
ABSTRACT

Title of dissertation: BIO-INSPIRED VLSI SYSTEMS:
FROM SYNAPSE TO BEHAVIOR

Peng Xu, Doctor of Philosophy, 2008

Dissertation directed by: Professor Pamela Abshire
Department of Electrical and Computer
Engineering

We investigate VLSI systems using biological computational principles. The

elegance of biological systems throughout the structure levels provides possible so-

lutions to many engineering challenges. Specifically, we investigate neural systems

at the synaptic level and at the sensorimotor integration level, which inspire our

similar implementations in silicon. For both VLSI systems, we use floating gate

MOSFETs in standard CMOS processes as nonvolatile storage elements, which en-

able adaptation and programmability.

We propose a compact silicon stochastic synapse and methods to incorporate

activity-dependent dynamics, which emulate a biological stochastic synapse. It takes

advantage of the ubiquitous noise in circuits and implements computation in the

spike domain. We implement and demonstrate the silicon stochastic synapse with

short-term depression by modulating the influence of noise on the circuit. Such

synapse has not been reported in the literature. The circuit exhibits true randomness

and similar behavior of rate normalization and information redundancy reduction

as its biological counterparts. The circuit behavior also agrees well with the theory

and simulation of a short-term depression circuit model based on a subtractive single

release model.

To understand the stochastic behavior of the silicon stochastic synapse and

the stochastic operation of conventional circuits due to semiconductor technology

scaling, we develop the stochastic modeling of circuits. Transient analysis from the

numerical solution of the stochastic model provides the sample path and ensemble

statistics. The analytical solution of steady state distribution could be obtained

from first principles. Small signal stochastic models show the interaction between

noise and circuit dynamics, elucidating the effect of device parameters and biases

on the stochastic behavior.

We investigate optic flow wide field integration based navigation inspired from

the fly in simulation, theory, and VLSI design. We generalize the framework to lim-

ited view angles. We design and test an integrated motion image sensor with on-chip

optic flow estimation, adaptation, and programmable spatial filtering to directly in-

terface with actuators for autonomous navigation. This is the first reported image

sensor that uses the spatial motion pattern to extract motion parameters enabled

by the mismatch compensation and programmable filters. It provides light weight

and low power integrated approach to autonomous navigation of micro air vehicles.

The mismatch compensation and programmable filters can also be applied to other

sensory front-end where on-chip spatial processing is required and distortion from

fabrication mismatch among sensor units has to be reduced. The sensor is inte-

grated with a ground vehicle and navigation through simple tunnel environments

is demonstrated with limited information from only one horizontal line of optical

input of height 2.4◦ and field of view angle 83.1◦.

BIO-INSPIRED VLSI SYSTEMS:
FROM SYNAPSE TO BEHAVIOR

by

Peng Xu

Dissertation submitted to the Faculty of the Graduate School of the
University of Maryland, College Park in partial fulfillment

of the requirements for the degree of
Doctor of Philosophy

2008

Advisory Committee:
Professor Pamela Abshire, Chair/Advisor
Professor P. S. Krishnaprasad
Professor Robert Newcomb
Professor S. K. Gupta
Professor J. Sean Humbert

c© Copyright by
Peng Xu

2008

Dedicated to the memory of my beloved sister, Xin Xu.

ii

Acknowledgments

First I would like to thank my parents for their cultivation of my strong cu-

riosity, their endless support of my pursuit of knowledge, and their sacrifice for my

education. I would like to thank my wife, Tao, who always gives me a peace of

mind.

Prof. Pamela Abshire is not only my advisor but also my friend. I know she

is always there to help me. I thank her for giving me the freedom, the guidance,

the encouragement, and the financial support to explore and pursue my research

interests. The warm feeling is precious.

Prof. Krishnaprasad, who set a role model for me as a professor, always has

his door open to the students and always greets me ”how is the world treating you?”

I got my unofficial education of control from sitting in all his classes. I thank Prof.

Horiuchi, popularly known as Timmer, for many inspiring discussions. I cannot

remember how many times a supposed five minute discussion became an hour long.

I thank Prof. Robert Newcomb, Prof. S. K. Gupta, and Prof. Sean Humbert for

serving in my committee from their busy schedule.

I like to thank my labmates in the Integrated Biomorphic Information Systems

Lab. I am fortunate to have such a harmonious lab environment. Somashekar

Bangalore offered many suggestions on data acquisition. Marc P. Dandin was always

there when I had all-nighters and ready to save me when I passed out. Alfred

Haas and I shared the same craziness to build silicon brain. Nicole Nelson kindly

supported everyone as the de facto lab manager. David Sander is my tennis buddy.

iii

Anshu Sarje, Babak Nouri, Timir Datta are the new blood of the lab. Yiming Zhai

helped me in Hspice simulation. Yanyi(Eric) Wong, Honghao Ji, and I had many

discussions about circuits and I followed their steps to be the No. 3 of the lab.

I want to thank Prof. Sean Humbert, Mike Chinn, Andrew Hyslop, Joseph

Conroy, and Kedar D. Dimble from the Department of Aerospace Engineering for

a wonderful collaboration. I want to thank Thanos Chryssis for his help on setting

up the view angle response experiment. I want to thank Shyam Mehrotra and Jay

Renner for lending me the equipment and handling my chip submission.

I enjoyed working as a teaching assistant with Prof. Eyad Abed, Pamela

Abshire, and John Melngailis. They showed me how to be an excellent teacher.

Thank John for his confidence and trust in me, allowing me to teach part of the

course.

I like to thank the faculty here at the University of Maryland for their ded-

ication to teaching and research, which set the high standard for their students.

Special thanks to Prof. Christopher Davis, Mario Dagenais, Edward Ott, Martin

Peckerar, Andre Tits, and Todd Troyer. I also want to thank the people in the

business office, graduate studies office, and information technology office, specially

Mandi Elwood, Marion Devaney, Kristin Little, Ronald Jean, Maria Hoo, Vivian

Lu, Tracy Chung, Peg Jayant, and Carlos Luceno, for letting me have on time or-

ders, smooth conference trips, hassle free computer systems, and enjoyable graduate

life.

I want to thank the neuromorphic workshop at Telluride 2005. It was such an

inspiring experience that fuelled my research.

iv

I thank MOSIS and NSF for providing chip fabrication services and financial

support.

Finally I thank all the people I didn’t name here for their help, encouragement,

and trust.

v

Table of Contents

List of Tables ix

List of Figures x

List of Abbreviations xviii

1 Preamble 1
1.1 Introduction . 1
1.2 Organization . 10
1.3 Contributions . 12

1.3.1 Dynamic VLSI Stochastic Synapse 12
1.3.2 Stochastic Circuit Modeling 13
1.3.3 Fly Inspired Integrated Approach to Autonomous Navigation . 13

2 Silicon Stochastic Synapse with Plasticity 15
2.1 Introduction . 15

2.1.1 Neuron and Synapse . 15
2.1.2 Synaptic Plasticity . 18
2.1.3 Adaptive VLSI Synapse . 20
2.1.4 Randomness in VLSI . 22

2.2 Silicon Stochastic Synapse . 24
2.3 Stochastic Synapse with Short-Term Depression 29

2.3.1 Short-term Depression Circuit Model 29
2.3.2 Simulation . 31
2.3.3 Circuit Implementation . 33

2.4 Experimental Results . 40
2.4.1 Stochastic Synapse Tested as RNG 42

2.4.1.1 Statistical Tests . 42
2.4.1.2 Adjustable Probability 47
2.4.1.3 Interference . 48

2.4.2 First Generation Stochastic Synapse with STD 49
2.4.3 Second Generation Stochastic Synapse with STD 53

3 Stochastic Circuit Modeling and Simulation 61
3.1 Introduction . 61
3.2 Circuit Noise . 62

3.2.1 Thermal Noise . 63
3.2.2 Shot Noise . 64
3.2.3 Flicker Noise . 64
3.2.4 Burst Noise . 65
3.2.5 Avalanche Noise . 65

3.3 Stochastic Differential Equations . 65
3.3.1 Random Variable and Stochastic Process 66

vi

3.3.2 Stochastic Integrals . 68
3.3.2.1 Integral J(f)(ω) =

∫ b

a
f(s, ω)ds 68

3.3.2.2 Ito Integral I(f)(ω) =
∫ b

a
f(s, ω)dW (s, ω) 69

3.3.3 Stochastic Differential Equation 70
3.3.4 Numerical Solution of Stochastic Differential Equation 71
3.3.5 Fokker-Planck Equation . 73

3.4 Stochastic Circuit Model . 73
3.4.1 Voltage Node Stochastic Model 73
3.4.2 Stochastic Synapse Circuit . 75

3.4.2.1 Stochastic Model of the Stochastic Synapse Circuit . 75
3.4.2.2 Small Signal Stochastic Model 80

3.4.3 CMOS Inverter . 85
3.4.3.1 Dynamics of an Ideal CMOS Inverter 86
3.4.3.2 Stochastic Model of a CMOS Inverter 88
3.4.3.3 Numerical Simulation of the CMOS Inverter 89
3.4.3.4 Analytic Steady State Solution 91

4 Fly Inspired Autonomous Navigation: Theory and Simulation 94
4.1 Background . 94

4.1.1 The Visual System of the Fly 94
4.1.2 The Sensorimotor System of the Fly 96
4.1.3 Visual Navigation in Flying Insects 97
4.1.4 Natural Environment . 99

4.2 Optic Flow Wide Field Integration (WFI) based Navigation 100
4.2.1 WFI based Navigation . 101
4.2.2 Elementary Motion Detector 102
4.2.3 EMD in WFI based Navigation 104

4.3 Limited View Angle Solution . 108
4.3.1 View Angle of π . 109
4.3.2 General Case . 115

5 Motion Image Sensor with On-chip Adaptation and Programmable Filtering119
5.1 EMD Implementation and Mismatch 120

5.1.1 EMD Implementation . 120
5.1.1.1 Photoreceptor . 121
5.1.1.2 GmC Type Filter . 123
5.1.1.3 Gilbert Multiplier [1] 124

5.1.2 Mismatch . 125
5.2 On-chip Spatial Filter . 125

5.2.1 Resistive Networks based Implementation 127
5.2.1.1 Sinusoidal Function Circuit 128
5.2.1.2 Sinusoidal Spatial Filter 130

5.2.2 Nonvolatile Storage based Approach 131
5.2.2.1 P-type Floating Gate MOSFET 133

vii

5.2.2.2 Basic Mechanism for Mismatch Compensation and
Filter Programming 136

5.2.2.3 Programmable Current Element (PCE) 139
5.3 Motion Image Sensor Architecture and Operation 144

5.3.1 Programmable Current Matrix (PCM) 146
5.3.2 Column Control Logic . 148
5.3.3 Filter Select Control Logic . 149
5.3.4 Operation Mode . 149

5.3.4.1 Filter Programming 151
5.3.4.2 Mismatch Compensation 151
5.3.4.3 Sensing and Filtering 151

5.4 Experimental Results . 152
5.4.1 PCE Test . 153
5.4.2 System Integration and Test 164

5.4.2.1 System Integration 164
5.4.2.2 View Angle Characterization and Filter Programming167
5.4.2.3 Open Loop Test . 168
5.4.2.4 Closed Loop Test . 170

6 Conclusions and Open Problems 176

A Adaptive Large Time Constant Filter 182
A.1 Introduction . 182
A.2 Basic Structure . 184
A.3 Operation Configuration . 185
A.4 Simulation Results . 185

B Adaptive Floating Gate Pixel 190
B.1 Floating Gate Pixel Structure . 190
B.2 Frequency Analysis . 192

Bibliography 196

viii

List of Tables

2.1 Synaptic plasticity . 20

2.2 NIST statistical test results . 46

3.1 Comparison of δ in probability tuning 84

5.1 Statistics of the PCE output . 161

5.2 Ratio of filter output during rotation 170

A.1 Cutoff frequency . 187

ix

List of Figures

2.1 Stochastic synapse circuit: (a) clocked cross-coupled differential pair
comparator, (b) dynamic output buffer, (c) input-output behavior.
W1,2

L1,2
= 14

2
, 4

12
have been used. 25

2.2 Block diagram of silicon stochastic synapse with short-term plasticity. 28

2.3 Block diagram of silicon stochastic synapse with long-term plasticity. 28

2.4 Mean probability as a function of input spike rate for ∆v = 2, 4, 6
mV. Data were collected at input rates from 100 Hz to 1000 Hz at
100 Hz intervals. The solid lines show the least mean square fit for
input rates from 400 Hz to 1000 Hz. τd = 100 ms. 31

2.5 Mean probability as a function of input spike rate for τd = 100, 200, 300
ms. Data were collected at input rates from 100 Hz to 1000 Hz at
100 Hz intervals. The solid lines show the least mean square fit for
input rates from 400 Hz to 1000 Hz. ∆v = 2 mV. 32

2.6 Simulated probability trajectory over 200 ms period. r = 100 Hz,
τd = 100 ms, ∆v = 2 mV. 32

2.7 Autocorrelation of output spike trains for different time constants τd,
each spike interval is 10 ms. 34

2.8 Power spectral density of output spike trains for different time con-
stants τd. 35

2.9 Autocorrelation of output spike trains for different voltage drop ∆v,
each spike interval is 10 ms. 36

2.10 Block diagram of silicon stochastic synapse with STD. 37

2.11 Block diagram of pulse shaping circuit. 38

2.12 Transient simulation of Vi− driven by 5 transmitted spikes at 50 Hz,
Vt = 0.7 V, Vw = 0.4 V, Vh = 0.5 V. 39

2.13 Schematic of a compact implementation of stochastic synapse with
STD. 40

2.14 Autocorrelation of the bit sequence from one RNG (×) and cross-
correlation between bit sequences from two RNGs (·). For clarity,
only data up to a sample lag of 100 is shown. 43

x

2.15 Power spectral density of one bit sequence at sampling frequency 1
kHz (similar results are obtained for measurements up to 200 kHz). . 44

2.16 Power spectral density of cross correlation between two random bit
sequences. 44

2.17 Output probability p(Vo+ > Vo−) as a function of input offset v =

Vi+−Vi−, the solid line is f(v) = 0.5
(
1 + erf

(
v−µ√

2δ

))
, where µ = 0.71

and δ = 2.16. 47

2.18 Autocorrelation of the output spike train from the stochastic synapse
with STD for an input spike rate of 100 Hz. Autocorrelation at time
zero represents the sequence variance. Negative autocorrelation at
short time intervals indicates STD. 50

2.19 Power spectral density of the output spike train from the stochastic
synapse with STD for an input spike rate of 100 Hz. Lower PSD at
low frequencies indicates STD. 50

2.20 Mean probability as a function of the input spike rate. Data were
collected at input rates of 50 Hz, 100 Hz, 200 Hz, 300 Hz, 400 Hz,
500 Hz, and 1000 Hz. The solid line shows the least mean square fit
p(x) = 18x− 3.7× 10−5. 51

2.21 Mean probability as a function of the input spike rate for various
combinations of Vt and Vw. Vr = 1.60 V, and Vicm = 2 V. Data were
collected at input rates from 100 Hz to 1000 Hz at 100 Hz intervals.
The dotted lines show the least mean square fit for input rates from
200 Hz to 1000 Hz. 52

2.22 Mean probability as a function of the input spike rate for Vr = 1.55
and 1.60 V. Vt = 0.8 V, Vw = 0.3 V, and Vicm = 2 V. Data were
collected at input rates from 100 Hz to 1000 Hz at 100 Hz intervals.
The dotted lines show the least mean square fit for input rates from
200 Hz to 1000 Hz. 52

2.23 Autocorrelation of output spike trains from the silicon stochastic
synapse with STD for an input spike rate of 100 Hz. Autocorre-
lation at time zero represents the sequence variance, and negative
autocorrelation at short time intervals indicates STD. 54

2.24 Power spectral density of output spike trains from the silicon stochas-
tic synapse with STD for an input spike rate of 100 Hz. Lower PSD
at low frequencies indicates STD. 55

xi

2.25 Characterization of the output spike train from the simulation of the
stochastic synapse with STD. r = 100 Hz, τd = 220 ms, ∆v = 5 mV,
Vmax = 5 mV. 56

2.26 Mean probability as a function of input spike rate for pulse width
Tp =10, 20, 30, 40, 50 µs. Data were collected at input rates from
100 Hz to 1000 Hz at 100 Hz intervals. The dotted lines show the
least mean square fit from 200 Hz to 1000 Hz. 57

2.27 a∆vτd as a function of the pulse width. The dotted line shows the
least mean square fit, f(x) = 0.0008x + 0.0017. 57

2.28 Mean probability as a function of the input spike rate for Vr = 1.55,
1.56, 1.57, 1.58, 1.59 V. Data were collected at input rates from 100
Hz to 1000 Hz at 100 Hz intervals. The dotted lines show the least
mean square fit. 58

2.29 a∆vτd as a function of Vr. The dotted line shows the least mean
square fit, f(x) = e(44.54x−72.87). 58

2.30 Mean probability as a function of the input spike rate for Vw = 0.30,
0.35, 0.40, 0.45, 0.50 V. The dotted lines show the least mean square
fit for input rates from 200 Hz to 1000 Hz. 59

2.31 a∆vτd as a function of Vw. The dotted line shows the least mean
square fit, f(x) = e(15.47x−9.854). 60

3.1 Schematic of a simple voltage node. 73

3.2 Stochastic synapse circuits: a) the clocked cross-coupled differential
pair comparator in the stochastic synapse circuit, b) the simplified
circuit for stochastic modeling, parasitic capacitances are explicitly
added. 75

3.3 One simulated sample path of the stochastic synapse, dashed line:
Vop, solid line: Vom. 77

3.4 Close-up view of the initial period of Fig. 3.3, dashed line: Vop, solid
line: Vom. 78

3.5 Multiple sample paths from 10 transient simulations, dashed line: Vop,
solid line: Vom. 78

3.6 The probability p(Vop > Vom) as a function of input offset v = Vip −
Vim. The solid line shows the fitting of an error function f(v) =

0.5
(
1 + erf

(
v−µ√

2δ

))
, where µ = 0.0157 and δ = 1.2659. 79

xii

3.7 The probability p(Vop > Vom) as a function of input offset Vip − Vim

for Ibias = 100 µA, 10 µA, 1µA, 100 nA, 10 nA, 1 nA, 100 pA, and
10 pA. δ=2.8039, 1.6547, 1.2659, 1.1666, 1.1361, 1.1402, 1.1216, and
1.1246 respectively, for the fitting of the error function. 79

3.8 Small signal stochastic model of the stochastic synapse circuit. 80

3.9 The probability p(Vop > Vom) as a function of input offset Vip − Vim,
◦: from the above threshold small signal model (3.41) for Ibias = 100
µA, 10 µA, ×: from the subthreshold small signal model (3.40) for
Ibias = 10 nA, 1 nA, 100 pA, 10 pA, and 1 pA. δ = 3.5990, 1.4475,
1.0776, 1.0980, 1.1098, 1.0972, and 1.0903 for the fitting of the error
function. 83

3.10 A CMOS inverter with a capacitive load. 86

3.11 Output voltage as a function of time for the ideal CMOS inverter in
subthreshold operation after switching at input, Vdd = 0.1 V. 88

3.12 Output voltage as a function of time for the ideal CMOS inverter in
subthreshold operation after switching at input, Vdd = 0.01 V. 89

3.13 Output voltage as a function of time for the CMOS inverter with
noise in subthreshold operation after input transition, 10 runs with
Vdd = 0.1 V. 90

3.14 Output voltage as a function of time for the CMOS inverter with
noise in subthreshold operation after switching at input, 10 runs with
Vdd = 0.01 V. 90

3.15 The probability density function of output voltage for a CMOS in-
verter with noise in subthreshold operation, Vdd = 0.1 V. 91

4.1 Cartoon of fly’s sensory motor systems. 97

4.2 Optic flow WFI based feedback control [2]. 101

4.3 Reichardt EMD. 102

4.4 Elaborated EMD. P: photoreceptor, SF: spatial filter, BPF: band-
pass filter, LPF: low-pass filter. 104

4.5 Velocity tuning from slow EMD (peak velocity =10◦/s), fast EMD
(peak velocity=50◦/s), and normalized fast EMD. 106

4.6 EMD circular sensor. 106

xiii

4.7 Simulation of WFI based navigation with EMD sensors. (a)Navigation
through a tunnel, (b)Four matched filter outputs from EMD based
optic flow (dotted line) and ideal optic flow (solid line), a0: DC filter,
a1: cos(·) filter, a2: cos(2·) filter, u2: torque filter. 107

4.8 Vehicle configuration in planar tunnel. 109

4.9 Simulation of WFI based navigation using limited view angle optic
flow. a)View angle: π, b)View angle: π/2. 114

5.1 Block diagram of EMD implementation. 120

5.2 Schematic of photoreceptor. 121

5.3 Block diagram of GmC filters: (a) high-pass filter, (b) low-pass filter. 123

5.4 Schematic of transconductance amplifier. 123

5.5 Schematic of Gilbert multiplier. 125

5.6 Steady state tuning curve of 10 EMDs, positive frequency: stimuli
moving from right to left, negative frequency: stimuli moving from
left to right. 126

5.7 Schematic of a sinusoidal function circuit. 128

5.8 Differential current output Io of the sin(·) function circuit for a DC
sweep simulation of the input offset Voffset. The theoretical approx-
imation is 5.61 sin(x) with κ = 0.65. The scaled theoretical approxi-
mation is 6.06 sin(x), obtained by scaling sin(x) with the magnitude
of the sine function from the simulation. 129

5.9 Diagram of sinusoidal network circuit. 130

5.10 Resistor networks and current sources in the sinusoidal spatial filter
circuit, (a) the full networks, (b) a single branch. 131

5.11 Simulation of the sinusoidal network circuit. 132

5.12 Circuit model of a p-type floating gate MOSFET. 134

5.13 Illustration of the programmable current element (PCE). 139

5.14 Current bias for the floating-gate pFET, (a) simple current mirror,
(b) cascode current mirror . 140

xiv

5.15 Programmed current at equilibrium state from transient sweep sim-
ulation. 141

5.16 Schematic of the PCE. 142

5.17 Transient sweep simulation of programming PCE, ×: the channel
current in M3 after programming is done, ◦: the channel current in
M3 after switching to filtering mode for PCE without M4a, ∗: the
channel current in M3 after switching to filtering mode for PCE with
M4a. The output current in M7 is very close to the channel current
in M3 in the filtering mode. 143

5.18 Ratio of the output current to the target current after programming
in the filtering mode from transient sweep simulation of PCE. 143

5.19 Drain voltage (left) and floating gate voltage (right) from transient
sweep simulation of PCE. ×: when programming is finished, ◦: after
switching to filtering mode for PCE without M4a, ∗: after switching
to filtering mode for PCE with M4a. 144

5.20 Schematic of the bias circuit for the PCE. 145

5.21 The layout of the PCE. 145

5.22 Architecture of the motion image sensor. 146

5.23 Illustration of the PCM. 147

5.24 PCM in programming mode. 150

5.25 PCM in sensing and filtering mode. 152

5.26 Test setup for the PCM. 153

5.27 Programming of 10 nA to an array of PCEs. 154

5.28 Calibration of the output current mirror. 155

5.29 Program a sinusoidal filter. 156

5.30 Output current to target current ratio after programming. 157

5.31 Filtering a constant current input with the sin filter. 158

5.32 Output current to input current ratio as a function of the input current.158

5.33 Photo of the flyeye test setup. 159

xv

5.34 Mismatch compensation of the EMD velocity tuning, 1 velocity unit
= 28.9◦/s. 160

5.35 Averaging velocity tuning curve of EMDs for different bias current of
low-pass filter, 1 velocity unit = 28.9◦/s. 161

5.36 Distribution of output current from all PCEs from four filters. 162

5.37 Mismatch compensation of the EMD response in one filter, 1 velocity
unit = 28.9◦/s. 163

5.38 Total EMD responses after mismatch compensation from four filters,
1 velocity unit = 28.9◦/s. 164

5.39 The sensor and the PCB board. 165

5.40 The integrated sensor and vehicle. 166

5.41 Block diagram of the system. 166

5.42 View angle calibration. 167

5.43 Program four filters: a0 = 2, a1 = 2 cos(·), a2 = 2 + cos(2·), b1 =
2 + sin(·). ◦: programmed current from filter taking minus part of
the input, ×: programmed current from filter taking plus part of the
input. Dotted line: scaled ideal filter current. 169

5.44 Mean filter outputs at constant angular velocities, positive angular
velocity: counter clockwise, negative angular velocity: clockwise. . . . 169

5.45 Three tunnel settings for closed loop experiments. 172

5.46 Trajectories of the vehicle navigating through the tunnel for 20 runs
with initial offset y = −24.1 cm, dashed line: mean trajectory, δy =
6.6 cm. 173

5.47 Trajectories of the vehicle navigating through the tunnel for 20 runs
with initial offset θ = 21◦, dashed line: mean trajectory, δy = 9.6 cm. 174

5.48 Trajectories of the vehicle navigating through the tunnel for 20 runs
with no initial offset, dashed line: mean trajectory, δy = 6.8 cm. . . . 174

A.1 The transconductance amplifier for the GmC filter with large time
constant, (a) schematic, (b) symbol. 183

A.2 The circuit block diagram of the adaptive large time constant filter. . 184

xvi

A.3 The configuration of the adaptive large time constant filter, (a) pro-
gramming, (b) low-pass filter, (c) high-pass filter. 186

A.4 Transient simulation of the programming of the adaptive filter. 187

A.5 Sweep AC analysis of the adaptive filter configured as a LPF with
the capacitance from 100 fF to 1 pF in the increment of 100 fF. . . . 188

A.6 Sweep AC analysis of the adaptive filter configured as a HPF with
the capacitance from 100 fF to 1 pF in the increment of 100 fF. . . . 189

B.1 Previous adaptive floating gate pixel structure. 191

B.2 New adaptive floating gate pixel structure. 191

B.3 Small signal model of the previous pixel structure. 192

B.4 Small signal model of the new pixel structure. 193

xvii

List of Abbreviations

κ subthreshold slope factor
F Faraday’s constant
R Gas constant
T Absolute temperature
VT Thermal voltage
A/D Analog to Digital
AC Alternating Current
BIST Build-In-Self-Test
CI Contralateral Inhibited (CI)
CMOS Complementary Metal-Oxide-Semiconductor
D-FF D-type Flip Flop
DAQ Data Acquisition
DC Direct Current
DIP Dual In-line Package
DOF Degree of Freedom
DSP Digital Signal Processing
DUT Device Under Test
EMD Elementary Motion Detector
FD Figure Detection
FG Floating Gate
FPGA Field Programmable Gate Array
FPN Fixed Pattern Noise
GA Genetic Algorithm
GND electrical GrouND
GPIB General Purpose Interface Bus
HPF High-Pass Filter
IC Integrated Circuit
LED Light Emitting Diode
LMC Large Monopolar Cell
LPF Low-Pass Filter
LPTC Lobula Plate Tangential Cell
LTD Long-Term Depression
LTP Long-Term Potentiation
MOSFET Metal-Oxide-Semiconductor Field Effect Transistor
ND Null Direction
nFET n-type Field Effect Transistor
NMDA N-Methyl-D-Aspartate

xviii

PCB Printed Circuit Board
PCE Programmable Current Element
PCM Programmable Current Matrix
PD Preferred Direction
PFGA Programmable Floating-Gate Array
PPD Paired-Pulse Depression
PPF Paired-Pulse Facilitation
PRNG Pseudo Random Number Generator
PSC Pulse Shaping Circuit
PSP PostSynaptic Potential
PTP Post-Tetanic Potentiation
pFET p-type Field Effect Transistor
PSD Power Spectral Density
REMD Reichardt Elementary Motion Detector
RMS Root Mean Square
RNG Random Number Generator
SDE Stochastic Differential Equation
SNR Signal to Noise Ratio
STD Short-Term Depression
STDP Spike Timing Dependent Plasticity
UV Ultra-Violet
VLSI Very Large Scale Integration
WFI Wide Field Integration
XOR Exclusive-OR

xix

Chapter 1

Preamble

1.1 Introduction

The dissertation represents my efforts towards solving engineering challenges

using biological computational principles. The elegance of the biological systems is

reflected from the underlying biochemical machinery at very low level, to the sig-

nal representations, the algorithms for specific tasks, and systems integration and

organization at very high level. Specifically, I investigated neural systems at two

very different levels, the synaptic level and the sensorimotor integration level, which

inspired the similar implementations in VLSI. The first silicon stochastic synapse

with short-term depression ever reported in the literature is demonstrated by modu-

lating the influence of noise on the circuit. The depressing silicon stochastic synapse

exhibits the behavior similar to its biological counterpart and matching the theory

and simulation. An integrated motion image sensor with on-chip optic flow esti-

mation, adaptation, and programmable spatial filtering is also demonstrated. The

sensor emulates the fly’s eyes to extract motion information from detailed struc-

tures of the optic flow field. The sensor is integrated with a ground robot and the

robot is able to navigate through simple tunnel environments using the sensor out-

put, in the similar way as the fly’s visually-guided navigation. For these two very

different VLSI systems, I demonstrate that adaptation is essential for their proper

1

function and how floating gate MOSFETs in standard CMOS processes can be used

to implement adaptation and programmability.

The advancement of semiconductor technology brings us both the opportuni-

ties and the challenges. As feature sizes of integrated circuits continue to shrink and

demand for low power operation continues to increase, power supply voltages may

eventually be reduced to the level where noise becomes significant compared with

signals. The signal corruption affects not only analog circuits but digital circuits as

well. Specifically, this would cause digital logic circuits to exhibit non-deterministic

behavior. This poses serious challenges to the conventional paradigm of determin-

istic computation based on digital logic circuits. Can we turn the ubiquitous noise

into our friend? New computational paradigms that account for this randomness

and take advantage of it may achieve robust performance despite the noise [3–8].

In biology, synapses are among the primary locations in neural systems where

information is processed and transmitted. Synaptic transmission is a stochastic

process by nature, i.e., a presynaptic spike triggers a synaptic vesicle to release its

chemical transmitter with a certain probability. The probability determines both the

synaptic efficacy and the postsynaptic potential. Synaptic efficacy can increase or

decrease within milliseconds after the onset of specific temporal patterns of activity,

phenomena known as synaptic facilitation and depression. Recent evidence suggests

that short-term synaptic plasticity performs temporal filtering [9,10] and is involved

in many functions such as gain control [11], phase shift [12], coincidence detection,

and network reconfiguration [13]. The computational power of dynamic stochastic

synapses has been demonstrated in theory [14], and through network simulation [15].

2

It has been suggested that randomness in ion channel and synaptic transmission

increases the energy efficiency of the information coding and processing [16, 17]. It

has also been shown that depressing stochastic synapses can increase information

transmission efficiency by filtering out redundancy in presynaptic spike trains [18,

19]. Long-term plasticity that depends on the precise timing of spikes, referred to

as spike timing dependent plasticity (STDP) [20, 21], has also been observed and

modeled as a modulation of release probability based on the pre- and postsynaptic

spike timing [22].

Can we create the controllable randomness and implement the similar dynam-

ics for information processing in silicon? We propose a stochastic synapse in silicon

where the noise is used in a differential mode to generate randomness. The circuit

exhibits stochastic transmission of input spikes, and the transmission probability

can be adjusted by input voltage bias, therefore providing the mechanism to fur-

ther implement activity dependent dynamics. We choose a subtractive single release

model for the short-term depression to implement in silicon. The experimental result

demonstrates that the depressing silicon stochastic synapse shows similar behavior

as the biological synapse.

To obtain stochastic behavior from the silicon implementation, there is another

obstacle to overcome, the fabrication mismatch. Fabrication mismatch is the device

parameter variation from wafer to wafer, die to die, or even within the same die

due to the processing and masking limitation [23–26]. It is a major concern for high

performance analog circuits, affecting offset voltages, errors in current mirrors, errors

in bias currents, etc. For the stochastic synapse, mismatch would bias the circuit into

3

the deterministic operation, either transmitting every input spike or none of them.

Although it is possible to manually tune the circuit to the stochastic operation, it

is apparently a laborious process. Floating-gate MOSFET is a nonvolatile storage

unit where charges can be stored at the floating gate for a long period through

tunnelling and injection [27, 28]. The charges can be used as a local weight for

computation or to cancel the offset from mismatch. It has been applied in many

applications such as autozeroing amplifier [29], focal plane online nonuniformity

correction [30], adaptive floating-gate comparator [31], fixed pattern noise reduction

[32], single transistor synapse [33–35], analog memory [36], current trimming [37],

matrix operation [38,39], and learning in silicon [40,41]. In our stochastic synapse,

we use floating-gate pFET injection configured in negative feedback to automatically

program the circuit into the stochastic region. This makes it possible to implement

a large array of stochastic synapses on-chip. The floating-gate pFET also provides

the capability to implement long-term plasticity in the stochastic synapse.

To fully understand the stochastic operation of the circuit and the effect of

noise, we propose to model the circuit using stochastic differential equations (SDEs)

and use the numerical solution of the SDEs as the time domain transient analy-

sis. Normally noise effects are analyzed in the frequency domain in terms of power

spectral density (PSD). For a linear system, the output noise PSD is related to the

input noise PSD by its transfer function, i.e., total output noise PSD is the sum-

mation of all noise sources scaled by the power transfer functions of all intervening

subsystems [42, 43]. Input referred noise is computed by dividing the total output

noise by the system power transfer function for direct comparison with input sig-

4

nals, i.e. to compute signal noise ratio (SNR). These capabilities are provided by

popular circuit simulators. Such frequency domain analysis, however, is not suitable

for many circuits, particularly where large signal behavior or nonlinearity is an im-

portant characteristic, or where performance depends on transient sample paths and

ensemble statistics as for the stochastic synapse. The transient analysis shows how

the signal evolves in the presence of noise fluctuations, and how those fluctuations

influence the statistics of the signal samples at specific times. Heuristic methods

have been proposed before for noise transient analysis by synthesizing time domain

noise signals using a sum of sinusoidal signals [44] or a series of pulses [45]. These

methods cannot show the interaction of noise with the circuit dynamics. We develop

a small signal stochastic model of the circuit. This model gives us a close look at

how device parameters and operation biases affect the circuit, and fully elucidates

the origin of its stochastic behavior.

We apply the same method to one of the fundamental digital circuits, a CMOS

inverter, at low power supply voltages. Understanding the stochastic behavior of dig-

ital circuits could potentially help us to find non-conventional computation scheme

that makes use of noise in digital circuits. We use numerical simulations of SDEs to

obtain time domain transient analysis of the CMOS inverter and magnitude statis-

tics from multiple sample paths. Furthermore, we derive the output distribution at

steady state from first principles.

We then turn our attention to another problem for low power, low load, and

highly integrated sensor and actuator systems for micro air vehicles. A fly clearly

presents us an excellent solution we can learn from. Flies have survived over 300

5

million years and represent one of the most successful animal groups on our planet

(i.e. one tenth of the known species is a fly). Their sensorimotor system seems much

simpler than those of larger animals such mammals, with eyes of only 3000 pixels

in spatial resolution and a set of 17 muscles controlling the wings [46]. But the

system is highly specialized and perfected to tasks directly related to their survival

and reproduction. The fly’s photoreceptors can operate in a large dynamic range,

from single photons to light up to ∼ 106 effectively absorbed photons per second

due to the adaptation mechanism [47]. The parallel computation in sensory system

to extract behaviorally relevant information and close interaction between sensory

and motor systems enable the fly to respond fast. Flies can chase mates at turning

velocities of more than 3000◦ s−1 with delay times less than 30 ms [48] and maintain

flight stability within turbulent conditions [49]. They can handle the noisy and

uncertain environment well, which is always a challenging problem for engineered

systems. The amazing performance is all achieved in a small package with a neural

system of less than a million neurons and only 0.1 milligram in weight [50]. In

comparison, conventional computer vision based navigation systems rely on CCD

imagers and digital microprocessors. Static images are captured along time and

sampled in space, and task relevant information is extracted from the huge amount

of data in images by the series operation of digital microprocessors. The system

is bulky and demands large memory, high power consumption, and long operation

time. On the Sojourner rover of the Mars mission, the CCD imagers consumed

5% of the total power and the CPU system consumed 24%, much of which was

devoted to the processing of the images [51]. Therefore the fly inspired visually

6

guided navigation system offer highly efficient solutions to low power, light weight,

high speed, and robust sensor and actuator systems for micro air vehicles.

Flying insects have immobile eyes with a fixed focal length. With poor spatial

resolution and lack of binocular stereopsis, but better temporal resolution, flying

insects extract most visual cues from image motion for visually guided behavior.

When an insect flies around, moving patterns of illuminance generate local image

shifts on the retina, called optic flow. The optic flow contains information about

self-motion, object motion, and spatial layout of the environment, playing criti-

cal roles in vision based navigation such as flight stabilization, centering response,

object avoidance, landing, predator attack, chasing behavior, etc. [52–56]. Optic

inputs go through several layers of processing and project to the lobula plate, where

lobula plate tangential cells (LPTCs) have large dendritic trees, integrating visual

information across a large field. There are about 60 different LPTCs on each side

identified by their characteristic anatomy and response [48]. Recent experimental

results revealed that there is fine spatial structure of the motion direction sensi-

tivity in the receptive field of LPTCs beyond their preferred global direction [57].

The structure matches typical optic flow patterns induced by self-motion. It has

been postulated that such matched filter structures correspond to neuronal models

of the external world [58]. LPTCs may compute specific self-motion parameters by

filtering its vast visual input stream through synaptic connections.

The matched filter type of operation of optic flow has been formulated in a feed-

back control scheme, as the wide field integration (WFI) based navigation [2,59–61].

It was shown that motion cues can be extracted via circular Fourier decomposition

7

of the optic flow and used in a feedback control loop to drive the vehicle towards

a desired state or trajectory. It was also demonstrated that the feedback method-

ology is sufficient to explain some of the experimentally observed honeybee flight

behavior [60]. To have a coherent solution of the motion cue estimation inspired

from the fly, we evaluate the fly inspired optic flow estimator, the elementary mo-

tion detector (EMD) [62–65], in this framework. Simulation suggests that EMD is a

possible candidate of optic flow estimation for the WFI based navigation although

noisy output, nonlinear response, and contrast dependence could cause problems.

Since flying insects have limited view angles, which are much less than 2π, as used

in circular Fourier decomposition, we investigate motion cues recovery and feedback

control from a limited view angle and extend previous result to the general case of

limited view angles. This also helps to alleviate technical difficulties associated with

constructing a full circular motion sensor.

We then develop a single chip solution to the WFI based navigation, aim-

ing to generate the motion cues on-chip and feed them directly to the vehicle for

navigation control. The chip has optic flow estimation and programmable spatial

filters. Previously EMD has been used for navigation where EMD responses across

the field of view were spatially averaged to provide the velocity information about

the motion [66–69]. And it is the only parameter extracted and used. In this case,

the individual differences among EMDs caused by mismatch is not critical. While

for the WFI based navigation, detailed spatial structure of the optic flow field is

used to extract multiple dynamic and kinematic parameters, therefore the intrin-

sic difference among EMDs caused by mismatch would distort the original optic

8

flow spatial pattern and pose a serious problem. Again, we need to overcome mis-

match as we do for the stochastic synapse. We use the floating-gate pFET injection

configured in negative feedback, but in a different way. It implements not only

the mismatch compensation, but also the programming of the filters. The same

floating-gate pFET also functions as the multiplier for filtering. Therefore we use

a very compact structure and simple mechanism to achieve three functions at the

same location. The method can also be applied to other sensory front-end in in-

tegrated sensors where on-chip spatial processing is required and distortion from

fabrication mismatch among sensor units has to be reduced. Although the sensor

is geared for micro air vehicles, we first demonstrate the concept using a prototype

with the sensor integrated with a ground robot. Both open loop and closed loop

system test are performed.

Insect neural systems are relatively simple, and it is feasible to emulate many

of their structures and functions using current technology. Not only does this enable

biologically-inspired robots with high performance and efficiency, it also allows us

to test our understanding of the biological systems [70,71].

As demonstrated, floating-gate MOSFET is a power technique to bring adap-

tation into the circuits. In the appendices, I further explore its application in two

other proposed circuits: adaptive large time constant filter and adaptive floating-

gate pixel.

9

1.2 Organization

The thesis is organized as follows.

In chapter 2, I first introduce the basic biology of the synapse and synaptic

plasticity, and explain the stochastic nature of the synapse and its connections to

plasticity. I briefly review previous efforts in developing adaptive VLSI synapse

for VLSI learning systems, followed by the discuss of the difficulty of introducing

randomness to VLSI learning system and how randomness can be generated and used

under the context of random number generator (RNG) integrated circuit (IC). I then

introduce the silicon stochastic synapse we proposed and the method to incorporate

either the short-term or the long-term plasticity. I describe the implementation

of the short-term depression based a subtractive single release model. Statistical

characteristics and spike transmission dynamics are investigated using the fabricated

chip. The experimental results are presented that demonstrate the good randomness

and robustness of the silicon stochastic synapse, similar behavior from the short-

term depression as its biological counterpart, and good agreement with theory and

simulation.

In chapter 3, I first briefly review circuit noise. Then I introduce the mathe-

matic concepts and tools for stochastic modeling and simulation: from the definition

of random variable and process, to stochastic integral and SDE, to numerical so-

lution of the SDE. I illustrate the basic technique to write the SDE for a voltage

node and extend it to the silicon stochastic synapse. Using transient analysis based

on the numerical simulation of the SDEs, I demonstrate the operation mechanism

10

of the silicon stochastic synapse. Furthermore, I introduce a small signal stochas-

tic model, which elucidates the dynamics behind the stochastic behavior and the

influences from device parameters and operation biases. Similar treatment is given

to a CMOS inverter to understand the stochastic behavior of digital elements when

operating at very low voltage supplies. Analytical solution of steady state output

distribution is obtained and compared with numerical simulations.

In chapter 4, I first introduce the fly’s vision system, the sensorimotor system,

and the visually guided navigation. I then introduce the optic flow WFI based

navigation and EMD. Using a simulink model, I evaluate the EMD and its variations

in the feedback control of WFI based navigation. I extend the theoretic result to

the general case of limited view angles.

In chapter 5, I describe the single chip solution to the WFI based navigation.

The motion image sensor is consist of three major functional modules: EMD array,

programmable current matrix (PCM), and control logic. The details are given for

each circuit components. Two approaches to spatial filters, resistive networks and

nonvolatile storage, are illustrated and compared. In the final design, nonvolatile

storage approach is used. A novel structure, programmable current element (PCE),

is proposed to achieve mismatch compensation, filter programming, and filtering

operation at the same location. The post-sensory computational core is formed by

PCM, a matrix of PCEs. The architecture and the operation of the motion image

sensor are described, followed by the experimental results of PCE programming and

EMD mismatch compensation. At the end, I describe the effort for integration of

the sensor with a ground robot. Experimental results are shown and discussed.

11

In chapter 6, I summary the thesis work and discuss open problems and future

directions of the research.

In appendix A, I introduce the large time constant GmC filter using indirect

feedback and the problem from fabrication mismatch. I describe a solution to com-

pensate the mismatch and how the circuit can be configured for adaptation and

filtering operation. Transient simulation of the adaptation and AC analysis for the

frequency response are shown.

In appendix B, I propose an improved adaptive floating-gate pixel. I introduce

both circuits and compare their frequency responses.

1.3 Contributions

The following is a summary of contributions from my Ph.D. research.

1.3.1 Dynamic VLSI Stochastic Synapse

• Propose and fully characterize the first VLSI stochastic synapse circuit with

high quality of randomness.

• Propose methods to incorporate both short-term and long-term activity de-

pendent plasticity in the VLSI stochastic synapse.

• Propose and simulate a circuit model of short-term depression.

• Design a compact circuit of short-term depression in the VLSI stochastic

synapse.

12

• Demonstrate the short-term depressing behavior that is similar to its biological

counterpart and matches the theoretical and simulation results.

1.3.2 Stochastic Circuit Modeling

• Propose a method for stochastic circuit modeling using SDEs and transient

analysis of circuit behavior based on numerical solution of SDEs.

• Propose a stochastic model of the VLSI stochastic synapse and perform the

transient analysis.

• Propose a small signal stochastic model of the stochastic synapse relating

device parameters, operating biases, noise, and circuit dynamics.

• Analyze the stochastic behavior of a fundamental digital circuit, a CMOS

inverter, at low supply voltages.

1.3.3 Fly Inspired Integrated Approach to Autonomous Navigation

• Evaluate the EMD as the optic flow estimator in WFI based navigation.

• Generalize previous theoretical result of WFI based navigation to limited view

angles and demonstrate the result in simulation.

• Propose a circuit to achieve mismatch compensation, filter programming, and

filter operation all in one place.

• Design and characterize a low power integrated motion image sensor with

on-chip optic flow estimation, adaptation, and programmable spatial filters.

13

• Integrate the sensor with a ground robot and demonstrate autonomous nav-

igation in simple tunnel environments. This is the first single VLSI sensor

solution to EMD navigation based on WFI.

14

Chapter 2

Silicon Stochastic Synapse with Plasticity

2.1 Introduction

2.1.1 Neuron and Synapse

Nervous system is essential for animals to interact with the outside world. It

is responsible for information communication and computation. Nervous system is

a massive interconnected network, where neurons are the basic structure units, and

synapses form the connections. In the human nervous system there are about 1012

neurons and 1015 synapse in brain [72].

A typical neuron has three parts: 1) a tree of processes called dendrites, which

receive signals from other neurons; 2) cell body, where signals from dendrites are

integrated and outputs are generated; 3) a long process called axon, along which

neural signals from the cell body travel a distance to the end, and pass to other

neurons through synapses.

Neural signals propagate by membrane potentials: graded potentials or action

potentials. The membrane potential is determined by the ion concentration inside

and outside of the neuron and the ion channel permeability, where Na+, K+, and

Cl− ions are the three major players. The permeability determines the conductance

of the channel. The membrane potential is given by the Goldman-Hodgkin-Katz

15

(GHK) equation [72]:

V =
RT

F
ln

PK [K+]out + PNa[Na+]out + PCl[Cl−]in
PK [K+]in + PNa[Na+]in + PCl[Cl−]out

(2.1)

where R is the gas constant, F is Faraday’s constant, and T is absolute temperature.

At room temperature 293 K, RT
F
≈ 58mV . [·] are the ion concentrations, and P·

are the permeability of the ion channels. In general [K+]in > [K+]out, [Na+]in <

[Na+]out, and [Cl−]in < [Cl−]out. They are maintained by the active transport

of ions. When one ion channel is dominant, the membrane potential is mainly

determined by that ionic reversal potential Es = RT
Fz

ln [s]out

[s]in
, where z is the valence

of the ion.

Action potentials, also known as spikes or neural impulses, are used by neurons

to transmit neural signals over long distance. They are all-or-none transient signals

that are mediated by voltage and time dependent ion channel conductance. The

mechanism is best understood through Hodgkin and Huxley’s study of squid giant

axon. A simple count of the action potential is as follows. When the neuron is

at rest, the membrane is most permeable to K+, so the rest potential is close to

EK . Stimulus causes depolarization of the membrane. Once the membrane is above

the threshold voltage, the conductance of the Na+ increases bringing more inward

current to the neuron, therefore depolarizing the membrane further. This is a fast

regenerative process that drives the membrane potential to ENa eventually. At the

same time, the conductance of K+ increases slowly causing more outward current,

and the conductance of Na+ decreases after it reaches its maximum. Eventually,

the conductance of K+ is much higher than Na+ so that the membrane is polarized

16

back to its resting potential. In the end, all ion channel conductances recover back

to their resting state. Na+-K+ pump is responsible to restore the intracellular and

extracellular concentration of Na+ and K+ [72].

When spikes reach the end of the axons, the presynaptic terminals, they ac-

tivate the voltage dependent Ca2+ channels and Ca2+ flows in. This causes the

vesicles containing neurotransmitters to fuse with the presynaptic membrane, thus

to release the neurotransmitters to the synaptic cleft. The neurotransmitters diffuse

to the postsynaptic membrane and bind to the receptors. This triggers the opening

of the ion channels directly or through other messenger paths. The opening of the

ion channel causes either positive or negative postsynaptic potential (PSP). Neuro-

transmitters are recycled back to presynaptic terminals to reform vesicles. PSPs at

the dendritic terminals propagate to the cell body and are integrated to determine

whether a postsynaptic spike will be generated [72].

It has been observed that the PSP is the unit multiples of the PSP from the

spontaneous release of a single vesicle, and the fluctuation of the PSP is hypoth-

esized due to the variation of the number of vesicles released, known as quantum

hypothesis. It has also been observed that at central synapses transmission proceeds

in an all-or-none fashion. This leads to the hypothesis that at most one vesicle can

be released per spike per active zone, and the release is a stochastic event. The

exact mechanism is not clear, and could due to lateral inhibition across presynaptic

membrane, constraint of single releasable vesicle per active zone, or postsynaptic

17

receptor saturation [73]. The synaptic weight has been modeled as [74]:

R = npq (2.2)

where n is the number of quantal release sites, p is the probability of release per

site, and q is some measure of the postsynaptic effect.

2.1.2 Synaptic Plasticity

Synapses are among the primary locations in neural systems where information

is processed and transmitted. They undergo constant changes in order to learn from

and adapt to the ever-changing outside world. Synaptic efficacy can increase or

decrease within milliseconds after the onset of specific temporal patterns of activity

and can last from milliseconds to days. The variety of synaptic plasticities differ

in the triggering condition, time span, and involvement of pre- and postsynaptic

activity.

In a paired-pulse facilitation (PPF), the amplitude of response from the second

input pulse increases. After a train of input pulses, the response increases as well,

the early phase is called augmentation, and the later phase is called post-tetanic po-

tentiation (PTP). It is suggested that all these enhancements are due to an increased

release probability, thus a presynaptic phenomenon. A simplified explanation is that

the residual Ca2+ from previous pulse or pulse train increases the release probability.

Depression can also occur after a single pulse or a pulse train, known as paired-pulse

depression (PPD) or depletion. It is attributed to the decrease of release probability

or number of release site [72,74].

18

The long term form of enhancement or depression after a train of input stim-

uli are known as long-term potentiation (LTP) and long-term depression (LTD).

They are associated with learning and memory. Both presynaptic and postsynap-

tic activities are involved, and the rising of intracellular Ca2+ in the postsynaptic

neuron plays an important role. Donald Hebb proposed the famous rule govern-

ing the long-term plasticity: in the Hebbian case, the synapse efficacy increases

when there is a causal relation between the presynaptic and postsynaptic firing,

in the anti-Hebbian case, the synapse efficacy decreases when the postsynaptic fir-

ing occurs without presynaptic firing or vice versa. A close investigation of the

relation between the synaptic plasticity and the precise firing time discovered the

so called spike timing dependent plasticity (STDP) [20, 21]. If a presynaptic spike

precedes a postsynaptic spike within a critical time window, the synaptic efficacy

increases. Conversely, if a presynaptic spike arrives right after a postsynaptic spike,

the synaptic efficacy decreases. Table 2.1 summarizes the different forms of synaptic

plasticity [74].

The regulation of the vesicle release probability has been considered as the un-

derlying mechanism for various synaptic plasticities. Many models are built to match

the experimental data. Senn, Markram, and Tsodyks [22] proposed an algorithm

for modifying neurotransmitter release probability based on pre- and postsynaptic

spike timing. The release probability is upregulated if the presynaptic spike occurs

up to 50 ms before the postsynaptic spike and downregulated if the presynaptic spike

occurs up to 50 ms after the postsynaptic spike. The up- and downregulation are

mediated by the N-methyl-D-aspartate (NMDA) receptors located at the postsynap-

19

Table 2.1: Synaptic plasticity

Phenomenon Duration Location

Short Term

Enhancement

Paired-pulse facilitation 100 ms pre

Augmentation 10 s pre

Post-tetanic potentiation 1 min pre

Depression
Paired-pulse depression 100 ms pre

Depletion 10 s pre

Long Term
Long-term potentiation > 30 min pre/post

Long-term depression > 30 min pre/post

tic membrane. Tsodyks and Markram [75] modeled the synaptic transmission using

the dynamics among three states (effective, inactive, recovered) of the connection

resource, and showed that the neural code between neocortical pyramidal neurons

depends on neurotransmitter release probability. The rate of synaptic depression is

determined by the release probability and dictates whether firing rate or temporal

coherence of presynaptic spikes is signaled to the postsynaptic neurons.

2.1.3 Adaptive VLSI Synapse

The remarkable performance of biological neural computation has inspired

research in VLSI neural systems where efforts are made to build neurally-inspired

learning systems in silicon and use them as powerful experimental tools to study

neural systems as well. Similar to biological neural systems, silicon neuron is the

functional unit of the system and silicon synapses connect the neurons to form the

20

network. Adaptive VLSI synapses have been extensively studied and developed

as the central units for adaptation and learning. Floating-gate single transistor

synapses have been proposed where adaption can be achieved locally in parallel

and over long times [33–35]. Häfliger and Mahowald [76] developed a synapse with

weight change depending on the temporal correlation of spikes. Silicon synapses with

short-term depression (STD) have been developed and modeled, with the weight of

the synapse implemented by a gate voltage which decreases after each presynaptic

spike and recovers between the spikes [77–79]. Short-term facilitation and depression

have also been implemented using a current mirror integrator [80]. Synapses with

temporally-asymmetric Hebbian learning rules have been implemented [81] as well

as synapses with STDP [82].

All these adaptive synapses are deterministic VLSI synapses. Alternatively

stochastic synapses transmit spikes according to a transmission probability. Sto-

chastic synapses have been difficult to implement in VLSI because it is hard to

properly harness the probabilistic behavior, normally provided by noise. Although

stochastic behavior in integrated circuits has been investigated in the context of

random number generators (RNGs) [83], these circuits either are too complicated

to use for a stochastic synapse or suffer from poor randomness. Therefore other

approaches were explored to bring randomness into the systems. Stochastic trans-

mission was implemented in software using a lookup table and a pseudo random

number generator [84]. Stochastic transition between potentiation and depression

has been demonstrated in bistable synapses driven by stochastic spiking behavior

at the network level for stochastic learning [85,86].

21

2.1.4 Randomness in VLSI

Stochastic behavior in integrated circuits has been investigated in the con-

text of RNGs, which have broad application in cryptography, scientific comput-

ing, and stochastic computing. There is growing interest in integrated circuit (IC)

RNGs which can be easily integrated in systems-on-chip, for information protection,

built-in-self-test (BIST), or hardware implementation of genetic algorithms (GA).

Random numbers are generated on-the-fly inside the system without feeding the

sequence externally. Normally random bits are generated which can be assembled

into integers or fractions. Random numbers with uniform distribution are generated

and could be transformed to random numbers with other distributions by inverse

cumulative density functions [87].

The quality of randomness of the RNGs directly influences the system perfor-

mance. Pseudo-RNG (PRNG) generates sequences using a deterministic algorithm,

such as congruential generators and shift-register generators [88], so the sequence

inevitably repeats and becomes predictable. For some applications this repeated

pattern will cause performance degradation. For other applications the predictabil-

ity of the random sequence has serious consequences, i.e., it jeopardizes the secrecy

of the cryptography. Many hardware RNGs are PRNGs, which implement hardware

friendly RNG algorithms in VLSI or FPGA. These hardware PRNGs suffer similar

problems to software PRNGs.

A true RNG is nondeterministic and unpredictable, often relying on the ran-

domness from physical phenomena, such as radioactive decay, photon arrival, ther-

22

mal noise from a resistor, or shot noise from a Zener diode. For IC true RNG, there

are three commonly used techniques in the literature. The direct amplification tech-

nique amplifies small AC voltages produced by a noise source and generates digital

signals by thresholding with a clocked comparator [89]. This method is sensitive to

interference from other noise sources and requires significant shielding. The oscilla-

tor sampling method [90] uses a slow clock to sample a much faster clock in order to

acquire a digital signal. Randomness comes from the phase jitter of the slow clock,

which is not always adequate to provide randomness of good quality. The speed of

the RNG is limited by the slow clock as well. Electronic chaotic systems have also

been used to generate unpredictable signals [91–93]. Petrie and Connelly [83] created

behavioral models for these three different IC-compatible methods for producing

random numbers, and combined them together to build a robust true RNG immune

to non-random influences. Other techniques are also developed for RNG [94–96].

These circuits either are too complicated to use for a stochastic synapse or suffer

from poor randomness.

In the following section we present the first silicon stochastic synapse. The cir-

cuit is compact (∼ 15 transistors) and the experimental results demonstrated good

randomness as well as the feature of probability tuning. It can also be used as a true

RNG IC [97]. Furthermore, we propose the method to implement stochastic synapse

with plasticity and demonstrate the implementation of short-term depression (STD)

by modulating the probability of spike transmission. Like its deterministic counter-

part, this probabilistic synapse provides filtering on individual spike train inputs; its

stochastic character, however, creates the possibility of a broader range of compu-

23

tational primitives such as rate normalization of Poisson spike trains, probabilistic

multiplication, or coincidence detection.

2.2 Silicon Stochastic Synapse

The stochastic synapse uses competition between two intrinsic circuit noise

sources to generate random events. The core of the structure is a clocked, cross-

coupled differential pair comparator (Fig. 2.1(a)) with input voltages Vi+ and Vi−.

The same circuit has previously been used in an adaptive comparator for offset

cancellation [31]. When Vclk is logic high, Vo+ ≈ Vo−. When Vclk becomes logic

low, transistor M5 shuts off, Vo+ and Vo− are nearly equal and the circuit is in its

metastable state. If Vg+ is significantly higher than Vg−, initially Vo+ increases and

Vo− decreases. So the channel current of M3 increases and the channel current of M4

decreases, which further drives Vo+ up and Vo− down. This is a positive feedback

procedure that drives Vo+ close to Vc and Vo− close to ground. If Vg+ is significantly

lower than Vg−, the opposite happens. When Vg+ is very close in value to Vg−, circuit

noise that produce fluctuations in the drain currents of M1 and M2 will dictate the

outcome. The final result depends on the sign of the imbalance, Vo+ − Vo−, which

triggers positive feedback after transistor M5 shuts off. The detailed model of the

circuit will be given in chapter 3.

Fabrication mismatch in an uncompensated circuit would likely permanently

bias the circuit to one solution. In this circuit, floating gate inputs to a pFET differ-

ential pair allow the mismatch to be compensated. Since there is no direct electrical

24

Vdd

Vi+ Vi-

Vclk

Vc

Vo-

Vg+ Vg-

Vo+

Vdd Vdd

Vclkb

Vbias

Vo+ Vo-

Vout+ Vout-

M1 M2

M3 M4

Ibias

M5

(a) (b) (c)

or

p

1-p

Vpre~ Vout+~

10/10 10/10

10/2

8/6

8/68/6

8/6

Figure 2.1: Stochastic synapse circuit: (a) clocked cross-coupled differential pair

comparator, (b) dynamic output buffer, (c) input-output behavior. W1,2

L1,2
= 14

2
, 4

12

have been used.

connection to the floating gate, its potential is determined by capacitive coupling

to nearby nodes and charge stored on the node. The voltage at the floating gate

can be modified with fine resolution by hot-electron injection or tunnelling mech-

anisms. The circuit uses a nominal power supply of 5 V during normal operation,

a 5.5 V supply for injection during mismatch compensation, and a 15 V supply for

tunnelling used only during initialization. By controlling the common-mode voltage

of the floating gates, we operate the circuit such that hot-electron injection occurs

only on the side where the output voltage is close to ground. Injection current is a

function of the drain current, gate-drain voltage Vgd, and source-drain voltage Vsd.

The higher the Vgd and Vsd are, the higher the injection current is. When one float-

ing gate is higher in voltage than the other, the comparator output on that side will

be pulled low. With proper common input voltage, this will provide enough Vsd and

Vgd for injection to happen only on the side pulled low, thus reduce the floating gate

25

voltage. Over multiple clock cycles hot-electron injection works in negative feedback

to bring close the floating gate voltages, therefore bring the circuit into stochastic

operation. When the procedure is left long enough, it equilibrates the floating gate

voltages and reaches the equilibrium point at which the circuit outputs around 50%

probability of the two alternative results. We use a dynamic buffer (Fig. 2.1(b))

driven by the complement of the same clock, to convert the voltages at Vo+ and Vo−

into rail-to-rail pulse signals.

When the circuit functions as a stochastic synapse, the inverted presynaptic

spike train Vpre∼ is used as Vclk, Vout+∼, the inverted Vout+, is used as the trans-

mitted spike train. When a presynaptic spike comes, Vout+∼ either goes high (with

probability p) or stays low (with probability 1− p), emulating the stochastic trans-

mission of spikes, as shown in Fig. 2.1(c). It can be used with deterministic synapse

of spiking neurons where the stochastic spike output Vout+∼ drives the determinis-

tic synapse to generate postsynaptic potentials or currents. Good randomness and

robustness against interference have been demonstrated [97]. The compactness of

the circuit, good randomness, and insignificant coupling between adjacent circuits

make it possible to implement multiple stochastic synapses on-chip for VLSI learning

systems.

The transmission probability can be adjusted by changing the input offset or

the floating gate charges. The higher Vg+ is, the lower p is. The probability tuning

function is closely fitted by an error function f(v) = 0.5
(
1 + erf

(
v−µ√

2δ

))
, where µ

is the input offset voltage for p = 50%, δ is the standard deviation characterizing

the spread of the probability tuning, and v = Vi− − Vi+ is the input offset volt-

26

age [97]. Synaptic plasticity can be implemented by dynamically modulating the

probability. Input offset modulation is suitable for short-term plasticity. Fig. 2.2

shows the block diagrams of silicon stochastic synapse with short-term plasticity.

Short-term depression is triggered by the transmitted input spikes Vtran to emulate

the probability decrease because of depletion. Vdw controls the magnitude of de-

pression. Short-term facilitation is triggered by the input spikes Vpre to emulate the

probability increase because of the Ca2+ accumulation. Vfw controls the magnitude

of facilitation. Other controls are not shown in the figure such as the time constant

control. Nonvolatile storage at the floating gate is suitable for long-term plasticity.

Fig. 2.3 shows the block diagram of silicon stochastic synapse with long-term plas-

ticity. STDP can be implemented by modulating the probability depending on the

precise timing relation between the presynaptic spike Vpre and postsynaptic spike

Vpost. Hebbian learning is triggered when Vpre precedes Vpost in a time window de-

termined by Vτpre and results in the increase of the release probability, therefore the

increase of the synapse efficacy. Whereas anti-Hebbian learning is triggered when

Vpost precedes Vpre in a time window determined by Vτpost and results in the de-

crease of the release probability, therefore the decrease of the synapse efficacy. Vhw

and Vahw control the magnitude of the Hebbian learning and anti-Hebbian learning

respectively.

27

Vdd

Vi+ Vi-

Vc

Vo-

Vg+ Vg-

Vo+

M1 M2

M3 M4

I bias

M5

Vpre~

Depression

State Machine

Vtran

Vicm

Vdw

Facilitation

State Machine

Vicm

Vpre

Vfw

Figure 2.2: Block diagram of silicon stochastic synapse with short-term plasticity.

Vdd

Vi+ Vi-

Vc

Vo-

Vg+ Vg-

Vo+

M1 M2

M3 M4

I bias

M5

Vpre~

Anti-Hebbian

State Machine

Hebbian

State Machine

Vpre

Vhw

V
τpre

Vpost

Vpre

Vahw

V
τpost

Vpost

Figure 2.3: Block diagram of silicon stochastic synapse with long-term plasticity.

28

2.3 Stochastic Synapse with Short-Term Depression

Although long-term plasticity has attracted much attention because of its ap-

parent association with learning and memory, the functional role of short-term plas-

ticity has only recently begun to be understood. Recent evidence suggests that

short-term synaptic plasticity performs temporal filtering [9, 10] and is involved in

many functions such as gain control [11], phase shift [12], coincidence detection, and

network reconfiguration [13]. From the perspective of information transmission, it

has also been shown that depressing stochastic synapses can increase information

transmission efficiency by filtering out redundancy in presynaptic spike trains [18].

Activity dependent short-term changes in synaptic efficacy at the macroscopic level

are determined by activity dependent changes in vesicle release probability at the

microscopic level. We will focus on short-term depression (STD) here.

2.3.1 Short-term Depression Circuit Model

STD during repetitive stimulation results from a decrease in released vesicles.

Since there is a finite pool of vesicles, and released vesicles cannot be replenished

immediately, a successful release triggered by one spike potentially reduces the prob-

ability of release triggered by the next spike. We propose an STD model based on

our VLSI stochastic synapse that closely emulates the simple subtractive single re-

lease model [18, 98, 99]. A presynaptic spike that is transmitted reduces the input

offset voltage v at the VLSI stochastic synapse by ∆v, so that the transmission

probability p(t) is reduced. Between successful releases, v relaxes back to its maxi-

29

mum value vmax exponentially with a time constant τd so that p(t) relaxes back to

its maximum value pmax as well. The model can be written as

v(t+) = v(t−)−∆v, successful transmission at t (2.3)

τd
dv(t)

dt
= vmax − v(t) (2.4)

p(t) = f(v(t)) (2.5)

For an input spike train with Poisson arrivals, the model can be expressed as a

stochastic differential equation

dv =
vmax − v

τd

dt−∆v · dNp·r(t) (2.6)

where dNp·r(t) is a Poisson counting process with rate p · r(t), and r(t) is the input

spike rate. By taking the expectation E(·) on both sides, we obtain a differential

equation

dE(v)

dt
=

vmax − E(v)

τd

−∆v · E(p)r(t) (2.7)

When v is reduced, the probability that it will be reduced again becomes smaller.

v is effectively constrained to a small range where we can approximate the function

f(v) = 0.5
(
1 + erf

(
v−µ√

2δ

))
by a linear function f(v) = av + 0.5, where µ = 0 for

simplicity. We can then solve for E(p) at steady state:

pss ≈ avmax + 0.5

1 + a∆vτdr
≈ pmax

a∆vτdr
≈ pmax

∆pτdr
∝ 1

r
(2.8)

Therefore the steady state mean probability is inversely proportional to the input

spike rate when a∆vτdr À 1. This is consistent with the original simple subtractive

single release model [18,100] and STD model at the macroscopic level [11].

30

2.3.2 Simulation

We simulated the STD circuit model (2.3)-(2.5). We use the function f(v) =

0.5
(
1 + erf

(
v√

2·2.16

))
, obtained from the best fit of the experimental data. Ini-

tially v is set to 5 mV which sets pmax close to 1. Although the transformation from

v to p is nonlinear, both simulation and experimental data show that this implemen-

tation exhibits behavior similar to the model with the linear approximation and the

biological data. Fig. 2.4 and 2.5 show that the mean probability is a linear function

of the inverse of the input spike rate at various ∆v and τd for high input spike rates.

Both ∆v and τd affect the slope of the linear relation at the similar trend suggested

by (2.8): the bigger the ∆v or the bigger the τd, the smaller the slope is. Fig. 2.6

shows a simulation of the transient probability for a period of 200 ms.

0 0.002 0.004 0.006 0.008 0.01
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1/r

p

∆v = 2 mV
∆v = 4 mV
∆v = 6 mV

Figure 2.4: Mean probability as a function of input spike rate for ∆v = 2, 4, 6 mV.

Data were collected at input rates from 100 Hz to 1000 Hz at 100 Hz intervals. The

solid lines show the least mean square fit for input rates from 400 Hz to 1000 Hz.

τd = 100 ms.

31

0 0.002 0.004 0.006 0.008 0.01
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1/r

p

τ
d
 = 100 ms

τ
d
 = 200 ms

τ
d
 = 300 ms

Figure 2.5: Mean probability as a function of input spike rate for τd = 100, 200, 300

ms. Data were collected at input rates from 100 Hz to 1000 Hz at 100 Hz intervals.

The solid lines show the least mean square fit for input rates from 400 Hz to 1000

Hz. ∆v = 2 mV.

0 20 40 60 80 100 120 140 160 180 200
0

0.1

0.2

0.3

0.4

0.5

0.6

Time (ms)

p(
t)

Figure 2.6: Simulated probability trajectory over 200 ms period. r = 100 Hz,

τd = 100 ms, ∆v = 2 mV.

32

Fig. 2.7 shows the autocorrelation of the output spike trains for different

time constants τd. The value at 0 is not plotted in order to show the negative

autocorrelation better. The negative autocorrelation is the direct result from the

STD. The time interval of the negative autocorrelation is apparently dependent

on the time constant. The longer the time constant is, the longer the period of the

negative autocorrelation is. When the time constant is small enough, p can recover to

its maximum value before the next spike arrival, therefore the transmission won’t be

affected by previous transmissions. Fig. 2.8 shows the PSD of the output spike trains

from the same results shown in Fig. 2.7. The power reduction at low frequencies is

suggested to reduce information redundance in the input spike trains. The larger the

time constant is, the lower the frequencies where power reduction reside. Fig. 2.9

shows the autocorrelation of the output spike trains for different voltage drops ∆v.

It suggests that ∆v mainly affects the magnitude of the negative autocorrelation

rather than the time scale.

2.3.3 Circuit Implementation

We implemented this model using our stochastic synapse circuit. Fig. 2.10

shows the block diagram of the circuit. Both inputs are restored up to an equilibrium

value Vicm by tunable resistors. To change the transmission probability we only

need to modulate one side of the input, in this case Vi−. The resistor and capacitor

provide for exponential recovery of the voltage to its equilibrium value. The input

Vi− is modulated by transistors M6 and M7 based on the result of the previous spike

33

0 10 20 30 40 50

−0.04

−0.02

0

Intervals

A
ut

oc
or

re
la

tio
n

τ
d
 = 10 ms

0 10 20 30 40 50

−0.04

−0.02

0

Intervals

A
ut

oc
or

re
la

tio
n

τ
d
 = 50 ms

0 10 20 30 40 50

−0.04

−0.02

0

Intervals

A
ut

oc
or

re
la

tio
n

τ
d
 = 200 ms

0 10 20 30 40 50

−0.04

−0.02

0

Intervals

A
ut

oc
or

re
la

tio
n

τ
d
 = 500 ms

Figure 2.7: Autocorrelation of output spike trains for different time constants τd,

each spike interval is 10 ms.

34

0 10 20 30 40 50
−80

−60

−40

−20

0

20

Frequency (Hz)

P
S

D
 (

dB
)

τ
d
 = 10 ms

0 10 20 30 40 50
−80

−60

−40

−20

0

20

Frequency (Hz)

P
S

D
 (

dB
)

τ
d
 = 50 ms

0 10 20 30 40 50
−80

−60

−40

−20

0

20

Frequency (Hz)

P
S

D
 (

dB
)

τ
d
 = 200 ms

0 10 20 30 40 50
−80

−60

−40

−20

0

20

Frequency (Hz)

P
S

D
 (

dB
)

τ
d
 = 500 ms

Figure 2.8: Power spectral density of output spike trains for different time constants

τd.

35

0 10 20 30 40 50

−0.04

−0.02

0

Intervals

A
ut

oc
or

re
la

tio
n

∆v = 1 mV

0 10 20 30 40 50

−0.04

−0.02

0

Intervals

A
ut

oc
or

re
la

tio
n

∆v = 2 mV

0 10 20 30 40 50

−0.04

−0.02

0

Intervals

A
ut

oc
or

re
la

tio
n

∆v = 4 mV

0 10 20 30 40 50

−0.04

−0.02

0

Intervals

A
ut

oc
or

re
la

tio
n

∆v = 6 mV

Figure 2.9: Autocorrelation of output spike trains for different voltage drop ∆v,

each spike interval is 10 ms.

36

transmission. Every time a spike is transmitted successfully, a pulse with height Vh

and width Tp is generated at Vp. This pulse discharges the capacitor with a small

current determined by the Vw and reduces Vi− by a small amount, thus decreasing

the transmission probability. The tunable resistors are implemented by subthreshold

pFETs operating in the ohmic region. Their resistance is controlled by the gate

voltage of the pFETs, Vr. When Vi− is reduced, the probability that it will be

reduced again becomes smaller. Since the probability tuning only occurs in a small

voltage range (∼ 10 mV), the change of Vi− is limited to this small range as well.

Under this special condition, the resistance implemented by the subthreshold pFET

is linear and large (∼ GΩ). With capacitance as small as 100 fF, the exponential

time constant is tens of milliseconds and adjustable. Similar control circuits can be

applied to Vi+ to implement short-term facilitation. The update mechanism would

then be driven by the presynaptic spike rather than the successfully transmitted

spike.

Vdd

Vi+

Vc

Vo-

Vg+ Vg-

Vo+

M1 M2

M3 M4

Ibias

M5

Vpre~

VicmVicm

Rτ

Vw

Vp

Vi-

VhM7

M6C

Figure 2.10: Block diagram of silicon stochastic synapse with STD.

In the first implementation, a pulse shaping circuit (PSC) is designed to gen-

erate pulses with adjustable width and height at Vp. Fig. 2.11 shows the block

37

diagram of the PSC. Part (a) generates a rising edge triggered pulse from input

spike, and Vt controls the pulse width Tp. When a spike comes in, D flip-flop (D-FF,

transmission gate based) is triggered on its rising edge and its Qb goes low. It opens

the pFET M1 to charge the capacitor Cm. The output of the Schmitt trigger Vo

changes from logic high to low quickly once its input Vi increases above the thresh-

old voltage. This clears the D-FF and Qb becomes high, thus shuts off M1. It also

turns on nFET M3 so that a small current determined by Vt discharges Cm. Once

Vi is below a certain threshold, Vo goes high again, and this shuts off M3. The

pulse generating procedure is then finished. The mechanism guarantees that one

input spike generates only one output pulse. The intrinsic hysteresis of the Schimitt

trigger provides enough dynamic range for pulse width adjustment. Part (b) is to

reduce the height of the pulse to Vh, therefore to reduce the capacitance coupling

effect when it is used to control the input at the stochastic synapse.

Schmitt triggerD-FF

Vp

Vh

clearb

+5V

Qb

clk

D

+5V

Vt

Cm

(a) (b)

M1

M2

M3

M4

M5

Vi

Vo
Vtran

Figure 2.11: Block diagram of pulse shaping circuit.

Fig. 2.12 shows one transient simulation of Vi− driven by 5 transmitted spikes

at 50 Hz. At each spike, Vi− drops by about 2.14 mV. Between spikes Vi− increases

38

back to its equilibrium value exponentially. At Vr = 2 V and Vicm = 2.5 V, the

recovery time constant is 51.2 ms. The spikes in the trace are caused by coupling

from the pulses due to parasitic capacitances in the circuit.

time (ms)

2.496
V

i-
 (

V
)

τ = 51.2 ms

∆V=2.14 mV

0 100 200 300 400

2.498

2.494

2.492

2.490

Figure 2.12: Transient simulation of Vi− driven by 5 transmitted spikes at 50 Hz,

Vt = 0.7 V, Vw = 0.4 V, Vh = 0.5 V.

Although this PSC provides much flexibility to control the amount of the

voltage drop at Vi−, it is complicated compared with the rest of the circuit. In the

later implementation, part (a) is dropped and only part (b) is used. This results in

a much compact implementation of the stochastic synapse with STD, as shown in

Fig. 2.13. The stochastic synapse part of the circuit is shown in the dashed box.

Vtran is the transmitted presynaptic spike Vpre. The pulse width of Vtran will be the

same as the input spike Vpre and cannot be adjusted separately. The pulse height

can still be adjusted by Vh. The experimental results to be shown later demonstrate

that Vw itself is adequate to adjust the voltage drop at Vi−. This makes the circuit

much more compact for integration. The layout size of the STD is 35 µm × 32.2

39

µm and the layout size of the stochastic synapse is 151.9 µm × 91.7 µm. A 2-to-1

multiplexer with size 35 µm × 30 µm is used to enable or disable the STD. The extra

components on the left provide for future implementation of short-term facilitation

and also symmetrize the stochastic synapse, improving its randomness.

Vdd2

Vi+

Vc

Vo-

Vg+ Vg-

Vo+

M1 M2

M3 M4

Ibias

M5

Vpre~

Vw

Vp

Vi-

M7

M6

Vdd Vdd

Vh

Vw

Vicm

Vr

Vicm

Vr

Vpre

Vbias

Vo+ Vo-
C

Vtran

10/10 10/10

10/2

4/12 4/12 180f180f

8/6 8/6

8/6 8/6

6/12 6/12

8/8

8/8

8/8

8/8

100f 100f

8/6

8/6

Figure 2.13: Schematic of a compact implementation of stochastic synapse with

STD.

2.4 Experimental Results

The circuits have been fabricated in a commercially-available 0.5 µm CMOS

process with 2 polysilicon layers and 3 metal layers. It uses a nominal power supply

of 5 V for normal operation. The differential pair comparator uses a separate power

supply for hot-electron injection. Each floating-gate pFET has a tunnelling struc-

ture, which is a source-drain connected pFET with its gate connected to the floating

node. A separate power supply provides the tunnelling voltage to the shorted source

and drain (tunnelling node). When the tunnelling voltage is high enough (14-15V),

electron tunnels through the silicon dioxide, from floating gate to the tunnelling

40

node. We use this phenomenon to remove electrons from the floating gate. Alter-

natively Ultra-Violet (UV) activated conductances may be used to remove electrons

from the gate to avoid the need for special power supplies.

To begin the test, we first remove residual charges on the floating gates in

the stochastic synapse. Although we can manually adjust the input offset to bias

the circuit in the stochastic region, the negative feedback operation of hot-electron

injection described above can automatically bias the circuit for stochastic operation.

We raise the power supply of the differential pair comparator to above 5.5 V to

enable hot-electron injection. During the procedure, we observe the output spike

Vout+∼. Initially there is no spike output at all, or there is a spike for every input

spike, indicating a deterministic operating point set by the offset from mismatch.

Eventually random spike output is observed, indicating that the circuit is operating

stochastically. We can halt the injection by lowering the power supply to 5 V.

During this procedure, STD is disabled, so that the probability at this operating

point is the synaptic transmission probability without any dynamics.

The injection mechanism should be engaged for time long enough to reach

the desired steady state probability. If the injection is engaged for a long time,

the probability approaches 50%, and the common voltage of Vg+ and Vg− continues

to drop until injection ceases. We can also monitor the probability and disable

the injection at a specific probability value. Since the injection can only move the

probability towards 50%, to set a probability above 50%, an initial offset must be

provided to set the probability to 100%, while to set a probability below 50%, an

initial offset must be provided to set the probability to 0.

41

2.4.1 Stochastic Synapse Tested as RNG

We first test the quality of the randomness of the circuit. Just as functioning

as the stochastic synapse, the circuits can be viewed as a RNG as well. At each

clock low, a random bit is generated at Vout+∼, either Vdd or ground. We tested the

circuit with the clock as fast as 200 kHz, limited by our data acquisition system.

Up to 200 kHz, statistical characteristics are consistent. The power consumption of

the circuit is about 10-44 µW for bias current from 1 nA to 1 µA.

2.4.1.1 Statistical Tests

For the first test of randomness and independence, we examined the autocor-

relation and cross-correlation of generated bit sequences. The experimental results

match the theory closely, i.e., an independent, identically distributed (i.i.d.) random

bit sequence s(k) with probability prob(s(k) = 1) = p has an autocorrelation func-

tion A(n) = E(s(k)s(k + n)), where A(n) = p for n = 0, and A(n) = p2 for n 6= 0,

and its power spectrum density (PSD) S(f) is flat across all frequencies except for

a DC component from the nonzero mean, S(0) = np2

fs
, where n is the total number

of the samples and fs is the sampling frequency. The total power is p. Two i.i.d. se-

quences with probability p have a cross-correlation function C(n) = s(k)t(k+n) = p2

for all n and the cross-spectral density is also flat across all frequencies except for

a DC component, where S(0) = np2

fs
. Fig. 2.14 shows the autocorrelation for the

bit sequence from one RNG and cross-correlation between bit sequences from two

RNGs. Fig. 2.15 shows the PSD for one bit sequence at sampling frequency 1 kHz.

42

Fig. 2.16 shows the PSD of the cross correlation between two random bit sequences

at sampling frequency 1 kHz.

0 20 40 60 80 100
0.2

0.3

0.4

0.5

Sample lag

A
u
to

co
rr

el
at

io
n

0.2

0.25

0.3

C
ro

ss
-c

o
rr

el
at

io
n

Figure 2.14: Autocorrelation of the bit sequence from one RNG (×) and cross-

correlation between bit sequences from two RNGs (·). For clarity, only data up to

a sample lag of 100 is shown.

Existing methods can readily remove small biases in the probability caused by

injection mismatch [101]. An exclusive-OR (XOR) of multiple independent random

sequences will exponentially converge to an equal probability of 0 and 1 and simulta-

neously eliminate slight anti-correlation between adjacent bits, caused by kickback

noise in the comparator and visible in Fig. 2.14 for n = 1. For a rigorous test of the

RNG circuit, we applied a battery of benchmark statistical tests developed by the

National Institute of Standards and Technology (NIST) [102]. For each statistical

test, the suite uses a probability value (P-value) to assess whether a bit sequence

passes a statistical test or not. A test statistic is computed from the bit sequence

and the P-value is the probability of obtaining a larger value than the obtained.

The test statistic is constructed in such a way that a random sequence generates a

43

0 100 200 300 400 500
-100

-80

-60

-40

-20

0

20

Frequency (Hz)

P
o

w
er

 s
p

ec
tr

al
 d

en
si

ty
 (

d
B

) (0Hz, 14dB)

-22dB

Figure 2.15: Power spectral density of one bit sequence at sampling frequency 1 kHz

(similar results are obtained for measurements up to 200 kHz).

0 100 200 300 400 500
-80

-60

-40

-20

0

20

Frequency (Hz)

P
o

w
er

 s
p

ec
tr

al
 d

en
si

ty
 (

d
B

)

(0Hz, 14dB)

-24dB

Figure 2.16: Power spectral density of cross correlation between two random bit

sequences.

44

small test statistic. Therefore small P-values indicates non-random sequences. For

a given significance level α, the sequence fails the test if its P-value < α [102]. We

use α = 0.01.

For a sample size of n sequences, the results from the statistical test are fur-

ther evaluated using either the proportion of test sequences passing the test or the

uniformity of the P-values from all sequences. A confidence interval is computed

as (1 − α) ± 3
√

(1−α)α
n

. If the proportion of passing sequences is above the lower

boundary of the interval, the sequences are considered as passing the test. The

uniformity of the P-values is examined by χ test from the histogram of the P-values

where a P-value of the P-values is computed. When the P-value is above 0.0001, the

P-values from all sequences are uniformly distributed, indicating good randomness

of the sequences [102].

20 sequences of 106 bits from the XOR of four RNGs were evaluated using the

suite. Table 2.2 summarizes the results. For a sample size of 20, with a significance

level of 0.01, the minimum required pass rate is 0.923. So the sequences pass all

the tests except 3 templates out of 148 templates in the non-overlapping template

matching test and the random excursion test. For the random excursion test, 7 out of

20 samples do not satisfy the criterion for the test to proceed and are considered non-

random. For the rest of 13 samples, with a significance level of 0.01, the minimum

pass rate is 0.907, thus they pass the test. All the P-values from the statistical tests

pass the uniformity test.

45

Table 2.2: NIST statistical test results

Test Passing Rate

Frequency 1

Frequency within a block 0.95

Cumulative sum (forward) 1

Cumulative sum (reverse) 1

Runs 1

Longest run of ones in a block 1

Random binary matrix rank 1

Discrete Fourier transform 1

Non-overlapping template matching (148 tests)

1 (119)

0.95 (26)

0.90 (3)

Overlapping template matching 0.95

Maurer’s universal statistical 1

Approximate entropy 1

Random excursions (8 tests)
1 (7)

0.9231 (1)

Random excursion variant (18 tests) 1 (18)

Serial (2 tests) 1 (2)

Linear complexity 1

46

2.4.1.2 Adjustable Probability

The probability of the bit sequence can be adjusted by tuning the DC in-

put voltage applied between Vi+ and Vi− while the circuit is operating near the

metastable state. Fig. 2.17 shows the probability as a function of the input off-

set voltage. At each offset voltage, sequences of 105 bits are collected and parti-

tioned into 10 sub-sequences from which the mean and standard deviation of the

probability are computed. Input offset can be biased to produce very low prob-

abilities (measured as low as 0.004% in Fig. 2.17) that historically have been

difficult to obtain reliably. The function is closely fitted by an error function

f(v) = 0.5
(
1 + erf

(
v−µ√

2δ

))
, where µ = 0.71 mV and δ = 2.16 mV.

10 5 0 5 10
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Offset Voltage (mV)

P
ro

b
ab

il
it

y

Figure 2.17: Output probability p(Vo+ > Vo−) as a function of input offset v =

Vi+−Vi−, the solid line is f(v) = 0.5
(
1 + erf

(
v−µ√

2δ

))
, where µ = 0.71 and δ = 2.16.

47

2.4.1.3 Interference

To test the robustness of the circuits, we evaluated its performance against

several common sources of interference such as power supply noise, digital noise,

and substrate noise. We use the difference ∆D between the PSD value at DC and

the maximum value in the band excluding DC as an indicator of the interference

noise power that is coupled into the PSD of the random bit sequence. The measured

value without intentionally adding interference is 36dB (Fig. 2.15). We injected

sinusoidal signals of different frequencies (10Hz, 100Hz, and 1kHz) and amplitudes

(1mV, 5mV, and 10mV) onto the power supply voltage. The lowest ∆D were 33dB,

26dB, and 21dB for amplitudes 1mV, 5mV, and 10mV respectively. We used an

on-chip shift register as one example of a digital circuit to evaluate the impact of

nearby digital circuitry on the RNGs. The lowest ∆D observed was 27dB. We also

injected noise into the substrate by driving 10Hz, 100Hz, and 1kHz square waves

(amplitudes up to 2V) through ESD-protected pads. The interference from these

square waves was negligible, with the lowest ∆D at 33dB.

The above experimental results demonstrated the good randomness and ro-

bustness which make the circuit a very good candidate for stochastic synapse. The

unique feature of probability tuning enables us to further incorporate synaptic plas-

ticity.

48

2.4.2 First Generation Stochastic Synapse with STD

We first show the result from the first generation stochastic synapse with

STD. Once the stochastic synapse operates in the stochastic region, we turn on

STD. We use a signal generator to generate pulse signals which serve as input

spikes. Although spike trains are better modeled by Poisson arrivals, the averaging

behavior should be similar for deterministic spike trains which make testing easier.

We collect output spikes from the depressing stochastic synapse at an input spike

rate of 100 Hz with constant intervals. We divide time into bins according to the

input spike rate so that in each bin there is either 1 or 0 output spike. In this way,

we convert the output spike train into a bit sequence s(k). We then compute the

normalized autocorrelation, defined as A(n) = E(s(k)s(k + n)) − E2(s(k)), where

n is the number of time intervals between two bits. A(0) gives the variance of the

sequence. For two bits with distance n > 0, A(n) = 0 if they are independent,

indicating good randomness, and A(n) < 0 if they are anticorrelated, indicating

the depressing effect of preceding spikes on the later spikes. Fig. 2.18 shows the

autocorrelation of the output spike train. There is significant negative correlation

at small time intervals and little correlation at large time intervals, as expected

from STD. Fig. 2.19 shows the PSD of the output spike train. Clearly, the PSD is

reduced at low frequencies.

Normally redundant information is represented by positive autocorrelation in

the time domain, which is characterized by power at low frequencies. By reducing

the low frequency component of the spike train, redundant information is suppressed

49

0 10 20 30 40 50 60 70 80 90 100
-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

Time intervals (1 interval = 10 ms)

A
u

to
co

rr
el

at
io

n

Figure 2.18: Autocorrelation of the output spike train from the stochastic synapse

with STD for an input spike rate of 100 Hz. Autocorrelation at time zero represents

the sequence variance. Negative autocorrelation at short time intervals indicates

STD.

0 5 10 15 20 25 30 35 40 45 50
-80

-70

-60

-50

-40

-30

-20

-10

0

10

Frequency (Hz)

P
o

w
er

 s
p

ec
tr

al
 d

en
si

ty
 (

d
B

)

Figure 2.19: Power spectral density of the output spike train from the stochastic

synapse with STD for an input spike rate of 100 Hz. Lower PSD at low frequencies

indicates STD.

50

and overall information transmission efficiency is improved. If the negative autocor-

relation of the synaptic dynamics matches the positive autocorrelation in the input

spike train, the redundancy is cancelled and the output is uncorrelated [18].

0 0.005 0.01 0.015 0.02
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1/r

p

Figure 2.20: Mean probability as a function of the input spike rate. Data were

collected at input rates of 50 Hz, 100 Hz, 200 Hz, 300 Hz, 400 Hz, 500 Hz, and 1000

Hz. The solid line shows the least mean square fit p(x) = 18x− 3.7× 10−5.

We collected output spikes in response to 104 input spikes at various input

spike rates and plotted the mean probability as a function of the input spike rate.

Fig. 2.20 shows that the mean transmission probability is inversely proportional to

the input spike rate. This matches the theoretical prediction in (2.8) very well. By

scaling the probability with the input spike rate, the synapse tends to normalize

the DC component of input frequency and reserve the dynamic range, thus avoiding

saturation due to fast firing presynaptic neurons and retaining sensitivity to less

frequently firing neurons [11].

Fig. 2.21 shows the mean probability as a function of the input spike rate for

different combinations of Vt and Vw. The slope is bigger for larger Vt and smaller

51

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/r

p

Vt=0.7 V, Vw=0.3 V
Vt=0.7 V, Vw=0.4 V
Vt=0.8 V, Vw=0.3 V
Vt=0.8 V, Vw=0.4 V

Figure 2.21: Mean probability as a function of the input spike rate for various

combinations of Vt and Vw. Vr = 1.60 V, and Vicm = 2 V. Data were collected at

input rates from 100 Hz to 1000 Hz at 100 Hz intervals. The dotted lines show the

least mean square fit for input rates from 200 Hz to 1000 Hz.

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/r

p

Vr=1.55 V
Vr=1.60 V

Figure 2.22: Mean probability as a function of the input spike rate for Vr = 1.55

and 1.60 V. Vt = 0.8 V, Vw = 0.3 V, and Vicm = 2 V. Data were collected at input

rates from 100 Hz to 1000 Hz at 100 Hz intervals. The dotted lines show the least

mean square fit for input rates from 200 Hz to 1000 Hz.

52

Vw. Both Vt and Vw determine the amount of voltage drop ∆v at Vi−, therefore

determine the slope according to (2.8). The larger Vt is, the shorter the pulse is,

thus the smaller ∆v is. The smaller Vw is, the smaller the current is, thus the smaller

∆v is. See the circuit schematics in Fig. 2.10 and Fig. 2.11. Fig. 2.22 shows the

mean probability as a function of the input spike rate for Vr = 1.55 V and 1.60 V,

where Vt = 0.8 V and Vw = 0.3 V. The slope is bigger for smaller Vr because the

equivalent resistance R of the pFET decreases when Vr decreases, thus τd = RC

decreases with Vr, and the slope k ∝ 1
τd

increases.

2.4.3 Second Generation Stochastic Synapse with STD

The experiment for the second generation stochastic synapse with STD follows

the same procedure as the first one. We use Ibias = 100 nA. The power consumption

by the short-term depression part of the circuit is much smaller than the stochastic

synapse part of the circuit. The total power consumption is about 10 µW.

Fig. 2.23 shows the autocorrelation of the output spike trains at two different

Vr for an input spike train of 100 Hz. There is significant negative correlation at

small time intervals and little correlation at large time intervals, as expected from

STD. Fig. 2.24 shows the PSD of the output spike trains from the same data shown

in Fig. 2.23. Clearly, the PSD is reduced at low frequencies. The time constant of

STD increases with Vr so that the larger Vr is, the longer the period of the negative

autocorrelation is and the lower the frequencies where power is reduced. This agrees

with simulation results. Fig. 2.25 shows the simulation result using the estimated

53

τd from Vr = 1.59 V. The experimental and simulation results show close similarity.

0 10 20 30 40 50
−0.1

−0.05

0

0.05

0.1

0.15

0.2

0.25

Intervals

A
ut

oc
or

re
la

tio
n

V
r
 = 1.56 V

0 10 20 30 40 50
−0.02

0

0.02

0.04

0.06

0.08

0.1

Intervals

A
ut

oc
or

re
la

tio
n

V
r
 = 1.59 V

Figure 2.23: Autocorrelation of output spike trains from the silicon stochastic

synapse with STD for an input spike rate of 100 Hz. Autocorrelation at time zero

represents the sequence variance, and negative autocorrelation at short time inter-

vals indicates STD.

We investigate the relation between mean transmission probability and the

input spike rate. Since the pulses that modulate Vi− have the same pulse width as

input spikes, we can also investigate the effect of pulse width on depressing behavior

directly by varying input spike pulse width. We also conduct more detailed study

of the effect of various parameters on the depressing behavior. We collect output

spikes in response to 104 input spikes at input spike rates from 100 Hz to 1000 Hz

with 100 Hz intervals. Fig. 2.26 shows that the mean transmission probability is

inversely proportional to the input spike rate for various pulse widths when the rate

is high enough. This matches the theoretical prediction in (2.8) very well. The slope

of mean probability decreases as the pulse width increases. Since the pulse width

54

0 10 20 30 40 50
−80

−60

−40

−20

0

20

Frequency (Hz)

P
S

D
 (

dB
)

V
r
 = 1.56 V

0 10 20 30 40 50
−80

−60

−40

−20

0

20

Frequency (Hz)

P
S

D
 (

dB
)

V
r
 = 1.59 V

Figure 2.24: Power spectral density of output spike trains from the silicon stochastic

synapse with STD for an input spike rate of 100 Hz. Lower PSD at low frequencies

indicates STD.

determines the discharging time of the capacitor at Vi−, the larger the pulse width,

the larger the ∆v is and the smaller the slope is. Fig. 2.27 shows that a∆vτd scales

linearly with the pulse width. The discharging current is approximately constant,

thus ∆v is proportional to the pulse width.

We perform the same experiments for different Vr and Vw. As Vr increases,

the slope of mean transmission probability as a linear function of 1
r

decreases as

shown in Fig. 2.28. This is due to the increasing τd = RC, where the equivalent

resistance R from the pFET increases with Vr. Fig. 2.29 shows that a∆vτd is

approximately an exponential function of Vr, indicating that the equivalent R of the

pFET is approximately exponential to its gate voltage Vr.

For Vw, the slope of mean transmission probability decreases as Vw increases

as shown in Fig. 2.30. This is due to the increasing ∆v with Vw. Fig. 2.31 shows

55

0 10 20 30 40 50
−0.02

0

0.02

0.04

0.06

0.08

0.1

Intervals

A
ut

oc
or

re
la

tio
n

(a) Autocorrelation.

0 10 20 30 40 50
−80

−60

−40

−20

0

20

Frequency (Hz)

P
S

D
 (

dB
)

(b) Power spectral density.

Figure 2.25: Characterization of the output spike train from the simulation of the

stochastic synapse with STD. r = 100 Hz, τd = 220 ms, ∆v = 5 mV, Vmax = 5 mV.

56

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/r

p

10 us
20 us
30 us
40 us
50 us

Figure 2.26: Mean probability as a function of input spike rate for pulse width

Tp =10, 20, 30, 40, 50 µs. Data were collected at input rates from 100 Hz to 1000

Hz at 100 Hz intervals. The dotted lines show the least mean square fit from 200

Hz to 1000 Hz.

10 20 30 40 50

0.01

0.02

0.03

0.04

Pulse width (µs)

a∆
v⋅

τ d

Figure 2.27: a∆vτd as a function of the pulse width. The dotted line shows the least

mean square fit, f(x) = 0.0008x + 0.0017.

57

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

1/r

p

Vr = 1.55 V
Vr = 1.56 V
Vr = 1.57 V
Vr = 1.58 V
Vr = 1.59 V

Figure 2.28: Mean probability as a function of the input spike rate for Vr = 1.55,

1.56, 1.57, 1.58, 1.59 V. Data were collected at input rates from 100 Hz to 1000 Hz

at 100 Hz intervals. The dotted lines show the least mean square fit.

1.55 1.56 1.57 1.58 1.59
0.02

0.04

0.06

0.08

0.1

0.12

0.14

Vr (V)

a∆
v⋅

τ d

Figure 2.29: a∆vτd as a function of Vr. The dotted line shows the least mean square

fit, f(x) = e(44.54x−72.87).

58

that a∆vτd is approximately an exponential function of Vw, indicating that the

discharging current from the transistor M6 is approximately exponential to its gate

voltage Vw. This matches the I-V characteristics of the MOSFET in subthreshold.

0 0.002 0.004 0.006 0.008 0.01
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

1/r

p

Vw=0.30 V
Vw=0.35 V
Vw=0.40 V
Vw=0.45 V
Vw=0.50 V

Figure 2.30: Mean probability as a function of the input spike rate for Vw = 0.30,

0.35, 0.40, 0.45, 0.50 V. The dotted lines show the least mean square fit for input

rates from 200 Hz to 1000 Hz.

59

0.3 0.35 0.4 0.45 0.5
0

0.02

0.04

0.06

0.08

0.1

0.12

Vw (V)

a∆
v⋅

τ d

Figure 2.31: a∆vτd as a function of Vw. The dotted line shows the least mean square

fit, f(x) = e(15.47x−9.854).

60

Chapter 3

Stochastic Circuit Modeling and Simulation

3.1 Introduction

Noise plays a significant role in circuit performance and is an important factor

to consider for circuit design. Commonly noise effects are analyzed in frequency

domain in terms of power spectral density (PSD). For a linear system, output noise

PSD is related to input noise PSD by its transfer function, i.e., total output noise

PSD is the summation of all noise sources scaled by the power transfer functions

of all intervening subsystems. Input referred noise is computed by dividing the

total output noise by the system power transfer function for direct comparison with

input signals, i.e. to compute SNR [42, 43]. These capabilities are provided by

popular circuit simulators. Such frequency domain analysis, however, is not suitable

for many circuits, particularly where large signal behavior or nonlinearity is an

important characteristic, or where performance depends on transient sample paths

and ensemble statistics as for the random number generator (RNG) circuit [97].

We propose to study the large signal circuit stochastic behavior caused by noise

using stochastic differential equations (SDEs). Time domain transient analysis using

the numerical solution of the SDEs shows how the signal evolves in the presence of

noise fluctuations, and how those fluctuations influence the statistics of the signal

samples at specific times. Analytical equations of the probability evolution can

61

also be written and the solution for steady state could be obtained in some cases.

The method can also be extended to small signal models where the circuit stochastic

behavior is determined at a small signal scale. Small signal stochastic models directly

relates the device parameters and operation biases to the stochastic dynamics of the

circuits, which will help during the circuit design for desired behavior. We use the

method to investigate the stochastic behavior of the stochastic synapse or RNG

circuit (since the circuits can be used as either the stochastic synapse or RNG, we

refer the circuits with either name in this chapter) [103].

With the continuing semiconductor device scaling, power supply scaling will

reach the stage where the noise becomes significant compared with signals in circuits.

Even digital circuits would exhibit stochastic behavior. We apply the method to

an CMOS inverter, a basic unit in digital circuits, to understand the stochastic

behavior of digital circuits operating at very low supply voltages [104]. We derive

the analytical result of the steady state from first principle, which matches the

simulation results very well.

We will provide a quick review of the circuit noise and introduction of the

stochastic differential equation before we introduce our stochastic circuit modeling.

The detailed treatment of circuit noise can be found in [42,43].

3.2 Circuit Noise

In circuit, noise is represented by unwanted current or voltage signals. It is

characterized by either the voltage power spectral density (PSD) v2
n(f) in the unit

62

of V 2/Hz or the current PSD i2n(f) in the unit of A2/Hz. The root mean square

(RMS) of the noise is given by the noise PSD and bandwidth [43],

vRMS =

√∫ fH

fL

v2
n(f)df (3.1)

iRMS =

√∫ fH

fL

i2n(f)df (3.2)

In the following sections, PSD of single sided frequencies is used. The total noise

PSD is the summation of the individual noise PSD if those noise are independent.

3.2.1 Thermal Noise

Thermal noise is caused by the random thermal motion of electrons, therefore

it is directly proportional to absolution temperature T . It is not affected by the

actual current flowing through the component. It is present in any linear passive

resistors. In a resistor R, thermal noise can be represented by a series voltage

generator with PSD [42,43]

v2
n(f) = 4kTR (3.3)

or a shunt current generator with PSD [42,43]

i2n(f) =
4kT

R
(3.4)

The noise PSD is flat across all frequencies in the bandwidth and its amplitude

distribution is Gaussian, therefore it is also called white noise. For MOSFET, the

thermal noise is commonly modeled by an equivalent resistor R = 3
2

1
gm

in saturation

above threshold, and R = 1
µCox

W
L

(Vgs−Vth−Vds)
in triode region above threshold [43].

63

3.2.2 Shot Noise

Shot noise is caused by the discrete movement of charges across a potential

barrier in the devices such as diodes, MOS transistor, and bipolar transistors. The

apparent current I is composed by a large number of random independent current

pulses, fluctuating around its mean value. The current noise PSD is [42]

i2n(f) = 2qI (3.5)

It is a Gaussian white noise as well.

3.2.3 Flicker Noise

Flicker noise is also called 1/f noise because its PSD has a 1/f dependence [42],

i2n(f) = K
Ia

fa
(3.6)

where I is the direct current in the device, K, a, b are device dependent constants.

It is caused by the electrons captured and released from the traps associated with

contamination and crystal defect. The amplitude distribution is non-Gaussian. For

MOSFET, flicker noise results from the trap at the Si-SiO2 interface. Its PSD is

given by [43]

i2n(f) =
KF IAF

D

f(Cox)2WL
(3.7)

where KF is the flicker noise coefficient, ID is the channel current, AF is the flicker

noise exponent, Cox is the silicon-dioxide capacitance per unit area, and W , L are

the gate width and length.

64

The three types of noise just introduced contribute the most noise in regular

circuits. For some special circuits, other noise could be dominant. For completeness,

they are listed here as well.

3.2.4 Burst Noise

Burst noise is related to the presence of heavy-metal ion contamination. Most

of its power is also in low-frequency, similar to the 1/f noise. The PSD is [42]

i2n(f) = K
Ic

1 +
(

f
fc

)2 (3.8)

where I is the direct current, K and c are device dependent constants. fc determines

the bandwidth of the noise. Burst noise is a non-Gaussian noise.

3.2.5 Avalanche Noise

Avalanche noise is produced by avalanche breakdown in pn junction. Holes

and electrons with enough energy in the depletion region of the reverse-biased pn

junction create new hole-electron pairs, and these hole-electron pairs create even

more pairs in a cumulative process. The noise produces large current fluctuations.

3.3 Stochastic Differential Equations

In this section, I will introduce the basic mathematical concepts and tools for

stochastic modeling and simulation. Detailed treatment can be found in [105–107].

65

3.3.1 Random Variable and Stochastic Process

An experiment that generates random outcomes can be described by a prob-

ability space, the triplet (Ω,A, P). The sample space Ω is a set consisting of all

possible outcomes of the experiment. The A is a σ-algebra that consists of events,

defined as subsets of Ω. The probability measure P : A → [0, 1] gives the proba-

bility of the events in A [105]. A random variable X : Ω → R maps each outcome

ω ∈ Ω to a real value X(ω), and X−1(B) ∈ A for all B ∈ B where B is the Borel

σ-algebra of R. The function FX(x) = P (ω ∈ Ω : X(ω) ≤ x) is called the proba-

bility distribution of the random variable X. For a continuous random variable,

a probability density function p(x) is defined such that FX(x) =
∫ x

−∞ p(s)ds [105].

A Hilbert space of random variables HRV is a complete inner product space of the

random variables defined on a probability space. The inner product of two random

variable X and Y in the space is defined as 〈X,Y 〉 = E(XY), where E(·) is the

expectation. And the norm of the random variable X is ‖X‖ = 〈X, X〉 1
2 [105].

A stochastic process is a family of random variables X(t) defined on a prob-

ability space (Ω,A, P). It is a function of two variables t and ω: τ × Ω → R. For

each t ∈ τ , X(t) = X(t, ·) is a random variable, while for each ω ∈ Ω, X(·, ω) gives

a sample path or a trajectory of the stochastic process [105]. Index t can be discrete

or continuous. ω is generally suppressed in the expression of a random process. If

the future state of the process is only determined by current state other than the

past state, i.e., P (X(tn+1)|X(tn) = xn) = P (X(tn+1)|X(t1) = x1, · · · , X(tn) = xn),

the process is called a Markov process. The Hilbert space of stochastic processes

66

HSP on the interval [0, T] and (Ω,A, P) is a complete inner product space with

〈X, Y 〉 =
∫ T

0
E(X(t)Y (t))dt and norm ‖X‖ = (

∫ T

0
E|X(t)|2dt)1/2 [105].

Let X1(t), · · · , Xn(t) be n i.i.d. Poisson processes with rate λ. By Central

Limit Theorem, Yn(t) =
n∑

i=1

Xi(t)− λt√
λn

approaches a normally distributed random

variable N(0, t) as n →∞. The process Yn(t) actually approaches a Wiener process

or Brownian motion W (t) [105]. A standard Wiener process W (t) has the properties

[105–107]:

• It has independent, stationary, and Gaussian increment;

• E(W (t)) = 0

• V ar(W (t)−W (s)) = E[(W (t)−W (s))2] = t− s

• W (0) = 0

• W (t) is continuous in the mean square sense

• W (t) is no where differentiable

Wiener process is a continuous homogeneous Markov process. Its transition proba-

bility density p(y, t, x, s) = p(W (t) = y|W (s) = x), s < t is given by [105]

p(y, t, x, s) =
1√

2π(t− s)
exp

(−(x− y)2

2(t− s)

)
(3.9)

A Wiener process sample path can be generated at a finite number of points

0 = t0 < t1 < · · · < tN = T on the interval [0,T] by [105,106]

W (ti) = W (ti−1) +
√

ti − ti−1Xi−1 (3.10)

67

where Xi−1 ∼ N(0, 1) are independent normally distributed numbers. A continuous

approximation to the Wiener process can then be obtained by a piecewise linear

stochastic process [105]

Yn(t) = W (ti)
ti+1 − t

h
+ W (ti+1)

t− ti
h

(3.11)

for ti ≤ t ≤ ti+1 and i = 0, 1, · · · , N − 1. It can be shown that lim
n→∞

‖Yn −W‖ = 0

[105].

3.3.2 Stochastic Integrals

Integrals of the form
∫ b

a
f(s, ω)ds and

∫ b

a
f(s, ω)dW (s, ω) are introduced here

and will be used in the following section of stochastic differential equations. f(s, ω)

is a stochastic process on [a, b]× (Ω,A, P), satisfying the following conditions [105]:

C1: ‖f(a)‖2 ≤ k1, k1 is a positive constant

C2: ‖f(t2)− f(t1)‖2 ≤ k2|t2 − t1| for ∀t1, t2 ∈ [a, b], k2 is a positive constant

C3: f is nonanticipating on [a,b]

For clarity, ω is kept in the expression in this section.

3.3.2.1 Integral J(f)(ω) =
∫ b

a f(s, ω)ds

∫ b

a
f(s, ω)ds is an integration of a stochastic process along time. Its definition

is similar to the Reimann integral for deterministic functions. Let f (n)(t, ω) =

∑n−1
i=0 f(ti, ω)I

(n)
i (t) be a sequence of step functions, where a = t

(n)
0 < · · · < t

(n)
n = b

68

is a family of partitions of [a, b], max
0≤i≤n−1

t
(n)
i+1 − t

(n)
i → 0 as n → ∞. I

(n)
i (t) is an

indicator function

I
(n)
i (t) =

1 for t
(n)
i ≤ t < t

(n)
i+1

0 otherwise

(3.12)

Since f (n) converges to f in the mean square sense, the integral
∫ b

a
f(s, ω)ds is

defined as the mean square limit of [105]

J(f (n))(ω) =

∫ b

a

f (n)(s, ω)ds =
n−1∑
i=0

f(t
(n)
i , ω)(t

(n)
i+1 − t

(n)
i) (3.13)

as n → ∞. J(f)(ω) is a random variable. J(f)(t, ω) =
∫ t

a
f(s, ω)ds is defined in

the similar way, which is a random process.The integration can be approximated by

Jn(f) =
∑n−1

i=0 f(ti)∆, where ti = a+i∆, ∆ = (b−a)/n. ‖J(f)−Jn(f)‖ = O(1/
√

n)

[105].

3.3.2.2 Ito Integral I(f)(ω) =
∫ b

a f(s, ω)dW (s, ω)

∫ b

a
f(s, ω)dW (s, ω) is an integration of a stochastic process relative to a Wiener

process. Let a = t
(n)
0 < · · · < t

(n)
n = b be a family of partitions of [a, b], where

max
0≤i≤n−1

t
(n)
i+1 − t

(n)
i → 0 as n → ∞. f (n) is a step function defined as f (n)(t, ω) =

f(t
(n)
j , ω) on t ∈ [t

(n)
j , t

(n)
j+1) where j = 0, 1, · · · , n− 1. For each sample path, the Ito

definition of integral of the form
∫ b

a
f(s, ω)dW (s, ω) is the mean square limit of [105]

I(f (n))(ω) =

∫ b

a

f (n)(s, ω)dW (s, ω) =
n−1∑
j=0

f (n)(t
(n)
j , ω)(W (t

(n)
j+1, ω)−W (t

(n)
j , ω))

(3.14)

as n → ∞. Similarly, I(f)(t, ω) =
∫ t

a
f(s, ω)dW (s, ω) can be defined. Ito integral

can be approximated by In(f) =
∑n−1

i=0 f(ti)(W (ti+1) −W (ti)), where ti = a + i∆

69

and ∆ = (b− a)/n. ‖I(f)− In(f)‖ = O(1/
√

n) [105].

3.3.3 Stochastic Differential Equation

Consider a stochastic process satisfying the stochastic differential equation:

dX(t, ω) = f(t,X(t, ω))dt + g(t,X(t, ω))dW (t, ω) (3.15)

f is called the drift coefficient and g is called the diffusion coefficient. Both f and

g are nonanticipating functions. The solution exists for (3.15) if with probability

one, a solution exists for any choice of sample functions of the Wiener process W (t).

The solution is unique if for a given sample function of W (t), the particular solution

of the equation which arises is unique. The sufficient conditions for existence and

uniqueness of solution X ∈ HSP in a time interval [a, b] are that both f and g

satisfy [107]:

C4 (Lipschitz condition): ∃K, |f(t, x)− f(t, y)|+ |g(t, x)− g(t, y)| ≤ K|x− y|, for

all x, y, and a ≤ t ≤ b.

C5 (growth condition): ∃K, |f(t, x)|2 + |g(t, x)|2 ≤ K2(1 + |x|2) for all x and

a ≤ t ≤ b.

The solution can be written in the integral formula as

X(t, ω) = X(a, ω) +

∫ t

a

f(s,X(s, ω))ds +

∫ t

a

g(s,X(s, ω))dW (s, ω) (3.16)

70

Let Y : [0, T] × R → R have continuous first and second order derivatives, the Ito

integral of Y (t, x(t)) is given by Ito formula [106,107]:

Y (t, xt) = Y (t0, xt0)+

∫ t

t0

(
∂Y

∂t
+ f(s, xs)

∂Y

∂x
+

1

2
g(s, xs)

2∂2Y

∂x2

)
ds+

∫ t

t0

g(s, xs)
∂Y

∂x
dWs

(3.17)

3.3.4 Numerical Solution of Stochastic Differential Equation

Numerical solution of the SDE can be obtained by various discrete time ap-

proximations to the real solution of the SDE [106]. Several methods are based on

discrete time approximations with truncated Ito-Taylor expansions. Applying Ito

formula to f(t, x) and g(t, x) in (3.16), we obtain Ito-Taylor expansion of xt. It can

have arbitrarily many expansion terms depending on how many times Ito formula

is applied. Limiting ourselves to the case where f and g are not explicit functions

of t, we obtain two simple and commonly used expansions [106]:

xt = xt0 + f(xt0)

∫ t

t0

ds + g(xt0)

∫ t

t0

dWs + R1 (3.18)

xt = xt0 + f(xt0)

∫ t

t0

ds + g(xt0)

∫ t

t0

dWs + b(xt0)b
′(xt0)

∫ t

t0

∫ s

t0

dWzdWs + R2 (3.19)

where R1 and R2 are the remainders. Ignoring the remainder and using the expan-

sion as the discrete time approximation we get numerical approximation of xt. Let

x̂n be the discrete time approximation of x(tn), where tn = t0 + n ·∆, ∆ is the time

step, the Euler method [106] gives

x̂n+1 = x̂n + a(x̂n)∆ + b(x̂n)∆Wn (3.20)

71

and the Milstein method [106] gives

x̂n+1 = x̂n + a(x̂n)∆ + b(x̂n)∆Wn +
1

2
b(x̂n)b′(x̂n)((∆Wn)2 −∆) (3.21)

∆Wn is a Gaussian random variable with distribution N(0, ∆). It can be generated

by a software RNG for simulation.

The performance of the approximation is quantified by different criterion de-

pending on the goal of the approximation. For a pathwise approximation, strong

convergence is required, where E(|xt − x̂t|) → 0 as the step size goes to zero. A

discrete time approximation converges strongly with order γ > 0 at time t if there

exists a positive constant C, which does not depend on ∆, and a finite δ such that

E(|xt − x̂t|) ≤ C∆γ for each ∆ ∈ (0, δ) [106]. The Euler method has a strong order

of 0.5, while the Milstein method has a strong order of 1 [106]. For approxima-

tion of moments, probability, or other expectations of functionals of the stochastic

process, the requirement for simulation is less demanding, and a weaker conver-

gence criterion is used, where |E(g(xt)) − E(g(x̂t))| → 0 as ∆ → 0 for all g in a

class of functions. It has weak convergence order β if for each polynomial g there

exists a positive constant C, which does not depend on ∆, and a finite δ such that

|E(g(xt))− E(g(x̂t))| ≤ C∆β for each ∆ ∈ (0, δ) [106]. So far, all the development

is for single variant SDEs. Similar approach can be applied to vector SDEs.

72

3.3.5 Fokker-Planck Equation

For the stochastic process described by (3.15), the time evolution of the its

probability density function p(x, t) satisfies the Fokker-Planck equation:

∂p(x, t)

∂t
= − ∂

∂x
[f(x, t)p(x, t)] +

1

2

∂2

∂x2
[g2(x, t)p(x, t)] (3.22)

with the initial condition p(x, t)|t=t0 = p(x, t0) [107].

SDE has been applied in many fields such as population biology, finance, chem-

ical reactions, mechanic systems, to model the stochastic behavior caused by internal

or external fluctuations [105]. Next, I will apply SDE to model the circuit stochastic

behavior driven by noise.

3.4 Stochastic Circuit Model

I first introduce a stochastic model for a voltage node in the circuit to illustrate

the idea of stochastic circuit model, then extend it to two circuits.

I1

C

VA

A

I2

Figure 3.1: Schematic of a simple voltage node.

3.4.1 Voltage Node Stochastic Model

Fig. 3.1 shows the simplest case of a node A where there is an incoming

current to and an outgoing current from the node, and a capacitor connected to

73

the node. The capacitor could be either an explicit capacitor or some parasitic

capacitance associated with devices in the circuit. In our model, noise is considered

in current mode, and only white noise is considered. Similar methods can extend

such analysis to more complicated nodes. We write down the ordinary differential

equation (ODE) of the voltage at node A:

C
dVA

dt
= I1 − I2 + ξ (3.23)

where ξ is a rapidly fluctuating random term (an implicit current not shown in Fig.

3.1), modeled as an idealized Gaussian white current noise: for any t 6= s, ξ(t) and

ξ(s) are statistically independent, and the autocorrelation of ξ(t) is E(ξ(s)ξ(t)) =

δ(s − t). The mean of the noise E(ξ(t)) = 0 for any t. ξ(t) can be viewed as the

derivative of a Brownian motion or a Wiener process [106,107]:

ξ(t) =
√

R(t)
dW (t)

dt
(3.24)

where W (t) is a standard Wiener process with the following properties: 1) inde-

pendent, Gaussian, and stationary increments; 2) E(W (t)) = 0; 3) W (0) = 0; 4)

E[(W (t)−W (s))2] = t−s. R(t) is the power spectral density (PSD) of the Gaussian

white current noise: it is flat across all frequencies and its amplitude is determined

by the circuit elements connected to node A. R(t) is constant for stationary white

noise. A non-stationary white noise can be viewed as a stationary white noise mod-

ulated by a time-varying function R(t). Now we can write the SDE for VA as:

dVA(t) =
I1(t)− I2(t)

C
dt +

√
R(t)

C
dW (t) (3.25)

74

Vdd

Vip Vim

Vc

Vom Vop

M3 M4

M1 M2

Ibias

C C

I4I3

I2I1

Vdd

Vip Vim

Vclk

Vc

Vom

Vgp Vgm

Vop

M3 M4

M1 M2

Ibias

M5

(a) (b)

Figure 3.2: Stochastic synapse circuits: a) the clocked cross-coupled differential pair

comparator in the stochastic synapse circuit, b) the simplified circuit for stochastic

modeling, parasitic capacitances are explicitly added.

3.4.2 Stochastic Synapse Circuit

Although the previous chapter presented an intuitive explanation of how the

stochastic synapse circuit in Fig. 3.2(a) works, a quantitative model is necessary

to fully understand how noise interacts with the circuit dynamics. Here we develop

the stochastic model for the stochastic synapse circuit using SDEs.

3.4.2.1 Stochastic Model of the Stochastic Synapse Circuit

Fig. 3.2(b)is the simplified circuit for the stochastic model, where floating-gate

pFETs are replaced with regular pFETs assuming that they are matched, and the

switch transistor M5 is removed because we are considering the stochastic behavior

once the switch is open. Parasitic capacitors C are added on each side. We operate

the circuit in subthreshold or weak inversion region. Previous work [108] have

75

shown that the major drain current noise of MOSFET in subthreshold is white and

Gaussian. The noise could be viewed as either shot noise or thermal noise [108–110].

The expression for shot noise and thermal noise are unified in subthreshold region.

Wyatt and Coram examined nonlinear device noise models and found that only

nonlinear shot noise models predicts thermodynamically acceptable behavior [111].

Therefore we use the shot noise expression qId as the PSD of the noise current in

subthreshold MOSFET, where Id is the drain current. The SDEs of Vom and Vop are

two SDEs coupled together:

dVom =
1

C
(I3(Vom)− I1(Vom, Vop))dt +

1

C

√
q(I3(Vom) + I1(Vom, Vop))dW1(3.26)

dVop =
1

C
(I4(Vop)− I2(Vom, Vop))dt +

1

C

√
q(I4(Vop) + I2(Vom, Vop))dW2 (3.27)

We use EKV model for the drain current I1 to I4 because it provides a smooth

transition from subthreshold (exponential function) to above threshold (quadratic

function), thus a better modeling of weak inversion [112]. The I-V relation in EKV

model for nFET and pFET are

In =
W

L
2V 2

T

µnCox

κ
(ln2(1 + e

κ(Vgb−Vthn)−Vsb
2VT)− ln2(1 + e

κ(Vgb−Vthn)−Vdb
2VT)) (3.28)

Ip =
W

L
2V 2

T

µpCox

κ
(ln2(1 + e

κ(Vbg−|Vthp|)−Vbs
2VT)− ln2(1 + e

κ(Vbg−|Vthp|)−Vbd
2VT))(3.29)

We simulate the circuit starting from the initial metastable state right after the

switch is open. We use the parameters that closely match our fabricated chip: either

from the layout or the test data of the run provided by Mosis. We use the Euler

method because it has both strong and weak convergence, and it is computationally

cheap. Fig. 3.3 shows one simulation trajectory at bias current 1 µA, Vom and

76

Vop diverges as we expected. Fig. 3.4 shows the zoom-in picture at the beginning,

where the two voltages fluctuate and intersect each other for a couple of times before

diverging eventually. Fig. 3.5 shows ten runs where sometimes Vom goes high and

sometimes Vop goes high. We then sweep the input offset Vip − Vim from -8mV

to 8mV. For each input offset we simulate the circuit 104 times and calculate the

probability p(Vop > Vom). We plot the probability as a function of input offset in

Fig. 3.6. Similar to the experimental result, the function is closely fitted by an

error function f(v) = 0.5
(
1 + erf

(
v−µ√

2δ

))
, where µ = 0.0157 and δ = 1.2659. We

perform the same simulation for the bias current from 100 µA to 10 pA. Fig. 3.7

shows that for Ibias ≥ 1 µA, increasing Ibias widens the probability tuning, while for

Ibias ≤ 100 nA, Ibias has little influence on the probability tuning.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

Time (ns)

O
u

tp
u

t
V

o
lt

a
g

e
 (

V
)

Figure 3.3: One simulated sample path of the stochastic synapse, dashed line: Vop,

solid line: Vom.

77

0 1 2 3
0.903

0.904

0.905

0.906

0.907

0.908

Time (ns)

O
u

tp
u

t
V

o
lt

a
g

e
 (

V
)

Figure 3.4: Close-up view of the initial period of Fig. 3.3, dashed line: Vop, solid

line: Vom.

0 2 4 6 8 10 12 14
0

0.5

1

1.5

Time (ns)

O
u

tp
u

t
V

o
lt

a
g

e
 (

V
)

Figure 3.5: Multiple sample paths from 10 transient simulations, dashed line: Vop,

solid line: Vom.

78

−8 −6 −4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Offset Voltage (mV)

P
ro

ba
bl

ity

Figure 3.6: The probability p(Vop > Vom) as a function of input offset v = Vip−Vim.

The solid line shows the fitting of an error function f(v) = 0.5
(
1 + erf

(
v−µ√

2δ

))
,

where µ = 0.0157 and δ = 1.2659.

−8 −6 −4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Offset Voltage (mV)

P
ro

ba
bi

lit
y

Figure 3.7: The probability p(Vop > Vom) as a function of input offset Vip − Vim for

Ibias = 100 µA, 10 µA, 1µA, 100 nA, 10 nA, 1 nA, 100 pA, and 10 pA. δ=2.8039,

1.6547, 1.2659, 1.1666, 1.1361, 1.1402, 1.1216, and 1.1246 respectively, for the fitting

of the error function.

79

3.4.2.2 Small Signal Stochastic Model

To further investigate how the device parameters and bias condition affect the

performance of the stochastic synapse, we write down the small signal model of

the circuits right after the switch is open, as shown in Fig. 3.8. Since there is a

ro1

ro3

ro2

ro4

gm1 vop gm2 vom

gm3 vip gm4 vim

vopvom

vip vim

io+ io-

iop iom

- -

Figure 3.8: Small signal stochastic model of the stochastic synapse circuit.

regenerative positive feedback in the circuit because of the cross coupling, normal

small signal analysis would not work. Therefore we separate the circuit into two

parts, the differential pair and the cross coupling; write down their small signal

models respectively; then combine them together to obtain the small signal model

for the entire circuit. The small signal model for the differential pair is

io+ = gm3(−vip) +
1

ro3

(−vom) (3.30)

io− = gm4(−vim) +
1

ro4

(−vop) (3.31)

80

And the small signal model for the cross coupling is

iop = gm1vop +
1

ro1

vom (3.32)

iom = gm2vom +
1

ro2

vom (3.33)

If we bias the input voltage Vip and Vim close enough, gm3 ≈ gm4, gm1 ≈ gm2,

ro1 ≈ ro2, ro3 ≈ ro4. Since gm3 À 1
ro3

and gm1 À 1
ro1

, we have

io+ − io− ≈ −gm3(vip − vim) (3.34)

iop − iom ≈ gm1(vop − vom) (3.35)

Substitute them into the differential equation of vom and vop

Cdvom = (io+ − iop)dt (3.36)

Cdvop = (io− − iom)dt (3.37)

We obtain

Cdv = gm3Vosdt + gm1vdt (3.38)

where v is the differential output voltage vop − vom, and Vos = vip − vim = Vip − Vim

is the input offset voltage. The initial condition of (3.38) is v(0) = 0. Adding noise

component into the equation, we obtain the small signal SDE:

Cdv = (gm3Vos + gm1v)dt +
√

RdW (3.39)

where we use white Gaussian current noise, R = 2qIbias.

Compared with the previous SDE model, this model is much simpler, high-

lighting the direct relation between the device parameters and the circuit dynamics.

81

A close inspection of the SDE shows that gm3Vos is the initial offset that drives the

SDE, and gm1 is the positive feedback gain. Without the noise, the direction of

the divergence of v is deterministic, only determined by Vos. With the presence of

noise, the noise term
√

RdW can compete with the influence of the initial offset from

the beginning until v diverges from 0 large enough for positive feedback to domi-

nate, thus generates the stochastic divergence. And Vos determines the probability

distribution of the outcome. Equation (3.38) can be further written as

Cdv = (
κIbias

2VT

Vos +
κIbias

2VT

v)dt +
√

2qIbiasdW (3.40)

in subthreshold and

Cdv = (
√

β3IbiasVos +
√

β1Ibiasv)dt +
√

2qIbiasdW (3.41)

approximately in above threshold, where β3 = µpCox
W3

L3
and β1 = µnCox

W1

L1
. We

simulated the SDE numerically using the same parameters as before in different

regions and obtained similar stochastic behavior. The probability of v diverging to

a positive value matches well with the probability p(Vop > Vom) obtained from the

large signal model simulation, demonstrating the similar influence of bias current

where the probability tuning in subthreshold does not change with bias, whereas

in above threshold operation, tuning is wider with higher bias current, as shown

in both Fig. 3.7 and Fig. 3.9. This model also shows that in the subthreshold

operation, the size of the transistors does not affect the probability tuning, whereas

in above threshold operation, decreasing W3,4/L3,4 widens the probability tuning.

This insight is confirmed by simulation. With W1,2/L1,2 = 10/10 in above threshold,

when W3,4/L3,4 = 10/10, δ = 2.049, while when W3,4/L3,4 = 2/10, δ = 4.609.

82

−8 −6 −4 −2 0 2 4 6 8
0

0.2

0.4

0.6

0.8

1

Offset Voltage (mV)

P
ro

ba
bi

lit
y

Figure 3.9: The probability p(Vop > Vom) as a function of input offset Vip − Vim, ◦:

from the above threshold small signal model (3.41) for Ibias = 100 µA, 10 µA, ×:

from the subthreshold small signal model (3.40) for Ibias = 10 nA, 1 nA, 100 pA,

10 pA, and 1 pA. δ = 3.5990, 1.4475, 1.0776, 1.0980, 1.1098, 1.0972, and 1.0903 for

the fitting of the error function.

We measured the probability tuning curve of the circuits with two different

geometrical sizes under various bias currents. As shown in Table 3.1, when Ibias is

small so that the circuits operate in subthreshold, there is little difference of the

probability tuning between two layouts; when Ibias increases so that the circuits

operate above threshold, the higher the Ibias, the wider the probability tuning, and

the transistor sizes of M3 and M4 affect the probability tuning, the smaller the

W3,4/L3,4 is, the wider the probability tuning. These results match the prediction

from the small signal stochastic model.

From the SDE, we can write down the evolution of the conditional probability

83

Table 3.1: Comparison of δ in probability tuning

Layout
Ibias

10 µA 1 µA 100 nA 10 nA 1 nA

W3,4

L3,4
= 4

12
, W1,2

L1,2
= 10

10
2.2711 0.8436 0.3898 0.3054 0.2914

W3,4

L3,4
= 14

2
, W1,2

L1,2
= 10

10
0.4344 0.3284 0.2628 0.2817 0.3205

p(v, t|v0, t0) using Fokker-Planck equation

∂P (v, t)

∂t
= −∂((gm3Vos + gm1v)P (v, t))

∂v
+ qIbias

∂2P (v, t)

∂v2
(3.42)

where P (v, t) = p(v, t|v0, t0). The initial condition of the equation is P (v, 0) = δ(0).

Substitute (3.40) and (3.41) in (3.42) we obtain the Fokker-Planck equation for the

subthreshold operation:

∂P (v, t)

Ibias∂t
= −∂(κ

2VT
(Vos + v)P (v, t))

∂v
+ q

∂2P (v, t)

∂v2
(3.43)

and the above threshold operation:

∂P (v, t)√
Ibias∂t

= −∂((
√

β3Vos +
√

β2v)P (v, t))

∂v
+ q

√
Ibias

∂2P (v, t)

∂v2
(3.44)

In (3.43), Ibias determines the time constant of the differential equation and would

not affect the steady state distribution. This agrees with the simulation and experi-

mental result that Ibias has little effect of the probability tuning in the subthreshold.

In 3.44, Ibias has more complicated involvement in the dynamics of P (v, t) for the

above threshold operation.

P (v, t) starts as an impulse at 0, then spreads and forms two peaks that move

away from 0 toward both positive and negative values on v axis.

84

3.4.3 CMOS Inverter

Progress in semiconductor integrated circuits technology is driven largely by

technical challenges associated with the continued scaling down of device sizes. In

order to keep the internal electrical field from becoming unreasonably high at re-

duced device dimensions, power supply voltages have to be scaled accordingly. Low

power supply voltages also introduce significant design constraints in low power

applications.

The power supply range defines the dynamic range of the signals that can

be represented and processed by a circuit. Lower power supply provides smaller

signal range. When the signal range is so small that it is close to the magnitude

of noise, signals are degraded significantly by noise. This signal corruption affects

not only analog circuits but digital circuits as well. Logic high and logic low are

normally represented by voltage signals higher or lower than a threshold voltage.

When the signal voltage range is small, the signal amplitude can fluctuate back and

forth across the threshold, resulting in an ambiguous logic value. This poses serious

challenges to the conventional paradigm of deterministic computation based on dig-

ital logic circuits. New computational paradigms that account for this randomness

and take advantage of it may achieve robust performance despite the noise [3–8].

These are different efforts and approaches to the circuit stochastic behavior from

the biologically inspired stochastic synapse presented in the previous chapter.

The CMOS inverter is a fundamental circuit building block for digital circuits.

Understanding the stochastic behavior of the CMOS inverter is essential to under-

85

standing the impact of noise on logic circuits at low power supply voltages in general.

The inverter has been used as a model component to investigate minimum switch-

ing energy [113], bit-energy and information capacity [114], and energy-probability

relation [115]. Using the method we proposed for stochastic circuit modeling and

transient analysis, We develop a stochastic model of the inverter operating at low

power supply, simulate the time domain transient response of the inverter to in-

put logic switching, and obtain steady state statistics from multiple simulations.

We determine the probability evolution equation, the Fokker-Planck equation, for

the output voltage, and solve it analytically. The result from the solution matches

closely with our simulation result. Extending the investigation of the CMOS in-

verter started by Abshire [114], this study provides a unique characterization of the

stochastic behavior of circuit elements operating at low power, therefore might help

us to find solutions for the usage of the stochastic properties of conventional digital

circuits.

3.4.3.1 Dynamics of an Ideal CMOS Inverter

Ip

In

C

Vo

Vdd

+

−

Vi

Figure 3.10: A CMOS inverter with a capacitive load.

We first consider the dynamics of an ideal CMOS inverter without noise as

shown in Fig. 3.10. It consists of an nFET and a pFET connected in series, driving

86

a capacitive output load. We consider only the low power supply case with those

transistors operating in the subthreshold region. The drain currents through the

nFET and pFET are given by

In(t) = I0n
W

L
e

κnVi(t)

VT

(
1− e

−Vo(t)
VT

)
(3.45)

Ip(t) = I0p
W

L
e

κp(Vdd−Vi(t))

VT

(
1− e

Vo(t)−Vdd
VT

)
(3.46)

where I0n and I0p are the current-scaling parameters for nFET and pFET transistors,

W
L

is the geometry factor, κn and κp are the subthreshold slope factors for nFET and

pFET. VT = kT
q

is the thermal voltage, where temperature T is assumed constant

here. Vi and Vo are the input and output voltages. The differential equation for

Vo(t) is given by

dVo(t)

dt
=

Ip(t)− In(t)

C
(3.47)

A nonlinear differential equation for Vo(t) is obtained by substituting (3.45) and

(3.46) into (3.47) and rearranging the terms [114]:

dVo(t)

dt
= a(t) + b(t) sinh

(
c(t)− Vo(t)

VT

)
(3.48)

where

a(t)=
2W

LC
e

1
2

h
ln(I0pI0n)+κp

Vdd
VT

+(κn−κp)
Vi(t)

VT

i
×

sinh

(
1

2

[
ln

I0p

I0n

+ κp
Vdd

VT

− (κp + κn)
Vi(t)

VT

])
(3.49)

b(t)=
2W

LC
e

1
2

h
ln(I0pI0n)+(κp−1)

Vdd
VT

+(κn−κp)
Vi(t)

VT

i
(3.50)

c(t)=
VT

2
ln

I0n

I0p

+
1− κp

2
Vdd +

κp + κn

2
Vi(t) (3.51)

We next examine the switching behavior of this digital circuit where the input

changes abruptly. We treat it as an ideal step input between 0 and Vdd. Input Vi(t)

87

is a constant except at the switching time point. Therefore a(t), b(t), and c(t) are

constants after the input transition as well. We can solve the nonlinear differential

equation analytically for this special case [114]:

Vo(t) = c + VT ln

 1

de

√
a2+b2

VT
t − b

2
√

a2+b2

+
a +

√
a2 + b2

b

 (3.52)

where d = 1

e
Vo(0)−c

VT −a+
√

a2+b2

b

+ b
2
√

a2+b2
and Vo(0) is the initial value of the output

voltage. Fig. 3.11 and 3.12 show the inverter output trajectories after input switch-

ing for Vdd at 0.1 V and 0.01 V. The steady state output voltage is obtained from

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

Time (s)

V
o
 (

V
)

Figure 3.11: Output voltage as a function of time for the ideal CMOS inverter in

subthreshold operation after switching at input, Vdd = 0.1 V.

(3.48) as [114]:

Vss(t) = lim
t→∞

Vo(t) = c + VT ln

(
a +

√
a2 + b2

b

)
(3.53)

3.4.3.2 Stochastic Model of a CMOS Inverter

For a CMOS inverter operating at very low power supply, both transistors in

the circuit operate in subthreshold or weak inversion. From (3.25) and (3.48) we

88

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

Time (s)

V
o

 (
V

)

Figure 3.12: Output voltage as a function of time for the ideal CMOS inverter in

subthreshold operation after switching at input, Vdd = 0.01 V.

write the SDE of the inverter output Vo(t) as

dVo(t) =
Ip(t)− In(t)

C
dt +

√
R(t)

C
dW

=

(
a + b sinh

(
c− Vo(t)

VT

))
dt +

√
Γ(t)dW (t) (3.54)

where R(t) = q(Ip(t) + In(t)) and Γ(t) = q(Ip(t)+In(t))

C2 .

3.4.3.3 Numerical Simulation of the CMOS Inverter

We apply the Ito integral for numerical solution of the CMOS inverter SDE

(3.54) to obtain time domain transient trajectories using Matlab. We use both the

Euler and Milstein methods to simulate the switching behavior. We use reasonable

parameters from a fabrication process. Fig. 3.13 and 3.14 show the simulated

trajectories of inverter outputs from low to high and high to low after inputs switch

from 0 to Vdd and from Vdd to 0 for Vdd = 0.1 V and 0.01 V. Each simulation

generates a unique trajectory. We simulate 100 times and collect 5 × 106 samples

from each run long after the switching, assuming that it is already at steady state.

89

0 0.2 0.4 0.6 0.8 1
0

0.02

0.04

0.06

0.08

0.1

Time (s)

V
o

(V
)

Figure 3.13: Output voltage as a function of time for the CMOS inverter with noise

in subthreshold operation after input transition, 10 runs with Vdd = 0.1 V.

0 0.2 0.4 0.6 0.8 1
0

0.002

0.004

0.006

0.008

0.01

Time (s)

V
o

(V
)

Figure 3.14: Output voltage as a function of time for the CMOS inverter with noise

in subthreshold operation after switching at input, 10 runs with Vdd = 0.01 V.

90

We compute the probability density function (PDF) of the output voltage at steady

state from these samples, as shown in Fig. 3.15. The Euler and Milstein methods

give similar results.

−1 −0.5 0 0.5 1

x 10
−3

0

500

1000

1500

2000

Vo−Vss (Volt)

P
df

Milstein
Euler
Analytic

Figure 3.15: The probability density function of output voltage for a CMOS inverter

with noise in subthreshold operation, Vdd = 0.1 V.

3.4.3.4 Analytic Steady State Solution

Since Vo(t) is a stochastic process defined by the SDE, its probability evolution

is governed by the Fokker-Planck equation:

∂P (V, t)

∂t
= − ∂

∂V
[A(V)P (V, t)] +

1

2

∂2

∂V 2
[Γ(V)P (V, t)] (3.55)

where A(V) = a + b sinh
(

c−V
VT

)
. In digital logic, we are primarily interested in the

output voltage once it settles down after switching at the input. Thus we solve for

the steady state distribution P (V, t) as t→∞, when ∂P (V,t)
∂t

= 0. The distribution is

centered around the equilibrium value Vss obtained from the noiseless inverter. We

approximate Γ(V) by its value at V = Vss, which is a constant, denoted by Γ for

simplicity. The Fokker-Planck equation becomes a second order nonlinear ordinary

91

differential equation:

1

2
Γ

d2P (V)

dV 2
− A(V)

dP

dV
+

b

VT

cosh

(
c− V

VT

)
P = 0 (3.56)

Using a first order approximation for cosh and sinh, and introducing a change of

variable, we can solve P (V). Assuming deviation of Vo(t) from Vss is small at steady

state, we have

cosh

(
V − Vss

VT

)
≈ 1 (3.57)

sinh

(
V − Vss

VT

)
≈ V − Vss

VT

(3.58)

so that

cosh

(
c− V

VT

)
≈ cosh

(
c− Vss

VT

)
− sinh

(
c− Vss

VT

)
V − Vss

VT

(3.59)

With a + b sinh
(

c−Vss

VT

)
= 0, we obtain

a + b sinh

(
c− V

VT

)
≈ −b

V − Vss

VT

cosh

(
c− Vss

VT

)
(3.60)

Substituting them into equation (3.56) and using change of variable u = V−Vss

VT
, we

have

d2P (u)

du2
+ αu

dP (u)

du
+ (α− βu)P (u) = 0 (3.61)

where α is defined in (3.65). β = 2bVT

Γ
sinh

(
c−Vss

VT

)
= −2aVT

Γ
. α and β are at the

same scale and u will be very small, thus βu can be neglected compared with α. We

obtain a simple differential equation which we can solve analytically,

d2P (u)

du2
+ αu

dP (u)

du
+ αP (u) = 0 (3.62)

The solution of P (u) is

P (u) =

√
α

2π
e−

αu2

2 (3.63)

92

Therefore,

P (V) =
1

VT

√
α

2π
e
−α

2

�
V−Vss

VT

�2

(3.64)

α =
2bVT

Γ
cosh

(
c− Vss

VT

)
=

2VT

Γ

√
a2 + b2 (3.65)

The P (V) turns out to be a Gaussian distribution centered around Vss. From the

solution, we verify the approximations we used in the derivation. For Vdd = 0.1

V, α = 104, β = −9.98 × 103, the standard deviation of the distribution is σ =

2.59 × 10−4. Therefore the deviation of Vo(t) from Vss is small at steady state.

Within 3σ, |u| =
∣∣∣Vo(t)−Vss

VT

∣∣∣ < 0.03, the approximations in (3.57)-(3.60) are valid.

The approximation from (3.61) to (3.62) is valid because βu ¿ α. The solid line

in Fig. 3.15 shows the analytical result for Vdd = 0.1 V, which closely matches the

simulation results.

93

Chapter 4

Fly Inspired Autonomous Navigation: Theory and Simulation

4.1 Background

The tiny fly is a huge success - they have survived over 300 million years and

represent one of the most successful animal groups on our planet (i.e. one tenth of

the known species is a fly) [48]. This evolutionary success can be largely attributed to

their highly efficient sensory and motor systems. Fly photoreceptors are capable of

responding to single photons while successfully adapting to intensities up to ∼ 106

effectively absorbed photons per second [47]. Flies can chase mates at turning

velocities of more than 3000◦/s with delay times of less than 30 ms [48] relying

mainly on their visual input with help from other sensory modalities. Microsystems

emulating the fly’s vision and feedback control systems offer highly efficient solutions

for low power, high speed, and robust sensor and actuator systems, therefore relieve

the heavy computation and high power consumption required by the conventional

frame capture and digital processing based approach. Starting from this chapter,

we move up from synapse level to sensorimotor integration level.

4.1.1 The Visual System of the Fly

The visual system of the fly begins with two large compound eyes. Each eye

is built from many units called ommatidia. Inside each ommatidium, a lens focuses

94

light from a very limited visual angle (∼ 2◦) onto a small group of six to nine pho-

toreceptors, which convert optical signals into electrical signals [116]. The retinal

images are processed further by three successive layers of neuropile in the visual

ganglia. These layers are the lamina, medulla and lobula complex, in order from

peripheral to central. The projection of visual images onto the neuropile is retino-

topic, and the spatial relationships among image points are conserved throughout

the layers [48].

Large monopolar cells (LMCs) in the lamina effectively encode contrast over

the full operating range of the fly’s visual system [117]. Cells within the medulla

are suggested to encode local motion [118], however their response characteristics

are largely unknown due to their small size [48]. The lobula complex comprises

two parts: lobula and lobula plate, and retinotopic projections converge at the

lobula plate. Visual interneurons called lobula plate tangential cells (LPTCs) have

large dendritic trees, integrating visual information across a large field. There are

about 60 different LPTCs on each side identified by their characteristic anatomy

and response. In general, they are directionally sensitive to visual motion, excited

by a preferred direction (PD) and inhibited by a null direction (ND) that opposite to

PD. LPTCs can be grouped into horizontally and vertically sensitive cells according

to their preferred orientation [48].

There are another two distinct classes of cells: figure detection (FD) and

contralateral inhibited (CI). Both respond preferentially to small moving objects,

and it is believed that they play a key role in object fixation and pursuit [48].

95

4.1.2 The Sensorimotor System of the Fly

Flies have superb acrobatic maneuverability. They can hover or maneuver in

virtually any direction, maintaining balance within turbulent flow conditions. A

typical flight trajectory is a series of straight flight paths interrupted by rapid yaw

turns called saccades. The flight musculature of flies is composed of two groups:

large power muscles which elevate and depress the wings bilaterally to generate lift

for staying aloft; and small steering muscles which alter the path and orientation of

each wing stroke [49]. The antagonistic organization of power muscles enables the

wings to oscillate up and down at high frequency. At such high frequency, at most

single action potential can be sent to drive steering muscles during each wing beat,

therefore accurate phasic activation of steering muscles provides subtle modulation

of the wing beat [49,119].

Sensory inputs converge on the thoracic flight motor circuitry. Although a

large fraction of these inputs descend from visual processing, a special mechanical

sensor, the haltere, has proven to be essential. Independently encoding body ro-

tation along roll, pitch and yaw axes from coriolis forces, halteres operate at high

rotational velocities exceeding 800◦/s, while visual response is attenuated beyond

200◦/s. Normally visuo- and mechano-sensory feedback counteracts rotations of

the body to maintain straight flight. Occasionally, image expansion caused by ap-

proaching objects or sideways slips triggers saccadic turns. Feedback from halteres

terminates the rapid turn to limit the rotation to 90◦ [49, 119]. Fig. 4.1 shows a

cartoon of the major sensory feedback paths to the motor system.

96

Wing

Haltere

Photoreceptor

Lamina

Medulla

Lobula & Lobula plate

Thoracic ganglion

Steering muscle

LPTC Interneuron

M
.N

.

M.N.

S.N.

M.N. Motor neuron

S.N. Sensory neuron

Figure 4.1: Cartoon of fly’s sensory motor systems.

4.1.3 Visual Navigation in Flying Insects

Flying insects have immobile compound eyes with fixed-focus optics, which

result in poor spatial resolution and lack of binocular stereopsis. They have devel-

oped rather different strategies for visually guided behavior relying mostly on visual

cues from image motion. When an insect flies around, moving patterns of illumi-

nance generate local image shifts on the retina, called optic flow. Optic flow over

a visual field is called optic flow field or motion field. Hengstenberg, Krapp, and

Hengstenberg [120] showed the flying motion in six degrees of freedom (DOF) in a

3-D environment and the corresponding optic flow fields. Optic flow field contains

information about self-motion, object motion, and spatial layout of the environ-

ment, and plays a critical role in the fly’s vision based navigation. Some important

strategies are briefly reviewed here. Thorough reviews and references can be found

in [52–54,56].

• Flight Stabilization: When an insect flies along a straight course and is blown

to the left by a gust of wind, it compensates for the disturbance by turning

to the right. This phenomenon is known as optomotor response and has been

extensively investigated in controlled experimental setups [121, 122]. A teth-

97

ered fly at the center of a drum with a textured wall generates torque towards

the same direction as the drum rotates. It is through the optomotor response

we know that motion is sensed by cross-correlating the intensity variations in

neighboring ommatidia in compound eyes [62,65].

• Centering Response: When bees fly through a tunnel, they tend to stay in the

middle of the tunnel [123]. This can help them to negotiate narrow gaps and

fly along the safest route. Experiments show that this centering response is

accomplished as bees try to balance optic flow from left and right eyes during

the flight. If one side of the tunnel is moving along the same direction as the

flight path, bees tend to fly closer to the moving side and vice versa. The

spatial frequency content and the contrast of the pattern on the sides does

not affect the behavior, suggesting that bees have the capability to extract the

actual speed of the image independently of the patterns [123].

• Object Avoidance and Landing: When an insect approaches an object, the

image of this object expands. Insects use this optic flow expansion to detect

obstacles or surfaces. They either turn away from the imminent collision or

initiate smooth landing. Although similar motion cues are used, these two

different responses are mediated by separate pathways in the fruit fly [124].

For landing, optic flow is also used to reduce the flight speed accurately for

touchdown [125].

• Odometry: Bees have demonstrated the ability to effectively encode the dis-

tance to a destination and communicate it to others so that they can fly to

98

the same location. Experiments show that the distance estimation is strongly

related to image motion. For a bee flying through a tunnel, sidewall motion in

the same direction as the flight causes the bee to believe it has flown a shorter

distance [126]. Vision-based odometry might be more robust than energy-

based approaches because it won’t be as sensitive to wind and changing loads

that bees might have to carry (e.g. pollen).

• Chasing Behavior and Motion Camouflage: For individual and species survival,

insects need to chase their potential mates, capture their prey, and escape from

their enemies. All of these rely on their ability to see targets, often small and

fast moving, to track them in the visual field, and to react. Special neurons

that respond selectively to small moving objects have been identified [127].

Control strategies, such as keeping the target in the center of the visual view

[128] or maintaining a fixed angle subtended by the target [129] have been

found in the behavior of some flies. It has also been observed that some

insects appear to conceal themselves by moving in a way that makes them

appear stationary to their targets [130]. Justh and Krishnaprasad [131] have

derived a control law for this ”motion camouflage”.

4.1.4 Natural Environment

Simple stimuli have been widely used in biological experiments because they

are easy to produce and control. Only recently has it become technically feasible

to introduce complex stimuli close to the natural visual environment where animals

99

typically operate. The neuronal responses to complex stimuli are found to be quite

different from the responses to simple stimuli. The response of motion-sensitive

neurons to simple stimuli is ambiguous, but natural signals allow the fly to dis-

ambiguate the interpretation [132, 133]. This is not surprising, as nervous systems

have evolved to compute behaviorally relevant information by taking advantage of

natural stimuli statistics [134] and the animals’ own unique behaviors [135,136].

Insect neural systems are relatively simple, and it is feasible to emulate many

of their structures and functions using current technology. Not only does this enable

biologically-inspired robots with high performance and efficiency, it also allows us

to test our understanding of the biological system. By building the system and

testing it in its natural environment, we expect to encounter and resolve critical and

practical issues that are never seen in a perfect simulation environment [70].

4.2 Optic Flow Wide Field Integration (WFI) based Navigation

Recent experimental results revealed that there is fine spatial structure of the

motion direction sensitivity in the receptive field of LPTCs beyond their preferred

global direction [57]. It has been postulated that such matched filter structures

correspond to neuronal models of the external world [58]. LPTCs may compute

specific self-motion parameters by filtering its vast visual input stream through

synaptic connections. In total, 60 LPTCs on each side extract rich information

about the motion and the environment, which provide feedback to the motor systems

for flight control and navigation.

100

4.2.1 WFI based Navigation

It has been shown that motion cues for navigation can be extracted via WFI of

the retinal optic flow over the full 2π view angle around the center of a circular sensor

[2,59–61]. WFI is computed by circular Fourier decomposition of the optic flow with

the orthonormal function basis Φ = { 1√
2
}⋃{cos nγ : n = 1, 2, ...}⋃{sin nγ : n =

1, 2, ...}. Each basis function is used as a filter Fi(γ), and the WFI is performed as

the inner product between the optic flow field and the filter, 1
2π

∫ π

−π
Q̇(γ) · Fi(γ)dγ,

where γ is the direction of the view. The WFI outputs have direct relation with the

lateral and rotational dynamics and forward speed of the vehicle. With appropriate

gain, the motion cue can be used in a feedback control loop to drive the vehicle

towards a desired state or trajectory [2, 59–61]. It is also demonstrated that this

output feedback methodology is sufficient to explain some of the experimentally

observed honeybee flight behavior [60]. Fig. 4.2 shows a framework of using optic

flow WFI in feedback control for navigation.

Vehicle
Dynamics

K

Optic Flow
Estimation

WFI

Environment

(,)=�x f x u

u x

µ
�Q a

Figure 4.2: Optic flow WFI based feedback control [2].

101

4.2.2 Elementary Motion Detector

The Reichardt correlation model was first proposed by Reichardt and his col-

leagues as the elementary motion detector (EMD) in flies [62–65]. Additional exper-

imental evidence has accumulated and this model has been extended to invertebrate

visual motion as well. Mathematically, it is equivalent to the spatiotemporal energy

model for motion detection in vertebrate motion vision [137]. The basic unit of a

R(t)

τ τ

∆φ

* *

+

+ -

Figure 4.3: Reichardt EMD.

Reichardt EMD (REMD) is a correlator between a delayed input and its neighbor-

ing input as shown in Fig. 4.3. Each REMD consists of two such units sensitive to

opposite directions, and the differential output imparts selectivity to motion along

the orientational direction between inputs. Two REMDs aligned perpendicularly

give 2-D motion information subject to the aperture problem. A low-pass filter

with time constant τ is often used as the delay element. The REMD response to a

sinusoidal grating with amplitude ∆I moving to the right at velocity v is [138]:

R(t) = ∆I2 2πτv/λ

1 + (2πτv/λ)2
· sin(2π∆φ/λ), (4.1)

102

where ft(cyc/s) and fs(cyc/◦) are temporal and spatial frequency, λ is the wave-

length 1/fs, and v = ft/fs. Clearly the REMD response is not just a function of

velocity, but depends on contrast and compound effect of ft and fs.

When the distance from an object to the fly changes, the apparent motion

also changes. The closer the object is, the bigger the apparent motion is. Apparent

angular velocity v = ft/fs, the change of v could be caused by change in either ft

or fs. Natural image statistics are found to be invariant to scale [139, 140]. This

implies that the spatial power spectrum stays same whether the image is taken

closer or farther: more details are seen at smaller distance, but the span of view

angle of the detail increases as well because of smaller distance. The optics of fly’s

eyes also limit the spatial frequency to a quite narrow band (0.25 cyc/◦). With fixed

spatial frequency content, image velocity is proportional to the temporal frequency.

Therefore velocity tuning is mainly dependent on temporal frequency tuning.

Nonzero DC intensity in the pattern creates oscillations around R(t), but these

variations can mostly be cancelled by spatial averaging. Various elaborations of the

basic REMD have been proposed to match more closely to physiological results

and to obtain better velocity constancy, i.e., velocity estimation independent of

environment [136,141, 142]. Fig. 4.4 shows one elaborated EMD model. A velocity

estimator has been built using nonlinear summation of signals from an EMD array

[143]. Various components have been evaluated for the purpose of velocity constancy,

such as spatial filter, temporal filter, nonlinear saturation, nonlinear integration, and

motion adaptation. With the spatial frequency content of natural scenes invariant

in space, the REMD response (4.1) shows that another important factor for velocity

103

estimation is contrast change (contrast is defined as ∆I/I). Contrast adaptation

has been proposed in EMD to reduce the its sensitivity to contrast change. [143].

The bell shape of the temporal frequency tuning curve also causes the ambiguity of

velocity estimation.

��

�

���

��

�

���

��� ���

Σ

����	�
��	
��

� �

���	��

����
�

�
���

����

�

���	��

���	��
������

���	����������	��

� �

���

Figure 4.4: Elaborated EMD. P: photoreceptor, SF: spatial filter, BPF: band-pass

filter, LPF: low-pass filter.

4.2.3 EMD in WFI based Navigation

In the Simulink model developed before [59], a vehicle moves on a horizontal

plane with three DOF (planar translation with single-axis rotation). The environ-

ment is defined by a bitmap. Ideal optic flow field is computed from the sensor

geometry, the vehicle position and movement, and the environment. Force and

torque control inputs are generated from the ideal optic flow field by the spatial

104

matched filters. Here we evaluate REMD and its variation as the optic flow estima-

tor in WFI based navigation.

We first investigated the effect of the nonlinear response of the REMD on

the navigation performance. The ideal optic flow is transformed by the velocity

tuning curve of the REMD (4.1) for fixed λ before the spatial filtering. The vehicle

can successfully navigate through the environment as long as the velocity is in the

monotonic range of the tuning curve. It shows importance of the monotonicity of

the response in WFI-based navigation because the algorithm relies on the relative

spatial response to the motion.

Motion sensitive neurons with different intrinsic time constants (slow and fast

optimal velocity), are found in insects [144]. Multiple motion detectors with different

spatiotemporal tuning curves might collectively help insects to estimate the image

velocity independent of the environment. In theory, the normalized responses of

two EMDs with different time constants show no dependence on contrast and have

a much wider range of response monotonicity:

R2

R1 + R2

=
τ2

τ1 + τ2

· 1 + τ 2
1 ω2

1 + τ1τ2ω2
(4.2)

where R1 and R2 are responses of REMDs with time constants τ1 and τ2 respectively.

Fig. 4.5 shows the velocity tuning curve R1 with peak response at 10◦/s and R2

with peak response at 50◦/s and the normalized response R = R2

|R1+R2|+c
, a small

positive constant c is added to avoid the division by zero at zero velocity. Divisive

normalization is also used in modeling nonlinearities and adaptation in cortical

neurons [145]. Normalized response from two velocity tuning curves with peak

105

velocity 20◦/s and 200◦/s is used in the simulation and the performance is improved

because of the extended range of the monotonic response.

−100 −50 0 50 100
−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Velocity (deg/s)

R
es

po
ns

e

Slow EMD
fast EMD
Normalized EMD

Figure 4.5: Velocity tuning from slow EMD (peak velocity =10◦/s), fast EMD (peak

velocity=50◦/s), and normalized fast EMD.

� �

��

�
�

�

�
�

�

�

�

�

��

Figure 4.6: EMD circular sensor.

To further test the EMD, I introduced a circular motion sensor model with

elaborated EMDs evenly distributed over 2π view angle, as shown in Fig 4.6. The

image projected to each EMD is computed according to its position, orientation, and

106

the environment. When the vehicle is moving, EMDs compute the local optic flow

resulting from their changing inputs. WFI of the local optic flow provides feedback

to control the force and torque of the vehicle.

Y Position

X
 P

o
s
it
io

n

(a) (b)

0 5 10 15 20 25 30
2

0

2

a
0

0 5 10 15 20 25 30
 5

0

5

a
1

0 5 10 15 20 25 30
 2

0

2

a
2

0 5 10 15 20 25 30
 2

0

2

u
2

t (s)

Figure 4.7: Simulation of WFI based navigation with EMD sensors. (a)Navigation

through a tunnel, (b)Four matched filter outputs from EMD based optic flow (dotted

line) and ideal optic flow (solid line), a0: DC filter, a1: cos(·) filter, a2: cos(2·) filter,

u2: torque filter.

Due to the limited capability to simulate realistic environments in Simulink,

the environment is simulated as a parallel tunnel with natural images painted on the

tunnel wall. Spatial filtering or averaging of the image projected onto the EMD is

critical because it emulates the effect of scaling as the vehicle moves close to or away

from the wall. Temporal pre-filtering with low-pass and high-pass filters, nonlinear

saturation, and proper monotonic velocity response range are implemented. The

output of a single EMD is very noisy because of the transient nature of its response

and it poses quite a challenge in making the closed-loop simulation work. Therefore,

107

at each azimuthal position, 5 EMDs along the vertical direction are used and their

outputs are averaged before filtering. This improves the performance. Fig. 4.7

shows one simulation result. The WFI outputs from EMD-based optic flow fluctuate

around the WFI outputs from the ideal optic flow.

This simulation demonstrates the possibility of using EMDs in optic flow WFI

based navigation and identifies important factors. In any actual system, there will

be more noise and non-ideality. Sensors of other modalities might be needed for

flight stabilization so that visual information can be used just for navigation. Other

matched filters might be needed for enhanced capability, such as an optic flow ex-

pansion filter for imminent obstacle avoidance.

4.3 Limited View Angle Solution

WFI based navigation has been formulated and demonstrated using optic flow

of a 2π view angle from a circular sensor [2, 60, 61]. Limited view angles much less

than 2π seem not prevent flying insects from navigating around well. It is also rea-

sonable to assume that the most relevant visual information for flight control would

come from the front of the animal. Therefore we extend previous work to motion

cues recovery and feedback control from a limited view angle. This also alleviates

technical difficulties associated with constructing a full circular motion sensor. We

follow the same methodology developed by Humbert, Murray, and Dickinson [2,60].

We first demonstrate the case with a view angle of π, then generalize it to any view

angles less than π.

108

4.3.1 View Angle of π

Fig. 4.8 shows the configuration of a ground vehicle in a tunnel environment

[2,60]. The coordinate {x, y} sits in the middle of the tunnel, providing the inertial

frame, where a is the half width of the tunnel. {xb, yb} is the body frame attached

to the body of the vehicle. θ is the rotation angle of the body frame referenced

to the inertial frame. γ is the angle of a point in the environment and r(γ) is the

corresponding position vector in the body frame.

x

y

xb

y
b

�θ
�

r(γ�)

s
p

γ

a

Figure 4.8: Vehicle configuration in planar tunnel.

For a planar motion, the instantaneous optic flow on a circular sensor is a 2π

periodic function of the azimuth angular γ relative to the body frame [2,60]:

Q̇ = −θ̇ + µ(γ)(ẋb sin γ − ẏb cos γ), (4.3)

where θ̇, ẋb, ẏb are the kinematics of the body frame, and µ(γ) = 1/r(γ) is the near-

ness function along direction γ. With a view angle of π, γ is in [−π
2
, π

2
]. Therefore

the WFI or the spatial filtering of optic flow is performed within [−π
2
, π

2
] using a

109

function set Φ = {1}⋃{cos nγ : n = 1, 2, ...}⋃{sin nγ : n = 1, 2, ...}:

a0(t) =
1

π

∫ π
2

−π
2

Q̇(γ)dγ (4.4)

an(t) =
1

π

∫ π
2

−π
2

Q̇(γ) · cos nγdγ (4.5)

bn(t) =
1

π

∫ π
2

−π
2

Q̇(γ) · sin nγdγ (4.6)

Applying the same spatial filters on the nearness function µ(γ):

A0(t) = =
1

π

∫ π
2

−π
2

µ(γ)dγ (4.7)

An(t) = =
1

π

∫ π
2

−π
2

µ(γ) · cos nγdγ (4.8)

Bn(t) = =
1

π

∫ π
2

−π
2

µ(γ) · sin nγdγ (4.9)

we can rewrite the WFI of optic flow in terms of the vehicle kinematics (ẋb, ẏb, θ̇)

and {A0, Ak, Bk : k = 1, 2, ...}:

a0 = −θ̇ + ẋbB1 − ẏbA1 (4.10)

a2n =
ẋb

2
(B2n+1 −B2n−1)− ẏb

2
(A2n+1 + A2n−1) (4.11)

b2n =
ẋb

2
(A2n−1 − A2n+1)− ẏb

2
(B2n+1 + B2n−1) (4.12)

a2n+1 = − (−1)n

(2n + 1)

2θ̇

π
+

ẋb

2
(B2n+2 −B2n)− ẏb

2
(A2n+2 + A2n) (4.13)

b2n+1 =
ẋb

2
(A2n − A2n+2)− ẏb

2
(B2n+2 + B2n) (4.14)

For the planar tunnel geometry, the nearness function µ(γ) can be expressed

as a function of the lateral position y, body frame orientation θ, and the tunnel

half-width a [2, 60], defined for γ ∈ [−π
2
, π

2
]:

µ(γ) =

sin(γ+θ)
a−y

−θ ≤ γ ≤ π
2

− sin(γ+θ)
a+y

−π
2
≤ γ ≤ −θ

(4.15)

110

The deviation of the body frame orientation from the forward direction of the tunnel

is always less than or equal to π
2
, so θ ∈ [−π

2
, π

2
]. We compute the spatial filter

outputs of this nearness function:

A0 =
1

π
· 2a + 2y sin θ

a2 − y2
(4.16)

A1 =
2a cos θ + (πy + 2aθ) sin θ

2π(a2 − y2)
(4.17)

B1 =
cos θ(πy + 2aθ)

2π(a2 − y2)
(4.18)

Ak =

2
π
−a cos kθ+(−1)m+1y sin θ

(k2−1)(a2−y2)
k = 2m

2
π
−a cos kθ+(−1)mak cos θ

(k2−1)(a2−y2)
k = 2m + 1

(m > 0) (4.19)

Bk =

2
π

a sin kθ+(−1)m+1ky cos θ
(k2−1)(a2−y2)

k = 2m

2
π

a sin kθ+(−1)m+1a sin θ
(k2−1)(a2−y2)

k = 2m + 1

(m > 0) (4.20)

Furthermore by changing the coordinate from body frame to inertial coordinate

using

ẋb = ẋ cos θ + ẏ sin θ (4.21)

ẏb = −ẋ sin θ + ẏ cos θ, (4.22)

we can write the transformation of optic flow in inertial coordinates [2,60]. The first

111

several outputs are shown here:

a0 = −θ̇ +
ẋ(πy + 2aθ + a sin 2θ)− 2aẏ cos2 θ

2π(a2 − y2)
(4.23)

a1 = − 2

π
θ̇ − −4aẋ sin θ + ẋy cos 2θ − 3ẋy + 2aẏ cos θ + yẏ sin 2θ

3π(a2 − y2)
(4.24)

a2 = −−aẋ sin 2θ+2aθẋ cos 2θ+πẋy cos 2θ+2aθẏ sin 2θ+πẏy sin 2θ

4π(a2 − y2)
(4.25)

a3 =
2

3π
θ̇ − 4aẋ sin 3θ + 9ẋy cos 2θ + 5ẋy − 6aẏ cos 3θ + 9ẏy sin 2θ

15π(a2 − y2)
(4.26)

b1 = −2(−2aẋ cos θ − ẋy sin 2θ − aẏ sin θ + ẏy cos 2θ)

3π(a2 − y2)
(4.27)

b2 = −−2aẋ cos 2θ − 2aẋ− 2aθẋ sin 2θ − πẋy sin 2θ

4π(a2 − y2)

+
−aẏ sin 2θ + 2aθẏ cos 2θ + πẏy cos 2θ

4π(a2 − y2)
(4.28)

b3 = −2(2aẋ cos 3θ − 3ẋy sin 2θ + 3aẏ sin 3θ + 3ẏy cos 2θ)

15π(a2 − y2)
(4.29)

We consider rolling or wheeled vehicles of the unicycle type, subject to the

nonholonomic constraint ẋ sin θ− ẏ cos θ = 0, which enforces ẏb = 0. Similar results

are obtained for a hovercraft with three DOF as well. The kinematic and dynamic

of the motion in the inertial configuration are [2, 60]

ẋ = v cos θ (4.30)

ẏ = v sin θ (4.31)

mv̇ = (Ts + Tp)/rw (4.32)

Jθ̈ = r0(Ts − Tp)/rw (4.33)

where v = ẋb, Ts and Tp are starboard and port wheel torques, r0 and rw are

vehicle half width and wheel radius. Assuming small states (other than v) and

control inputs, the linearized equations of the state variable p = (v, y, θ, θ̇)T near a

112

centerline flight trajectory p0 = (v0, 0, 0, 0) are

ṗ =

0 0 0 0

0 0 v0 0

0 0 0 1

0 0 0 0

p +

u1/m

0

0

u2/J

(4.34)

where u1 = (Ts + Tp)/rw, u2 = r0(Ts − Tp)/rw.

We linearize ai and bi with respect to the state variable p = (v, y, θ, θ̇)T around

p0 = (v0, 0, 0, 0)T so that z(p) = z(p0) + (p− p0)
T ∂z

∂p
|p0 :

za0

za′1

za2

zb1

=

0 v0

2a2
v0

πa
−1

0 − 8v0

3πa2 0 − 8
3π

0 − v0

4a2 0 0

4
3πa

0 0 0

v

y

θ

θ̇

(4.35)

where za′1 = 3za1 +5za3 to simplify its dependance to the state variables. The matrix

has a full rank. (4.34) shows that the state variable v is decoupled from the rest

of the state variables, and (4.35) shows that zb1 is only dependent on v. Therefore

the feedback control can be broken into forward speed regulation and centering

regulation, similar to the 2π view angle case [2, 60].

If we choose u1 = K11(
4v0

3πa
− zb1), the linearized closed loop dynamics of v

becomes

v̇ = − 1

m
· 4

3πa
K11(v − v0) (4.36)

The local stability of the nonlinear system is achieved when K11 > 0.

If we choose u2 = K20za0 +K21za′1 +K22za2 , the characteristic equation for the

113

linearized closed loop dynamics of (y, θ, θ̇) is

s3 +
1

J
(K20 +

8

3π
K21)s

2 − v0

Jπa
K20s +

v2
0

12a2J
(−6K20 +

32

π
K21 + 3K22) = 0 (4.37)

To achieve a stable response, we require K20 < 0, K21 > −3π
8

K20, K22 > 2K20 −
32
3π

K21, and (K20 + 8
3π

K21)(− 1
Jπ

K20) > v0

12a
(−6K20 + 32

π
K21 + 3K22).

We applied the same method to the view angle π/2. The linearized filtered

outputs are

za0

za1

za2

zb2

=

0 1
4
−2v0+v0π

a2
1
2

v0

a
−1

2
π

0 1
6

v0

√
2

a2
1
6
−√2v0+4v0

a
−√2

0 − 1
16
−8v0+2v0π

a2
1
4

v0

a
−1

1
4

1
a

0 0 0

v

y

θ

θ̇

(4.38)

Flight Path

Y Position

X
 P

os
iti

on

Flight Path

Y Position

X
 P

os
iti

on

(a) (b)

Figure 4.9: Simulation of WFI based navigation using limited view angle optic flow.

a)View angle: π, b)View angle: π/2.

The matrix has a full rank, indicating the system is controllable with full

feedback. Using the criterion of stability to choose the feedback gain factor K11,

114

K20, K21, and K22, we simulated the navigation of the wheeled vehicle in the tunnel

environment with the view angle of π and π/2. To obtain good navigation behavior,

once we chose the gain factors according to the Routh-Hurwitz rule, the eigenvalues

of the matrix for the system with feedback are computed. Adjustment is made to

avoid eigenvalue on the imaginary axis. In both cases, the vehicle navigated the test

environment successfully. Fig. 4.9 shows the simulated navigation path through the

test environment in each of these cases.

4.3.2 General Case

Now we generalize the result to WFI on [−β, β], 0 < β ≤ π
2

for wheeled vehicles

with the nonholonomic constraint. The integration of optic flow is performed across

[−β, β] using the same function set Φ = {1}⋃{cos nγ : n = 1, 2, ...}⋃{sin nγ : n =

1, 2, ...} as before. The first four linearized outputs around the centerline are:

za0

za1

za2

zb1

=

0 Z3×3

α 0

v

y

θ

θ̇

(4.39)

where α = 1
6a

(8 + cos(3β)− 9 cos(β)) and

Z3×3 =

v0

2a2 (2β − sin 2β) v0

2a
(1− cos 2β) −2β

−v0

6a2 (−3 sin β + sin 3β) − v0

6a
(cos 3β + 3 cos β − 4) −2 sin β

v0

8a2 (− sin 4β + 4 sin 2β − 4β) v0

8a
(1− cos 4β) − sin 2β

(4.40)

The rank of Z3×3 is 3.

115

For a linear system with an n-dimension state vector x and an l-dimension

observation vector y described by the state differential equation:

ẋ = Ax + Bu (4.41)

y = Cx (4.42)

where A is an n × n matrix, B is an n ×m matrix, C is an l × n matrix, and u is

an m-dimension input vector, the system is controllable if the rank of controllability

matrix Pc is n [146],

Pc =

(
B AB · · · An−1B

)
(4.43)

The system is observable if the output has a component due to each state variable,

meaning that the rank of the observability matrix Po is n [146],

Po =

C

CA

...

CAn−1

(4.44)

For the wheeled vehicle dynamics (4.34),

A =

0 0 0 0

0 0 v0 0

0 0 0 1

0 0 0 0

(4.45)

B = I (4.46)

C =

0 Z3×3

α 0

 (4.47)

116

Both the controllability matrix Pc and the observability matrix Po have rank 4, so

the system is controllable and observable.

In both matrix A and C, v and (y, θ, θ̇)T are decoupled, thus the control can

be broken into the control of v and the control of q = (y, θ, θ̇)T . If we choose

u1 = K3(αv0 − zb1), v̇ = − 1
m
· αK3(v − v0) with α > 0, local stability is achieved

when K3 > 0. If we choose u2 = K0za0 + K1za1 + K2za2 ,

u2 = KZ3×3

y

θ

θ̇

= K

(
Z·1 Z·2 Z·3

)

y

θ

θ̇

(4.48)

where K = (K0, K1, K2), Z·i is the ith column vector of Z3×3 for i =1, 2, 3.

The linearized system equation of q with the feedback output is

q̇ =

0 v0 0

0 0 1

r0

J
KZ·1 r0

J
KZ·2 r0

J
KZ·3

q (4.49)

The characteristic equation for the linearized closed loop dynamics is:

s3 − r0

J
KZ·3s2 − r0

J
KZ·2s− r0v0

J
KZ·1 = 0 (4.50)

To achieve a stable response, all the roots of the characteristic equation should

lie in the left half of the s-plane. Routh-Hurwitz criterion gives a necessary and

sufficient criterion for the stability of linear systems [146]. Specifically, for a third-

order system with characteristic equation of q(s) = a3s
3+a2s

2+a1s+a0 to be stable,

it is necessary and sufficient that a0, a1, a2, a3 > 0, and a2a1 ≥ a0a3. Therefore we

117

require the following three conditions:

−r0

J
KZ·3 > 0 (4.51)

−r0v0

J
KZ·1 > 0 (4.52)

r0

J
KZ·3 · r0

J
KZ·2 > −r0v0

J
KZ·1 (4.53)

Since Z3×3 is a matrix with full rank, we can always find such K so that KZ3×3 <

0. The last condition can be satisfied if we scale K with a large enough positive

number. With the condition satisfied, the linearized system is strictly stable, thus

the equilibrium point is asymptotically stable for the nonlinear system, according

to the Lyapunov’s linearizaion theorem [147].

118

Chapter 5

Motion Image Sensor with On-chip Adaptation and Programmable

Filtering

To achieve a single chip solution to the wide field integration (WFI) based nav-

igation, both optic flow computation and spatial filtering need to be implemented

on chip. In previous work [66, 67, 69, 148, 149] where elementary motion detector

(EMD) was used for navigation, EMD responses across the field of view were spa-

tially averaged to provide the velocity information about the motion. And it is

the only parameter extracted and used. In this case, individual differences among

EMDs due to mismatch is not critical. While for the WFI based navigation, detailed

spatial structure of the optic flow field is used to extract multiple dynamic and kine-

matic parameters, therefore the intrinsic difference among EMDs due to mismatch

would distort the original optic flow spatial pattern and pose a serious problem.

We propose a novel approach to mismatch compensation in the EMDs. We further

demonstrate how the same structure can be used to program the analog spatial

filters and perform filtering operation. This method can also be applied to other

sensory front-end in integrated sensors where on-chip spatial processing is required

and distortion from fabrication mismatch among sensor units has to be reduced.

The sensor is demonstrated with a ground robot for autonomous navigation.

119

5.1 EMD Implementation and Mismatch

To reduce the circuit complexity thus to reduce the mismatch, we design the

EMD as simple as possible. We use voltage-mode EMD with differential current

output so that further operation can be performed in current mode. This imple-

mentation is similar to Harrison’s implementation in the analog IC for visual collision

detection [69].

5.1.1 EMD Implementation

Photoreceptor Photoreceptor

GmC

high pass filter

GmC

high pass filter

GmC

low pass filter

Gilbert

multiplier

GmC

low pass filter

Gilbert

multiplier

Vphl Vphr

Vhpl Vhpr

Vlpl Vlpr

I l+ I l- I r- I r+

Io+ Io-

Light

Figure 5.1: Block diagram of EMD implementation.

Fig. 5.1 shows the block diagram of the EMD circuit. Light is absorbed by

a pair of photoreceptors and converted to a pair of voltages Vphl at left and Vphr at

right. Both voltage signals pass through the GmC type high-pass filters to remove

DC component. Each high-pass filtered signal passes through a GmC type low-pass

120

filter to obtain a delayed version of the signal. At each branch of the EMD, the

delayed signal and the non-delayed signal from the opposite side are multiplied by

the Gilbert multiplier. Thus we obtain differential current outputs Il+ and Il− from

Vlpl and Vhpr at the left branch, and differential current output Ir+ and Ir− from Vlpr

and Vhpl at the right branch. The EMD output is given by the difference between

the left branch Il+ − Il− and the right branch Ir+ − Ir−, thus we combine current

Il+ and Ir− into Io+, and Ir+ and Il− into Io−. The output of the EMD Io is

Io = Io+ − Io− = (Il+ + Ir−)− (Ir+ + Il−) = (Il+ − Il−)− (Ir+ − Ir−) (5.1)

For this configuration, Io > 0 for the movement from the left photoreceptor to the

right one, and Io < 0 for the opposite direction.

5.1.1.1 Photoreceptor

Vdd

Vdiode

Vph

Vbph

Iph

M0 M3

M2

M1

M4

C

Figure 5.2: Schematic of photoreceptor.

Fig. 5.2 shows the schematic of the photoreceptor. A photodiode is used as

the light sensitive element, implemented as n-well on p-sub [150,151]. Stacked diode

connected pFETs convert the photocurrent Iph to a voltage signal Vdiode. All pFETs

121

work in the subthreshold region due to the small magnitude of the photocurrent.

The I-V relation of a pFET in subthreshold is given by

Id = I0e
−κVg−(1−κ)Vw

VT

(
e

Vs
VT − e

Vd
VT

)
(5.2)

where Vs, Vg, Vd, and Vw are the source, gate, drain, and well voltage of the transistor,

and I0 is the scaling current. When Vsd ≥ 4VT , the transistor is in saturation so that

Vsd has little influence on the current. For a diode connected pFET, the transistor is

normally in saturation. With the well connected to Vdd, its I-V relation is simplified

as

Id = I0e
−(1−κ)Vdd

VT e
Vs−κVg

VT (5.3)

Writing down the I-V relation of the three diode connected pFETs, we derive

Vdiode = Vdd + VT
κ2 + κ + 1

κ3
ln

(
I0

Iph

)
(5.4)

Therefore

dVdiode = −gAVT
dIph

Iph

(5.5)

where gA = κ2+κ+1
κ3 is the gain. The reason to stack more than one transistor is to

increase the gain. For one pFET, gA = 1
κ
, and for two stacked pFETs, gA = κ+1

κ2 .

However, increasing the number of stacked transistors reduces the voltage dynamic

range and increases the size of the photoreceptor. So there is a trade-off here. As

shown in (5.5), the change of Vdiode is proportional to the contrast
dIph

Iph
, rather than

the change of the absolute illuminance. Therefore it reduces the influence from the

background light intensity on the motion detection. Transistor M3 functions as a

source follower so that Vph is a voltage shifted version of Vdiode. It also isolates the

122

diode from the load of the next stage. Capacitor C is partially from the the parasitic

capacitance of the diode (∼100fF) and partially from an explicit capacitor (∼100fF)

to filter out high frequency output. The time constant τ = gAVT C
Iph

. For Iph = 100

pA, τ ≈ 3.2× 10−4 s, f3dB ≈ 500 Hz.

5.1.1.2 GmC Type Filter

−

+

Vi

Vref

Vhpgm

−

+Vi

Vlpgm

(a) (b)

C C

Figure 5.3: Block diagram of GmC filters: (a) high-pass filter, (b) low-pass filter.

Vdd

Vi+ Vi-

Vo

Figure 5.4: Schematic of transconductance amplifier.

Both the high-pass filter and the low-pass filter are GmC type filters [152], as

shown in Fig. 5.3. The time constant is given by τ = C
gm

. The purpose of the high-

pass filter is to filter out the DC component in the signal. So the cut-off frequency

needs to be as small as possible. The low-pass filter is to provide the delay between

123

the two branches in the EMD. Experimental data from flies shows that the time

constant is around 30 ms. The transconductance amplifier used is shown in Fig.

5.4, which operates at the subthreshold region for small gm, thus large τ . Here we

use stacked diode connected pFETs to reduce gm further. Without diode connected

pFET, gm = Ib

2VT
κ, with one diode connected pFET, gm = Ib

2VT

κ2

1+κ
, and with two

diode connected pFETs, gm = Ib

2VT

κ3

1+κ+κ2 . However more diode connected pFETs

mean less dynamic range of the output voltage and larger area. So we pick two

here. Even with the reduced gm, to implement a large time constant filter, a large

capacitor is still needed. For τ = 30 ms with Ib = 50 pA, a capacitor of ∼160 pF is

needed.

To build high density EMD array, compact implementation of large time con-

stant filters is necessary. There are several techniques in the literature [153–156].

We propose large time constant filters with adaptation and indirect feedback. It is

described in Appendix A. For the initial proof of concept of the motion sensor, we

did not implement them in the sensor. This could be pursued in the future.

5.1.1.3 Gilbert Multiplier [1]

Fig. 5.5 shows the Gilbert multiplier, which is also based on the operation at

subthreshold region where

Io+ − Io− = Ib tanh
κ(Vi1 − Vr1)

2
tanh

κ(Vi2 − Vr2)

2
(5.6)

≈ 1

4
Ibκ

2(Vi1 − Vr1)(Vi2 − Vr2) (5.7)

124

The approximation is good when Vi1 is close to Vr1 and Vi2 is close to Vr2. Normally

the DC voltage of Vi2 needs to be lower than Vi1 so that both M1 and M2 can

operate at saturation region. A well control voltage Vw is used here so that Vi1 and

Vi2 can operate at the same DC voltage level [69].

Vi1

Vdd

Vi2

Vr1

Vr2
Vi2

Io-Io+

Vw Vw

Ib

M1 M2

Figure 5.5: Schematic of Gilbert multiplier.

5.1.2 Mismatch

To evaluate the mismatch among the EMDs, a chip with 10 EMDs was fab-

ricated and tested. Fig. 5.6 shows the steady state tuning response (response vs.

stimulus temporal frequency) of the 10 EMDs on the same chip. The effect of

mismatch on the EMD response is obvious. We will come back to the solution of

mismatch in the following sections.

5.2 On-chip Spatial Filter

Once the spatial pattern of the optic flow is generated, it feeds to spatial

filters for extraction of motion parameters. In general, there are two approaches to

125

−50 −40 −30 −20 −10 0 10 20 30 40 50
2.55

2.60

2.65

2.70

2.75

T
em

po
ra

l a
ve

ra
ge

 o
f E

M
D

 o
ut

pu
t (

V
)

Temporal frequency (Hz)

Figure 5.6: Steady state tuning curve of 10 EMDs, positive frequency: stimuli

moving from right to left, negative frequency: stimuli moving from left to right.

spatial filters. One is to use networks of resistive components to generate a spatial

distribution of voltages or currents, and the other is to use nonvolatile storage to

store a spatial pattern of voltages or currents. In both cases, the filter operation is

essentially a vector dot product for a single filter and a vector matrix multiplication

for multiple filters. Similar operation has been used in other applications under

different names, such as matched filter, correlation, and similarity evaluation. The

filter output indicates how closely the input pattern matches the filter pattern. The

filter can be implemented in either digital domain or analog domain. Hahm [157]

compared digital and analog approaches using power consumption as the primary

metric. It is found that analog circuit implementation is more power efficient for

shorter and faster filters, while digital circuit is more power efficient for longer

and slower filters. Digital implementation also has the advantage of higher level

of precision. In our work, we focus on analog implementation mainly for its low

complexity, low power consumption, and continuous operation in time.

126

5.2.1 Resistive Networks based Implementation

Resistive networks have been widely used for spatial filters [1, 158]. In VLSI

technology, the resistive components in the networks could be implemented by real

resistors, transistors operating in linear region, or more complex active components

functioning as resistors. The detailed treatment of resistive networks based on pure

resistors can be found in [1]. Mahowald [159] used two dimension resistor networks

to emulate the lateral information spread operation performed by horizontal cells

in retina. Kobayashi [160] used active resistor networks to implement a two dimen-

sional Gaussian shape spatial filter for image smoothing. Choi and Abidi [161] used

resistor averaging networks in the A/D converter to lower the impact of the offsets,

therefore to improve the accuracy. It could also help improving the speed. Andreou

and Boahen [162] proposed a current-mode diffusor network using MOS transistors

in subthreshold. It has the same network response as the resistive network with the

additional benefit of adjustable diffusion length by gate voltages. Often resistive

networks based spatial filter gives predefined shape and there is little flexibility for

change once it is hardwired in the chip. Filters with special shape are hard to im-

plement. It is not always the case that the configuration for a specific shape can be

found.

In the motion image sensor for WFI based navigation, sinusoidal spatial filters

are needed. There is no reported solution for such a filter based on resistive net-

works. We first synthesize a sinusoidal function element that takes angles as input

represented in electrical signals and outputs the sinusoidal value of the angles in

127

voltages or currents; then we assembly a sinusoidal spatial filter with the resistive

networks and the sinusoidal function elements.

5.2.1.1 Sinusoidal Function Circuit

Gilbert [163] has proposed a method for analog synthesis of trigonometric

functions using bipolar transistors. Since the I-V characteristics of MOSFETs in

subthreshold is very similar to bipolar transistors, we can easily adapt the method

to implement trigonometric functions in MOSFET. Fig. 5.7 shows simplest network

to implement a sin(·) function. The angular input x = π(V+−V−)
3EB

in radians, where

IE

V-

I o+ I o-

V+

R

I I

RRM1 M2 M3 M4

Vg2 Vg3

Figure 5.7: Schematic of a sinusoidal function circuit.

EB = IR. The differential output Io = Io+ − Io− = ηIE sin(x), where the efficiency

η = 2e

�
− π2

2κα

�
with α = IR

VT
. The two current sources I, resistor chain, and the input

voltages create the gate voltage differences of transistor M1-M4. These transistors

have common source voltages so that the ratio of their channel currents is e
κV−
VT :

e
κVg2
VT : e

κVg3
VT : e

κV+
VT . Therefore the output current is

Io = Io+ − Io− = IE
e

κV−
VT + e

κVg3
VT − e

κVg2
VT − e

κV+
VT

e
κV−
VT + e

κVg2
VT + e

κVg3
VT + e

κV+
VT

(5.8)

128

This is the simplest case of a general network with N identical transistors, N − 1

resistors R, and N − 2 equal current sources I configured in the similar way. It

has been shown the network performs the exact sin(·) function as N → ∞ [163].

For N being as small as 4, the network is still reasonably close to a sin(·) function,

especially for angle |x| < π
2
. Fig. 5.8 shows the differential current output Io for the

DC sweep of Voffset from -0.15 V to 0.15 V, where Vcm = 2 V, V+ = Vcm + Voffset,

and V− = Vcm − Voffset. With R = 10 kΩ, I = 10 µA, IE = 20 nA, the offset spans

the equivalent angular input −π to π.

−180 −120 −60 0 60 120 180

−6

−4

−2

0

2

4

6

Equivalent Angle (deg)

O
ut

pu
t C

ur
re

nt
 (

nA
)

Iout
Theoretical
Scaled theoretical

Figure 5.8: Differential current output Io of the sin(·) function circuit for a DC sweep

simulation of the input offset Voffset. The theoretical approximation is 5.61 sin(x)

with κ = 0.65. The scaled theoretical approximation is 6.06 sin(x), obtained by

scaling sin(x) with the magnitude of the sine function from the simulation.

129

5.2.1.2 Sinusoidal Spatial Filter

Fig. 5.9 shows how to implement the spatial sinusoidal filter with resistor

networks and the sin(·) circuit. The resistor network generates an evenly spaced

voltage distribution. Each voltage node in the resistor network and the common

voltage node Vc form the differential voltage input pair to a sin(·) function circuit.

IEi are the input currents to be filtered. The scaling of the input current of IEi by

the sin(·) circuit performs the multiplication naturally. Ioi are the output currents

at each location. For n-point filter, there are n−1 resistors between Vl and Vh. The

angular range of the filter is adjustable, given by π(Vh−Vl)
3EB

in radians. The sampling

interval is π(Vh−Vl)
3(n−1)EB

in radians.

VhVl

Vc

sin sin sin sin sin sin

IE1 IE2

Io1 Io2

I I I I

r r r r

Ion

IEn

Figure 5.9: Diagram of sinusoidal network circuit.

The current sources I connected to the resistor networks compensate the

current sources within the sin(·) circuits. Fig. 5.10(a) shows the entire resistor

networks with the resistors and current sources inside and outside the sin(·) cir-

cuits. In the single branch shown in Fig. 5.10(b), it can be derived that voltage

Vo = Vl·3Rr+Vh·3Rr+Vc·r2

6Rr+r2 , which is not affected by I. When R À r, Vo ≈ Vl+Vh

2
.

Similarly it can be shown that in the full networks, the voltages along the resistor

130

Vc

I

r

R

R

R

I
I

VhVl

Vc

I I

r r r

I

R R R R R

R R R R R

R R R R R

I
I

I
I

I
I

I
I

I
I

Vl Vh

r

Vo

(a) (b)

Figure 5.10: Resistor networks and current sources in the sinusoidal spatial filter

circuit, (a) the full networks, (b) a single branch.

network between Vl and Vh are not affected by the current sources. And they are

evenly distributed from Vl to Vh when R À r.

Fig. 5.11 shows the simulation result of a 10-element sinusoidal filter with

r = 100 Ω, R = 10 kΩ, I = 10 µA, and IEi = 20 nA. For AMI 0.5 µm technology, the

resistor can be realized by poly2 layer with high resistivity, ∼ 949 Ω/sq. According

to SCMOS layout rules, both 10 kΩ resistor and 100 Ω resistor require at least

∼ 50λ× 7λ ≈ 43µm2 chip area each.

5.2.2 Nonvolatile Storage based Approach

For nonvolatile storage based approaches, each coefficient is individually pro-

grammed and stored as nonvolatile charges. So there is great flexibility to implement

filters with variety of shapes. The filter can also be modified during operation after

programming, making it adaptive. Floating gate MOSFET has been widely used

as the nonvolatile storage unit in CMOS technology. The charges at the floating

131

2 4 6 8 10
−1

0

1

2

3

4

5

6

7

Filter Element No.

O
ut

pu
t C

ur
re

nt
 (

nA
)

Io
Ideal

Figure 5.11: Simulation of the sinusoidal network circuit.

gate can be programmed by charge injection or tunnelling. Floating gate MOS-

FET can be easily implemented in double-poly CMOS process, while it has also

been demonstrated in single polysilicon CMOS process [164]. Details about injec-

tion and tunnelling can be found in [27]. Charge injection and tunnelling effect

have been used in many applications [28, 32]. A programmable analog memory-

cell array was described in [36]. Bandyopadhyay et al. [38] used a programmable

floating-gate array (PFGA) to implement matrix transformations on images. The

I-V relation of floating-gate transistors was first measured and stored as a lookup

table. To program a pre-defined floating gate voltage, the channel current of the

transistor was monitored and compared with the data in the lookup table. Opti-

mization was performed to find the best pulse number and pulse width to inject

electrons to the floating gate. This way, high programming accuracy was achieved

(maximum error < 0.2%). PFGA technology is a flexible way to implement filters

of various coefficients and shapes. However, programming using the PFGA requires

132

substantial system infrastructure and support. The approach we proposed takes

advantage of the intrinsic negative feedback to program the current. It is direct

and simple. Mismatch compensation for the stages before filtering operation can be

easily incorporated.

Ultra-violet (UV) illumination can make silicon-dioxide slightly conductive,

therefore can also be used to add or remove charges on the floating gate depending

on the potential setup. An adaptive four quadrant matrix-vector multiplier has

been reported using UV illumination for analog hardware neural network [165].

When multiple voltage inputs are coupled to the floating gate through capacitors,

match filter can also be implemented without programming the floating gate with

charges, rather by coupling combinations of input voltages. Yamasaki [166] reported

an analog similarity evaluation circuit with variable functional forms using this

technique.

In the proposed motion sensor, we use floating-gate MOSFET to implement

the spatial filter. Compared with the resistive networks approach, it is more compact

and also provides us the means to compensate the mismatch from previous stages.

5.2.2.1 P-type Floating Gate MOSFET

P-type floating gate MOSFET is often used due to its easy setup for injection

current. Fig. 5.12 shows the circuit model for a p-type floating gate MOSFET. It

is also called floating gate pFET. The resistor R and the voltage controlled voltage

source E = V (Vfg, 0) is put here just to introduce a DC path from the floating node

133

Vdd2

M1

+

−

Vi

R

E

Vfg

Vfgf
Ginj

Cctr

Cp

Ic

Ctun
Gtun

Vtun

Vd

Figure 5.12: Circuit model of a p-type floating gate MOSFET.

Vfg to ground, therefore to make the simulation convergence easier. There is no

current flowing through R. The input Vi from the control gate is coupled to the

floating gate Vfg through Cctr. Charge can be added to the floating node by Fowler-

Nordheim tunnelling current Gtun from tunnelling node Vtun. It is implemented by

a pFET where its gate is connected to the floating node and its source, drain, and

body are connected to Vtun. According to an empirical model the tunnelling current

is given by [167]

Gtun = Itun0WL exp

(
− Vc

Vox

)
(5.9)

where Itun0 is the scaling tunnelling current, Vc is a constant depending on the oxide

thickness, Vox is the voltage across the silicon-dioxide. When Vtun is high enough, the

tunnelling current Gtun adds charges to the floating gate. A MOS capacitor Ctun is

introduced by the tunnelling structure. Thus, besides adding charges to the floating

gate, Vtun can also function as a secondary control gate to modulate the floating gate

voltage through capacitor coupling. Cp models the parasitic capacitance between

the gate and the source Cgs, the gate and the drain Cgd, and the gate and the body

134

Cgb. Normally Cctr À Ctun and Cctr À Cp, so that

dVfg = dVi
Cctr

Ctol

= dVi
Cctr

Cctr + Ctun + Cp

≈ dVi (5.10)

The charges on the floating gate are removed by injection current Ginj. For

floating gate pFET, the injection current is caused by impact ionized hot electron

injection. Channel holes are accelerated by channel to drain electric field and obtain

energy high enough to promote electrons to conduction band when colliding with

electron-hole pairs; freed electrons are pushed backwards from drain to channel by

the same field and are injected into oxide if they have higher kinetic energy than

3.1 eV; these electrons can be collected by the floating gate if the potential of the

floating gate is higher than the channel near the drain. A semi-empirical equation

for the injection current is given by [167]

Ginj = αIc exp

(
− β

(Vgd + δ)2
+ λVsd

)
(5.11)

where Ic is the channel current of the transistor, Vsd is its source to drain voltage, and

Vgd is the floating gate to drain voltage. α, β, and δ are fit parameters. The injection

current is linearly proportional to the channel current, exponentially proportional

to Vsd, and has a more convoluted relation with Vgd. For injection to happen, all

three conditions, enough channel current, enough Vgd, and enough Vsd need to be

satisfied.

We use Vtun to set the initial floating gate voltage so that its Ic is smaller

than the target current It to program. Ginj is configured in a negative feedback to

program It as the channel current of the transistor. It is provided as a bias current

at Vd. Initially Ic is less than It, so Vd is pulled down, which will provide enough

135

Vgd and Vsd for injection to happen. The injected electrons onto the floating gate

lower the floating gate potential, therefore increase Ic. This procedure continues

until Ic is close to It enough so that Vd increases and eventually shuts off Ginj.

This is also referred as the constant current configuration [31], and has been used

in autozeroing amplifier [29] and fixed pattern noise reduction in imager [32]. To

facilitate the injection, Vdd2 is raised during programming phase and lowered during

normal operation.

5.2.2.2 Basic Mechanism for Mismatch Compensation and Filter Pro-

gramming

By programming a target current to the floating gate pFET, we can achieve

mismatch compensation and filter programming, which is enabled by the exponential

I-V relationship of pFET in subthreshold. For the pFET M1 in subthreshold and

saturation in Fig. 5.12,

Ic = I0 exp

(
κ(Vdd2 − Vfg)

VT

)
(5.12)

Vfg = Vi
Cctr

Ctot

+
∆Qtot

Ctot

(5.13)

Vi is the output from the sensor front-end. Suppose all sensor units receive

the same input from the outside world, we should get the same current output from

the pFETs assuming there is no charge on the floating gate ∆Qtot = 0. However

because of the fabrication mismatch, the sensor units produce different outputs,

and the floating gates have different initial charges. Altogether the current outputs

from the floating gate pFET are all different. The initial random charges on the

136

floating gate do contribute more mismatch compared with the regular pFET. But

as it will be shown, the ability to change the charges on the floating gate enables us

to compensate the mismatch and to programm filters.

For a given common input to all sensor unit, if we know that Icommon should be

the current output, we can use Icommon as the constant current bias for the floating

gate pFETs, therefore to program their channel currents to Icommon. In the situation

where we don’t know the supposed current output, we can just pick an Icommon in

the subthreshold. The difference will only introduce a constant scaler for all units.

Icommon is written as

Icommon = I0 exp

(
κ(Vdd2 − Vi

Cctr

Ctot
− ∆Qinit

Ctot
− ∆Qadapt

Ctot
)

VT

)
(5.14)

where ∆Qinit is the initial charge on the floating gate and ∆Qadapt is the charge

added to compensate the mismatch. Now for the same input, the same output is

obtained, therefore the mismatch is cancelled by the charge ∆Qadapt.

We can now program the filter coefficient Fc. We use Ifilter = Fc · Icommon as

the bias current to program, thus

Ifilter = I0 exp

(
κ(Vdd2 − Vi

Cctr

Ctot
− ∆Qinit

Ctot
− ∆Qadapt

Ctot
− ∆Qfilter

Ctot
)

VT

)
(5.15)

= Icommon exp

(
κ(−∆Qfilter

Ctot
)

VT

)
(5.16)

Fc = exp

(
κ(−∆Qfilter

Ctot
)

VT

)
(5.17)

where ∆Qfilter is the charges added to program the coefficient Fc. Notice that we

can only program a current that is larger than the existing channel current, which

means that we can only program Fc ≥ 1. However, when used in differential mode,

137

the method does not limit the range of the filter coefficient that can be programmed

as shown in (5.23) and (5.24).

During normal operation with the input Vi, the current output Io is

Io = I0 exp

(
κ(Vdd2 − Vi

Cctr

Ctot
− ∆Qinit

Ctot
− ∆Qadapt

Ctot
− ∆Qfilter

Ctot
)

VT

)
(5.18)

= I0 exp

(
κ(Vdd2 − Vi

Cctr

Ctot
− ∆Qinit

Ctot
− ∆Qadapt

Ctot
)

VT

)
exp

(
κ(−∆Qfilter

Ctot
)

VT

)
(5.19)

= Ii
Ifilter

Icommon

(5.20)

= Ii · Fc (5.21)

where Ii is the compensated output current, and Io is the compensated and filtered

output. So filtering operation is achieved by this floating gate pFET as well. Here

the mismatch compensation and filter programming are shown to be a two step

procedure. They can be achieved in one step to program Ifilter = FcIcommon directly,

Ifilter = I0 exp

(
κ(Vdd2 − Vi

Cctr

Ctot
− ∆Qinit

Ctot
− ∆Qprogm

Ctot
)

VT

)
(5.22)

where ∆Qprogm = ∆Qadapt + ∆Qfilter.

In order to implement the four quadrant multiplication for the filtering oper-

ation, both the input Ii and the coefficient Fc need to be differential signals. The

four quadrant multiplication breaks into four one quadrant multiplication such that

four floating gate pFETs implement one coefficient.

IiFc = (I+ − I−)(Fp − Fm) = (I+Fp + I−Fm)− (I−Fp + I+Fm) (5.23)

138

where I+, I− > 0 and Fp, Fm ≥ 1,

Fc > 0 : Fp = 1 + Fc, Fm = 1

Fc < 0 : Fp = 1, Fm = 1− Fc

Fc = 0 : Fp = 1, Fm = 1

(5.24)

Because we use the subthreshold I-V characteristics of the transistors, we need to

maintain the magnitude of the channel current in the range of subthreshold. Thus

the range of Fc is limited by the channel current range in subthreshold operation.

5.2.2.3 Programmable Current Element (PCE)

Vdd2

M2

M3

M4

M5

M2e

M6

progm Io

col

gm2

Figure 5.13: Illustration of the programmable current element (PCE).

Fig. 5.13 illustrates the basic circuits for the programable current element

(PCE), where mismatch compensation, filter programming, and filtering operation

can all be achieved at one place. Similar structure has been used for fixed pat-

tern noise compensation in CMOS imagers [30, 32]. M3 is the floating gate pFET

to store charges for filter coefficient and mismatch compensation, and to perform

multiplication. When progm is low, transistor M5 is turned off and node gm2 is

139

connected to the column line col. The voltage on the col is generated by a current

bias and M2 mirrors the bias current to M3. This bias current is programmed onto

M3 by the mechanism explained above. Different currents can be programmed into

different PCEs as the filter coefficients or same currents can be programmed across

all PCEs under the same input to compensate mismatch.

When progm is high, M5 is turned on and gm2 is connected to the bias tran-

sistor M2e. Together, M5, M4, M2, and M2e function as a current conveyor. The

current from M3 is mirrored to M6 and Io is the output current. M3 performs

the multiplication operation and the charge stored on its floating gate functions as

the coefficient of the filter. So each PCE performs multiplication between one input

element and one filter coefficient, an array of PCEs with their output tied together

performs the dot product between the filter and the input vector, i.e. the spatial

filtering of the input vector.

Vdd2

M2

M3

M1

Ib

Vdd2

M2

M3

M1

M2a M0

Ib

(a) (b)

Vi Vi

Figure 5.14: Current bias for the floating-gate pFET, (a) simple current mirror, (b)

cascode current mirror

To program a target current to the floating gate pFET, it is important to

mirror the current accurately to the drain of the floating gate pFET. We compared

140

current bias using the simple current mirror and the cascode mirror in Fig. 5.14.

We use HSPICE to simulate the programming process with the floating gate pFET

model in Fig. 5.12. Transient sweep simulation is performed for the programming of

currents from 10 nA to 100 nA. The programmed currents at the equilibrium state

are plotted in Fig. 5.15. It shows that injection occurs with the cascode and the

programming accuracy is much improved compared with the simple current mirror.

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

110

120

Input Current (nA)

Pr
og

ra
m

m
ed

 C
ur

re
nt

 (
nA

)

Without cascode
With cascode

Figure 5.15: Programmed current at equilibrium state from transient sweep simu-

lation.

Fig. 5.16 shows the actual schematic of the PCE with 11 transistors. Cascode

with fixed bias is added to improve both the programming accuracy and the output

mirror accuracy, at the same time to maintain the easy control of the circuit. A

diode connected nFET M4a is added to the branch of M4 and M5 to shift the

drain voltage of M3. This brings the drain voltage of M3 closer before and after

switching from the programming mode to the filtering mode, thus reduces early

effect and parasitic coupling. This way, the output current is closer to the current

141

Vi

Vdd2

M2a

M5

M4

M7

M2 M6

M2b
M2c

Vb

M2e

gnd

progmb

Vdd

C=200f
M3

Vncas

M4a

progm

16/8

16/8

6/4

8/8

8/88/8

8/8

6/4 6/4

8/8

16/8

col

Io

gm2

Figure 5.16: Schematic of the PCE.

programmed. Transient sweep simulation was performed to programm currents from

10 nA to 100 nA in PCEs with and without M4a. The results in Fig. 5.17 shows

the programming with the cascode structure is accurate. After switching to filtering

mode, the output currents are higher without M4a and smaller with M4a. The

ratio of the output current to the target current is plotted in Fig. 5.18. With

M4a, output currents are all scaled by almost the same constant. For the filtering

operation, this scaling won’t distort the shape of the input vector, it only scales the

final filter output. With M4a, δ(ratio)
µ(ratio)

= 0.0011, without M4a, δ(ratio)
µ(ratio)

= 0.01, δ(·) is

the standard deviation and µ(·) is the mean. Fig. 5.19 shows the drain voltage and

the floating gate voltage of the pFET M3 from the transient sweep simulation.

Fig. 5.20 shows the bias circuit that converts a current to the voltage used to

142

10 20 30 40 50 60 70 80 90 100
10

20

30

40

50

60

70

80

90

100

110

120

Input Current (nA)

Pr
og

ra
m

m
ed

 C
ur

re
nt

 (
nA

)

End of programming
Without M4a
With M4a

Figure 5.17: Transient sweep simulation of programming PCE, ×: the channel

current in M3 after programming is done, ◦: the channel current in M3 after

switching to filtering mode for PCE without M4a, ∗: the channel current in M3

after switching to filtering mode for PCE with M4a. The output current in M7 is

very close to the channel current in M3 in the filtering mode.

10 20 30 40 50 60 70 80 90 100
0.9

0.95

1

1.05

1.1

1.15

Input Current (nA)

R
at

io

Without M4a
With M4a

Figure 5.18: Ratio of the output current to the target current after programming in

the filtering mode from transient sweep simulation of PCE.

143

20 40 60 80 100
1.5

2

2.5

3

Input Current (nA)

V
dm

3

20 40 60 80 100

4.55

4.6

4.65

Input Current (nA)

V
fg

Figure 5.19: Drain voltage (left) and floating gate voltage (right) from transient

sweep simulation of PCE. ×: when programming is finished, ◦: after switching to

filtering mode for PCE without M4a, ∗: after switching to filtering mode for PCE

with M4a.

program the PCE. Similar structure is used to match the PCE. gm1 is connected

to gm2 in the PCE through col when progm is high. Fig. 5.21 shows the layout of

the PCE with the pitch size of 70 µm× 74.2 µm.

5.3 Motion Image Sensor Architecture and Operation

Fig. 5.22 shows the architecture of the motion image sensor. The front end of

the sensor is a one-dimension photoreceptor array that converts light into voltage

signal. The one-dimension EMD array computes the optic flow along the hori-

zontal direction. As the proof of concept, we intend to use the sensor for ground

vehicle navigation. Similar approach can be extended to two dimensions. The dif-

ferential output currents from the EMD array feed into the programmable current

matrix (PCM) where mismatch compensation, filter programming, and filtering are

144

M0

Vncas

M1
gm1

Vb

M2

8/8

8/8

gnd

M3

M4

Iin

8/8

16/8

16/8

vdd

Figure 5.20: Schematic of the bias circuit for the PCE.

Figure 5.21: The layout of the PCE.

145

Programmable Current Matrix

F
il

te
r

S
el

ec
t

C
o
n
tr

o
l

L
o
g

ic

Column Control Logic

EMD Array

Photoreceptor Array

col1_progm coln_progmcolj_progm

f1m-_progm

Iprogm

I1+ I1- Ij+ Ij- In+ In-

V1 Vj Vn

Io1+

filter_addr

coeff_ind

Io1-

f1m+_progm

f1p-_progm

f1p+_progm

Figure 5.22: Architecture of the motion image sensor.

performed. The filter select control logic chooses which filter to program and the

column control logic chooses which coefficient to program.

5.3.1 Programmable Current Matrix (PCM)

PCM is the post-sensor computation core, where mismatch compensation, fil-

ter programming, and filtering are performed. It consists of a matrix of the PCE.

Fig. 5.23 illustrates the PCM. Differential current outputs from EMD array are

converted to differential voltages by diode connected pFETs and feed to PCM,

specifically, the control gates of the floating gate pFETs in the PCEs. Each coeffi-

cient block in the PCM is a PCE. The dot product between two differential vectors

146

I1+

I1op+

Iprogm

col1_progm coln_progm

I1-

F11p+

F11m-

F11m+

F11p-

f1p+_progm

I1op-

I1om+

I1om-

In+ In-

F1np+

F1np-

F1nm+

F1nm-

f1p-_progm

f1m+_progm

f1m-_progm

Figure 5.23: Illustration of the PCM.

147

can be broken into four dot products of vectors in the first quadrant.

~Idiff · ~Fdiff = (~Ii+ · ~Fp+ + ~Ii− · ~Fm−)− (~Ii− · ~Fp− + ~Ii+ · ~Fm+) (5.25)

= (Iop+ + Iom−)− (Iop− + Iom+) (5.26)

The subscript ”+/-” in ~F indicates which part of the input vector (positive or

negative) the filter takes, and the subscript ”p/m” indicates which part of the filter

(positive or negative) it represents. Normally, ~Fp+ = ~Fp− and ~Fm+ = ~Fm−, thus we

should be able to program the same value to the pair at the same time. However,

each PCE has its own current mirror to output the current, there is the fabrication

mismatch here as well. We implement the four quadrant filter as four individual

filters in the first quadrant so that we can compensate the current mirror mismatch

as well. In Fig. 5.23, the implementation of one four quadrant filter is shown inside

the dotted box. Four blocks in the dashed block implement the first four quadrant

coefficient. Each row implements one first quadrant filter. They can all be indexed

together and controlled by the filter select control logic.

5.3.2 Column Control Logic

The column control logic determines the access to the PCE. It uses a binary

decoder to select one column at a time. When the column is selected, the column line

is connected to the gate voltage (gm1 in Fig. 5.20) so that the voltage bias required

to programm the PCE can be passed to the PCE in the programming mode. The

same select signal also selects which PCE outputs its current to the output line so

that output from individual PCE can be monitored during programming. It also

148

helps testing and debugging. When not selected, the column line is connected to

the ground. The decoder uses low active logic. Pull up transistors deactivates the

line when it is not selected. Pull down transistors are also used to select all columns

for mismatch compensation. In filtering mode, all columns need to be active as well

so that all PCEs in a row contribute to the filter output current.

5.3.3 Filter Select Control Logic

The filter select control logic determines the operation mode of the sensor and

selects the filter to program. Similar to the column control logic, it uses a binary

decoder to activate one output at a time and it uses low active logic. It also has

additional controls so that all outputs can be deactivated or activated. When one

output is active, the selected filter is in the programming mode, its progm is low.

When all outputs are active, the sensor is in the mismatch compensation mode so

that all the PCEs are in the programming mode. When none is active, the sensor

is in the filtering mode.

5.3.4 Operation Mode

The motion image sensor has three operation mode: mismatch compensation,

filter programming, and filtering. We will explain the programming mode first since

mismatch compensation is a special case of programming mode.

149

Vdd2

Vdd2

Vdd2

Vdd2

I1 In

f1_progm

fm_progm

f11 f1n

fmnfm1

Io1

Iom

Iprogm

col1_progm coln_progm

Figure 5.24: PCM in programming mode.

150

5.3.4.1 Filter Programming

In the filter programming mode, fi progm is active low one at a time so that

all PCEs in the addressed filter are in the programming mode. Then colj progm is

active one at a time so that the selected column line is connected to the bias voltage.

As shown in Fig. 5.24, the first filter and the first column is selected. The target

current to program is mirrored as the drain bias current for the floating gate pFET

in the selected PCE. And the corresponding coefficient is programmed. Filter by

filter and coefficient by coefficient, all filters are programmed.

5.3.4.2 Mismatch Compensation

In the mismatch compensation mode, all fi progm are low and all colj progm

are high, so all PCEs are in programming mode with their gate connected to the

same voltage bias converted from the target current. With the same optical input to

the EMDs, the outputs from all PCEs are programmed to the same current output,

therefore fabrication mismatch is cancelled.

5.3.4.3 Sensing and Filtering

As shown in Fig. 5.25, in normal filtering operation mode, all fi progm are

high so that current conveyors of all PCEs are connected to their own current sink.

Current output from each current conveyor is the compensated and filtered EMD

output current. Output currents from PCEs in the same row pass to the output line

Ioi. The total output current is the filter output current. As explained before, four

151

such currents are combined to obtain the output current for a four quadrant filter

output.

Vdd2

Vdd2

Vdd2

Vdd2

I1 In

f1_progm

fm_progm

f11 f1n

fmnfm1

Io1

Iom

Iprogm

col1_progm coln_progm

00

Figure 5.25: PCM in sensing and filtering mode.

5.4 Experimental Results

The circuits have been fabricated in a commercially-available 0.5 µm CMOS

process with 2 polysilicon layers and 3 metal layers.

152

5.4.1 PCE Test

To validate the idea of the programming structure, we tested an array of 19

PCEs connected to the same voltage input at their control gates in the chip PCM.

Fig. 5.26 shows the test setup for the PCM. The current to program Itarget is

provided by a source meter, which is controlled by the computer through general

purpose interface bus (GPIB). The output from PCEs Io is monitored by another

source meter, and the data is collected by the computer through GPIB. The device

under test (DUT), the PCM, is controlled by the data acquisition (DAQ) for the

operation mode selection and the PCE access. CV meter provides the step voltage

to gradually increase or decrease the Vtun, to start or stop the tunnelling. We first

SourceMeter

Keithley 2400

GPIB

DUT

SourceMeter

Keithley 2400

Computer

DAQ

NI USB 6259M

CV Meter

Keithley 595

Io

Itarget

V tun

Figure 5.26: Test setup for the PCM.

tried to program a constant current to all PCEs with Itarget = 10 nA. At the end

of programming, the output current from each PCE Ipgm was quite different, see

the programmed current in Fig. 5.27. We then individually measured the output

current when the output current mirror was biased directly by the same input bias

voltage converted from Itarget. We call this current calibration current Ical. The

calibration current from each PCE was quite different as well. This comes from the

153

mismatch among output current mirrors. Interestingly, the programmed currents

are a scaled version of the calibration currents, as shown in Fig. 5.27. Therefore we

can attribute all the mismatch from the current mirror to a scaler p, and define an

injection efficiency parameter kinj as the percentage of the drain bias current that

is programmed to the floating gate pFET. We write

Ipgm = p · kinj · Itarget (5.27)

Ical = p · Itarget (5.28)

The ratio Ipgm

Ical
gives us the injection efficiency, where µ(kinj) = 0.7323, δ(kinj) =

0.004,
δ(kinj)

µ(kinj)
= 0.55%.

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.5

0.6

0.7

0.8

0.9

1

1.1

1.2

1.3

Element No.

R
at

io

Output calibration
Programmed current
Scaled calibration

Figure 5.27: Programming of 10 nA to an array of PCEs.

Because we use the current output from the PCEs as the final output of the

computation, we should compensate the mismatch at the very end of the computa-

tion, namely, the output current. We calibrate the current mirror and use it to scale

the target current to program. We also use kinj to scale Itarget to obtain the desired

154

output current level. This way, both mismatch from sensor frontend and PCEs are

compensated. Fig. 5.28 shows the calibration current to target current ratio as a

function of the target current for 19 EMDs. For input current below 10 nA the ratio

is very sensitive to the input current level, but above 10 nA, the variation is much

smaller.

0 20 40 60 80 100
0.2

0.4

0.6

0.8

1

1.2

Input current (nA)

Sc
al

e

Figure 5.28: Calibration of the output current mirror.

Using the method, we programmed a sinusoidal filter Ipgm = 15 + 5 sin(π
9
i),

where i = 0, 1, · · · , 18. Fig. 5.29(a) shows the snap shot of the shape of the filter

at different time points, showing the progression towards the final sinusoidal shape.

Fig. 5.29(b) shows the time evolution of individual coefficient. Most of the program-

ming is done in the first minute of the process. Fig. 5.30 shows the output current

to target current ratio after the programming. The ratio ranges from 98.38% to

101.54%, with δ(ratio)
µ(ratio)

= 0.89%
99.74%

= 0.89%.

After the programming is done, we apply different input currents to test the

linearity of the multiplication. Fig. 5.31 shows that the outputs maintain the sin

155

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

5

10

15

20

25

Element

O
u

tp
u

t
cu

rr
en

t
(n

A
)

(a) Snap shot of the programming of a sine shape filter, ×: target

current.

0 5 10 15 20 25 30
0

5

10

15

20

25

Time (min)

Pr
og

ra
m

m
ed

 c
ur

re
nt

 (
nA

)

(b) Time evolution of the coefficients during programming a sine

shape filter.

Figure 5.29: Program a sinusoidal filter.

156

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0.98

0.985

0.99

0.995

1

1.005

1.01

1.015

1.02

Element No.

O
ut

pu
t−

ta
rg

et
 r

at
io

Figure 5.30: Output current to target current ratio after programming.

shape for the input currents from 0.2 nA to 40 nA. Fig. 5.32 shows the output

current to input current ratio for inputs from 0.2 nA to 100 nA. It shows good

linearity in the range of 20 nA to 100 nA.

Next we tested an array of PCEs with input from an EMD array. We use a Lego

set to provide the motion stimuli to the sensor to avoid the temporal aliasing from

the monitor due to screen refreshing. A belt is driven by two DC motors, and it can

move in different speeds and opposite directions depending on the voltage applied

to the motors. When projected with light, the belt forms dark-bright gratings, with

the spatial wavelength 0.8 cm. A lens with focal length of 6mm is used. The object

to lens distance is 11 cm, thus giving the spatial frequency of the stimuli fs ≈ 1
4.16◦ .

The DC motor has a good linearity, with 41.7 rpm/V. The belt moves 10 grates per

motor rotation, thus giving the temporal frequency of the stimuli ft = 6.94 Hz/V.

The velocity of the stimuli v = ft

fs
= 28.9◦/(s ·V). The setup is shown in the picture

in Fig 5.33. We measured the response of the EMDs with the motor voltage from -7

157

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

0.5

1

1.5

2

Element No.

O
ut

pu
t c

ur
en

t (
nA

)

0.2 nA
0.4 nA
0.6 nA
0.8 nA
1 nA

(a)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
0

2

4

6

8

10

12

Element No.

O
ut

pu
t c

ur
en

t (
nA

)

2 nA
4 nA
6 nA
8 nA
10 nA

(b)

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
5

10

15

20

25

30

35

40

45

Element No.

O
ut

pu
t c

ur
en

t (
nA

)

10 nA
15 nA
20 nA
25 nA
30 nA
35 nA
40 nA

(c)

Figure 5.31: Filtering a constant current input with the sin filter.

0 20 40 60 80 100

0.6

0.8

1

1.2

1.4

1.6

1.8

2

2.2

Input current (nA)

O
ut

pu
t−

in
pu

t r
at

io

Figure 5.32: Output current to input current ratio as a function of the input current.

158

Figure 5.33: Photo of the flyeye test setup.

V to 7 V. Fig. 5.34(a) and Fig. 5.34(b) shows the velocity tuning curve before and

after mismatch compensation. By tuning the bias of the low-pass filter, the peak

of the velocity tuning can be changed. In Fig. 5.35, the averaged EMD velocity

tuning curve is plotted. It shows that the higher the bias current, the smaller the

time constant, thus the higher the peak velocity.

In the motion image sensor for the ground vehicle, four filters are needed: DC,

sin(·), cos(·), cos(2·). We simplify the filters to the two quadrant filters: 2, 2+sin(·),

2 cos(·), 2+cos(2·). For the differential input from EMD, 8 first quadrant filters are

needed in total. In the chip flyeye, we have 8 filters and 19 PCEs per filter. The

size of the photodiode in an EMD is 45.5 µm × 70 µm, with intra-EMD distance

55.3 µm. The size of an EMD is 112 µm × 257.25 µm with inter-EMD distance 133

µm. The pitch size of a PCE is 70 µm × 74.2 µm. We measured the initial PCE

outputs when the chip was first powered up. We did the same measurement after we

159

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
−8

−6

−4

−2

0

2

4
x 10

−9

Velocity

R
es

po
ns

e
(A

)

(a) Before.

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

2

3

4
x 10

−9

Velocity

R
es

po
ns

e
(A

)

(b) After.

Figure 5.34: Mismatch compensation of the EMD velocity tuning, 1 velocity unit =

28.9◦/s.

160

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7

−3

−2

−1

0

1

2

3
x 10

−9

Velocity
R

es
po

ns
e

(A
)

10 pA
20 pA
50 pA
100 pA

Figure 5.35: Averaging velocity tuning curve of EMDs for different bias current of

low-pass filter, 1 velocity unit = 28.9◦/s.

used tunnelling to set the floating gate voltage high enough to have small channel

current. We then performed mismatch compensation using Itarget = 30 nA. After

mismatch compensation is done, Vdd2 is set back to 5.0 V from 5.3 V. This shift

of Vdd2 reduces the PCE output. By lowering Vtun we can bring the current level

back to the programmed level. We measured the PCE output at each stages. Fig.

5.36 shows the PCE output at different stages. And Table 5.1 shows the statistics

of the measurement. Fig. 5.37 shows the velocity tuning curve of EMDs from one

Table 5.1: Statistics of the PCE output

max (nA) min (nA) µ (nA) δ (nA) δ
µ

(%)

Initial 4576 2789 3555 445 145.6

After tunnelling 14.7 0 4.7 2.5 8.2

After programming 31.2 29.6 30.5 0.32 1.0

After decreasing Vdd2 16.9 15.4 16.3 0.27 0.87

After tuning with Vtun 30.8 29.0 30.0 0.33 1.1

161

0 1 2 3 4 5 6 7

024681012141618
2

3

4

5

x 10
−6

Filter No.Element No.

O
ut

pu
t C

ur
re

nt
 (

A
)

(a) Initial output

0 1 2 3 4 5 6 7

024681012141618
−5

0

5

10

15

x 10
−9

Filter No.Element No.

O
ut

pu
t C

ur
re

nt
 (

A
)

(b) Output after tunnelling

0 1 2 3 4 5 6 7

024681012141618
2.9

3

3.1

3.2

x 10
−8

Filter No.Element No.

O
ut

pu
t C

ur
re

nt
 (

A
)

(c) Output after programming

0 1 2 3 4 5 6 7

024681012141618

1.55

1.6

1.65

1.7

1.75

1.8

x 10
−8

Filter No.Element No.

O
ut

pu
t C

ur
re

nt
 (

A
)

(d) Output after programming with Vdd2 = 5.0

V and Vtun = 5 V

0 1 2 3 4 5 6 7

024681012141618
2.9

2.95

3

3.05

3.1

x 10
−8

Filter No.Element No.

O
ut

pu
t C

ur
re

nt
 (

A
)

(e) Output after programming with Vdd2 = 5.0

V and Vtun = 3.48 V

Figure 5.36: Distribution of output current from all PCEs from four filters.
162

filter before and after the mismatch compensation. To interface with the ground

vehicle, the output current from the filter is converted to voltage by transimpedance

amplifier. Fig. 5.38 shows the total EMD responses from four filters.

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
−1

−0.5

0

0.5

1

1.5
x 10

−8

Velocity

R
es

po
ns

e
(A

)

(a) Before.

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
−2

−1.5

−1

−0.5

0

0.5

1

1.5
x 10

−8

Velocity

R
es

po
ns

e
(A

)

(b) After.

Figure 5.37: Mismatch compensation of the EMD response in one filter, 1 velocity

unit = 28.9◦/s.

163

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6 7
−0.3

−0.2

−0.1

0

0.1

0.2

Velocity

R
es

po
ns

e
(V

)

Figure 5.38: Total EMD responses after mismatch compensation from four filters,

1 velocity unit = 28.9◦/s.

5.4.2 System Integration and Test

5.4.2.1 System Integration

We use a modified version of the vehicle WiRobot X80 from Dr Robot R© [168]

provided by the Autonomous Vehicle Laboratory in the Department of Aerospace

Engineering. The vehicle is 15 inch in diameter with two 12 V motors driving 7 inch

wheels. Fine wheel speed control is achieved by the sensing and controller module

employing two 1200 count per wheel-cycle quadrature encoders. The vehicle has an

on-board computer that provides the WiFi capability and computing power. We

design a PCB board to interface with the vehicle. An off-shelf wide angle miniature

lens is used. The lens has a fixed focal length of f = 1.68 mm. A custom made

fixture is built to attach the lens to the chip 40-pin dual in-line package (DIP) in

front of the sensor and to provide the right back focal length for the image to project

164

onto the sensor. On the board are also circuit elements to provide the biases to the

sensor and to convert current outputs from the sensor to voltage signals. The board

is mounted on the vehicle at the center (entrance pupil of the lens at the center of

the vehicle), facing front. The voltage signals from the board are acquired by the

data acquisition systems on the vehicle (NI PCI-6244) and processed to compute the

command to drive the robot. The command is sent to the vehicle through the series

port. Therefore, The computation up to the filtering is performed by the motion

image sensor, and the computation and the communication of the command from

the filter output is performed by the computer using Labview on the vehicle. At this

stage, it is easier to interface the sensor with the vehicle through the computer. In a

highly integrated system, dedicated hardware could be used to directly interface the

sensor with the controller of the vehicle. Fig. 5.39 shows the picture of the sensor

on the PCB board. Fig. 5.40 shows the picture of the integrated system. Fig. 5.41

shows the block diagram of the system.

Figure 5.39: The sensor and the PCB board.

165

Figure 5.40: The integrated sensor and vehicle.

EMD (1x19)

PCM (8x19)

 (4 filte rs)

Flyeye

I0+,-

I1+,-

I2+,-

I3+,-

PCB

 I-V

Conve rte r

Bias

C
o

n
tro

l In
te

rfa
c
e

 D

A
Q

(8
-c

h
a

n
n

e
l
A

D
C

)

Softwa re

Gain control

Motor command

Ve hicle
Lens

Controller

Figure 5.41: Block diagram of the system.

166

5.4.2.2 View Angle Characterization and Filter Programming

To program the spatial filter, the view angle of each EMD is needed. Since

there is no image output from the sensor and motion response is the only output,

we use the individual EMD response to find its view angle. Fig. 5.42 illustrates

LED

Rotation Stage

Lens

Sensor

Figure 5.42: View angle calibration.

the experiment to calibration the EMD view angle. The sensor and the lens are on

a rotation stage and are aligned with a LED light source on an optical rail. The

LED is driven by a 10 Hz sinusoidal signal to generate sinusoidal optical signal. The

light source is small enough that only one photodiode in one EMD can receive the

light. To calibrate the view angle of each EMD, we rotate the stage and monitor

the response of the tested EMD. When the LED projects to the left photodiode of

the EMD, the EMD has large positive response, while when the LED projects to

the right photodiode of the EMD, the EMD has large negative response. The view

angle of the EMD is determined by the mean value of the angles corresponding to

the large positive and negative responses. The measured view angle of the 19 EMDs

is

γ = [44.83◦, 39.73◦, 34.77◦, 30.19◦, 25.58◦, 20.87◦, 16.49◦, 11.86◦, 7.47◦, 2.90◦,

−1.94◦,−6.24◦,−10.77◦,−15.46◦,−19.88◦,−24.72◦,−29.16◦,−33.27◦,−38.23◦]

167

The mean inter-EMD angle is 4.61◦. The calculated mean inter-EMD angle is 2 ·

arctan(∆D
2f

)180
π
≈ 4.53◦, where ∆D = 133 µm is the layout distance between EMDs.

The total span of view angle is 83.06◦.

We then programmed four filters ao = 2, a1 = 2 cos(γ), a2 = 2 + cos(2γ), and

b1 = 2 + sin(γ). The target currents to program are Itarget=12× 2 nA, 12× 2 cos(γ)

nA, 12×(2+cos(2γ)) nA, and 12×(2+sin(γ)) nA. Fig. 5.43 shows the programmed

current Ipgm of four filters and the scaled Itarget. The standard deviation and mean

of the scalars are

δ = [0.0059, 0.0059, 0.0037, 0.0068]

µ = [0.9800, 0.9789, 0.9771, 0.9617]

Since the variations of the scalars are small, they only cause little distortion of the

filter shape.

5.4.2.3 Open Loop Test

We measured the filter outputs while the vehicle rotating in a open loop setup.

Fig. 5.44 shows the mean filer outputs. Since all EMD units experience the same

optic flow for a constant rotation velocity, the filter outputs are the EMD velocity

tuning curves scaled by the summation of the coefficients in the filters. The offsets

at the zero velocity are caused by the current voltage converters and can be easily

removed. We calculate the ratio between the filter outputs after removing the offsets.

Table 5.2 shows the ratio from the measurement and the ideal case. They agree very

well.

168

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18
15

20

25

30

35

40

Element No.

C
ur

re
nt

 (
nA

)

2×cos(⋅)

2+cos(2⋅)

2

2+sin(⋅)

Figure 5.43: Program four filters: a0 = 2, a1 = 2 cos(·), a2 = 2 + cos(2·), b1 =

2 + sin(·). ◦: programmed current from filter taking minus part of the input, ×:

programmed current from filter taking plus part of the input. Dotted line: scaled

ideal filter current.

−4 −3 −2 −1 0 1 2 3 4
−30

−20

−10

0

10

20

30

40

Angular Velocity (radian/s)

V
ol

ta
ge

 (
m

V
)

a0
a1
a2
b1

Figure 5.44: Mean filter outputs at constant angular velocities, positive angular

velocity: counter clockwise, negative angular velocity: clockwise.

169

Table 5.2: Ratio of filter output during rotation

Experimental Ideal

a1

a0
0.9106 0.9059

a2

a0
1.3040 1.3279

b1
a0

1.0680 1.0228

5.4.2.4 Closed Loop Test

Since we can only control the wheel velocity of the robot rather than the

torque, we use a kinematic model of the robot motion in the inertial frame [61]

v̇ = u1 (5.29)

ẏ = v sin θ (5.30)

θ̇ = u2 (5.31)

where u1 and u2 are the control input and v is the forward speed. The linearized

state equation of p = (v, y, θ) around the centerline constant speed trajectory p0 =

(v0, 0, 0) is

ṗ =

0 0 0

0 0 v0

0 0 0

p +

u1

0

u2

(5.32)

170

The linearized WFI output from the sensor are

za1

za2

zb1

=

0 Z2×2

1
6a

(8 + cos 3β − 9 cos β) 0

v

y

θ

(5.33)

Z2×2 =

−v0

6a2 (−3 sin β + sin 3β) − v0

6a
(cos 3β + 3 cos β − 4)

v0

8a2 (− sin 4β + 4 sin 2β − 4β) v0

8a
(1− cos 4β)

(5.34)

where a is the half width of the robot and β = 41.5◦ is the half view angle from the

sensor. The speed regulation and obstacle avoidance are decoupled. In the closed

loop experiment, the vehicle maintains constant speed by its internal controller and

WFI output is used for obstacle avoidance. We choose u2 = K1za1 + K2za2 so that

the linearized closed loop dynamics of (y, θ) is

ẏ

θ̇

 =

0 v0

v0

a2 (0.1940K1 + 0.1039K2)
v0

a
(0.3866K1 + 0.2463K2)

y

θ

 (5.35)

The characteristic function is

s2 − v0

a
(0.3866K1 + 0.2463K2)s− v2

0

a2
(0.1940K1 + 0.1039K2) = 0 (5.36)

For stability we require 0.3866K1 + 0.2463K2 < 0 and 0.1940K1 + 0.1039K2 < 0, so

that K1 < −0.6371K2 and K1 < −0.5356K2. We choose K1 = −2K2, the damping

ratio is greater than one when K2 > 4.1.

We conducted the closed loop experiments in various tunnel settings. The

tunnel is formed by boxes with the inner wall covered by the printout of natural

scenes. Fig. 5.40 shows the vehicle in a tunnel setup. The vehicle is set for constant

velocity and filter outputs a0, a1, and a2 are used to compute u = K1a1+K2(a2−a0)

171

for rotation control to navigate through the tunnel according to the framework shown

in chapter 4. We use v = 12 inch/s (30.48 cm/s), K1 = 55, and K2 = −55. The

filter outputs are sampled at 1 kHz and the average of every 50 samples are used

to generate the command to the vehicle at 20 Hz. The experiment was conducted

in the normal room lighting condition (∼225 Lux). The position of the vehicle was

tracked by the motion capture system Vicon R©. The vehicle managed to navigate

through the tunnel settings as shown in Fig. 5.45. The tunnel is about 12 feet

(365.76 cm) long and 4 feet (122 cm) wide. The navigation is achieved using very

limited information from only one horizontal line of optical input within 83.06◦ view

angle.

(a) (b) (c)

Figure 5.45: Three tunnel settings for closed loop experiments.

For the tunnel setup (a) and (b) we conducted multiple runs for three initial

conditions: (1) initial y offset y = −24.1 cm, (2) initial θ offset θ = 21◦, (3) no

initial offset. Except for the tunnel setup (b) and initial condition (3) where 2

runs failed out of 22 runs, 20 consecutive successful runs were obtained for all other

combinations excluding apparent system glitches such as the windows system freeze,

low battery, etc. We plot the individual trajectories from the successful runs and

172

the mean trajectory. We also compute the mean standard deviation δy of the y

coordinates along the trajectories. Fig. 5.46, 5.47, and 5.48 show the trajectories

of the vehicle navigating through the tunnel setup (b) for 20 runs at three initial

conditions.

0 100 200 300 400
0

20

40

60

80

100

120

140

160

180

x (cm)

y
(c

m
)

Figure 5.46: Trajectories of the vehicle navigating through the tunnel for 20 runs

with initial offset y = −24.1 cm, dashed line: mean trajectory, δy = 6.6 cm.

The measured total power consumption by the PCB is 57 mW. It is mostly con-

sumed by the operational amplifiers (opamps) on the board. There are 16 opamps,

8 for voltage followers to buffer the chip output for debugging or to provide voltage

biases to the chip, and 8 for current voltage converters. Each opamp consumes about

3.5 mW and they consume 56 mW in total. Since we do not have the access to the

current at the power pin of the chip, we estimate the chip power consumption here.

The bias current of the Gilbert multiplier (Ibm) is the dominant current in EMDs,

the power consumption of each EMD is about VddIbm = 100 nW for Ibm = 10 nA.

173

0 100 200 300 400
0

20

40

60

80

100

120

140

160

180

x (cm)

y
(c

m
)

Figure 5.47: Trajectories of the vehicle navigating through the tunnel for 20 runs

with initial offset θ = 21◦, dashed line: mean trajectory, δy = 9.6 cm.

0 100 200 300 400
0

20

40

60

80

100

120

140

160

180

x (cm)

y
(c

m
)

Figure 5.48: Trajectories of the vehicle navigating through the tunnel for 20 runs

with no initial offset, dashed line: mean trajectory, δy = 6.8 cm.

174

The current mirrors between EMDs and PCM consume the same amount of power

as EMDs. The power consumption in each PCE is determined by the output current

from EMD (Io+ or Io−) and the programmed coefficient. Since Io+ and Io− are scaled

by the same coefficient Fc from the two-quadrant filters and Io+ + Io− = 2Ibm, the

power consumption by a pair of PCE is 4FcVddIbm. Thus the total power consump-

tion by the PCM is 38.82 µW, and the total power consumption by the EMD and

PCM is 42.6 µW. The rest of the circuits on-chip are bias circuits and the control

logic in static states. They consume much less power than the sensing and compu-

tational core of the sensor. So the total estimated power consumption of the sensor

is about 42.6 µW. We can reduce the board level power consumption by moving the

bias circuits on-chip.

175

Chapter 6

Conclusions and Open Problems

This dissertation presented a body of work that roots from the appreciation of

the elegance of the neural computation in biology and inspiration by the underlying

principles. The goal is to find solutions to engineering challenges based on biological

solutions from millions of years evolution.

In chapter 2, we demonstrated the first silicon stochastic synapse with short-

term depression (STD). It shows the similar behavior as its biological counterpart

and matches the theory and simulation of a STD circuit model based on a bio-

logical model. We make use of the intrinsic circuit noise which is often treated

as adverse features and curtailed at the designer’s best effort. As the technology

pushes into nanometer regime, device becomes inevitably stochastic. New compu-

tational paradigm based on stochastic elements need to be investigated. Stochastic

coding and computation utilized by biology might be one of the solutions. The

demonstration of the silicon stochastic synapse with STD is just the beginning of

the biologically inspired stochastic computation. As proposed in the dissertation,

other forms of short term plasticity and long term plasticity need to be implemented

and demonstrated with the silicon stochastic synapse. Different functionalities and

applications of the dynamic stochastic synapse need to be explored. For example,

stochastic synapse with STD could be used in coincidence detection to avoid the

176

influence of spike rate on the actual coincidence. Furthermore, stochastic synapses

need to be incorporated with other existing VLSI spiking neural systems. The im-

pact of the randomness brought by the stochastic synapses on the network dynamics

and learning behavior could be an interesting research direction.

To fully understand the circuit stochastic behavior, we proposed a method

for stochastic circuit modeling and transient analysis using stochastic differential

equations in chapter 3. We applied the method to explain the stochastic behavior

of the stochastic synapse circuit. We further developed a small signal stochastic

model for the circuit. The model shows us the role each device plays in the circuit’s

stochastic behavior so that we can predict and tune the circuit performance. Using

the same method, we analyzed the stochastic behavior of a CMOS inverter operating

at very low power supply from first principles. This analysis provides insights about

the expected behavior of the basic digital element affected by noise increasingly due

to power supply scaling. This method could be potentially developed into a useful

tool in circuit simulators for transient analysis of noise effects. In our model, we

limited the noise to white noise. It is worthwhile to extend the method to other

types of noise.

From chapter 4, we moved to a higher level of functions of neural systems,

sensorimotor integration. Aiming at developing highly integrated sensor actuator

systems for micro air vehicle, we investigated optic flow wide field integration (WFI)

based navigation inspired by the fly. We demonstrated in simulation that the fly

inspired elementary motion detector (EMD) is a potential candidate for optic flow

estimation for WFI based navigation. We extended previous theoretical result to a

177

general case of limited view angles.

In chapter 5, we designed and demonstrated a motion image sensor with on-

chip optic flow estimation, adaptation, and programmable spatial filtering for WFI

based navigation. We proposed a novel approach to compensate the fabrication

mismatch among the EMDs across the field of view. We further demonstrated that

the same structure can be used to program the analog spatial filter and perform

filtering operation. This is the first single chip solution to WFI based navigation

where detailed spatial structure of the optic flow is used to extract motion cues.

The method proposed here can also be applied to other sensory front-end where on-

chip spatial processing is required and distortion from fabrication mismatch among

sensor units has to be reduced. Although the sensor is geared for low power and

light weight application such as the micro air vehicle, we first integrated the sensor

with a ground vehicle for proof of concept. The vehicle could navigation through

simple tunnel environments with limited information from only one horizontal line

of optical input of height 2.4◦ and field of view angle 83.1◦.

The computation involved in the WFI based navigation is rather simple. It is

the perfect case where analog VLSI would excel than the conventional digital im-

age processing approach. The sensing and computation in the analog VLSI sensor

is performed on-the-fly in parallel without any storage cost and bulky equipment

associated with the conventional approach. In addition the sensor consumes low

power, with the current implementation consuming about 42.6 µW. Altogether the

VLSI motion image sensor is an ideal smart sensor to provide optic sensing ca-

pability to micro air vehicles or insectlike robots, where small size and low power

178

consumption are mandatory. Micro air vehicles and insectlike robots could have a

wide range of applications beyond spying as initially proposed. Ad hoc mobile sen-

sor network, search-and-rescue operation, hazardous environment exploration and

monitoring, planetary exploration, building inspection are just a few potential ap-

plications [169]. Many of the tasks need the deployment of a large number of these

devices, requiring low cost of the devices. Again analog VLSI sensors present the

clear advantage. Insectlike robots have attracted increasing attention and interest

recently and substantial progress has been made to manufacture robots in the size

scale similar to insects [169]. It is foreseeable that the fly inspired sensor and con-

trol scheme demonstrated here would be a very efficient solution to the autonomous

navigation for these types of robots in minuscule. The real-time continuous output

from the sensor would enable fast response of the system. It may be the only ap-

proach by which the engineered system could achieve the similar agile behavior as

its biological counterpart.

We took a quick approach to demonstrate the sensor and control scheme with

an on-vehicle computer to interface the sensor with the vehicle controller. However,

in a truly integrated system, the sensor output must be interfaced with the controller

directly. The on-vehicle computer could be eliminated by making a dedicated PCB

board where the sensor output is sampled and processed, and the command is

computed, encoded and sent to the vehicle by an on-board micro-controller. However

this post sensor computation is still in the flavor of digital computing. To fully

appreciate the advantage of analog VLSI, specialized motors need to be developed

so that they could be driven by the analog output from the sensor directly without

179

going to the digital domain. This could further miniaturize the system, reducing

the complexity and power consumption while speeding up the system response.

The EMD output is an approximation of the optic flow with the ambiguity

from the non-monotonic response to velocity. Removing the ambiguity can certainly

improve the velocity range of the operation. This could be achieved by using the

normalized response between two EMDs as explained in Chapter 4. The EMD out-

put is affected by contrast, therefore very noisy. Reducing the sensitivity to contrast

could smooth the response and improve the accuracy of the motion cue extracted.

A new motion image sensor with the contrast adaptive EMDs proposed by Shoe-

maker and O’Carroll [143] is designed and fabricated. The performance could be

compared with the one without contrast adaptation. Increasing the receptive field

of the sensor can also improve the system performance. This could be done by using

multiple sensors or specialized optics to achieve omnidirectional vision [170].

Low power and small scale also make the analog VLSI sensor a good candidate

for neuroprosthesis application. The sensor could be inserted to the retina of a blind

person and help him to navigate around. This could be done by either interfacing

the sensor with the patient’s vision system using micro stimulator to generate the

motion sensation, or convey the direction generated from the sensor output to the

patient through other channels, such as voice prompt.

The filter operation in the sensor is essentially a vector dot product. Simi-

lar operation has been used in many applications under different names, such as

matched filter, correlation, and similarity evaluation. The filter output indicates

how closely the input matches the filter pattern. Therefore our approach can also

180

be used in applications where pattern recognition needs to be done in low cost and

low power, such as portable device for hazard detection, medical monitoring.

Analog approach has its own limitation. Its precision is low compared with

digital processing. As Hahm [157] pointed out, analog circuit implementation is

more power efficient for shorter and faster filters, while digital circuit is more power

efficient for longer and slower filters. So our approach is best suitable for applications

requiring fast response without high precision.

181

Appendix A

Adaptive Large Time Constant Filter

A.1 Introduction

Filters with large time constant are important for biomedical applications

and neurally inspired circuits because of the intrinsic signal properties the filters

process. The time constant is normally determined by the operating point of the

circuits and the capacitance in the circuits. Here we focus on the first order GmC

type filters. The time constant τ = C
gm

, where gm is the transconductance of the

transconductance amplifier in the filter. To obtain large time constants, a large

capacitor or a small gm is required. The transconductance amplifier in the GmC

filter can be operated in subthreshold with diode connected transistors on both

branches (Fig. 5.4) to reduce gm. To achieve τ = 30 ms with the bias current to

the amplifier Ib = 50 pA, a capacitor of ∼ 160 pF is needed. It is still quite large.

Large capacitors occupy substantial silicon areas. Varieties of techniques have been

explored to obtain large time constant filter without increasing capacitance, such as

current scaling [153], floating gate [171], and current division [154].

Sodagar [156] proposed a very simple modification to the conventional GmC

filter by adding a second output branch without direct feedback as shown in Fig.

A.1(a). For the filter implementation, the first output branch Vo1 is connected to

the inverting input Vim as the negative feedback. The steady state of the second

182

output branch Vo2 is still controlled by the feedback at Vo1, but its time constant is

boosted substantially. It can be viewed as the increase of the equivalent resistance

at the output node. At the first output with direct feedback, Req = 1
gm

, while at the

second output without direct feedback, Req = ro

2
, where ro is the output resistance

of the transistors. At the subthreshold operation, gm = κIb

2VT
and ro = VA

Ib/2
, where VA

is the early voltage. Thus, the time constant is amplified by κVA

2VT
at Vo2. However,

since there is no direct feedback at Vo2, Vo2 is fully determined by the operation of

M10 and M7. Vo2 could deviate from Vo1 significantly, leaving the linear operation

region and approaching to the power rails, because of the mismatch between the

two output branches. In this appendix, we use the programmability of the floating

gate pFET to cancel the mismatch so that Vo2 stays close to Vo1 at steady states.

Vim

Vdd2

Vip

Ib

M1 M2

Vdd Vdd Vdd

M5 M4M3

M6

M10M9M8

M7

Vo1 Vo2

(a) (b)

−

+

Vo1

Vo2

fg9 fg10

Figure A.1: The transconductance amplifier for the GmC filter with large time

constant, (a) schematic, (b) symbol.

183

A.2 Basic Structure

As shown in Fig. A.1(a) we use floating gate pFETs M9 and M10 in the

transconductance amplifier. We use injection current in M10 to compensate the

mismatch between the two branches. Floating gate pFET is used for M9 as well for

a better matching of the capacitance coupling with M10 from M8. For M10, when

Vdd is high enough (>5.3 V) and Vo2 is low enough due to the current imbalance

between M10 and M7, current injection occurs in M10 so that fg10 decreases and

its channel current increases. As a result, Vo2 increases. The injection is stopped

automatically when Vo2 reaches the targeted voltage Vo1 by a feedback control.

Fig. A.2 shows the block diagram of the circuits we use for the adaptive large

time constant filter. The input to the non-inverting input of the transconductance

amplifier is selected by the output from a high speed comparator comparing Vo2

and a reference voltage Vsw. Vo1 is connected to the inverting input for the direct

negative feedback.

−

+

Vo1

Vo2
mux

Vip0

Vip1

0

1 s

−

+Vsw

comp

Vo1

Vo2

Figure A.2: The circuit block diagram of the adaptive large time constant filter.

184

A.3 Operation Configuration

Fig. A.3(a) shows the configuration during the programming mode. A DC

voltage is applied at both Vip1 and Vsw. Another DC voltage much higher than Vip1

is applied at Vip0. Vdd is set to 5.3 V. Initially, the floating node fg10 in Fig. A.1 is

brought high enough through a tunnelling structure so that Vo2 is close to ground.

Vip1 is selected as the non-inverting input of the transconductance amplifier by the

comparator output. The injection current at M10 causes Vo2 to increase. Once it

reaches Vip1, Vip0 is selected as the non-inverting input by the comparator output.

Since Vip0 is much higher than Vip1, both Vo1 and Vo2 are driven high to Vip0 and

the injection shuts off. At this stage, the mismatch between the two branches is

cancelled, i.e., Vo1 and Vo2 are close for the same input. We can then configure the

circuit as either a low-pass filter (LPF) (Fig. A.3(b)) or a high-pass filter (HPF)

(Fig. A.3(c)), where Vi is the input and Vo is the output.

A.4 Simulation Results

We first simulate the conventional GmC filter, with Ib = 100 pA and C = 100

fF. The low-pass filter f3dB = 4.4 kHz and the high-pass filter f3dB = 2.19 kHz. The

estimated f3dB = gm

2πC
= 2.23 kHz.

We simulate the programming of the adaptive filter with an initial voltage

offset at the floating gate: fg9 = 4.6 V, fg10 =4.8 V, Vip1 = 2 V, and Vip0 = 4 V.

Fig. A.4 shows the transient simulation result. Initially Vo2 = 0 V and it approaches

to Vo1 while fg10 approaches to fg9. At 15.8 s the output of the comparator sel

185

Vo1

Vo2

Vsw

Vip1

Vip0Vip0

Vip1

(a)

Vi

Vo1

Vo2

Vsw

Vip1

Vip0

Vdd Vo

(b)

Vo1

Vo2

Vsw

Vip1

Vip0

Vcm

Vdd Vo

Vi

(c)

C C

Figure A.3: The configuration of the adaptive large time constant filter, (a) pro-

gramming, (b) low-pass filter, (c) high-pass filter.

switches; and both Vo1 and Vo2 jumps to 4 V and stay constant since there is no

injection current any more. V dd switches from 5.3 V to 5 V at 18 s and the circuit

is ready for normal filter operation. The residue voltage difference between Vo1 and

Vo2 is approximately 30 mV.

We then configure the circuit as a low-pass filter and a high-pass filter as shown

in Fig. A.3(b) and (c), with Ib = 100 pA and C = 100 fF. f3dB are 34.6 Hz and 31.1

Hz respectively, 127 times and 70 times smaller than the conventional filter. Table

A.1 shows the cutoff frequency for different combinations of the bias current and the

capacitance. The cutoff frequency is approximately proportional to the bias current

and inversely proportional to the capacitance, according to the small signal model

f3dB = Ib

πVAC
. Fig. A.5 and A.6 show the sweep AC simulation of the capacitance

for the LPF and HPF.

186

V
o

lt
ag

es
 (

V
)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Time (s)

0 5 10 15 20

Vo2

Vo1

fg10

fg9

Vdd

sel

Figure A.4: Transient simulation of the programming of the adaptive filter.

Table A.1: Cutoff frequency

C
LPF HPF

Ib= 100 pA Ib= 1 nA Ib= 100 pA Ib= 1 nA

100 fF 34.6 Hz 292 Hz 31.3 Hz 278 Hz

1 pF 3.47 Hz 29.5 Hz 3.45 Hz 29.9 Hz

187

V
o

lt
ag

e
(d

B
)

-45

-40

-35

-30

-25

-20

Frequency (Hz)

0 50 100

Figure A.5: Sweep AC analysis of the adaptive filter configured as a LPF with the

capacitance from 100 fF to 1 pF in the increment of 100 fF.

188

V
o

lt
ag

e
(d

B
)

-80

-60

-40

-20

Frequency (Hz)
0 50 100

Figure A.6: Sweep AC analysis of the adaptive filter configured as a HPF with the

capacitance from 100 fF to 1 pF in the increment of 100 fF.

189

Appendix B

Adaptive Floating Gate Pixel

Previously floating-gate MOSFET has been applied to CMOS imager to reduce

the fixed pattern noise [32]. One of the drawback of the imager is its slow speed and

low fill factor. In this appendix, we propose an improved structure which has few

transistors and a unique feature that its frequency response can be enhanced by its

output capacitance.

B.1 Floating Gate Pixel Structure

Fig. B.1 shows the previous floating gate pixel structure [32]. The photocur-

rent Iph is first mirrored by M1 and M3, then converted to the voltage Vph by the

current conveyor. Signal row enables the current conveyor in the normal operation

mode. The bias current Ic is provided through the column line col. M3 is a floating

gate pFET and the charges on the floating gate Vfg cancel the mismatch among the

pixels in the imager.

Fig. B.2 shows the proposed new adaptive floating gate pixel structure. The

current mirror is removed and the photocurrent Iph is directly converted to the

voltage Vph by the current conveyor formed by M1 and M2. There are now only

three transistors in each pixel. Signal row enables the current conveyor. The bias

current Ic is provided through the column line col. M1 is a floating gate pFET

190

Vdd2

M2

M3

M4

M5

rowVdd2

col

Ic

Iph

M1
Vd

Vph

Vfg

Figure B.1: Previous adaptive floating gate pixel structure.

and the charges on the floating gate Vfg cancel the mismatch among the pixels in

the imager. During adaptation, uniform light is shined upon all pixels. All row are

high to disable the current conveyors and all Vph are connected to a fixed voltage

Vcm. Vcm is high enough so that the channel current of M1 is smaller than Iph in

each pixel and Iph pulls down Vd. With Vdd2 high enough, the current injection

occurs in M1 and the channel current of M1 increases. This process continues

until the channel current is equal to the photocurrent. At this stage, mismatch is

compensated because all pixels have the same output voltage Vcm at Vph for the

same input light.

M2

M3

row

Vdd2

col

Ic

Iph

M1

Vd

Vph
Vfg

Figure B.2: New adaptive floating gate pixel structure.

191

B.2 Frequency Analysis

id Cd ro1 1/gm1 ro3gm3vd

g4d

rsh ro2 CLro4

gm4(vg4-Vg2) g2

gm2vg2

Figure B.3: Small signal model of the previous pixel structure.

We perform the small signal analysis of these two structures. In the analysis,

the floating gate pFETs are replaced by the regular pFETs, and the row select

transistors are ignored for simplification. Fig. B.3 shows the small signal model of

the previous pixel, where Cd is the parasitic capacitance of the photodiode, rsh is the

shunting resistance of the photodiode, ro1-ro4 are the output resistance of M1-M4,

CL is the load capacitor.

vg2 = gm4(vg4 − vg2)
1

sCL + 1
ro4

(B.1)

vg2 =

(
gm4ro4

1 + gm4ro4

) (
1

1 + s ro4CL

1+gm4ro4

)
vg4 (B.2)

≈ 1

1 + sτ ′2
vg4 (B.3)

τ ′2 ≈ CL

gm4

(B.4)

192

vg4 = −(gm3vd + gm2vg2)(ro2||ro3) (B.5)

=

(
idgm3

sCd + gm1

− gm2vg2

)
ro2

2
(B.6)

vg4 =
id

gm2

(
1

1 + sτ1

)
 1 + sτ ′2

1 + s
τ ′2

1+gm2ro2/2

 (B.7)

τ1 =
Cd

gm1

(B.8)

vg2 =
id

gm2

(
1

1 + sτ1

)
 1

1 + s
τ ′2

1+gm2ro2/2

 (B.9)

=
id

gm2

(
1

1 + sτ1

)(
1

1 + sτ ′′2

)
(B.10)

τ ′′2 =
τ ′2

1 + gm2
ro2

2

(B.11)

Normally τ1 À τ ′′2 , so the pole determined by τ1 is dominant for vg2, vg2 is the small

signal of the pixel output Vph. The pixel frequency response is limited at the first

stage by the photocurrent and the parasitic capacitance of the photodiode.

id Cd ro1 gm1vg CLro2gm2vdg

gd

rsh

Figure B.4: Small signal model of the new pixel structure.

Fig. B.4 shows the small signal model of the new pixel.

vd = −(id + gm1vg)
1

sCd + 1
ro1‖rsh

(B.12)

≈ −(id + gm1vg)
ro1

1 + sro1Cd

(B.13)

= −(id + gm1vg)
ro1

1 + sτ1

(B.14)

τ1 = ro1Cd (B.15)

193

assuming rsh À ro1.

vg = gm2(vd − vg)
ro2

1 + sro2CL

(B.16)

= gm2(vd − vg)
ro2

1 + sτ2

(B.17)

vg =

(
gm2ro2

1 + gm2ro2

) (
1

1 + s τ2
1+gm2ro2

vd

)
(B.18)

≈ 1

1 + sτ ′2
vd (B.19)

τ2 = ro2CL (B.20)

τ ′2 =
τ2

1 + gm2ro2

≈ CL

gm2

¿ τ2 (B.21)

Solving the equation, we obtain

vd =

(
− id

gm1

)(
gm1ro1

1 + gm1ro1

) (
1 + sτ ′2

1 + s
τ1+τ ′2

1+gm1ro1
+ s2 τ1τ ′2

1+gm1ro1

)
(B.22)

≈
(
− id

gm1

)(
1 + sτ ′2

1 + sτ ′1 + s2τ ′1τ
′
2

)
(B.23)

vg =

(
− id

gm1

)(
gm1ro1

1 + gm1ro1

) (
1

1 + s
τ1+τ ′2

1+gm1ro1
+ s2 τ1τ ′2

1+gm1ro1

)
(B.24)

≈
(
− id

gm1

)(
1

1 + sτ ′1 + s2τ ′1τ
′
2

)
(B.25)

τ ′1 =
τ1

1 + gm1ro1

≈ Cd

gm1

(B.26)

vg is the small signal of the pixel output Vph. Similar to the previous case, τ ′1 is

determined by the photocurrent and the parasitic capacitance of the photodiode.

However, the first pole of vg is determined by both τ ′1 and τ ′2. The frequency response

can be enhanced by adjusting τ ′2. When τ ′2 ¿ τ ′1, the dominant pole is determined

by τ ′1. As τ ′2 increases, the two poles approach each other so that the time constant

from the dominant pole decreases. When τ ′2 =
τ ′1
4
, the two poles meet at − 2

τ ′1
and

the pixel has the fast frequency response without overshoot. Thus the bandwidth

194

can be doubled with appropriate τ ′2 compared with the previous pixel. As τ ′2 keeps

increasing, the two poles split, their real values stay at − 2
τ ′1

. The imaginary part of

the poles causes over shoot in the response.

We perform AC analysis of both circuits. For Cd = 100 fF, Ic = 1 µA, Iph =

500 pA, when CL < 5 pF, both circuits have f3dB = 14.3 kHz. For CL =5, 10, and

25 pF, f3dB =14.3, 14.5, and 15.5 kHz for the previous pixel, showing little influence

from CL, while f3dB =15, 16.1, and 19.2 kHz for the new pixel.

In summary, the proposed adaptive floating gate pixel has two less transistors

than the previous structure and the frequency response can be adjusted at the output

stage with doubled bandwidth at the best.

195

Bibliography

[1] C. Mead, Analog VLSI and Neural Systems. New York: Addison-Wesley,
1989.

[2] J. S. Humbert, R. M. Murray, and M. H. Dickinson, “A control-oriented analy-
sis of bio-inspired visuomotor convergence,” in Proc. IEEE Conf. on Decision
and Control, Seville, Spain, 2005, pp. 245–250, Dec. 12 - Dec. 15.

[3] R. I. Bahar, J. Mundy, and J. Chen, “A probabilistic-based design method-
ology for nanoscale computation,” in Proc. International Conference on
Computer-Aided Design, San Jose, USA, Nov. 2003, pp. 480–486.

[4] H. Chen, P. Fleury, and A. Murray, “Unsupervised probabilistic neural com-
putation in mixed-mode vlsi,” in Smart adaptive systems on silicon, M. Valle,
Ed. Springer, 2004, pp. 825–837.

[5] K. V. Palem, “Energy aware computing through probabilistic switching: A
study of limits,” IEEE Trans. Comput., vol. 54, no. 9, pp. 1123–1137, Sept.
2005.

[6] K. Nepal, R. Bahar, J. Mundy, W. Patterson, and A. Zaslavsky, “Designing
logic circuits for probabilistic computation in the presence of noise,” in Proc.
42nd Design Automation Conference, 2005, pp. 485–490.

[7] N. H. Hamid, A. F. Murray, D. Laurenson, S. Roy, and B. Chen, “Probabilistic
computing with future deep submicrometer devices: a modelling approach,”
in Proc. IEEE Int. Symp. Circuits Systems, vol. 88, 2005, pp. 2510–2513.

[8] B. Akgul, L. Chakrapani, P. Korkmaz, and K. Palem, “Probabilistic CMOS
technology: A survey and future directions,” in Proc. IFIP International Con-
ference on VLSI, Oct. 2006, pp. 1–6.

[9] E. S. Fortune and G. J. Rose, “Short-term synaptic plasticity as a temporal
filter,” Trends Neurosci., vol. 24, pp. 381–385, July 2001.

[10] L. A. Grande and W. J. Spain, “Synaptic depression as a timing device,”
Physiology, vol. 20, no. 3, pp. 201–210, 2005.

[11] L. F. Abbott, J. A. Varela, K. Sen, and S. B. Nelson, “Synaptic depression
and cortical gain control,” Science, vol. 275, pp. 220–224, 1997.

[12] F. S. Chance, S. B. Nelson, and L. F. Abbott, “Synaptic depression and the
temporal response characteristics of V1 cells,” J. Neurosci., vol. 18, no. 12,
pp. 4785–4799, 1998.

[13] F. Nadim and Y. Manor, “The role of short-term synaptic dynamics in motor
control,” Curr. Opin. Neurobiol., vol. 10, pp. 683–690, Dec. 2000.

196

[14] W. Maass and A. M. Zador, “Dynamic stochastic synapses as computational
units,” Neural Comput., vol. 11, no. 4, pp. 903–917, 1999.

[15] H. S. Seung, “Learning in spiking neural networks by reinforcement of sto-
chastic synaptic transmission,” Neuron, vol. 40, pp. 1063–1073, Dec. 2003.

[16] W. B. Levy and R. A. Baxter, “Energy-efficient neuronal computation via
quantal synaptic failures,” J. Neurosci., vol. 22, no. 11, pp. 4746–4755.

[17] S. Schreiber, C. K. Machens, A. V. M. Herz, and S. B. Laughlin, “Energy-
efficient coding with discrete stochastic events,” Neural Comput., vol. 14, no. 6,
2002.

[18] M. S. Goldman, P. Maldonado, and L. F. Abbott, “Redundancy reduction and
sustained firing with stochastic depressing synapses,” J. Neurosci., vol. 22,
no. 2, pp. 584–591, 2002.

[19] M. S. Goldman, “Enhancement of information transmission efficiency by
synaptic failures,” Neural Comput., vol. 16, no. 6, pp. 1137–1162, 2004.

[20] H. Markram, J. Lubke, M. Frotscher, and B. Sakmann, “Regulation of synap-
tic efficacy by coincidence of postsynaptic aps and epsps,” Science, vol. 275,
no. 5297, pp. 213–215, 1997.

[21] Y. Dan and M. M. Poo, “Spike timing-dependent plasticity of neural circuits,”
Neuron, vol. 44, pp. 23–30, Sept. 2004.

[22] W. Senn, H. Markram, and M. Tsodyks, “An algorithm for modifying neuro-
transmitter release probability based on pre- and postsynaptic spike timing,”
Neural Computation, vol. 13, pp. 35–67, 2000.

[23] A. Pavasović, A. G. Andreou, and C. R. Westgate, “Characterization of sub-
threshold MOS mismatch in transistor for VLSI systems,” J. VLSI Signal
Processing, vol. 8, pp. 75–85, 1994.

[24] T. Serrano-Gotarredona and B. Linares-Barranco, “Systematic width-and-
length dependent cmos transistor mismatch characterization and simulation,”
Analog Integrated Circuits and Signal Processing, vol. 21, pp. 271–296, 1999.

[25] D. Boning and S. Nassif, “Models of process variations in device and inter-
connect,” in Design of High-Performance Microprocessor Circuits, A. Chan-
drakasan, W. J. Bowhill, and F. Fox, Eds. Wiley, 2000, pp. 98–116.

[26] P. R. Kinget, “Device mismatch and tradeoffs in the design of analog circuits,”
IEEE J. Solid-State Circuits, vol. 40, no. 6, pp. 1212–1224, 2005.

[27] P. Hasler, B. A. Minch, and C. Diorio, “Adaptive circuits using pFET floating-
gate devices,” in Proc. Advanced Research in VLSI, 1999, pp. 215–229.

197

[28] P. Hasler and T. Lande, “Overview of floating-gate devices, circuits, and sys-
tems,” IEEE Trans. Circuits Syst. II, vol. 48, no. 1, pp. 1–3, January 2001.

[29] P. Hasler, B. Minch, and C. Diorio, “An autozeroing floating-gate amplifier,”
IEEE Trans. Circuits Syst. II, vol. 48, no. 1, pp. 74–82, January 2001.

[30] M. Cohen and G. Cauwenberghs, “Floating-gate adaptation for focal plane
online nonuniformity correction,” IEEE Trans. Circuits Syst. II, vol. 48, pp.
83–89, 2001.

[31] Y. L. Wong, M. H. Cohen, and P. A. Abshire, “A floating-gate comparator
with automatic offset adaptation for 10-bit data conversion,” IEEE Trans.
Circuits Syst. I, vol. 52, no. 7, pp. 1316–1326, July 2005.

[32] E. L. Wong, M. H. Cohen, and P. A. Abshire, “A 128x128 floating gate imager
with self-adapting fixed pattern noise reduction,” in Proc. IEEE Int. Symp.
Circuits Systems, vol. 5, May 2005, pp. 5314–5317.

[33] P. Hasler, C. Diorio, B. A. Minch, and C. Mead, “Single transistor learning
synapses with long term storage,” in Proc. IEEE Int. Symp. Circuits Systems,
vol. 3, 1995, pp. 1660–1663.

[34] C. Diorio, P. Hasler, B. A. Minch, and C. Mead, “A single-transistor silicon
synapse,” IEEE Trans. Electron Devices, vol. 43, pp. 1972–1980, Nov. 1996.

[35] ——, “A floating-gate MOS learning array with locally computed weight up-
dates,” IEEE Trans. Electron Devices, vol. 44, pp. 2281–2289, Dec. 1997.

[36] R. R. Harrison, J. A. Bragg, P. Hasler, B. A. Minch, and S. P. DeWeerth, “A
CMOS programmable analog memory-cell array using floating-gate circuits,”
IEEE Trans. Circuits Syst. II, vol. 48, no. 1, pp. 4–11, Jan. 2001.

[37] S. Shah and S. Collins, “A temperature independent trimmable current
source,” in Proc. IEEE Int. Symp. Circuits Systems, vol. 1, 2002, pp. I713–
I716.

[38] A. Bandyopadhyay, J. Lee, R. Robucci, and P. Hasler, “MATIA: A program-
mable 80 µW/frame CMOS block matrix transformation imager architecture,”
IEEE J. Solid-State Circuits, vol. 41, pp. 663–672, Mar. 2006.

[39] A. Bandyopadhyay, P. Hasler, and D. Anderson, “A CMOS floating-gate ma-
trix transform imager,” IEEE Sensors J., vol. 5, no. 3, pp. 455–462, June
2005.

[40] D. Hsu, M. Figueroa, and C. Diorio, “Competitive learning with floating-gate
circuits,” IEEE Trans. Neural Networks, vol. 13, no. 3, pp. 732–744, May 2002.

[41] P. Hasler and J. Dugger, “An analog floating-gate node for supervised learn-
ing,” IEEE Trans. Circuits Syst. I, vol. 52, no. 5, pp. 834–845, May 2005.

198

[42] P. R. Gray, P. J. Hurst, S. H. Lewis, and R. G. Meyer, Analysis and Design
of Analog Integrated Circuits. John Wiley & Sons, 2001.

[43] R. J. Baker, CMOS Circuit Design, Layout, and Simulation. John Wiley &
Sons, 2005.

[44] P. Bolcato and R. Poujois, “A new approach for noise simulation in transient
analysis,” in Proc. IEEE Int. Symp. Circuits Systems, 1992, pp. 887–890.

[45] Y. Dong and A. Opal, “Time-domain thermal noise simulation of switched
capacitor circuitsand delta-sigma modulators,” IEEE Trans. Computer-Aided
Design, vol. 19, no. 4, pp. 473–481, 2000.

[46] N. Franceschini, J. M. Pichon, and C. Blanes, “From insect vision to robot
vision,” Phil. Trans. R. Soc. Lond. B, vol. 337, pp. 283–294, 1992.

[47] R. C. Hardie and P. Raghu, “Visual transduction in Drosophila,” Nature, vol.
413, pp. 186–193, Sept. 2001.

[48] A. Borst and J. Haag, “Neural networks in the cockpit of the fly,” J. Comp.
Physiol. A, vol. 188, pp. 419–437, 2002.

[49] M. A. Frye and M. H. Dickinson, “Closing the loop between neurobioloby and
flight behavior in Drosphila,” Current Opinion in Neurobiology, vol. 14, pp.
1–8, 2004.

[50] G. Indiveri and R. Douglas, “ROBOTIC VISION: neuromorphic vision sen-
sors,” Science, vol. 288, no. 5469, pp. 1189–1190.

[51] R. R. Harrison and C. Koch, “A robust analog VLSI motion sensor based on
the visual system of the fly,” Autonomous Robots, vol. 7.

[52] M. V. Srinivasan, M. Poteser, and K. Kral, “Motion detection in insect orien-
tation and navigation,” Vision Res., vol. 39, pp. 2749–2766, 1999.

[53] M. V. Srinivasan and S. Zhang, “Visual navigation in flying insects,” in Neu-
ronal Processing of Optic Flow, M. Lappe, Ed. Cambridge, MA: Academic
Press, 2000, pp. 67–92.

[54] M. Egelhaaf and R. Kern, “Vision in flying insects,” Curr. Opin. Neurobiol.,
vol. 12, pp. 699–706, 2002.

[55] M. Egelhaaf, R. Kern, H. G. Krapp, et al., “Neural encoding of behaviourally
relevant visual-motion information in the fly,” Trends Neurosci., vol. 25, no. 2,
pp. 96–102, 2002.

[56] M. V. Srinivasan and S. Zhang, “Visual motor computation in insects,” Annu.
Rev. Neurosci., vol. 27, pp. 679–696, 2004.

199

[57] H. G. Krapp, “Neuronal matched filters for optic flow processing in flying
insects,” in Neuronal Processing of Optic Flow, M. Lappe, Ed. Cambridge,
MA: Academic Press, 2000, pp. 67–91.

[58] R. Wehner, “Matched filters - neuronal models of the external world,” J.
Comp. Physiol. A, vol. 161, pp. 511–531, 1987.

[59] J. S. Humbert, Bio-inspired Visuomotor Convergence in Navigation and Flight
Control Systems. Ph.D. thesis, California Institute of Technology, 2006.

[60] J. S. Humbert, R. M. Murray, and M. H. Dickinson, “Sensorimotor conver-
gence in visual navigation and flight control systems,” in Proc. 16th IFAC
World Congress, Praha, Czech Republic, 2005.

[61] J. S. Humbert, A. Hyslop, and M. Chinn, “Experimental validation of wide-
field integration methods for autonomous navigation,” in IEEE/RSJ Inter-
national Conference on Intelligent Robots and Systems, 2007, pp. 2144–2149,
Oct. 29 - Nov. 2.

[62] W. Reichardt, “Autocorrelation, a principle for the evaluation of sensory infor-
mation by the central nervous system,” in Sensory Communication, A. Rosen-
blith, Ed. MIT Press, 1961, pp. 303–317.

[63] M. Egelhaaf and W. Reichardt, “Dynamic response properties of movement
detectors: theoretical analysis and electrophyiological investigation in the vi-
sual system of the fly,” Biol. Cybern., vol. 56, pp. 69–87, 1987.

[64] M. Egelhaaf and A. Borst, “Transient and steady-state response properties of
movement detectors,” J. Opt. Soc. Am. A, vol. 6, no. 1, pp. 116–127, 1989.

[65] M. Egelhaaf, A. Borst, and W. Reichardt, “Computational structure of a
biological motion-detection system as revealed by local detector analysis in
the fly’s nervous system,” J. Opt. Soc. Am. A, vol. 6, no. 7, pp. 1070–1087,
1989.

[66] S.-C. Liu, “A neuromorphic aVLSI model of global motion processing in the
fly,” IEEE Trans. Circuits Syst. II, vol. 47, no. 12, pp. 1458–1467, Dec. 2000.

[67] R. R. Harrison and C. Koch, “A robust analog VLSI Reichardt motion sensor,”
Int. J. Analog Integr. Circuits Signal Process., vol. 24, pp. 213–229, 2000.

[68] C. M. Higgins, V. Pant, and R. Deutschmann, “Analog VLSI implementation
of spatio-temporal frequency tuned visual motion algorithms,” IEEE Trans.
Circuits Syst. I, vol. 52, no. 3, pp. 489–502, Mar. 2005.

[69] R. R. Harrison, “A biologically inspired analog IC for visual collision detec-
tion,” IEEE Trans. Circuits Syst. I, vol. 52, no. 11, pp. 2308–2318, Nov. 2005.

200

[70] B. Webb, “Robots in invertebrate neuroscience,” Nature, vol. 417, pp. 359–
363, 2002.

[71] B. Webb, R. R. Harrison, and M. A. Willis, “Sensorimotor control of navi-
gation in arthropod and artificial systems,” Arthropod structure and develop-
ment, vol. 33, pp. 301–329, 2004.

[72] D. Johnston and S. M.-S. Wu, Foundations of Cellular Neurophysiology. Cam-
bridge, MA: MIT Press, 1997.

[73] V. Matveev and X.-J. Wang, “Implications of all-or-none synaptic transmis-
sion and short-term depression beyond vesicle depletion: a computational
study,” J. Neurosci., vol. 20, pp. 1575–1588, 2000.

[74] C. Koch, Biophysics of Computation: Information Processing in Single Neu-
rons. New York, NY: Oxford University Press, 1999.

[75] M. V. Tsodyks and H. Markram, “The neural code between neocortical pyra-
midal neurons depends on neurotransmitter release probability,” Proc. Natl.
Acad. Sci. USA, vol. 94, pp. 719–723, 1997.

[76] P. Häfliger and M. Mahowald, “Spike based normalizing Hebbian learning
in an analog VLSI artificial neuron,” Int. J. Analog Integr. Circuits Signal
Process., vol. 18, no. 2-3, pp. 133–139, 1999.

[77] C. Rasche and R. H. R. Hahnloser, “Silicon synaptic depression,” Biol. Cy-
bern., vol. 84, pp. 57–62, 2001.

[78] S.-C. Liu, “Analog VLSI circuits for short-term dynamic synapses,” EURASIP
Journal on Applied Signal Processing, vol. 2003, pp. 620–628, 2003.

[79] M. Boegerhausen, P. Suter, and S.-C. Liu, “Modeling short-term synaptic
depression in silicon,” Neural Computation, vol. 15, pp. 331–348, 2003.

[80] E. Chicca, G. Indiveri, and R. Douglas, “An adaptive silicon synapse,” in Proc.
IEEE Int. Symp. Circuits Systems, vol. 1, Bangkok, Thailand, May 2003, pp.
81–84.

[81] A. Bofill, A. F. Murray, and D. P. Thompson, “Circuits for VLSI implemen-
tation of temporally asymmetric Hebbian learning,” in Advances in Neural
Information Processing Systems, S. B. T. G. Dietterich and Z. Ghahramani,
Eds. Cambridge, MA, USA: MIT Press, 2002.

[82] G. Indiveri, E. Chicca, and R. Douglas, “A VLSI array of low-power spiking
neurons and bistable synapses with spike-timing dependent plasticity,” IEEE
Trans. Neural Networks, vol. 17, pp. 211–221, 2006.

[83] C. S. Petrie and J. A. Connelly, “A noise-based IC random number generator
for applications in cryptography,” IEEE Trans. Circuits Syst. I, vol. 47, no. 5,
pp. 615–621, May 2000.

201

[84] D. H. Goldberg, G. Cauwenberghs, and A. G. Andreou, “Probabilistic synaptic
weighting in a reconfigurable network of VLSI integrate-and-fire neurons,”
Neural Networks, vol. 14, pp. 781–793, 2001.

[85] S. Fusi, M. Annunziato, D. Badoni, A. Salamon, and D. J. Amit, “Spike
driven synaptic plasticity: theory, simulation, VLSI implementation,” Neural
Computation, vol. 12, pp. 2227–2258, 2000.

[86] E. Chicca, D. Badoni, V. Dante, M. D’Andreagiovanni, G. Salina, L. Carota,
S. Fusi, and P. Del Giudice, “A VLSI recurrent network of integrate-and-fire
neurons connected by plastic synapses with long-term memory,” IEEE Trans.
Neural Networks, vol. 14, pp. 1297–1307, 2003.

[87] B. L. Nelson, Stochastic Modeling: Analysis and Simulation. McGraw-Hill,
1995.

[88] B. D. Ripley, Stochastic Simulation. John Wiley Sons, 1987.

[89] W. T. Holman, J. A. Connelly, and A. B. Dowlatabadi, “An integrated ana-
log/digital random noise source,” IEEE Trans. Circuits Syst. I, vol. 44, no. 6,
pp. 521–528, June 1997.

[90] R. C. Fairfield, R. L. Mortenson, and K. B. Coulthart, “An LSI random num-
ber gernator (RNG),” in Proc. CRYPTO’84, May 1985, pp. 203–230.

[91] M. Degaldo-Restituto, F. Medeiro, and A. Rodriguez-Vázquez, “Nonlinear
switched-current CMOS IC for random signal generation,” Electronics Letters,
vol. 29, no. 25, pp. 2190–2191, Dec. 1993.

[92] T. Stojanovski and L. Kocarev, “Chaos-based random number generators-part
I: analysis,” IEEE Trans. Circuits Syst. I, vol. 48, no. 3, pp. 281–288, Mar.
2001.

[93] T. Stojanovski, J. Pihl, and L. Kocarev, “Chaos-based random number
generators-part II: practical realization,” IEEE Trans. Circuits Syst. I, vol. 48,
no. 3, pp. 382–385, Mar. 2001.

[94] M. J. Bellido, A. J. Acosta, M. Valencia, A. Barriga, and J. L. Huertas,
“Simple binary random number generator,” Electronics Letters, vol. 28, no. 7,
pp. 617–618, Mar. 1992.

[95] P. D. Hortensius, R. D. McLeod, and H. C. Card, “Parallel random number
generation for VLSI systems using cellular automata,” IEEE Trans. Comput.,
vol. 38, no. 10, pp. 1466–1473, Oct. 1989.

[96] I. M. Bland and G. M. Megson, “Systolic random number generation for ge-
netic algorithm,” Electronics Letters, vol. 32, no. 12, pp. 1069–1070, June
1996.

202

[97] P. Xu, Y. Wong, T. Horiuchi, and P. Abshire, “Compact floating-gate true
random number generator,” Electronics Letters, vol. 42, no. 23, pp. 1346–
1347, Nov. 2006.

[98] R. S. Zucker, “Short-term synaptic plasticity,” Ann. Rev. Neurosci., vol. 12,
pp. 13–31, 1989.

[99] C. F. Stevens and Y. Wang, “Facilitation and depression at single central
synapses,” Neuron, vol. 14, pp. 795–802, Apr. 1995.

[100] P. Xu, T. K. Horiuchi, A. Sarje, and P. Abshire, “Stochastic synapse with
short-term depression for silicon neurons,” in Proc. IEEE Biomedical Circuits
and Systems Conference, 2007, Montreal, Canada, Nov. 2007, pp. 99–102.

[101] B. Schneier, Applied Cryptography. New York, NY: John Wiley Sons, 1996.

[102] A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson,
M. Vangel, D. Banks, A. Heckert, J. Dray, and S. Vo, A statistical test suite for
random and pseudorandom number generator for cryptographic applications.
NIST special publication 800-22, 2001.

[103] P. Xu, T. Horiuchi, and P. Abshire, “Stochastic model and simulation of a
random number generator circuit,” in Proc. IEEE Int. Symp. Circuits Systems,
Seattle, WA, May 2008, pp. 2977–2980.

[104] P. Xu and P. A. Abshire, “Stochastic behavior of a CMOS inverter,” in Proc.
14th IEEE International Conference on Electronics, Circuits and Systems,
Marrakech, Morocco, Dec. 2007, pp. 94–97.

[105] E. Allen, Modeling with Ito Stochastic Differential Equations. Netherlands:
Springer, 2004.

[106] P. E. Kloeden, E. Platen, and H. Schurz, Numerical Solution of SDE through
Computer Experiments. Heidelberg, German: Springer, 1994.

[107] C. W. Gardiner, Handbook of Stochastic Methods for Physics, Chemistry and
the Natural Sciences. Heidelberg, German: Springer, 2004.

[108] R. Sarpeshkar, T. Delbrück, and C. A. Mead, “White noise in MOS transistors
and resistors,” Circuits and Devices Magazine, IEEE, vol. 9, pp. 23–29, Nov.
1993.

[109] A. van der Ziel, Noise in Solid State Devices and Circuits. New York: Wiley,
1986.

[110] R. Landauer, “Solid-state shot noise,” Physical Review B, vol. 47, no. 24, pp.
16 427–16 432, 1993.

203

[111] J. L. Wyatt, Jr., and G. J. Coram, “Nonlinear device noise models: Satisfying
the thermodynamic requirements,” IEEE J. Electron Devices, vol. 46, no. 1,
pp. 184–191, Jan. 1993.

[112] C. C. Enz, F. Krummenacher, and E. A. Vittoz, “An analytical MOS transistor
model valid in all regions of operation and dedicated to low-voltage and low-
current applications,” Analog Integrated Circuits and Signal Processing, vol. 8,
no. 1, pp. 83–114, 1995.

[113] J. D. Meindl and J. A. Davis, “The fundamental limit on binary switching
energy for terascale integration (tsi),” IEEE J. Solid-State Circuits, vol. 35,
no. 10, pp. 1515–1516, Oct. 2000.

[114] P. Abshire, Sensory Information Processing under Physical Constraints.
Ph.D. thesis, Johns Hopkins University, 2002.

[115] S. Cheemalavagu, P. Korkmaz, and K. V. Palem, “Ultra low-energy computing
via probabilistic algorithms and devices: CMOS device primitives and the
energy-probability relationship,” in Proc. International Conference on Solid
State Devices and Materials, Tokyo, Japan, Sept. 2004, pp. 402–403.

[116] S. R. Shaw, “Anatomy and physiology of identified non-spiking cells in the
photoreceptor-lamina complex of the compound eye of insects, especially
Diptera,” in Neurons Without Impulses, A. Roberts and B. M. H. Bush, Eds.
Cambridge, UK: Cambridge University Press, 1981, pp. 61–109.

[117] S. B. Laughlin, “Matching coding, circuits, cells, and molecules to signals:
general principles of retinal design in the fly’s eye,” Progress in Retinal and
Eye Research, vol. 13, pp. 165–196, 1994.

[118] J. Douglass and N. Strausfeld, “Visual motion-detection circuits in flies: Par-
allel direction- and non- direction-sensitive pathways between the medulla and
lobula plate,” J. Neurosci., vol. 16, pp. 4551–4562, 1996.

[119] M. A. Frye and M. H. Dickinson, “Fly flight: a model for the neural control
of complex behavior,” Neuron, vol. 32, pp. 385–388, Nov. 2001.

[120] R. Hengstenberg, H. Krapp, and B. Hengstenberg, “Visual sensation of self-
motions in the blowfly Calliphora,” in Biocybernetics of Vision: Integrative
Mechanisms and Cognitive Processes, C. Taddei-Ferretti, Ed., 1994.

[121] W. Reichardt, “Movement perception in insects,” in Processing of optical data
by organisms and by machines, W. Reichard, Ed. New York: Academic Press,
1969, pp. 465–493.

[122] A.-K. Warzecha and M. Egelhaaf, “Intrinsic properties of biological motion
detectors prevent the optomotor control system from getting unstable,” Phil.
Trans. R. Soc. Lond. B, vol. 351, pp. 1579–1591, 1996.

204

[123] M. V. Srinivasan, M. Lehrer, W. H. Kirchner, and S. W. Zhang, “Range
perception through apparent image speed in freely flying honeybees,” Vis.
Neurosci., vol. 6, pp. 519–535, 1991.

[124] L. F. Tammero and M. H. Dickinson, “Collision avoidance and landing
responses are mediated by separate pathways in the fruit fly, Drosophila
melanogaster,” J. Exp. Biol., vol. 205, pp. 2785–2798, 2002.

[125] M. V. Srinivasan, S. W. Zhang, J. S. Chahl, E. Barth, and S. Venkatesh, “How
honeybees make grazing landings on flat surfaces,” Biol. Cybern., vol. 83, pp.
171–183, 2000.

[126] M. V. Srinivasan, S. W. Zhang, and N. Bidwell, “Visually mediated odometry
in honeybees,” J. Exp. Biol., vol. 200, pp. 2513–2522, 1997.

[127] C. Gilbert and N. J. Strausfeld, “The functional organization of male-specific
visual neurons in flies,” J. Comp. Physiol. A, vol. 169, pp. 395–411, 1991.

[128] M. F. Land and T. S. Collett, “Chasing behaviour of houseflies,” J. Comp.
Physiol., vol. 89, pp. 331–357, 1974.

[129] N. Boeddeker, R. Kern, and M. Egelhaaf, “Chasing a dummy target: Smooth
pursuit and velocity control in male blowflies,” Proc. R. Soc. Lond. B Biol.
Sci., vol. 270, pp. 393–399, 2003.

[130] M. V. Srinivasan and M. Davey, “Strategies for active camouflage of motion,”
Proc. R. Soc. Lond. B Biol. Sci., vol. 259, pp. 19–25, 1995.

[131] E. W. Justh and P. S. Krishnaprasad, “Steering laws for motion camouflage,”
Proc. R. Soc. Lond. A, vol. 462, pp. 3629–3643, 2006.

[132] R. Kern, C. Petereit, and M. Egelhaaf, “Neural processing of naturalistic optic
flow,” J. Neurosci., vol. 25, no. 2, pp. 96–102, 2002.

[133] P. Reinagel, “How do visual neurons respond in the real world?” Curr. Opin.
Neurobiol., vol. 11, pp. 437–442, Aug. 2001.

[134] D. W. Dong, “Spatiotemporal inseparability of natural images and visual sen-
sitivities,” in Motion Vision: Computational, Neural, and Ecological Con-
straints, J. M. Zanker and J. Zeil, Eds. Springer, 2001, pp. 371–380.

[135] N. Boeddeker, J. P. Lindemann, M. Egelhaaf, and J. Zail, “Responses of
blowfly motion-sensitive neurons to reconstructed optic flow along outdoor
flight paths,” J. Comp. Physiol. A, vol. 191, pp. 1143–1155, 2005.

[136] J. P. Lindermann, R. Kern, J. H. Hateren, H. Ritter, and M. Egelhaaf, “On the
computations analyzing natural optic flow: Quantitative model analysis of the
blowfly motion vision pathway,” J. Neurosci., vol. 25, no. 27, pp. 6435–6448,
2005.

205

[137] E. H. Adelson and J. R. Bergen, “Spatiotemporal energy models for the per-
ception of motion,” J. Opt. Soc. Am. A, vol. 2, pp. 284–299, Feb. 1985.

[138] A. Borst, “Modeling fly motion vision,” in Computational Neuroscience: A
Comprehensive Approach, J. Feng, Ed. CRC Press, 2003, pp. 397–429.

[139] D. L. Ruderman and W. Bialek, “Statistics of natural images: Scaling in the
woods,” Physical Review Letters, vol. 73, no. 6, pp. 814–817, 1994.

[140] D. L. Ruderman, “The statistics of natural images,” Network: Comput. Neural
Syst., vol. 5, pp. 517–548, 1994.

[141] R. O. Dror, D. C. O’Carroll, and S. B. Laughlin, “Accuracy of velocity esti-
mation by Reichardt correlators,” J. Opt. Soc. Am. A, vol. 18, pp. 241–252,
Feb. 2001.

[142] P. A. Shoemaker, D. C. O’Carroll, and A. D. Straw, “Velocity constancy and
models for wide-field visual motion detection in insects,” Biol. Cybern., vol. 93,
pp. 275–287, 2005.

[143] P. A. Shoemaker and D. C. O’Carroll, “Insect-based visual motion detection
with contrast adaptation,” in Proc. SPIE, vol. 5783, 2005, pp. 292–303.

[144] G. A. Horridge and L. Marcelja, “On the existence of fast and slow direction-
ally sensitive motion detector neurons in insects,” Proc. R. Soc. Lond. B Biol.
Sci., vol. 248, pp. 47–54, 1992.

[145] M. J. Wainwright, O. Schwartz, and E. P. Simoncelli, “Natural image statistics
and devisive normalization: Modeling nonlinearities and adpatation in cortical
neurons,” in Statistical Theories of the Brain, R. Rao, B. Olshausen, and
M. Lewicki, Eds. MIT Press, 2001.

[146] R. C. Dorf and R. H. Bishop, Modern Control Systems. Addison-Wesley,
1995.

[147] J.-J. E. Slotine and W. Li, Applied Nonlinear Control. Pearson Education,
2004.

[148] G. L. Barrows, Mixed-mode VLSI Optic Flow Sensors for Micro Air Vehicles.
Ph.D. thesis, University of Maryland, College Park, 1999.

[149] G. Barrows, K. Miller, and B. Krantz, “Fusing neuromorphic motion detector
outputs for robust optic flow measurement,” in Proc. IEEE International Joint
Conference on Neural Networks, vol. 4, Washington DC, USA, 1999, pp. 2296–
2301, July 10 - July 16.

[150] R. A. Yotter and D. M. Wilson, “A review of photodetector for sensing light-
emitting reporters in biological systems,” IEEE Sensors J., vol. 3, no. 3, pp.
288–303, June 2003.

206

[151] T. N. Swe and K. S. Yeo, “An accurate photodiode model for DC and high
frequency SPICE circuit simulation,” Nanotech, vol. 1, pp. 362–365, 2001.

[152] E. Sánchez-Sinencio and J. Silva-Mart́ınez, “CMOS transconductance ampli-
fiers, architectures and active fitlers: a tutorial,” in IEE Proc. Circuits Devices
Syst., vol. 147, no. 1, Feb. 2000, pp. 3–12.

[153] M. Steyaert, P. Kinget, W. Sansen, and J. V. D. Spiegel, “Full integration of
extremely large time constants in CMOS,” Electronics Letters, vol. 27, no. 10,
pp. 790–791, May 1991.

[154] J. Silva-Mart́ınez and S. Soĺıs-Bustos, “Design considerations for high perfor-
mance very low frequency filters,” in Proc. IEEE Int. Symp. Circuits Systems,
vol. 2, Orlando, FL, US, May 1999, pp. 648–651.

[155] A. Veeravalli, E. Sánchez-Sinencio, and J. Silva-Mart́ınez, “Transconductance
amplifier structures with very small transconductances: a comparative design
approach,” IEEE J. Solid-State Circuits, vol. 37, no. 6, pp. 770–775, June
2002.

[156] A. Sodagar, “Fully-integrated implementation of large time constant Gm-C
integrators,” Electronics Letters, vol. 43, no. 1, pp. 23–24, Jan. 2007.

[157] M. Hahm, E. Friedman, and E. Titlebaum, “Analog vs. digital: a comparison
of circuit implementations for low-power matched filters,” in Proc. IEEE Int.
Symp. Circuits Systems, vol. 4, Atlanta, GA, US, May 1996, pp. 280–283.

[158] S.-C. Liu, J. Kramer, G. Indiveri, T. Delbrück, and R. Douglas, Analog VLSI:
Circuits and Principles. Cambridge, MA: MIT Press, 2002.

[159] M. Mahowald, An Analog VLSI System for Stereoscopic Vision. Boston, MA:
Kluwer, 1994.

[160] H. Kobayashi, J. L. White, and A. A. Abidi, “An active resistor network
for Gaussian filtering of images,” IEEE J. Solid-State Circuits, vol. 26, pp.
738–748, May 1991.

[161] M. Choi and A. A. Abidi, “A 6-b 1.3-Gsample/s A/D converter in 0.35-µm
CMOS,” IEEE J. Solid-State Circuits, vol. 36, pp. 1847–1858, Dec. 2001.

[162] A. G. Andreou and K. A. Boahen, “Translinear circuits in subthreshold MOS,”
Analog Integrated Circuits and Signal Processing, vol. 9, pp. 141–166, Mar.
1996.

[163] B. Gilbert, “A monolithic microsystem for analog synthesis of trigonometric
function and their inverses,” IEEE J. Solid-State Circuits, vol. SC-17, pp.
1179–1191, Dec. 1982.

207

[164] T. S. Lande, H. Ranjbar, M. Ismail, and Y. Berg, “An analog floating-gate
memory in a standard digital technology,” in Proc. MicroNeuro 96, 1996, pp.
271–276.

[165] G. Cauwenberghs, C. Neugebauer, and A. Yariv, “An adaptive CMOS matrix-
vector multiplier for large scale analog hardware neural network applications,”
in Proc. IEEE International Joint Conference on Neural Networks, Seattle,
US, July 1991, pp. 507–511.

[166] T. Yamasaki and T. Shibata, “An analog similarity evaluation circuit featuring
variable functional forms,” in Proc. IEEE Int. Symp. Circuits Systems, vol. 2,
Sydney, Australia, May 2001, pp. 561–564.

[167] K. Rahimi, C. Diorio, C. Hernandez, and M. Brockhausen, “A simulation
model for floating-gate MOS synapse transistors,” in Proc. IEEE Int. Symp.
Circuits Systems, vol. 2, Phoenix, AZ, US, May 2002, pp. 532–535.

[168] [Online]. Available: http://www.drrobot.com/products item.asp?itemNumber=X80

[169] R. Wood, “Fly, robot fly,” Spectrum, vol. 45, no. 3, pp. 25–29, 1996.

[170] J. Gluckman and S. Nayar, “Ego-motion and omnidirectional cameras,” in
Proc. IEEE Int. Conf. on Computer Vision, Jan. 1998, pp. 999–1005.

[171] P. Hasler, B. Minch, and C. Diorio, “An autozeroing floating-gate bandpass
filter,” in Proc. IEEE Int. Symp. Circuits Systems, vol. 1, 1998, pp. 131–134.

208

