturation levels, or 

even potentially multi-layer physisorb, we can question how the purge times will 

impact the –OH* surface coverage and consequently the thickness uniformity. To 

assess this, experiments were carried out under conditions of water over-dose (4.86 

µmol) and TMA under-dose (0.3 µmol), i.e., r=16, keeping TMA purge time 20 s as 

before but varying water purge time from 20 to 120 s.  
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Results are shown in Figure 37 and 

indicate that increasing the water 

purge time significantly reduces the 

overgrowth upstream near the inlet 

zone. This could be caused by 

dehydroxylation reactions where 

hydroxyl sites recombine on the 

surface to form a water molecule that 

can desorb. Dehydroxylation has been 

shown to occur at temperatures as low 

as 130˚C.[90] It is also possible that if water multi-layer physisorption is occurring 

(concurrently with chemisorption) then the longer purge times would help desorb the 

weakly hydrogen-bonded water molecules.  

Also attenuated is the sharp depletion of deposition downstream, associated 

with the under-dosing of TMA.  This suggests that the reaction of water upstream had 

been enhanced by the presence of upstream TMA (in under-dosing situation), and that 

the preferential adsorption of water upstream in the cross-flow geometry had caused 

enhanced gettering of TMA upstream. In other words, Figure 37 in concert with 

previous data suggests that the cross-flow reactor configuration decorates deviations 

from an ideal ALD process window by synergistic effects of adsorption, depletion, 

and reaction between the two precursors. 

 

Figure 37. Across-wafer uniformity for over-
dosed water (4.86 µmol) and under-dosed TMA 
(0.3 µmol), with varying duration of purge cycle 
after water dose.  Purge time after TMA dose = 
20 s. 
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4.3.5  Al2O3 ALD from TMA and ozone 

To help better understand the contribution of the oxidant on the growth 

mechanisms and its impact on thickness uniformity, a similar set of experiments was 

undertaken where water was substituted with ozone (O3). The choice of ozone 

removes the possibility of hydrogen bonding as a means for added oxygen-containing 

species on the surface, providing a test for inferences above about the role of water-

related species beyond ideal ALD surface self-limiting behavior. 

  In the first set of experiments, ozone exposures were controlled by adjusting 

the pulse time from 1.2s down to 50 ms at a fixed TMA dose of 1.6 µmol (Figure 38). 

Similarly to water / TMA, excellent thickness uniformity across the 100 mm wafer 

was achieved (1σ/mean < 0.4%) at 1.6 µmol of ozone8. However key differences are 

noticeable with the results from the water dosage experiment seen Figure 34: (1) upon 

ozone over-exposure (3.2 µmol), the GPC remained unchanged at 1.04 Å/cycle.  

Contrary to water, in the overexposure regime, the surface site conversion occurring 

during the adsorption of ozone doesn’t appear to be dependent on the concentration of 

ozone. This would indicate that the ozone adsorption equilibrium is such that the 

surface site coverage has reached a maximum value by 1.58 µmol and that no further 

chemisorption is possible. Also due the absence of hydrogen bonding, potential 

parasitic reactions from multi-layer physisorbed molecules can be excluded. (2) Quite 

                                                 

8  The values are taking into account the 20% O3 and 80% O2 mixture delivered by the ozone 

generator. 1.6 µmol represents 20% of the total pulse, or 7.9 µmol. Experiments with only O2 under 

same process conditions showed no growth.  
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strikingly, when under-exposing ozone, the uniformity only moderately degrades 

across the wafer while the GPC decreases rapidly consistent with to the low ozone 

doses. In this case, the spatial distribution of the oxidant molecules in the cross-flow 

reactor does not result in depletion effect where the deposition rate decreases along 

the wafer. It is possible that the one-to-five dilution of ozone in oxygen results in a 

more homogeneous environment across the wafer and buffers the impact of a pulse-

wave traveling across the wafer and getting depleted. 

In a second set of experiments, TMA exposures were lowered from 2.46 to 0.07 µmol 

under a fixed 1.6 µmol dose of ozone. The results indicate a constant GPC from 1.19 

to 2.46 µmol showing no effect of TMA over-exposure, as in the water/TMA case. 

The thickness uniformity steadily degrades between 1.19 down to 0.24 µmol as the 

reactant is depleted across the wafer though the deposition rate in the inlet zone 

remains at 1.06 Å/cycle. At 0.16 µmol and below, a monotonic depletion remains and  

  

Figure 38 - Across-wafer thickness profiles 
for 8 ozone doses with fixed TMA dose (1.6 
µmol). 

Figure 39 - Across-wafer thickness profiles 
for 12 TMA doses with fixed ozone dose (3.2 
µmol). 
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the overall GPC finally decreases as the TMA doses are insufficient to saturate the 

surface. 

4.4 - Discussion and conclusion 

This work has explored a dose/purge process spaces for the TMA/water and 

TMA/ozone chemistries which are considerably larger than a practitioner would 

utilize, given the extent to which this process is already used reliably.  The purpose 

has been to more broadly identify mechanisms which control ALD uniformity and 

growth rate and to develop techniques that reveal these for their subsequent use in 

ALD research and development for a variety of ALD chemistries and materials 

applications.   

Across-wafer uniformity measurements achieved in a cross-flow 

configuration highlights and underscores the surface chemical complexity which can 

accompany even the most commonly used ALD process, that of Al2O3 from TMA 

and water.  It is true that the cross-flow configuration exaggerates both non-

uniformity and non-ideal ALD mechanisms responsible for it.  However, this can be 

viewed as an advantage in that it identifies regimes where ALD is imperfect, perhaps 

to the extent that demanding applications cannot tolerate.  Furthermore, cross-flow, 

low-volume ALD reactor designs have substantial interest for manufacturing 

equipment in terms of cycle time and wafer throughputs. 

The behavior of water is particularly striking in these results.  Its ability to 

monolayer chemisorb at different levels of saturations has significant ramifications 

for ALD process optimization that must be carefully understood in order to realize the  
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full  benefits of ALD self-limiting 

surface reaction, thickness control, 

uniformity, and conformality.  

These observations about water as 

a precursor are particularly 

important because water is 

commonly used as oxidant for 

oxide ALD processes.   

A schematic representation 

of the uniformity data for the 

TMA/H2O system is presented in 

Figure 40, over which contours 

have been added to reflect an interpolated view of this ALD behavior.  Perfectly self-

limiting adsorption/reaction, the basis of ALD’s benefits, would imply essentially 

perfect uniformity in the upper right quadrant: as either reactant dose is increased 

above its saturation value for that precursor, it would cause no further surface reaction 

and leaves the ALD system 

without interaction on the wafer.  This specifies the “ideal” ALD regime denoted in 

the figure.   

Indeed, exceptional uniformity has been observed here, and in numerous publications, 

as seen by the green contour of uniformity better than 1% near 3 µmol for both 

precursors and for higher TMA dose as well, reflecting the observation above that 

 

Figure 40 – Schematic contour map of across-wafer 
non-uniformity as a function of TMA and water 
doses, obtained from thickness profiles in this work. 
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TMA itself seems well-behaved in terms of self-limiting adsorption/reaction in this 

ALD chemistry.  

The situation deviates from ideal in the direction of water overdose, where 

significantly enhanced growth rates (up to 40%) and non-uniformities are observed, 

e.g. the 10% non-uniformity at high dose in Figure 40 that arises from the 10.7 µmol 

water. Also, corresponding to the data in Figure 40, strong non-uniformities are 

indicated for under-dosed TMA and over-dosed water in Figure 35.   

From these data, it appears that in order to optimize the film deposition at the 

wafer scale, one must take into account the complex adsorption behavior associated 

with water-based surface chemistry and the change in adsorption equilibrium and –

OH* saturation coverage with water concentration. As mentioned in Chapter 1.4, 

ALD reactor designs can significantly impact the ALD process performances. This is 

particularly true when it comes to designing the delivery system. The fact is that just 

controlling the number of molecules going into the system is not sufficient to 

characterize the process space. Understanding how the partial pressure is affected 

when controlling the dose is critical. As such, the examples based on Matero’s and 

this current work are very revealing. Adjusting water exposure time under fixed flow 

rate conditions will reveal the onset of reaction self-termination but will not 

necessarily reveal the optimal saturation conditions that depend on the saturation 

equilibrium and the oxidant partial pressure. This consideration should be carefully 

taken into account when designing or buying an ALD system as many approaches to 

reactant delivery are available and likely to present pros and cons. To some extent, 
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the end-point pressure control adopted for this reactor offers the benefits to very 

accurately and reproducibly control the dose without having to rely on the exposure 

time (which is a less accurate way of controlling the dose). However one must 

certainly recognize the impact of higher partial pressures at higher doses on the 

saturation behavior of the water molecules. 

While the hypothesis of higher hydroxyl coverage achieved through 

chemisorption at higher water partial pressure is favored by Matero[38] and 

Kuse[53], it is also known that water molecules may be adsorbed to form multilayers 

on the surfaces of various oxides, including Al2O3[91], TiO2[92], SiO2[45], ZrO2[93] 

and HfO2[37, 93]. It has been shown that while the first layer bonds to the surface via 

chemisorption, additional layers are all physisorbed with slowly diminishing bonding 

strength. Though these studies were not achieved in the context of an ALD process, 

but rather looking at interactions of water with oxides surfaces, it is however quite 

likely that such effect occurs in ALD during the water exposure at high partial 

pressure.  

In light of these results, it is interesting revisiting the QMS-based results from 

chapter 3.  Data from Figure 26a indicated a clear saturation behavior of the TMA 

reactants around 3 µmol which appears in excellent agreement with the results shown 

above. This saturation was also observed in Figure 28 where the amount of methane 

were identical at 3.2 and 4.1 µmol TMA for water doses below 4.7 µmol. The 

prognostic was more uncertain when evaluating the saturation exposure for water. 

Figure 26b showed partial saturation of the methane byproduct signal occurring at  
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water doses around 10 µmol, significantly above the 3 µmol that were showed in 

Figure 34 to be needed to achieve optimal uniformity and a GPC of 0.95Å/cycle. In 

fact, these QMS results only reflect the 40% increase of the GPC when increasing the 

water dose from 3 to 10 µmol as a result of an increase  in –OH* coverage and the 

likely formation of water multilayers through hydrogen bonding.  It is worth noting 

that more direct measurement approaches such as QCM or ellipsometry would have 

also showed higher values under these conditions.  

Retrospectively the results obtained during the automated exploration of the 

[H2O, TMA] space (Figure 28) appear quite consistent with the complex adsorption 

regimes revealed by ex-situ measurements. The fact that the curves obtained for 

different TMA doses did not eventually overlap with one another (as would have 

been expected from a self-saturating ALD process) was an indicator of the ability to 

increase the GPC beyond 0.95Å/cycle as a result of water multilayer formation. The 

fact that the methane generation did eventually reach a plateau9 indicates that the 

number of multilayers forming in the water over-exposure regime is likely to reach a 

maximum value for a given TMA dose which would cause the GPC to stabilize.  

A close examination of the slopes along these individual curves (Figure 29) 

indicates 3 different regimes as a function of the water doses: (1) the slopes increase 

moderately within 1 to 3 µmol water doses, (2) then more rapidly above 3 µmol 

before reaching a plateau (3). The first regime would correspond with an ideal ALD 

                                                 

9 The plateau does not occur at 3.2 and 4.1 µmol but it seems reasonable to assume that it would occur 

outside the process window characterized in this experiment. 
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growth that only involves monolayer formations via reactions on hydroxyl groups 

distributed solely on a two-dimensional surface. Above 3 µmol of water, the OH* 

coverage reaches saturation and water multilayer formation is initiated due to the 

higher water partial pressure in the reactor. If so, TMA molecules react with 

water/hydroxyl groups adsorbed over several layers and the amount of methane 

increases rapidly as a result. Finally the water physisorption self-limits itself at the 

water dose increases and the amount of methane (and GPC) reach a plateau. 

 

 

In contrast to water, the ozone / TMA system provides no evidence for 

formation of excess reactant adsorption beyond a saturating monolayer. From a 

process performance perspective, i.e., film uniformity, reactant consumption 

and cycle times, ozone appears a better choice than water.  As illustrated in Figure 

41a, the thickness non-uniformity for TMA/ozone can be maintained below 1% for 

a b 

Figure 41 – Al2O3 film characteristics for H2O and O3 based chemistries as a function of TMA 
exposure: a) across wafer non-uniformity (measured as 1σ/mean); b) corresponding deposition 
rate averaged over 9 measurements 
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TMA doses as small as 0.8 µmol vs. ~2.5 µmol for water. The optimal GPC 

corresponding to a fully saturated behavior is also reached at lower TMA doses 

indicating a more efficient oxidation mechanism. Considering the high cost of ALD 

metal precursors ($20 to >$100 /g), ozone use can be economically advantageous in 

high volume production.  
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Chapter 5:  Characterization of Al2O3 intrinsic properties 

5.1 - Introduction 

Accordingly to the self-terminated nature of Al2O3 ALD, excellent process 

performances was achieved under the right conditions of reactant exposure and 

saturation as indicated by the excellent thickness uniformity obtained from the 

TMA/water and TMA/ozone systems. However our results for the TMA/water system 

clearly show that such optimal process performances were only achievable within a 

relatively narrow process space and that deviations outside of this window resulted in 

a degradation of the process metrics such as growth per cycle and thickness 

uniformity.  Such thickness variations are likely caused by the synergistic effects of 

reactant depletion inherent to cross-flow reactor design and complex 

adsorption/desorption mechanism associated with water chemistry. Under such non-

ideal growth conditions, one can question how deviations from saturative and self-

terminated monolayer growth do impact the intrinsic properties of the film such as its 

chemical composition or optical and electrical properties. 

In addition, the ability to intentionally generate thickness gradients across a 

wafer by adjusting the reactant dosage while controlling the thickness at the sub-

monolayer level can potentially be used as a methodology for combinatorial ALD. 

Thin film combinatorial synthesis has been used to achieve continuous or discrete 

compositional libraries for complex materials systems such as ternaries or 



 

85 

 

quaternaries [94, 95]. By correlating the materials properties (e.g., magnetization, 

permittivity, crystallinity), to the local materials composition across a single wafer, 

combinatorial materials synthesis constitutes a powerful method for rapid materials 

discovery and optimization of complex materials systems. The kinds of reactant 

impingement distributions achieved by varying precursor doses in our cross-flow 

reactor may provide ALD composition gradients for more complex systems such as 

hafnium aluminates. The objective is therefore to determine if the intrinsic film 

properties are affected when generating these gradients by ALD under depletion 

conditions. 

5.2 - Al2O3 electrical and optical properties 

5.2.1  Experimental  

Al2O3 films were deposited at 275˚C from TMA and water. <100>, p-type, 1-

10 Ω.cm resistivity, prime grade silicon substrates were used. The native oxide was 

stripped and the surface hydrogen-passivated by cleaning the wafer in 5% HF for 30 

s, DI water rinsed and nitrogen blown dry. Film thicknesses were measured after the 

ALD process on the Sopra GES5 spectroscopic ellipsometer. 0.25 mm diameter MOS 

capacitors were then fabricated to obtain the following structure: Si substrate / 100-

500Å Al2O3 by ALD / 2000 Å Au by thermal evaporation. Capacitor structures were 

fabricated via lithography patterning of Shipley 1813 photoresist and gold Transene 

wet etch. CV and IV wafer maps were obtained with the automated probe station 

described in Chapter 2. Electrical results were analyzed over ~16 points across the  
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wafer in the direction of the flow. Using Mathworks Matlab® software, capacitance 

and current measurements were correlated to thickness profiles established from 

ellipsometry in order to extract permittivity and leakage current density.   

5.2.2  Results 

Ideal saturating conditions 

As a reference, a 238Å alumina film was first deposited over 250 cycles at 

275˚C under ideal TMA and water saturating conditions, respectively 3.3 and 4.5 

µmol. Excellent thickness uniformity was achieved (1σ/mean =0.6%).  30 MOS 

capacitors were characterized across the wafer. The CV characteristics were 

measured at 100 kHz over a voltage sweep from +4 to -4V. As seen in Figure 42, 

upon negative applied voltage on the gold electrode, a clear saturation of the 

capacitance occurs at (1.15 ±0.03) pF, characteristic of hole accumulation in the p-

type silicon. A permittivity of 6.3 ±0.15 was determined from Equation 1.10    

IV characteristics in Figure 42b indicate a leakage current of (7.0±0.7) 

nA/cm2 at an applied field of 1MV/cm. The electrical breakdown of the capacitors 

occurs around 8MV/cm field. These IV values appeared in good agreement with the 

literature and emphasize the good quality of the film obtained under saturating 

conditions.[3, 34] 

                                                 

10 The bulk permittivity of aluminum oxide is ~ 9. The lower permittivity can be attributed to: (1) the presence of a SiO2 
interfacial layer (εr=3.7). Later measurements of MOS (Au/Al2O3/Si) and MIM (Au/ Al2O3/Pt) capacitors showed a 15% higher 
permittivity in the MIM case where no interfacial layer is formed on Pt, consistent with an interfacial layer of ~10Å and in good 
agreement with literature.[34] (Appendix, Fig. XIII and XIV) (2) the fabrication method and particularly the use wet chemical 
etching appears to also significantly degrade the permittivity. An increase of the permittivity from 6.6 up to 8.9 was observed 
when using a lift-off based technique rather than wet chemical etching. (Appendix, Fig. X)  However the lift-off operating 
procedure was only developed after the acquisition of the current results. 
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Water under-exposure conditions 

A film was deposited under water-starved conditions, i.e., 1.8 µmol water and 

6.3 µmol TMA. The CV and IV characteristics for 7 of 30 measured MOS capacitors 

distributed along the direction of the flow are shown in Figure 43. The capacitance in 

the accumulation regime does increase as the film gets thinner as was expected from 

the inversed correlation between the two (Equation 1). We also notice a dependence 

of the threshold voltage with thickness suggesting that fixed charges in Al2O3 are 

distributed throughout the film rather than existing only at the interface. As expected, 

the leakage current, tied to charge tunneling through the oxide, increases as the film 

gets thinner. 

a b 

Figure 42 – Electrical characteristics measured over 30 capacitors for 238Å Al2O3 film deposited 
under saturating TMA and water conditions. (a) Capacitance vs. voltage (b) current density vs. 
applied field.  

-2.0 -1.5 -1.0 -0.5 0.0
-1.40E-008

-1.20E-008

-1.00E-008

-8.00E-009

-6.00E-009

-4.00E-009

-2.00E-009

0.00E+000

C
u

rr
e

n
t 

d
e

n
s
it
y
 [

A
/c

m
2

]

Electric field [MV/cm]

-4 -2 0 2 4
0.00E+000

2.00E-011

4.00E-011

6.00E-011

8.00E-011

1.00E-010

1.20E-010

C
a
p
a
c
it
a
n
c
e
 (

F
)

Applied voltage (V)



 

88 

 

 

Using a Matlab routine, capacitance values were extracted at -2V and leakage 

current at -1MV/cm field. By correlating the 29 thickness measurements across the 

wafer with corresponding capacitance and current values, a cross-section view of the 

permittivity and leakage current density can be obtained. (Figure 44) While the 

capacitance increases as the thickness decreases accordingly to Equation 1, we note 

that the permittivity decreases by 15% across the wafer. Even when taking account 

the contribution of the SiO2 interfacial layer (assumed to be 10Å), the corrected 

permittivity shown as open triangles in Figure 44 still exhibits a 13% decline. 

Similarly the leakage current density at a fixed 1MV/cm electric field appears to 

increase.  This indicates that the depletion of water across not only results in a 

thickness gradient but also in an intrinsic change of the materials properties.  

a  b 

Figure 43 – Electrical characteristics of Au/Al2O3/Si MOS capacitors measured across the wafer 
along the direction of the flow. Film deposited in underdosed water conditions a) CV 
characteristics at 100 kHz, b) IV characteristics for 0 to -5V voltage sweep. 
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TMA under-exposed conditions 

The experiment was repeated, this time with an under-saturating TMA 

exposure (0.33 µmol). Two water doses were used at 2.65 and 0.81 µmol.  Thickness, 

capacitance and permittivity across the wafer are shown on Figure 45, as well as the 

refraction index. As observed in chapter 4, sharp non-linear non-uniformities are 

present with a GPC increase near the inlet due to the accumulation of hydroxyl 

groups resulting from the high dose of water relative to TMA and a sharp GPC 

decline at the tail of the wafer. In the region from 4 to 7 cm, the thickness is relatively 

uniform (1σ/mean=4%) and the GPC close to 0.8 Å/cycle, indicating conditions close 

to an ideal ALD regime.  The permittivity values in this region is maximal and  

 

 

Figure 44 – Thickness, capacitance, permittivity and current density at -1MV/cm as a function of 
position across wafer for Al2O3 film deposited in water-starved conditions. Permittivity 
calculated with 10Å SiO2 interfacial layer included (solid triangle) or excluded (open triangles). 
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relatively constant (εr~6.5) and the optical index is 1.65, both in good agreement with 

the literature.[3, 34] However, in the head and tail regions, the deviations of the GPC 

correspond with a degradation of the permittivity (15 to 34% decline) indicating once 

again that the film is intrinsically affected under the non-ideal growth conditions.   

We also notice that the improvement in uniformity occurring when the excess of 

water relative to TMA is reduced is mirrored by an optimal permittivity over a 

broader region (open triangles in Figure 45). The increase of the index of refraction in 

the tail region may seem surprising as the dielectric function is related to the complex 

index of refraction by the relationship 2
Nε = ɶɶ . However CV measurements are done 

0 2 4 6 8 10
0

100

200

300

400

500

600

700

800

900

1000

1100

1200

0 2 4 6 8 10
0.00E+000

1.00E-010

2.00E-010

3.00E-010

4.00E-010

5.00E-010

6.00E-010

0 2 4 6 8 10

2.5

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

7.5

8.0

8.5

0 2 4 6 8 10

1.62

1.64

1.66

1.68

1.70

1.72

1.74

1.76

1.78

1.80

1.82

1.84

1.86

TMA, H2O dose [µmol]

  0.33, 0.81

  0.33, 2.65

T
h

ic
k
n

e
s
s
 [

A
n

g
s
tr

o
m

]

Position across wafer [cm]

C
a

p
a

c
it
a

n
c
e

 [
F

]

Position across wafer [cm]

P
e

rm
it
ti
v
it
y

Position across wafer [cm]

R
e

fr
a

c
ti
o

n
 i
n

d
e

x

Position across wafer [cm]
X axis: position across wafer [cm]  

Figure 45 - Properties of two Al2O3 films deposited over 600 cycles under  fixed TMA  
underdosed conditions (0.33µmol) and  2.65 µmol (solid squares) and 0.81 µmol (open triangles) 
water doses  



 

91 

 

in the kHz-MHz range vs. 1E14 Hz for ellipsometry. The different trends are likely to 

reflect the contribution of different polarization mechanisms, possibly ionic at lower 

frequency and electronic in the optical spectrum. The divergence of the refractive 

index may also reflect the difficulty of measuring accurately the refraction index for 

thin films (<200Å) as the values of tan(ψ) measured by ellipsometry exhibit a low 

sensitivity to refraction index variations in that region.[67] 

5.3 - Surface analysis 

5.3.1 Experimental 

Analysis of three Al2O3 films deposited on 100 mm Si wafers under saturating 

and starved precursors conditions were undertaken using X-ray photoelectron 

spectroscopy (XPS) and secondary ion mass-spectrometry (SIMS). The 

measurements were done by staff members Lia Vanzetti (XPS) and Damiano 

Giubertoni (SIMS) at Fondazione Bruno Kessler, FCS Division, Trento, Italy 

(previously named ITC-IRST). The dose conditions for the 3 samples are summarized 

in Table 4. 

Sample # 
TMA 

[µmol] 

H2O 

[µmol] 
Comments 

A 6.3 3.1 Very uniform (Figure 34) 

B 6.3 1.8 Water starved, non-uniform (Figure 34) 

C 0.4 3.9 TMA starved, non-uniform (Figure 35) 

 

 
Table 4 – Process conditions for wafers characterized by XPS and SIMS 
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The XPS measurements were performed on a Scienta Esca-200 instrument 

equipped with a monochromatized Al Kα (1486 eV) source. The area sampled was 

1x0.2 mm2 and a 0.4eV energy resolution was used. A fixed emission angle of 90˚, 

i.e., normal to the sample surface was used. In the XPS technique the sampling depth 

depends on the material, on the kinetic energy of the emitted electron, and on the 

angle between the sample normal and the analyzer axis. The sampling depth is about 

three times the escape depth (and with this material and in the experimental condition 

used probably around 10 nm). 

Dynamic SIMS measurements were carried out on a Cameca SC-Ultra 

instrument. A Cs+ primary ion beam at 1keV incident energy was used with a 45˚ 

incidence angle. This combination provides good detection limits and depth 

resolution. The ion beam was rastered over a 250x250 µm2 area and the secondary 

electrons collected from en electronically selected 100x100 µm2 area in the center of 

the crater bottom to avoid crater edge effects. The sputtering time was converted to 

depth by either measuring the final depth of the crater as measured by profilometry or 

based on the average sputtering rate measured in-situ. 

 

5.3.2 Dynamic SIMS results 

Dynamic SIMS is arguably one of the most accurate thin film analysis 

techniques to determine element concentration as a function of depth as the film is 

sputtered away at a fixed rate while measuring the secondary electrons. SIMS profiles  
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were measured at 5 equidistant locations across the wafers. Results for oxygen, 

aluminum and silicon are shown in Figure 46 for samples B and C.  

As expected the translation of the profiles from right (#1) to left (#5) reflects the 

thinning of the films across the wafer and are in good agreement with the thickness 

measured by ellipsometry. More importantly, we notice that for both samples the step 

height remain the same across the sample indicating that there is no noticeable 

variations of the composition as the reactants gets depleted, i.e., water in sample B 

and TMA in sample C.  

 

Sample B Sample C 

Figure 46 – Dynamic SIMS measurements for sample B and C at 5 positions across the wafer. 
27Al, 16O and 28Si species are measured. (The transitions mark the interface from 
Al2O3 to Si and shift from left to right for samples #1 to #5) 
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It is worth noting that carbon was also 

detected though it appeared concentrated at 

the surface of the wafer and is probably due 

to contamination from contact with air rather 

than residual carbon from incomplete 

desorption of the methyl ligands from 

TMA.(Figure 47) 

 

5.3.3  XPS measurements 

For each of the 3 samples a survey in the range 2-1200 eV was acquired, to 

find out the elements present on the surface. Then the core levels (O 1s, C 1s, F 1s, 

and Al 2p) were acquired separately, and with a better energy resolution. No other 

elements seemed to be present on the sample surface. Table 5 show the semi-

quantitative results for the elements present on the surface of sample A obtained 

under ideal saturating exposures. The measurements were performed at seven 

different points along the flow direction. The percentage of each element was 

calculated using the atomic sensitivity factors and does not represent the “real” 

content, but still is interesting to compare the four samples. The ratio O/Al is reported 

as well. 

The ratio of oxygen to aluminum appears constant across the wafer. High 

carbon content was measured (~8%) which as the dynamic SIMS data indicated is  

 

Figure 47 - SIMS measurements of 
carbon concentration as a function of 
depth a 5 locations across sample B. 
(samples #1 to #5 read from left to right) 
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Figure 49 – XPS spectra for samples A, B and C measured at 7 locations across the wafer. First 
row corresponds to O(1s) peak and second row to Al(2p) peak. 
 
 

 

 

 Sampling 

point 

O (%) Al (%) C(%) F(%) O/Al 

1 48.9 42.0 8.0 1.2 1.16 

2 48.3 42.6 7.8 1.2 1.13 

3 48.6 42.6 7.6 1.3 1.14 

4 48.9 41.8 8.2 1.2 1.17 

5 48.7 41.9 8.2 1.2 1.16 

6 49.0 42.2 7.6 1.2 1.17 

7 48.9 42.8 7.0 1.3 1.14 
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Table 5 – XPS results showing atomic percentage 
of elements present on the surface of sample A 
for 7 positions across the wafer. Ratio of oxygen 
to aluminium is listed in the last column. 

 

Figure 48 –O (1s) to Al (2p) ratios obtained by 
XPS for 7 points across the wafer for sample 
A, B and C. Inset histogram shows the means 
and ±1σ bars for the 3 samples. 
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likely caused by carbon contamination at the surface. The oxygen to aluminum ratios 

measured for the 3 samples over 7 sites across the wafer are shown in Figure 48. 

Though the ratio for the TMA underexposed sample is in average 3% higher than for 

the water underexposed sample, the variation is negligible and therefore indicates that  

the stoichiometry of the films is not affected by the depletion of water and TMA 

across the wafer. 

5.4 - Conclusions 

Electrical properties of Al2O3 films obtained from water and TMA under 

ideally saturating dose conditions were measured. The leakage current at 1MV/cm 

fields ranged in the nA/cm2 range, in good agreement with the literature. The 

permittivity measured on Au/Al2O3/Si MOS capacitors was somewhat low (εr ~6.3). 

However by taking into consideration the presence of a 10 Å SiO2 interfacial layer 

and using lift-off techniques rather than chemical wet etch, permittivity as high as 8.9 

were measured. 

 

 Thickness non-uniformities caused by reactant depletion were mirrored with a 

15% degradation of the permittivity across the wafer as well as with an increase of 

the leakage current density when the film got thinner. In an attempt to determine, the 

cause of this intrinsic degradation, dynamic SIMS and XPS measurements were 

performed to analyze the film composition and potential contamination across the 

depleted films. Both techniques indicate that the stoichiometry of the film remains 

unchanged across the wafer and no variations of contaminants such as carbon, 
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nitrogen or hydrogen were discernable across the wafer. Also X-ray diffraction 

measurements indicate that the Al2O3 film is amorphous as was expected from the 

low temperature process. 

 At this point we were not able to demonstrate the origin of the degradation of 

the permittivity along the film. However a decrease in the film density is the most 

likely probable cause. Indeed the permittivity of a dielectric is related to the 

microscopic polarization in the materials. As such, lower density translates into a 

decrease of the volume concentration of polarized dipoles and lower permittivity. 

Accurate measurements of thin film density is however difficult. X-ray reflectometry 

(XRR) measurements on non-uniform samples were undertaken though film density 

could not be extracted with sufficient accuracy to draw valid conclusions11. 

The fact that the materials properties degrade in the underdose regime as a 

result of reactant depletion does not provide a positive prognostic for applying this 

method to combinatorial materials synthesis. Indeed, if one succeeds in creating a 

compositionally-graded ternary film by controlling the reactant depletion across the 

wafer, it will be difficult in the end to deconvolute the contributions of the 

composition on the film properties with the degradation of the individual constituents 

as a result of the deposition method. 

                                                 

11  XRR measurements were done in Prof. W.J. Lee’s laboratory, Electronic Ceramic Center (ECC) in 

Dongeui University, Busan, Korea.  An X'Pert PRO Materials Research Diffractometer(MRD) from 

PANalytical was used. 
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Chapter 6: Conclusion and Future Work 

6.1 - Conclusion 

In this work, a strategy exploiting the benefits of in-situ gas phase sensing in 

conjunction with ex-situ measurements of the film properties across 100 mm wafers 

was proposed to optimize the prototypical Al2O3 ALD process. An innovative wafer-

scale reactor design was used with a small volume ALD process chamber embedded 

in a loadlock-configured UHV chamber and operating under cross flow conditions 

that mimics behaviors of larger manufacturing ALD platforms.  For this work, the 

system was upgraded to deliver low vapor pressure reactants, i.e., Al(CH3)3 and 

water. Accurate control of the doses was achieved by pressure-end point control 

rather than adjusting the pulse time. Ozone was also implemented to compare its 

performance with water. A MKS Vision 1000C mass-spectrometer was integrated 

downstream to the reactor for in-situ chemical diagnostics.   

The Al(CH3)3 / H2O system was chosen as it is often referred to as an “ideal” 

ALD system due to the good reactivity and thermal stability of the precursors and the 

demonstrated self-limited growth under saturation conditions. As such, this system 

constitutes a relevant test case to demonstrate a new methodology for process 

optimization and investigate some of the complex physicochemical interactions that, 

even in the best case of the Al2O3 ALD chemistry, can significantly impact the ALD 

process performances at the wafer scale. 
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  Downstream mass-spectrometry was first used to rapidly identify across the 

[H2O x Al(CH3)3] process space the exposure conditions leading to surface saturation. 

Methane was identified as the primary reaction by-product. Its signature, mass-16, 

was integrated over half-cycle periods and used as a marker to characterize not only 

the state of saturation during individual cycles but also the state of nucleation 

retardation or overall growth metrology across the entire run. An iterative process 

where reactant doses were sequentially varied over a wide range of exposures was 

implemented to determine the onset of surface saturation over a large matrix of dose 

conditions. In the case of Al(CH3)3 a clear saturation behavior of adsorbed -Al(CH3)2
* 

species was observed at ~3 µmol. Evaluation of the saturating conditions of  -OH* 

groups under varying water exposure conditions proved more challenging suggesting 

complex saturation behaviors from the water molecules where the saturation 

equilibrium of the hydroxyl groups shifted upon higher water partial pressures and 

multilayer formation occurred.  

The impact of precursor doses outside as well as inside the parameter space 

outlined by mass-spectrometry was then investigated by characterizing film 

properties across the wafer using spectroscopic ellipsometry, CV and IV electrical 

characterization, XPS and SIMS. 

Across-wafer thickness uniformity measurements over a broad range of 

exposure and purge conditions depict a behavior that is inconsistent with a simple 

picture of ALD as alternating, fully self-limiting reactions where monolayers of 

complementary adsorbates pile up in compact monolayers on top of another. In that 
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respect, the impact of water dosage was clearly characterized by using ozone as an 

alternative oxidant and comparing the process performances at the wafer scale. 

For TMA and water dose in the range ∼3 µmol each, excellent thickness 

uniformity was achieved (1σ/mean<1%) at a 0.95 Å/cycle deposition rate in good 

agreement with literature data. In the case of TMA/ozone, an even better uniformity 

(~0.6%) could be achieved at a substantially lower TMA, i.e., 0.8 µmol, illustrating 

the high reactive efficiency of the TMA/ozone system. In both cases, under this set of 

ideally saturating conditions, the full benefits of ALD were realized: reproducible 

deposition rate at 1Å/cycle, excellent uniformity, very short nucleation delay and 

electrical and optical properties in agreement with literature. 

Overdose of TMA or ozone did not degrade uniformity or otherwise 

compromise ALD performance, indicating that they both elicit self-limiting 

adsorption/reaction as desired in ALD.  In contrast, overdosing of water caused 

significant (40%) growth rate increase per cycle and degradation of uniformity, to the 

extent that ALD provides no benefit at all in uniformity or thickness control over 

conventional chemical vapor deposition.  The non-ideal ALD behavior in the context 

of high water concentration is a clear illustration of the complex physicochemical 

interactions that can drive ALD. Different interpretations, not exclusive with one 

another, were proposed. Rather the GPC increase is the result of an increased surface 

saturation of –OH* groups due to a shift of the adsorption equilibrium at higher water 

partial pressures[38, 53] or the result of a multilayer build-up of water molecules 

caused by hydrogen bonding, is unclear. Further investigations with more advanced 
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in-situ diagnostic method, e.g., transmission FTIR, would be required to determine 

the possible contributions.  

 As expected, in the under-exposure regime, depletion of TMA or water 

reactants resulted in increased non-uniformities and thickness gradients along the 

flow direction. Ozone however did not exhibit substantial degradation of the 

uniformity upon smaller exposures but only a uniform decrease of the GPC. As ozone 

is a diluted gas mixture (20% O3 / 80% O2), it is conceivable that the higher pulse 

pressure resulted in flow dynamics mitigating the effect of depletion. Interestingly our 

data reveal that the changing saturation behavior of water as a function of the dose 

did significantly impact the thickness profiles in this regime. With modest overdose 

of water, increasing underdose of TMA produced sharp depletion edges in the 

downstream portions of the wafer while piling-up material at the upstream portion of 

the wafer.  These non-linear uniformity behaviors were attributed to increased water 

adsorption, depletion associated with underdose conditions for TMA, and the 

reactivity for TMA dose to react with the first water it experiences, and vice-versa. 

These results clearly illustrate the impact of reactor design on ALD process 

performances. The cross-flow design magnifies non-uniformities caused by depletion 

thereby decorating deviations from a suitable ALD process recipe and providing a 

convenient feedback metric for the process optimization. The implementation of 

pressure-end point control for reactant doses has also important consequences, 

particularly in the case of water. Higher exposures, i.e., higher pressure setpoints in 

the delivery volume, translated into increased reactant partial pressures and  
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concentration across the wafer. In the case of water, this resulted in increased 

coverage and deposition rate (>1.0Å/cycle) even when saturation conditions had been 

reached. In that regard, the impact of higher water dose setpoints in our system is 

fundamentally different from increasing the exposure time under fixed impingement 

rate as commonly done in a number of ALD platforms. With the latter design, higher 

exposure time will not cause a change in the saturation equilibrium of water. As such, 

the surface coverage and deposition rate remain constant even when over-exposing 

the surface with water though the deposition rate will likely vary with the water vapor 

pressure and the flow conductance from the source to the reactor. 

To a large extent, the use of ozone as an oxidant appears preferable over 

water. The absence of potential hydrogen bonding and the high reactivity of ozone 

with TMA offer clear benefits including a steady deposition rate at high ozone 

exposure, reduced TMA consumption by 3x factor at equivalent GPC (1Å/cycle) and 

uniformity (1σ/mean<1%) and faster cycle times due to more rapid purging of the 

excess ozone. 

6.2 - Future work 

Uniformity and conformality are to a large extent the gold standards to 

characterize the performances of an ALD process. We have showed that our cross-

flow ALD system is a versatile platform to study the impact of reactant exposures and 

purges on thickness uniformity across a planar 2D wafer. A logical continuation of 

this work therefore consists in investigating how the same process metrics influence  
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the growth in 3D high-aspect ratio structures. This work, currently under way, looks 

at the conformality of TiO2 ALD films deposited in porous anodic alumina 

nanotemplates. Preliminary results achieved by Erin Robertson illustrate that process 

conditions that lead to cross-wafer uniformity on a 2D planar wafer do not translate 

into conformal films in an ultra-high aspect ratio nanopore.  This expected result is a 

direct consequence of not only the increased surface area of the 3D structures but also 

the transition from a viscous flow regime on the surface to a molecular flow regime in 

the nanopores. Understanding how precursor dose and purge time induce depletion 

gradients not only across the wafer but also down the length of the nanopore is a key 

objective of this work. Interestingly, improved conformality is achieved by increasing 

the residence time of the molecules in the reactor so that they can diffuse to the 

bottom of the pores as well as extending the purge times to allow the by-products to 

desorb and diffuse out of the pores. In the case of water doses, increasing the 

exposure will be necessary to achieve coverage down the pores. However variations 

of the water partial pressure along the pore may result in variations of the surface 

coverage under saturation and impact the conformality. As for our uniformity study, a 

direct comparison with ozone as an oxidant might illustrate the impact of water 

exposure on conformality. From a perspective of reactor design (cross-flow and dose 

control method), and process optimization (exposure and purge times), the 

investigation of the potential trade-offs between uniformity on the wafer top surface 

and conformality in the pores will be most interesting.  
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Throughout this work a number of tools and methodologies have been 

developed. Our ALD reactor design combines the benefits normally found in 

manufacturing platforms (full wafer capabilities, UHV cleanliness, advanced process 

control) with those found in R&D tools (process flexibility, software and hardware 

expandability, low cost). In combination with in-situ QMS sensing for real-time 

process optimization and ex-situ film characterization techniques at the wafer scale, 

e.g., ellipsometry, CV/IV and sheet resistance measurements, this set of tools 

provides a unique platform to develop new processes and applications. For example, 

it has been a key enabler in implementing electrostatic nanocapacitors for high energy 

storage applications by combining ALD-grown TiN/Al2O3/TiN MIM structures in 

AAO nanotemplates.[16]12 To further improve the performance of these 

nanocapacitors, low resistivity (20µΩ.cm) ruthenium metal and high-K aluminum-

doped TiO2 (εr ~100 in rutile phase) are currently being developed on this platform, 

directly building on the foundations from this work. 

                                                 

12 Equivalent planar capacitance of up to 100 µF.cm2 was achieved, substantially 
exceeding previously reported values for nanostructures electrostatic capacitors and 
matching for the first time the energy density of electrochemical capacitors.  
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Appendices  

Contributions to the design and construction of equipment described in this thesis 

 

In 1998, I was hired by Professor G.W. Rubloff as a full-time research 

engineer and manager of the Laboratory for Advanced Materials Processing at UMD. 

In 2003, as part of my professional activities, I designed the UHV ALD tool 

described in Chapter 2 for a new work to be done my doctoral candidate Wei Lei. The 

embedded “mini-reactor” was built in the Physics Shop at the University of Maryland 

based on my CAD drawings shown in Appendices, Fig. I to III. The rest of the 

equipment (Appendices, Fig. IV) was purchased from vacuum equipment suppliers 

and assembled with the help of Wei Lei. I developed the Labview software platform 

for the control of the ALD system. In 2006, at the start of my own doctoral work, I 

redesigned and rebuilt the delivery system to accommodate low vapor pressure 

precursor sources, i.e., water and trimethlylaluminum, as well as a MKS ozone 

generator and a new MKS Vision 1000C mass-spectrometer. 

In 2003, I also implemented and programmed the automated probe station for 

the measurements of electrical properties on large arrays of MOS/MIM capacitors. 

This equipment is still in use by members of the G.W. Rubloff group as well as 

external users. 
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Table I – Comparison of main thin film deposition techniques (CVD: chemical Vapor 
Deposition, MBE: Molecular beam epitaxy, PLD: Pulse  laser deposition). This table 
does not intend to be exhaustive. The inputs are based on various sources (online, oral 
discussions, personal knowledge) and as such are subjective. They can vary 
significantly with the equipment used and the type of materials to be deposited 
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Fig. I – CAD drawing: cross-section of ALD mini-reactor with cap and heater 

assembly.  
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Fig. II  - CAD drawings: cross-section and top view of ALD substrate heater  
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Fig. III - CAD drawings: cross-section and top view of gas inlet and outlet ring. 
Heater assembly is supported by this ring.  
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Fig. IV - CAD drawing: Side view of ALD process chamber with mini reactor, cap 
and actuation mechanism. 
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Fig. V – Calibration of ALD substrate heater as measured by 13 point thermocouple 
wafer. a) wafer temperature as a function of controller temperature at 100 mTorr. b) 
Wafer temperature as a function of pressure at 175˚C setpoint temperature. 
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Fig. VI – Reactant vapor pressure vs. temperature for trimethylaluminum, water and 
titanium isopropoxide. 
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Vapor pressure laws for liquid precursors (Source: Air Liquide, France) 

Water     log P [Torr] = 8.07-1730/T[K] 

TMA     log P [Torr] = 8.22-2134.8/T [K] 

TTIP      log P [Torr] = 9.465-3222/T [K]  

 



 

113 

 

 

Fig. VII – Schematics of MKS Vision 1000C mass-spectrometer. Dimensions are 
given in inches. (Source: User manual, LP101012 Revision 1.01, MKS Instruments, 
Spectra Products, 2002 ) 
 
 
 

  

 

Fig. VIII – Schematic of orifice configuration for QMS differential pumping (Source: 
User manual, LP101012 Revision 1.01, MKS Instruments, Spectra Products, 2002 ) 
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 Fig. IX – LabView user interface for CV/IV probe station. 
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Fig. X – Comparison of electrical performances for 12 nm Al2O3 film deposited at 
275˚C on p-doped Silicon with Al(CH3)3 and ozone under saturating conditions. The 
MOS capacitors were fabricated by four distincts methods: I : lift-off and gold 
thermal evaporation, II: lift-off and aluminum thermal evaporation, III: aluminum 
thermal evaporation and wet chemical etch (Transene D type), IV: gold thermal 
evaporation and gold wet chemical etch (Transene TFA type) 
 
 
 
 

Fabrication 

method  Permittivity ε
r 
 

Current density 

at 1MV/cm 

[nA/cm
2

] 

Breakdown 

field [MV/cm]  

Liftoff/Au  9.2+/-0.04  22+/-10  9+/-0.5  

Liftoff/Al  8.6 +/-0.06  29+/-11  8+/-1  

Wet etch/Al  6.9+/-0.1  22+/-5  8.5+/-2  

Wet etch/ Au  6.7+/-0.04  17+/-12  9.5+/-0.5  
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Fig. XI – Operating procedure for image reversal and lift-off process using AZ 5214E 
photoresist. 
 

� Dehydration bake of sample at 120˚C for 10 min. Let sample cool (~ 5 
minutes)  

� Spin AZ5214E at 3000 rpm for 60s (1.6 µm thickness).  

� Soft bake at 100˚C for 60s 

� UV exposure (34 mJ/cm2) 

� The exposure time will depend on the mask-aligner used.  
� The type of mask (chrome vs Mylar transparency) also should be taken 

into consideration when determining the exposure time.  Use bright field 
mask.  

� Critical step: Hard bake at exactly 120˚C for 45s. Exposed PR cross-links and 
becomes non-soluble (negative tone behavior)  

� Flood exposure at >200 mJ/cm2 without mask so that non-exposed PR 
becomes soluble  

� Develop in AZ400K 1:4 water for 60s (4 parts water, 1 part AZ400k 
developer) 

� Deposit metal layer. Be careful with metal quality and adhesion to the sub 
straight to insure clean lift-off  

� Liftoff in sonic bath with acetone. Do pulses of 10s repeatedly until you notice 
the top metalization layer completely removed. If there is uncharacteristic 
delamination or peeling of the bottom films, stop. Remember to use clean acetone 
for each sample to insure clean a sample.  

 
 

 
Principle of image reversal with AZ5214E 

 

Source:http://www.microchemicals.com/photoresist/photoresist_image_reversal_resists_eng.html 
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Fig. XII – 5” chrome mask layout for capacitor fabrication on 100 mm diameter 
wafer. Each set include 3 capacitor shapes (circular, square, crenel) and 4 surface 
areas (0.1962, 0.0491, 0.0078, 0.0019 mm2). The mask is bright field. Hatched 
sections come out opaque, black sections come out transparent.    
 

 
 
 
 
Details of one set of capacitors (row 21, column 31). Some key dimensions are in 
green (not part of actual mask) 
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Fig. XIII – Summary table of CV and IV measurements done on 10nm Al2O3 
dielectrics deposited from either TMA/water or TMA/ozone. MOS capacitors 
(Si/Al2O3/Au) and MIM (Si/Ti/Pt/Al2O3/Au) were fabricated using Shipley 1813 
photoresist patterned with UV lithography followed by a Transene gold wet etch. 
 
 

Capacitor 

type 
Substrate  

Process 

chemistry  
Permittivity

  
Breakdown 

[MV/cm]  

Current 

density  at 

1MV/cm 

[A/cm
2
]  

MOS Si  TMA/H
2
O  7.5  7.8  2.5E-7  

MOS Si  TMA/O
3 
 7.5  8.3  2.3E-7  

MIM Pt  TMA/H
2
O  8.4  6.8  8E-8  

MIM Pt  TMA/O
3 
 8.7  7.1  7.5E-8  
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Fig. XIV – Model showing impact of SiO2 interfacial layer on Al2O3 film capacitance 
as a function of Al2O3 film thickness. For example, a 5 Å interfacial layer at the 
interface of a 100Å Al2O3 film will lower the capacitance by ~11% (dashed lines). 
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