
  

 

ABSTRACT 
 

 

Title of Dissertation: Piezoelectric MEMS Disk Resonator and 
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 Ken Kan Deng, Doctor of Philosophy, 2006 
  

Directed By: Professor Don DeVoe 
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In this work, a new class of disk, contour-mode, piezoelectric, micromechanical 

resonators based on single-crystal Al0.3Ga0.7As films has been developed. The shape 

of the disk resonator is based on the velocity propagation profile of the elastic wave 

in the plane of the piezoelectric film, with lateral dimensions scaled to the half wave 

length of the desired resonance frequency. The resonators are designed with supports 

to emulate free-free boundary conditions. Finite element analysis (FEA) model for 

this resonator is created in Ansys software, the simulation results validate the design 

concept. The performance parameters extracted from the FEA models show that this 

novel disk resonator outperforms the beam type counterpart. A unique 7-mask MEMS 

fabrication process based on the epitaxial, heterostructure Al0.3Ga0.7As films has been 

developed and successfully implemented to produce the prototypes of the new disk 

resonators. Fully experimental characterizations on the prototypes were conducted 

and the measured results from the prototypes are: a Q factor of 7031 at 30.2 MHz 

with 1.11 kΩ intrinsic motional resistance; a Q factor of 6515 at 40.8 MHz with 1.26 

kΩ intrinsic motional resistance; a Q factor of 3300 at 62.3 MHz with 2.43 kΩ 

intrinsic motional resistance. The measured power handling level is about 1.6 mW, 



  

which is the highest power handling capability to date. These measured performance 

aspects are better than that of the previously developed beam type resonators. 

 

Based on this new disk resonator, two novel, two-port resonators (i.e., filters) designs 

have been introduced. The FEA models of both designs were created and the 

simulation results verify these design concepts. Equivalent circuit models for these 

filters were established with the parameters obtained from the FEA models. 

Furthermore, the optimal electrode configuration to provide minimum insertion loss 

is obtained through the analytical transadmittance function of the equivalent circuit.  

The prototypes of the filters were successfully fabricated. Measured results on these 

prototypes are summarized here: for the circular patter design, the best insertion loss 

is -45.7 dB at 37.8 MHz with quality factor 4372; for the half plane electrode design, 

the best insertion loss is -42.8 dB at 38.1 MHz with quality factor 3632. 
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Chapter 1 ：：：：Introduction 

 

1.1 Overview of the Field 

There is strong demand in the wireless communications industry for highly integrated, 

low power, and low cost oscillators and high-frequency filters for applications such as 

mobile phones and GPS receivers. Currently, the discrete BAW (bulk acoustic wave) 

quartz resonators have been the prevailing choice for such applications because single 

crystal quartz has very attractive material properties, namely low loss, small 

temperature coefficient, and low motional resistance. However, the precision discrete 

quarts resonators for VHF (very high frequency) through UHF (ultra-high frequency) 

applications are bulky and costly; consequently these drawbacks become the 

obstacles to produce the low cost, low power, miniature size RF (radio frequency) 

systems. In the past two decades, microelectromechanical system (MEMS) resonators 

are being intensively explored as a promising solution to fulfill this need. While 

dramatic progress has been made, to date there is no ideal solution which can meet all 

the requirements for communication applications.  

 

Resonators and resonant filters based on capacitively-transduced silicon have been 

the subject of great attention because they may be incorporated with standard CMOS 

processing. Furthermore, silicon provides a number of favorable mechanical 

properties. A wide variety of silicon resonators based on bending-mode and 

longitudinal-mode planar 1-D or 2-D radial-mode designs have been described [1-6]. 
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From the application perspective, there are five important metrics which specify 

resonator performance, namely: maximum resonance frequency (fr), minimum series 

motional resistance (Rx), maximum quality factor (Q), and maximum power-handling 

ability, and stability [1]. By taking advantage of the low material losses inherent in 

both single crystal silicon and polycrystalline silicon, bending-mode capacitive 

resonators with high Q have been demonstrated. For example, Wang et al [2] 

achieved a Q over 10,000 at around 100 MHz in vacuum for a bending-mode beam 

with free-free boundary conditions. In contrast to such bending-mode designs, planar 

resonators offer the benefit of higher stiffness and lower viscous damping when 

operating in air. The highest product of frequency fo and quality factor Q reported for 

a microresonator in air is a planar-mode device with frQ = 3.88x10
12 [1]. In addition, 

2-D planar-mode resonators tend to offer better power handling capability than 

bending-mode designs. A single crystal silicon   planar resonator with a maximum 

power handling level up to 0.12 mW at 13.1 MHz was recently described [3]. 

Although this remains the highest power handling level reported for a capacitive 

resonator, it is still lower than wireless communication requirements on the order of 

several mW based on typical incident power levels as well as phase noise limitations 

[7]. Another drawback of capacitive resonators is that they require extremely small 

capacitive gap spacing on the order of 100nm or below to provide sufficient 

electromechanical coupling strength. This requirement can introduce substantial 

fabrication complexities. To further increase the electromechanical coupling strength 

and thereby lower the series motional resistance, Rx, high bias voltages (>10V) are 

generally required, introducing an additional limitation. For example, a motional 
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resistance of only 1.46 kΩ was reported for an electrostatic resonator with an 80 nm 

capacitive gap and 12V bias voltage [2]. Upon increasing the gap to 160 nm, the 

fabrication requirements are relaxed, but motional resistance is sacrificed, with an Rx 

of 43.3 kΩ under17 V bias potential reported [1]. 

  

Compared to capacitively-transduced resonators, MEMS resonators based on 

piezoelectric transduction can potentially offer a number of advantages. Due to the 

inherently linear nature of piezoelectric transduction, rather than the quadratic 

relationship in electrostatic coupling, piezoelectric-based microresonators can handle 

substantially higher power levels. Because piezoelectric transduction is based on 

absolute strain rather than relative displacement, high electromechanical coupling can 

be realized without resorting to nanoscale gaps, resulting in simpler design and 

implementation. Furthermore, the electromechanical transduction coefficients for 

many piezoelectric materials provide more effective coupling than capacitive 

transduction, offering low values of motional resistance Rx without the use of large 

bias voltages. Many piezoelectric materials used for MEMS resonators exhibit higher 

internal losses compared to silicon. Furthermore, the piezoelectric film must be 

sandwiched between conductive electrodes to apply the electric field and sense the 

electric charge produced at resonance. However, metal electrodes tend to exhibit high 

levels of thermoelastic damping, and can reduce the overall Q of a resonator by an 

order of magnitude of more [8, 9]. Consequently, relatively low quality factor Qs 

have been reported in several previous efforts at demonstrating piezoelectric 

microresonators [10, 11].  
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A number of planar-mode piezoelectric resonator designs have recently been 

demonstrated [12-15], with superior performance over their bending-mode 

counterparts. Li et al. demonstrated extensional-mode bar resonators operating up to 

25 MHz with Qs as high as 25,390 and motional resistance between 4-18 k [15], and 

Piazza et al. presented a ring-shaped piezoelectric contour-mode resonator with a 

quality factor of 2,900 at 472.7 MHz and motional resistance around 2.6 k based on 

their reported admittance plots [13]. Despite these advances, relatively little effort has 

been spent on planar piezoelectric microresonators, in part because of the difficulty in 

integrating high quality single-crystal piezoelectric materials and lack of an effective 

design methodology to accommodate the anisotropy inherent in these materials. 

 

Epitaxially grown III-V materials are widely used for the production of high speed 

VLSI circuits. With the exception of AlN, the use of the piezoelectric effect in III-V 

materials has received little attention. Recently, a fabrication process [16] for 

realizing bending-mode and longitudinal-mode [17] resonators based on single-

crystal piezoelectric Al0.3Ga0.7As combined with Si-doped Al0.3Ga0.7As electrodes has 

been reported by our group. The lattice-matched single-crystal heterostructure 

essentially eliminates residual stress-induced curvature. This is an important 

consideration for the planar disk resonators, since any out-of-plane curvature will 

have a deleterious effect on quality factor due to excitation of spurious out-of-plane 

modes. In addition, the Al0.3Ga0.7As heterostructure exhibits relatively low material 

damping compared to traditional devices using polycrystalline piezoelectric films 
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such as PZT, ZnO, or AlN combined with metal electrodes. The use of Al0.3Ga0.7As 

for the resonator structure also holds promise for future integration with high-speed 

III-V electronics. 

 

1.2 Dissertation Objectives 

To step up from the conventional beam resonator design, the development of a new 2-

D (two-dimensional), planar mode, disk resonator technology based on epitaxially-

grown, single-crystal AlGaAs films is described in this dissertation. The planar 

extensional mode is chosen in this effort rather than the film thickness modes, 

because planar modes provide the design flexibility for resonance scaling by taking 

advantage of precision photolithography, and eliminating film thickness variation-

induced performance degradation while totally decoupling the film thickness from the 

mechanical resonance. However, single-crystal AlGaAs films possess cubic 

symmetry and exhibit orthotropic elastic behavior. Traditional design approaches for 

isotropic piezoelectric materials cannot be employed since acoustic propagation speed 

is a function of the crystal orientation. Therefore, a new design methodology is 

developed. A properly designed 2-D piezoelectric resonator can trap maximum 

energy and exclude other spurious oscillating modes. It is believed that the new 2-D 

resonator can ultimately provide better performance over bending-mode designs. To 

gain insight and extract the parameters of the 2-D resonator, the analysis of a finite 

element model for this resonator is described. The finite element analysis (FEA) 

model can predict resonant mode shapes, resonance frequencies, etc. With the 
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customized algorithms, the parameters of the equivalent circuit are also extracted 

from FEA results. 

 

In order to achieve the highest Q factor in the 2-D disk resonator, the energy 

dissipation mechanisms in the resonator system have to be well understood. While 

there are many energy dissipation paths in the developed microresonators, the most 

important energy damping mechanisms are identified and the quantitive analyses on 

the energy dissipations are conducted. The estimated Qs from these analyses serve to 

define the upper limit of the achievable quality factor for this resonator system. These 

resonator damping modeling and calculations can also assist in optimizing device 

design. 

 

To realize the planar AlGaAs design, a feasible MEMS fabrication process was 

developed. The previously process [16] developed by our group, which is tuned for 

the production of the beam type AlGaAs resonators, was further optimized and 

adapted for the disk resonators. In particular, the problem of large parasitic 

capacitance was addressed. It is well-known that in a RF resonator, large parasitic 

impedances can distort the response and impair performance. For instance, large 

feedthrough capacitance can lead to substantial degradation of the resonator SNR. 

The goal for the fabrication development is to be able to produce working prototypes 

of the 2-D disk resonators, and use these prototypes to verify theoretical performance. 
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Bandpass filter is another indispensable component in radio communication systems. 

In RF transceiver systems, filters with low insertion loss and high quality factors can 

protect receivers from adjacent channel interference and limit the bandwidth of 

transmitter noise. Disk resonators employing a 2-port configuration are explored in 

this work for application to bandpass filters. An equivalent circuit model which 

describes the 2-port devices is developed, and the analytical transfer function of this 

filter topology is derived from the equivalent circuit with the aid of the electric 

network theory, enabling the performance characteristics of the novel filters to be 

studied. In particular, the optimal electrode layout is determined. Prototypes of the 

filters with different electrode patterns have been fabricated and tested. 

1.3 Dissertation Organization 

In the first chapter, an overview of the field of MEMS resonator is provided, the 

motivations behind our choice of the single crystal AlGaAs 2-D resonator are 

discussed, and the overall objectives of this dissertation are presented. In the 

following chapter, the piezoelectric and elastic properties of the eptitaxial AlGaAs 

single crystal films are described, then the general acoustic wave propagation speeds 

in any directions in the (100) plane are calculated. A new disk resonator design is 

proposed based on the profile of the acoustic wave speed. This new class of resonator 

is then characterized by FEA model in ANSYS. In Chapter 3, details of the 

fabrication processes used to realize prototype 2-D Al0.3Ga0.7As resonators based on 

reactive ion etching (RIE) combined with wet release etching are presented. A 

method to eliminate the capacitive coupling between the top and bottom electrodes of 

the contact pad area is successfully established. It is featured by the paralene filled 
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isolation trench and the metallic film jump bridge. In Chapter 4, the major damping 

mechanisms in this resonator system are identified and modeled. First-order 

estimations of the Q factors with respect to each damping mechanism are given. 

Furthermore, the total Q factors of the disk resonators at different geometries are 

derived. The measured performance of the fabricated prototypes is presented in 

Chapter 5, and compared to the theoretical and FEA results. In chapter 6, the design 

of a 2-port disk resonator is presented as an element for a MEMS bandpass filter. The 

equivalent circuit of the two-port resonator is derived. By employing this model, 

optimal electrode layouts are determined. The measured performances of the 

fabricated filters are presented and used to verify the theoretical model. Finally, in 

Chapter 7, a discussion of the results from this work is presented, and the future 

directions for impedance matching of the standard 50 Ω RF systems and for further 

performance improvement the AlGaAs disk resonator are proposed. 
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Chapter 2 : Disk Resonator Design 
 

 

2.1 Introduction 

The class of III-V materials has many interesting properties. Besides well-known 

merits such as large band gap and high electron mobility, which have been 

extensively exploited in a variety of high speed ICs, many other physical properties 

like piezoelectric, piezoresistive, piezooptic, etc. have been reported, and the 

potentials for these materials in a myriad of  MEMS devices have been discussed [18, 

19]. In particular, single crystal heterostructures fabricated from multiple layers of 

AlxGa1-xAs layers are attractive for MEMS applications since the lattice constants of 

this family are nearly identical, and aluminum and gallium atoms are easily 

substituted in the lattice without causing too much strain in the film. Today, the 

epitaxy techniques have matured and high quality AlxGa1-xAs films can be repeatedly 

and precisely grown. Most of the previously developed MEMS devices utilizing III-V 

materials are in the form of one-dimensional (1-D) beam elements [20, 21], in part 

because the 1-D beam model is easy to analyze and the direction of the beam can be 

chosen along the maximum transduction direction of the single crystal material. 

Recently, a fabrication process [16] for realizing bending-mode [22] and longitudinal-

mode [15] resonators based on single-crystal piezoelectric Al0.3Ga0.7As combined 

with Si-doped Al0.3Ga0.7As electrodes has been reported by our group. 

 

From the published literatures, it has shown that 2-D devices are more efficient than 

the 1-D counterparts and have better performance [23]. However, traditional design 
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approaches for isotropic piezoelectric material can not be employed in the design of 

2-D AlGaAs devices due to the highly anisotropic nature of the crystal structure. 

Specifically, both the acoustic propagation speed and piezoelectric constants are 

functions of the crystal orientation. In this work, a new method for designing a 2-D 

planar-mode, piezoelectric resonator or filter is developed.  This approach is based on 

the well understand of the elastic and piezoelectric properties of this family of single 

crystal materials, i.e., AlxGa1-xAs epitaxial films. In the following section, the 

material properties of epitaxial AlxGa1-xAs are discussed. The material properties in 

any directions are obtained from the correspondent material tensor rotations. The 

piezoelectric acoustic speeds in the Al0.3Ga0.7As plane are then calculated. The 

appropriate shape of the 2-D resonator is derived from the radial elastic wave velocity 

profile, with radial dimensions set to the half wave length of the designated resonant 

frequency. This configuration ensures a pure planar resonant mode while suppressing 

other spurious modes. In the last section, finite element analysis (FEA) using Ansys 

software is conducted. The FEA models not only help to verify the new design 

approach, but also provide a powerful design tool which can retrieve the performance 

parameters of the resonator and help to identify better anchoring designs. The 

simulated results shows that both Q and Rx are greatly improved compared with 

equivalent longitudinal-mode beam resonators. In Chapter 6, the measured results are 

compared against these theoretical and simulated results and show good agreements 

with them. 

 



 

 11 

 

2.2 AlxGa1-xAs Crystal Properties 

The III-V family of materials possesses a cubic zincblende structure (group 43m). 

The single crystal Al0.3Ga0.7As films used in this study are grown by molecular beam 

epitaxy on (100) GaAs wafers. The crystallographic coordinate of the Al0.3Ga0.7As 

crystal in this situation is shown in Figure 2.1, and theoretical piezoelectric (d), 

orthotropic elastic stiffness (C), and relative dielectric constant (ε) matrices of this 

crystal are given as: 

 
Figure 2.1:  Crystallographic coordinate of AlxGa1-xAs crystal in the plane of (100) 

 

 

















−

−

−

=

14

14

14

00000

00000

00000

d

d

d

d   

 



























=

44

44

44

111212

121112

121211

00000

00000

00000

000

000

000

C

C

C

CCC

CCC

CCC

C  

 



 

 12 

 

     

















=

κ
κ

κ
ε

00

00

00

   (2.1) 

 

where: d14 = 2.69+1.13x (pC/N); 

 C11=118.8+1.4x (GPa); C12=53.8+3.2x (GPa); C44=59.4-0.5x (GPa); 

 κ =10.89-2.73x; 

 x is the Al mole fraction (0<x<1). 

 

Also, the general density of AlxGa(1-x)As alloy is given by: ρ =5360 -1600x (kg/m
3
) 

 

Within the Al0.3Ga0.7As crystal plane, both mechanical and piezoelectric properties 

vary with crystal direction. To obtain these properties, rotation of property tensors is 

required. Using the indicial tensor notation, the transformed stiffness tensor (Cijkl) and 

piezoelectric tensor (dijk) can be found from the original tensors for an arbitrary 

azimuthal angle φ as [24],  

  mnoplpkojnimijkl CC ⋅= αααα'
    (2.2) 

  mnokojnimijk dd ⋅= ααα'
     (2.3) 

where: index i,j,k,l,m,n,o,p =1,2,3; 

 αxy is direction cosine determined from the direction cosine matrix, 
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Using Matlab, the above rotation calculations were performed within the film plane, 

with the results shown in Figure 2.2 and 2.3.  As shown in Figure 2.3,  the transverse 

piezoelectric coefficient d31 reaches its maximum value 3.0 pC/N in <011> direction 

as the shear piezoelectric coefficient d36 diminishes to zero at this direction, while in 

<001> direction d36 achieves its maximum value 3.0 pC/N and d31 drops to zero. 

 

Ideal isotropic materials should have a circular pattern in the property polar plots. 

Apparently, Al0.3Ga0.7As crystal is very anisotropic both in elastic stiffness and in 

piezoelectric transduction. Most beam type devices are aligned with the <011> 

direction so that the maximum d31 is realized. For an extensional mode Al0.3Ga0.7As 

beam, if its width is too large, the other twisting or flexural modes will be introduced 

and its performance is deteriorated. 

 

 
Figure 2.2: Stiffness coefficients C11 and C66 in (001) Al0.3Ga0.7As plane 
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Figure 2.3: Piezoelectric coefficients d31 and d36 in (001) Al0.3Ga0.7As plane 

 

2.3 Elastic Wave Propagation Speed and 2D Resonator Profile 

In this section, the elastic wave propagation speeds in all directions in (100) plane of 

Al0.3Ga0.7As are calculated based on the material properties obtained above. For free 

vibrations, the wave equation that describes elastic waves in an anisotropic elastic 

medium is as following,  

    
j

iji

xt

u

∂

∂
=

∂

∂ σ
ρ

2

2

     (2.5) 

where: index i,j = 1,2,3; 

 ui component of displacement vector; 

 σij stress tensor. 

  

The waves propagating in a piezoelectric crystal are really a combination of elastic 

and dielectric polarization modes. The constitutive equations of a piezoelectric 

material are given as: 

   kkijklijklij EeuC ⋅−⋅=σ  
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   jkijkjiji ueED ⋅+⋅=ε      (2.6)  

where: tensor index i,j,k,l = 1,2,3; 

 Cijkl elastic constants; 

 uij strain tensor and 




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∂
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1
; 

 ekij piezoelectric tensor and related to dijk tensor by mnklimnijk Cde ⋅= ; 

 Ek electric field; 

 εij dielectric constant; 

 Di electric displacement; 

  

In equation (2.5) and (2.6), the summation convention for repeated indices is used. 

The electric field Ek can be expressed as the gradient of a scalar potential φ: 

k

k
x

E
∂
∂

−=
φ

. Also, according to the Maxwell equation, one has: Di,i = 0. 

 

Note that the tensor forms are employed in the above equations instead of the 

compact matrix forms, since the tensor representation can be transformed as 

coordinate transforming. Assume the propagating plane waves have the following 

solution forms 
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where: bi are direction cosines and satisfy the relation, 12

3

2
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 v is the phase velocity (speed); 

 λ is the wavelength. 

 

Note in solution (2.7), the direction of wave propagation is defined by the vector k = 

(b1,b2,b3). Now substitute solution (2.7) into equation (2.5) and (2.6), after successive 

algebraic operations, the following equation is obtained: 

   0)( 2 =⋅⋅⋅−Γ iijij v αδρ    (2.8) 

where:  li

srrs

nmmklmij

ijklij bb
bb

bbee
C ⋅⋅









⋅⋅

⋅⋅⋅
+=Γ

ε
   (2.9) 

 

The set of quantities Γjk form a rank 2 tensor or Christoffel tensor. Equation (2.8) is 

an eigenvalue problem of the Christoffel tensor [25]. The eigenvalues of Γjk are 

directly related to the three wavespeeds, with one corresponding to the wave parallel 

to k (longitudinal wave), and the other two are corresponding to the waves 

perpendicular to k (transverse or shear waves). 

 

In the plane of (100) AlxGa(1-x)As crystal plate, the direction vector k has the format 

of (cosφ, sinφ, 0). The material properties given by (2.1) are in matrix formats. In 

order to apply formula (2.9), one has to convert them into tensor formats, and the 

index conversions follow the transformation rules given in the table below [24]. 

Table 2.1: Correspondent indices between matrix and tensor 

 

Tensor indices 11 22 33 23, 32 31,13 12, 21 

Matrix indices 1 2 3 4 5 6 

 



 

 17 

 

Once the tensor forms of AlGaAs properties are known, the formula (2.9) can be 

applied. Using Matlab, the velocities of wave propagation were calculated from 

equations (2.8), (2.9) (The Matlab program is given in Appendix A).  The results are 

presented as a function of azimuthal angle φ in the (100) plane in Figure 2.4. The 

longitudinal elastic wave speed in this figure is of particular interest for the disk 

resonator design. Unlike an in-plane isotropic material, whose speed profile is an 

ideal circle, the Al0.3Ga0.7As crystal has a speed profile similar to a rounded square 

due to the inherent material anisotropy. 

 

An ideal, longitudinally vibrating, piezoelectric plate should have the same profile as 

the velocity profile of its elastic wave propagation to ensure a pure resonating mode 

with spurious modes excluded. When the longitudinal, fundamental mode of a 

boundary-free plate is excited at resonance, a standing elastic wave is created when 

the radial dimensions are equal to the half wavelength of the resonance frequency. 

Inspired by this concept, a new design methodology for a disk-shaped planar 

resonator is proposed in which the free boundary of the 2-D resonator is shaped 

proportional to the profile of elastic wave propagating speed, and then scaled to set its 

radial dimensions equal to the half wave length of the desired resonating frequency, 

i.e., 

    
r

k

k
f

v
R

⋅
=
2

     (2.10) 

where: Rk is the radial dimension; 

 vk is the elastic wave propagating speed in same direction; 

 fr is desired resonant frequency.   
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Figure 2.4: Velocity of wave propagation in Al0.3Ga0.7As (001) plane 

 

 

2.4 Finite Element Analysis and Parameter Extraction 

2.4.1 Modal analysis and resonator working mode 

To verify the design concept and gain more insight to the planar disk resonator, a 

finite element model was created in ANSYS 8.0. In this model, the piezoelectric 3-D 

element SOLID98 was used for the piezoelectric material, with Al0.3Ga0.7As 

properties given by equation (2.1). For this simulation, continuous electrodes are 

applied to the top and bottom surfaces of the piezoelectric plate. Modal analysis was 

conducted to determine resonant frequencies and mode shapes for a 5 µm thick 

resonator with lateral dimensions varying between 80 um in the <001> direction and 

89 µm in the <011> direction. The first three in-plane vibration modes resulting from 

this analysis are shown in Figure 2.5. 
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Figure 2.5: Displacement contours of the first 3 in-plane resonant modes predicted 

by FEA model 

 

 

However, when the plate is actuated by applying an electric field between the top and 

bottom electrodes, modes 1 and 3 will not be excited. This observation results directly 

from the form of the piezoelectric matrix in equation (2.1), which dictates that only 

shear strains are generated upon application of an electric field across the thickness 

a)  Mode 1, fr = 23.1 MHz 

b) Mode 2, fr = 29.8 MHz 

c) Mode 3, fr = 33.6 MHz 
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(z-axis) of the resonator. Since modes 1 and 3 are excited only by normal strains in 

the <001> directions, these modes are suppressed for the chosen resonator geometry. 

Thus the undesired modes are effectively eliminated as a direct result of the AlGaAs 

anisotropy and proposed design approach. This can be further validated by observing 

the electrical admittance spectrum of the resonator. The admittance predicted from 

the finite element model for a 1 V amplitude sinusoidal voltage applied to the top 

electrode is shown in Figure 2.6. Only one resonant peak is visible in this figure, at a 

frequency (29.8 MHz) very close to the predicted 2
nd
 mode frequency (30.8 MHz), 

while the predicted 1
st
 and 3

rd
 modes do not appear at all. This phenomenon is also 

verified by the experimental results from the built prototypes. Figure 2.7 shows the 

measured impedance response vs. frequency, i.e., transmission response, in the range 

of 20 MHz to 35MHz. Clearly, only one peak shows in this measured curve and the 

correspondent frequency of the peak is 30.1 MHz, which is very close to the FEA as 

well as the theoretical predicted resonance frequency.  

 
Figure 2.6: Simulated admittance spectrum for an 80µm disk resonator 
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Figure 2.7: Measured transmission response of the 80µm disk resonator prototype 

 

 

The fact that the antisymmetric <011> breathing mode shown in Figure 2.5 (b) is the 

only mode to appear in the spectral response offers another practical benefit. Because 

this mode possesses 4 nodal points where the disk boundary intersects the <001> axes, 

the anchors may be placed at these points rather than the center of disk, enabling 

anchor losses to be minimized in a manner which is compatible with the AlGaAs 

microfabrication process. Figure 2.8 shows the working mode of the 80 µm disk 

resonator with 2 support beams. The FEA results indicate that this support structural 

design has minimum effect on the disk resonator performance. Nevertheless, the 

energy loss through the support beams is thoroughly studied in the later chapter. 
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Figure 2.8:  Working mode shape of the 80 µm disk resonator with dual support 

beams 

 

2.4.2 Parameter extraction and motional resistance 

A piezoelectric resonator can be modeled by an equivalent circuit shown in Figure 2.9. 

The lumped elements: Me, Ke, and Ce represent the modal mass, modal stiffness, and 

modal damping of the operational resonant mode, respectively.  These lumped 

mechanical components are coupled to the electric domain through an ideal 

transformer with a transduction coefficient η. This circuit can be further simplified by 

removing the transformer and forms the well known Butterworth-Van Dyke 

equivalent circuit, which is shown in Figure 2.10. 

 
Figure 2.9:  Equivalent circuit for a piezoelectric resonator 
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Figure 2.10: Butterworth-Van Dyke equivalent circuit for a piezoelectric resonator 

where:  Lx=Me/η2
, Cx=η2

/Ke, Rx=Ce/η2
 

 

 

The resistor Rx, also called motional resistance, is the most important parameters for a 

resonator. Since, it determines the resonator impedance at resonance, and is directly 

related to the quality factor Q of a resonator by: 

    
x

rx

R

L
Q

ω⋅
=     (2.11) 

where: xxr CL ⋅=ω  is the resonance frequency. 

 

The algorithms are developed to derive Me, Ce, Ke, and η based on the FEA modal 

analysis results. And they are listed below: 

• Effective mass Me calculation 

∑∫ ⋅=⋅⋅Φ=
ielement

ii

V

dmdVMe 22 ρ    (2.12) 

where: Φ is the mode shape function; 

 mi is the element mass; 

di is the element displacement. 

• Effective stiffness Ke calculation 
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ere MK ⋅= 2ω      (2.13) 

• Damping coefficient Ce calculation 

    
Q

M
C er

e

⋅
=
ω

     (2.14) 

The quality factor Q is obtained through measurement 

• Electromechanical transduction coefficient η calculation 
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where: σxy i is the i
th
 element shear stress; 

d36 crystal shear piezoelectric coefficient (refer to equation (2.1)); 

dAi is the i
th
 element area on electrode; 

dmax is the maximum displacement of the mode shape. 

 

Once the mechanical lumped components: Me, Ke, Ce, and η are known, then the 

values of electric components: Lx, Cx, Rx can also be decided. The resonator with the 

lateral size of 80 µm is chosen as the calculation example. All the extracted 

parameters of this resonator from equation (2.12)-(2.15) are listed in Table 2.2.  

 

 



 

 25 

 

Table 2.2: Extracted Parameters of the 80 µm Al0.3Ga0.7As disk resonator 

 

 
 

 

 

 

 

 

 

 

 

 

 

 
 

 

 

 

 

 

 

 

 

 

 

It is interesting to know that the lumped mass Me of the 2D disk resonator is about 

47.5% of the total disk mass, this is comparable to that of an extensional 1-D beam 

resonator, whose modal mass is 50% of the total beam mass. It is known that the 

higher percentage of equivalent lumped mass, the more efficient of a resonator 

structure involving in the vibration. Most importantly, the motional resistance Rx of 

the disk resonator is significant lower than the beam type resonator design, and the 

transduction coefficient η – the most important parameter of an electromechanical 

resonator – is more than doubled that of the correspondent extensional beam 

resonator [17]. High η value means high electromechanical coupling effect and it 

eventually translate to a low motional resistance Rx (Rx=Ce/η2).  The above FEA 

Resonator Type 

 
80 µµµµm Disk 

 

Resonance Frequency 

 

29.8 MHz 

Quality Factor Q 

(measured in air) 

6,500 

 

Effective Mass 

Me 

6.13 x10
-5
 mg 

 

Effective Stiffness 

Ke 

2.149 x10
6
 N/m 

 

 

Mechanical 

Parameters 

Damping Coefficient 
Ce 

1.77 x10
-6
 N/m/sec 

Electromechanical Transduction 

Coefficient η 
2.86 x10

-5
 N/volt 

 

Equivalent Inductor 

Lx ( Lx=Me/η2
) 

0.075 H 

 

Equivalent Capacitor 

Cx( Cx=η2
/Ke) 

3.81 x10
-4
 pF 

 

Electric 

Parameters 

Equivalent Resistor  

Rx ( Rx=Ce/η2
) 

2.16 kohm 



 

 26 

 

simulation results prove that this 2D in-plane resonator design works well as expected 

and it has much better performance over the extensional beam resonator. In Chapter 5, 

the experimental measurements on the prototypes will further validate these 

theoretical and FEA predictions. 
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Chapter 3 : Fabrication Process 
 

3.1 Introduction 

The piezoelectric resonators in this study are based on heterostructure AlxGa1-xAs 

single crystal films. III-V materials are widely used for the production of high-speed 

VLSI circuits and laser based optical communication systems for a long time. 

Recently, there has been growing interest in the applications of III-V materials to the 

MEMS devices. In this chapter, a general overview of III-V MEMS technology is 

given in first section. The advantages of the AlxGa1-xAs family crystals are 

highlighted, which are the reasons behind the choice of utilizing AlxGa1-xAs in the RF 

MEMS resonators and filters. In the following section, the top-down MEMS 

fabrication process developed in this project is detailed. This unique process 

accommodates several salient features in the novel 2D contour mode resonator 

devised in this project such as the electrically isolated ohmic contact pads, a free 

standing velocity profiled resonator plate with long support beams. The fabrication 

process flow is described and vividly illustrated with the colored cross-section views 

in the last section. The hands-on work to develop the above mentioned fabrication 

process is conducted by another member of our team – Dr. Kumar Parshant [16]. My 

personal contributions to this area are mainly on the device design, mask layouts, and 

provide the feedbacks, comments on how to realize the 2-D resonator with good 

electric access and minimum parasitic impedance. 
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3.2 Fabrication Techniques 

III-V materials are the compounds consisting of group-III element such as B, Al, Ga, 

In and group-V elements such as N, P, As, Sb. Due to the inherent large band gap and 

high mobility of electrons in these materials, they are widely used in the production 

of high-speed VLSI electronics, monolithic microwave IC, and laser based optical 

systems. GaAs is the most well-known and commonly used III-V materials in 

semiconductor industry. It also has other unique properties such as piezoelectric 

properties that are comparable to those of quartz, piezoresistive characteristics with 

piezoresistive values higher than those of Si, and piezooptic [18, 26].  To exploit 

these wonderful properties of III-V materials, more research efforts have been made 

recently to develop a variety of MEMS devices by using III-V materials [21, 26, 27]. 

An important III-V material that has been the focus of several studies for 

piezoelectric MEMS is AlxGa1-xAs, including pure GaAs and AlAs [20, 27-29].  

 

The AlxGa1-xAs possesses moderate piezoelectric transduction property. The highest 

piezoelectric coupling coefficient happens at Al mole fraction x=1, i.e. pure AlAs, 

which exhibits a theoretical shear-mode piezoelectric coefficient of d14=3.82pC/N [18] 

and this value is comparable to that of quartz crystal. However, AlAs suffers from 

oxidization problem. To reduce the oxidation effect, a lower Al mole fraction of 

x=0.3, i.e. Al0.3Ga0.7As, is chosen as the transduction material in this project. Another 

motivation is that an Al0.3Ga0.7As structure can be released by selectively etching off 

the sacrificial layer of GaAs or Al0.7Ga0.3As underneath it. Furthermore, the technique 

of epitaxially grown III-V materials is well developed. In this work, the molecular 
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beam epitaxial (MBE) growth is used to deposit the hetero AlxGa1-xAs films on a 

clean semi-insulating 3” (100) GaAs substrate. The piezoelectric transducers based on 

AlxGa1-xAs films offer several benefits: well-characterized and low defect density 

epitaxial growth processes for single crystal films; the ability to integrate lattice-

matched electrodes for released resonator plate with minimal stress gradients; the 

potential for direct integration with high-speed electronics and optoelectronics. 

 

Unlike previously reported piezoelectric AlGaAs microstructures [20], our process 

employs a Cl2-based inductively coupled plasma reactive ion etching (ICP RIE) to 

pattern the 2D resonator plate as well as its support beams and contact pads. The RIE 

is an anisotropic, physical etching, it can precisely carve the outline of a 

microstructure and provide a smooth and vertical side walls. But, the etching 

selectivity between AlxGa1-xAs and GaAs is poor. Hence, the time controlled etching 

with endpoint detection is necessary in order to achieve the desired etching depth. 

 

Another unique feature in this MEMS resonator is the utilization of Al0.3Ga0.7As 

heterostructure, where the in situ Si doped top and bottom Al0.3Ga0.7As layers 

(Al0.3Ga0.7As:Si) are served as the electrodes and the transduction Al0.3Ga0.7As layer 

is sandwiched between these Si doped layers. In contrast, other piezoelectric 

microstructures in literatures employ amorphous metal layers (e.g.: Al, Au, or Pt) as 

electrodes. However, these metal layers present two problems for device operation. 

First, the use of multiple materials introduces stress gradients, which can lead to large 

curvatures and nonlinearity behaviors. Second, the interfaces between multiple layers 
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as well as the metal films themselves are potential sources of damping, plus it has 

been proven that the metallization of a microstructure leads to significant increase of 

thermal elastic damping [8].  In the present process, the use of the lattice-matched, 

AlGaAs heterostructure fundamentally eliminates the above problems. 

 

In a RF device, high parasitic capacitance can ruin its response characteristics. When 

RF signal is applied to a RF resonator or filter, it will be shunted away through the 

low impedance of the parasitic capacitance rather than through the designated device. 

This is called feed-through effect. Thus, a good RF device should maintain as 

minimum parasitic impedance as possible. Regarding the piezoelectric RF device, 

since piezoelectric is a good dielectric medium, the electrode contact pads in this 

device may introduce a considerable parasitic capacitance. Often, this parasitic 

capacitance is overwhelming over the device capacitance and it presents a serious 

challenge to MEMS RF designers. In this work, a novel approach is developed which 

can effectively eliminate the parasitic capacitance from the contact pads. In this 

solution, an isolation trench around the top electrode contact pad is created by RIE 

etching through the hetero AlGaAs layers.  This effectively cut off the electric 

connection between the bottom AlGaAs:Si layer underneath the top electrode contact 

pad and the electric contact pad of the device. However, the top contact pad is also 

disconnected from the top electrode layer of the 2D resonator plate. This is fixed by 

the deposition of another metallic layer which bridges the top contact pad and the 

device top electrode layer over the parylene filled isolation trench. Comparing to the 
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previously developed four-mask process which has been verified on the beam type 

resonator design [15], this approach requires three more masks. 

 

The 2D resonator plate has to be freestanding and suspended by the support beams. 

Chemical wet isotropic etching is selected to etch off the sacrificial Al0.7Ga0.3As layer 

and release the resonator structure. 

 

The whole fabrication process starts on a prepared (100) GaAs wafer where the 

multiple layers of AlGaAs are already grown. From this point, the fabrication starts to 

work from top layer to bottom layer until the resonator structure is formed. The 

details of this seven-mask process are presented step by step in the following section. 

 

3.3 Fabrication Process Flow 

The top-down process starts with the wafer preparation. A 2µm thick sacrificial 

Al0.7Ga0.3As layer is first grown on a (100) GaAs wafer by MBE. Then, a 3-layer 

Al0.3Ga0.7As heterostructure is grown on top of the sacrificial layer, with top and 

bottom Al0.3Ga0.7As layers heavily Si-doped to achieve high conductivity. These 

electrode layers are 0.5µm thick, and the undoped piezoelectric operation layer is 

1.0µm thick. Based on the prepared wafer, a seven-mask process is used to fabricate 

the suspended disk and metal contact pads. A finished RF device from this process is 

shown in Figure 3.1. 
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Figure 3.1: Microscopic picture of a fabricated 2D AlGaAs filter 

 

 

First, a window is opened to expose the bottom Al0.3Ga0.7As layer by ICP RIE. This 

opening is used to define the bottom electrode contacts. Next, metalization using a 

multilayer stack of Pd/Ge/Ni/Au is performed on selected top and bottom 

Al0.3Ga0.7As:Si electrode areas using a lift-off process, followed by rapid thermal 

annealing (RTA) to provide a good ohmic contact pads. In the third step, the isolation 

trench surround the top electrode pads is formed by ICP RIE with time controlled 

etching, the depth of the trench reaches the sacrificial layer. After that, the top 

electrode Al0.3Ga0.7As:Si layer is pattern by ICP RIE. This step is very import for the 

2-port resonator design, since it defines the actuation part and sensing part electrode 

patterns. In the fifth step, a parylene layer is deposited on the device surface. The goal 

of applying this polymer conformal layer is to fill up the isolation trench and provide 

the support for the metal bridge which builds the electric connection between the top 

electric contact pad to the device top electrode. Following the parylene deposition is 
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the O2-based RIE which opens a window on the metal bridge area. Then, in the eighth 

step, Cr/Au metal films are deposited on the whole die and the metal bridge is formed 

by lift-off process. After this, the remained parylene layer is etched off by RIE. In the 

ninth step, another mask is used to define the resonator 2D geometry, and the full 

Al0.3Ga0.7As stack is etched through to the sacrificial Al0.7Ga0.3As layer by ICP RIE. 

Finally, the resonator is released by etching the underlying sacrificial Al0.7Ga0.3As 

film in a solution of concentrated hydrofluoric acid (HF) diluted 50% with deionized 

water. The HF wet etching is isotropic and provides excellent selectivity between the 

sacrificial Al0.7Ga0.3As layer and structural Al0.3Ga0.7As films. A CO2 super critical 

dry is applied right after the wet etching in order to prevent the resonator plate 

adhering to the substrate due to capillary forces. The whole fabrication process is 

vividly illustrated in Figure 3.2 which shows the cross-section changes in each step of 

the aforementioned process. 

 

Using this process, the 2D resonators and filters were successfully fabricated with 

various lateral sizes such as 100µm, 80µm, 60µm, and 40µm. While, different 

support beam lengths were also tried. The characterizations of these devices are 

presented in Chapter 5. 
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Figure 3.2: Schematics of fabrication process for AlGaAs RF devices 

 



 

 36 

 

Chapter 4 : Energy Dissipation and Quality Factor of the 

AlGaAs Disk Resonator System 
 

4.1 Introduction 

It is generally desirable to have high Qs in resonators and filters for wireless 

communications, since the phase noise is inversely proportional to the square of Q 

and the insertion loss decreases as Q increases [7, 30]. The quality factor is defined as 

the ratio of the total energy in a resonating device to the energy dissipated within a 

vibration cycle; hence it is a direct indicator to the energy loss in a resonating system. 

In order to design a high Q resonator, it is necessary to understand what factors 

contribute to the energy dissipation.  

 

The damping mechanisms in a vibrating system can be categorized into two types: 

extrinsic ones and intrinsic ones. Extrinsic damping usually can be minimized by 

proper design or change of operating conditions[31, 32]. For instance, support loss 

can be effectively reduced by a proper support structure design. Squeezing film 

damping can also be minimized by either increasing the gap between the moving 

plate and the substrate or employing a perforated plate instead of a solid plate.  

Intrinsic mechanisms, on the other hand, are more difficult to control since they 

depend primarily on the material and geometric properties of structures. Examples of 

this type are thermoelastic loss[33], surface loss[34], and bulk defect loss[35]. 

Thermoelastic damping is usually a dominate dissipation source in vacuum 

environment, especially, if a flexure vibrating mode is utilized as the operational 
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mode in a resonator. Intrinsic damping increases with miniaturization of devices and 

can be the limiting factor on the quality factors of resonators in the micro and sub-

micro scales. 

 

Considering the unique design of our 2D planar-mode plate, three energy dissipation 

sources are identified as the dominant factors in terms of energy dissipations, they are: 

anchor loss, viscous air damping, and thermoelastic damping.   In this chapter, studies 

on these three damping mechanisms on the specific case of the 2-D resonator are 

carried out. Theoretical formulas for estimating the quality factors corresponding to 

each dissipation mechanism are presented and the total quality factor is obtained after 

combining all the three energy loss terms. The calculated total quality factors are 

compared with the measured results. This study provides us with valuable design 

guidance and insights to this new type resonator.  Moreover, it reveals the upper limit 

on the quality factor for this type of resonator. 

 

4.2 Air damping in laterally oscillating microresonators 

When the microresonators are enclosed in fluid surroundings (air or other gases), the 

oscillating structures will excite the ambient fluid and cause energy dissipation 

through slide-film damping and/or squeeze-film damping.  If the dimension of 

resonator plate is much larger than the air film thickness, the air damping will be the 

dominant energy dissipation source [36]. In contrast to vertically driven devices, in 

which squeeze-film damping is the major source of energy dissipation, viscous slide-

film damping is the major dissipative source in laterally driven structures. In order to 
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predict the viscous fluid drag, it is necessary to accurately determine the detailed air 

flow around the complicated three-dimensional resonator structures. It is well known 

that modeling three-dimensional (3D) air damping for MEMS devices requires 

considerable computational resources. Based on the complicated laterally driven 

comb structure, several numerical methods for 3D fluid drag force prediction have 

been developed [37-39]. These 3D simulations involve tremendous development 

effort on special algorithms and code writing, in addition, the results have to be 

verified by experimental data. However, for a simple plate structure which vibrates 

laterally, 1D analytical Stokes can provide good first-order estimation on the slide-

film air damping. In fact, [36, 40] have demonstrated than the 1D Couette model can 

predict the quality factor Q of a laterally oscillating plate very close to measured ones,  

about 10-20% deviation from the measured results. Since our resonator is a simple 

shaped 2D plate and its fundamental working mode is a planar contour mode, in our 

effort to estimate the viscous air damping, the 1D Stokes model for infinite sliding 

plate is adopted. Based on this model, the theoretical predicted Qs for different 

resonator sizes are obtained. 

 

In our 2D resonator system, when the plate is oscillating laterally, a steady-state 

velocity profile in the ambient fluid film is formed. The fluid behavior is expected to 

be accurately described by solutions of the Navier-Stokes equation. For a small-

amplitude motion under no overall pressure gradient, the Navier-Stokes equations 

reduce to[38-40]: 
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where: ν is kinematic viscosity; 

 v is velocity distribution of fluid film. 

 

In order to use the above equation accurately represent the fluid behavior around a 

moving planar structure, the following conditions have to be satisfied. 

� The minimum size of the microstructure and fluid-film thicknesses would be 

much larger than the mean free path of gas (the mean free path of air is 

0.065µm) 

� The width and length of the plate are much larger than the sliding film 

thickness (satisfy the infinite planar assumption). 

� The amplitude of the oscillation is small compare with the minimum feature 

size of the microstructure. 

After scrutinizing our 2D resonator design, we are sure that all the above conditions 

are satisfied.  

 

Equation (4.1) is solved in the frequency domain for a steady-state sinusoidal velocity 

excitation with amplitude of uo and angular frequency ωo. The solution can be written 

in the form 

   )cosh()sinh()( 21 zqCzqCzv ⋅⋅+⋅⋅=    (4.2)  

where: νωojq=  is the complex frequency variable; 

  constant C1 and C2 are determined from the boundary conditions. 
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The boundary conditions for the fluid flow above the plate are: at plate v(0) = uo; far 

away from the plate v(∞) = 0. Combine with the above solution, the velocity function 

of the fluid above the plate is determined. 

   
zq

o euzv ⋅−⋅=)(      (4.3) 

where: uo is the oscillating amplitude of the plate. 

 

The boundary conditions for the fluid flow beneath the plate are: at the substrate v(-d) 

= 0; near the oscillating plate v(0) = uo. The velocity function is obtained, 

   
)sinh(

))(sinh(
)(

dq

zdq
uzv o ⋅

+⋅
⋅=     (4.4) 

 

The derived fluid velocity solutions and the associated coordinate system and the 

vibrating plate are explicitly illustrated in Figure 1. 

  
Figure 4.1: Velocity profiles of fluid layers induced by a laterally oscillating plate 

 

 

According to the Newton’s law of viscosity[40], the drag shear stress, τo, on the plate 

surface is proportional to the velocity gradient at the surface: 
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dz

dv
o µτ =      (4.5) 

Due to the friction shear stress τo, the fluid-film acts as a dashpot and it dissipates the 

amount of energy D in one cycle, 

    ∫ ⋅⋅=
π

ωωωτ
ω

2

0
0 )()()(

1
tdtvtD   (4.6) 

The Q factor of a resonator system is defined as the ratio of the total energy stored in 

the resonator system, W, to the energy dissipated through the plate area, A: 

    
DA

W
Q

⋅
⋅

=
π2

     (4.7)  

Our 2D plate microresonator can be modeled as a lumped parameter system which 

consists of mass M, spring K, and dashpot C. Based on this single-degree-of-freedom 

(SDOF) lumped model, the quality factors due to the top viscous fluid damping Qtop 

and bottom viscous fluid damping Qbottom can be derived from equation (4.7). 

   

))2sin()2(sinh(
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−
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⋅
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⋅

=

⋅⋅
⋅

=

  (4.8) 

where: vo 2/ωβ = ;  

 µ is the absolute viscosity of the ambient fluid. 

 

In our case the microresonator is exposed to atmosphere, therefore the ambient fluid 

is air. The overall Qair factor due to air slide-film damping is estimated as: 

   
endbottomtopair QQQQ

1111
++=    (4.9) 

where: Qend is the quality factor from the end surface effect.  



 

 42 

 

 

If the oscillating plate is infinite large or the ratio of the lateral dimension to the 

thickness is much larger, then the end air damping effect is not significant and the 

Qend can be neglected. But, if a resonator has comparable lateral dimensions relative 

to its thickness, the end air damping effect will play an important role in the overall 

damping. For large plates, this term is usually ignored from equation (4.9). This 

results in the quality factor Qair obtained from the Stoke sliding film model is usually 

overestimated. In fact, it is believed that the 10-20% deviations between the 

calculated quality factor Qair and the measured air damping quality factor in[36, 40] is 

due to this end effect.  

 

Applying equation (4.8) and using the FEA model determined mass M and spring K, 

the quality factor Qair of our 2D resonator is obtained.  Table 1 lists the calculated 

Qairs correspondent to different plate sizes. Keep in mind that these calculations 

exclude the end air damping effect, as the plate size becomes smaller, the estimated 

Qair may be more optimistic. 

 

Table 4.1: Estimated Qair factors based on the Stoke sliding film model 

 

Resonator 

Lateral Size 
100µm 80µm 60µm 40µm 

Qair 18,165 20,378 23,684 29,384 
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4.3 Anchor loss (a.k.a. support loss) through support beams 

Ideally, the 2D, planar, AlGaAs piezoelectric resonator should be freely suspended in 

air. But, to keep it in a fixed position in space, it has to be supported and attached to 

the frame of the substrate. In the current design, it is supported by slender beams, as 

shown in Figure 4.2; one end of the beam is located at the resonator’s nodal points at 

the middle of the plate, and the other end is fixed with the structural frame. This 

support structure can be modeled as a clamped – pined beam (C-P), and it is depicted 

in Figure 4.3. There are two major energy dissipation sources in this supporting 

system: one is the anchor loss at the clamped end; the other is the thermoelastic loss 

within the beam. 

 
Figure 4.2: 2D AlGaAs resonator with two support beams 

 

 

 
Figure 4.3: Support beam model: clamped-pined (C-P) beam 

 

Support loss, also called as anchor loss, is the vibration energy of a resonating object 

dissipated by transmitting a portion of this energy into the supporting substrate. 

During the in-plane vibration, the support beam exerts both dynamic shear force and 



 

 44 

 

moment at the clamped end. Figure 4.4 illustrates the shear stress τn and normal stress 

σn induced by the beam to the elastic base.   

 

 
Figure 4.4: Excitation source from an in-plane bending beam to a semi-infinite plate 

 

 

The perturbation force will excite elastic waves, which propagates into the infinite 

elastic base without reflection and is considered as the anchor loss of this system. In 

most cases, the elastic wavelength is much larger than the thickness and width of the 

beam. Under this condition, the support loss due to the moment (generated by normal 

stress σn in Figure 4.4) has been proved to be negligible compared to that incurred by 

the vibrating shear force [41, 42]. In our 2D resonator system, this assumption is 

satisfied. For instance, for a lateral size 80µm 2D resonator, its wavelength is equal to 

the double of the plate size, i.e. 2x80µm, which is much larger than the support beam 

cross-section dimensions (≤5µm). 

 

Z. Hao [41] and M.C. Cross [42] have laid the foundation of the analytical framework 

for a vibrating beam attached to a semi-infinite plate and both have the same 

thickness. In their work, the shear force at the end of the beam and the plate 

displacement at the anchor location induced by the shear stress are analytically 
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derived. And, the work done by the shear force is calculated and treated as the anchor 

loss.  In our resonator design as illustrated in Figure 4.2, the support beam is located 

at the nodal point of the 2D plate, so the beam can be modeled as a C-P beam. In 

addition, if one considers the undercut at the frame plate created by the releasing wet-

etch process, then the analytical 2D model defined in [41, 42] is a good representation 

to our beam support system.  In this study, we employ the solutions from [41] to our 

support beam and determine its quality factor Qban due to the anchor loss. 

 

To determine the anchor loss at the end of the beam, the resonating mode shape has to 

be known. For a C-P beam, it has the mode shape function Φ(x) [43], 

 




 ⋅−⋅⋅+⋅−⋅⋅= ))sin()sinh(()cos()cosh()(
L
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x
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          (4.10) 

where: λi is the eigenvalue of the characteristic equation: 0)cot()tanh( =⋅ λλ ; 

 χi is the mode shape factor and is expressed as 
)sin()sinh(

)cos(-)cosh(

ii

ii

i λλ
λλ

χ
−

−= ; 

 subscript i denotes different resonant mode numbers (i = 1,2,3, …). 

 

Table 4.2 gives the first 10 mode shape factors and the correspondent roots of a C-P 

beam. 

 

 

Table 4.2: Mode shape factor χ and the correspondent eigenvalue λ for a C-P beam 

 
Mode 1 2 3 4 5 6 7 8 9 10 

λ 3.92 7.07 10.21 13.35 16.49 19.64 22.78 25.92 29.06 32.20 

χ -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 
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The quality factor Qban for a C-P beam, when only the anchor loss is taken into 

account, is given as, 
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where: L is beam length; 

 b is beam width; 

 υ is Poisson’s ratio; 

 Ψ transmission coefficient and is given as, 
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 where: vl is longitudinal elastic wave speed; 

  vt transverse elastic wave speed. 

 

The imaginary part of the integral contributes to the support loss and it can be 

calculated numerically. The Qban equation (4.12) shows that the anchor loss is 

proportional to the cube of (b/L), which implies that the longer and narrower beam, 

the smaller its anchor loss. This conclusion agrees with the design practice for support 

structure of bulk resonators. Often, the bulk resonator is suspended by means of a 

very-low-impedance support such as long, compliant strings [44]. 

 

In our microresonator experiments, two types of support beams are implemented: one 

has the width 5µm with various beam lengths; the other is 2µm with a variety of 

lengths. 
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The single crystal Al0.3Ga0.7As beam is along <001> direction, thus, it has the 

following material properties: υ = 0.315, vl = 4943 m/sec, vt = 3484 m/sec, E = 84.68 

GPa. And, from equation (4.10), the Ψ is numerically calculated, Ψ = 0.504. 

 

Now one can apply the theoretical solution of equation (4.11) to solve the quality 

factor Qban for each type of the beam. Tabel 4.3 and Table 4.4 summarize all the Qbans 

from these calculations. 

Table 4.3: Anchor loss quality factor Qban for support beam width b = 5 µm 

 

Resonator 

Size W 
100 µm 80 µm 60 µm 

Beam 

Length L 

110 

µm 

130 

µm 

150 

µm 

50 

µm 

90 

µm 

130 

µm 

30 

µm 

Quality 

Factor Qban 

 

81.3 

 

111.0 

 

126.8 

 

23.4 

 

52.2 

 

82.5 

 

10.5 

 

 

Table 4.4: Anchor loss quality factor Qban for support beam width b = 2 µm 

 

Resonator 

Size W 
80 µm 60 µm 40 µm 

Beam 

Length L 
48 µm 5 µm 61 µm 41 µm 38 µm 5 µm 

Quality 

Factor Qban 

 

188.9 

 

2.5 

 

179.2 

 

117.7 

 

61.4 

 

2.5 

 

 

Please note that the hereby quality factor Qban is for the support beam only, not for the 

whole 2D resonating system. Actually, in the last section of this chapter, we will deal 

with the translation of these Q factors into the whole resonator system ones. 
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4.4 Thermoelastic damping of the support beam 

In vacuum, thermoelastic (TE) damping has been shown to be a major source of 

energy dissipation in microresonators. In a thermoelastic solid, the strain field is 

coupled to a temperature field; compression stress increased temperature and tension 

stress lower temperature. Therefore, an oscillating stress gradient generates a 

correspondent temperature gradient. The irreversible heat flow due to the temperature 

gradient in the thermoelastic solid results in the energy dissipation, i.e. TE damping 

[8, 32, 33]. This TE damping presents an upper limit to the quality factor of an even 

the most perfectly designed and constructed resonator. 

 

For a flexural vibration beam, the compression and tension stresses happen on the top 

and bottom surfaces of the beam. Hence, the temperature gradient is defined by the 

beam thickness. In contrast, a longitudinal mode vibration plate, which is the case of 

the most in-plane vibration modes, the temperature gradient is defined by the 

wavelength instead. In most cases, the acoustic wavelength is much larger than a 

beam thickness, hence, a flexural mode beam suffers much more TE dissipation than 

a longitudinal mode object [45].  

 

Thermoelastic damping is governed by the dynamic equilibrium and heat conduction 

partial differential equations[46]: 
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where: α is the linear thermal expansion coefficient; 

 E is Young’s modulus; 

 ν is Poisson ratio; 

k is the thermal conductivity; 

ρ is the material density; 

C is the thermal capacity per unit mass; 

T0 is the equilibrium temperature; 

 e = ε11+ε22+ε33, the volume dilatation; 

 i = 1,2,3. 

Clearly, the mechanical field is coupled with the temperature field in equation (4.13) 

and (4.14). 

  

If a vibration mode has no volume change at any local places (e = 0) in the object, 

then theoretically, this vibrating object suffers no TE losses [33]. It is known that 

shear deformation causes no volume change; therefore, any oscillators operating in 

pure shear (or. torsion) modes suffer no TE damping. For example, a pure torsion 

mode of a beam involves no local volume changes. Hence, it does not have any 

thermoelastic losses when vibrating at this mode. 
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Regarding our MEMS resonator design, shown in Figure 4.2, since the 2D AlGaAs 

plate resonates at the in-plane longitudinal mode and the support beam vibrates at the 

flexural mode, the TE energy dissipation will mostly happen in the support beams. 

Moreover, since the shear stress is dominant in the resonating planar contour mode; 

the TE energy loss has minimum effect in the 2D resonator. However, in practice the 

in-plane vibrating mode inevitably induce some flexural component due to the non-

perfect symmetry of the structure. So, the TE dissipation exists even in a nominal 

shear vibration mode. Since the TE damping induced by the parasitic flexural modes 

is hard to be determined analytically, it has to be characterized through experiments 

[47]. 

 

In the following, we will apply the theoretical solution of TE damping for a 

homogeneous beam in flexural modes developed in [33] to the support beams in our 

resonating system and calculate the quality factor of the beam due to the TE damping. 

The support beam is made from epitaxial layer of Al0.3Ga0.7As crystal, and it can be 

treated as a homogeneous beam. 

 

The dimensionless Zener modulus Ψo is defined as [8]: 
C

TE

ρ
απ 0

2

0

2 ⋅
=Ψ

 (4.15) 

From the material perspective, Zener modulus is a good indicator about the 

thermoelastic damping phenomenon in a material. It is true that under the same 

conditions, the larger the Zener modulus is, the severer thermoelastic damping will be. 
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Table 4.5 lists the thermal, elastic properties of most common materials used in 

MEMS structures. 

Table 4.5: Nomial material properties at 300K [8, 18] 

 

Crystal 

Formula 

E 

(GPa) 

ρ 

(kg/m
3
) 

ρE  

(m/sec) 

k 

(W/m/K) 

C 

(J/kg/K) 
α 
(10

-

6
/K) 

Ψo 

Zener 

Modulus 

GaAs 85.3 5360 3989 44 334.9 6.4  0.0037 

Al0.3Ga0.7As 84.8 4880 4168 12 372.6 6.0 0.0032 

Si 160 2330 8287 150 686.7 2.6 0.0013 

Si3N4 250 3200 8839 8 937.5 3.0 0.0014 

Quartz SiO2 70 2200 5641 1.2 681.8 0.5 0.00002 

 

From Table 4.5, it is clear that the quartz crystal has the best performance in terms of 

TE damping. That explains why most of bulk, discrete resonators have accepted this 

material. In the MEMS world, GaAs has moderate Zener modulus, and Al0.3Ga0.7As 

has slightly better Zener modulus than that of GaAs crystal. The TE damping in the 

support beams can be approximated by Zener’s formula [46] 

    
20

1 Ω+

Ω
⋅Ψ=Ψ     (4.16) 

where: Ψ is the magnitude of thermoelastic damping; 

Ω is the dimensionless frequency and is defined as, 
k

Cb
2

2

π
ρ

ωτω ⋅=⋅=Ω

 (4.17) 

where: ω is the angular frequency; 

τ is the time constant associated with thermal diffusion; 

b is the beam thickness; 
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Based on the equation (4.17), it is not hard to prove that the thermoelastic damping Ψ 

reaches a maximum value Ψo/2 when the normalize frequency Ω equals 1. The 

function of Ψ(Ω) is plotted in Figure 4.5. 

 
Figure 4.5: Frequency dependence of thermoelastic damping in Al0.3Ga0.7As beam 

 

 

For a beam width b=2µm, the Ω = 1 condition corresponds to a vibration frequency 

fTE = 1/(2πτ) = 2.59 MHz. When design a resonator, one has to avoid this frequency 

in order to minimize the thermoelastic damping. Fortunately, all our 2D resonators 

vibrate at much higher frequency than fTE (Ω >>1).  

 

For the support beam shown in Figure 4.3, the quality factor QbTE of the beam due to 

its thermoelastic damping can be simply calculated from equation (4.16) as, 

Ψ
=

1
bTEQ      (4.18) 

 

Table 4.6 list the quality factor QbTE for all the support beams in this study. 
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Table 4.6: Quality factor QbTE of thermal elastic damping 

 

Resonator 

Size W 
100 µm 80 µm 60 µm 40 µm 

Beam Width 

b = 5 µm 

 

18,053 

 

22,864 

 

30,834 

 

47,151 

Beam Width 

b = 2 µm 

 

2,921 

 

3,684 

 

4,953 

 

7,557 

 

Note that the TE damping in a flexural bending mode beam is independent to the 

beam length as well as its vibration modes. Comparing the QTE to the other Qs 

obtained in previous section, since QbTE>>Qban, it is evident that the anchor loss and 

viscous air drag is the dominant energy dissipation source in this oscillating system. 

 

4.5 Overall quality factor of the resonator system 

The above quality factor calculations, the Q factors derived from the anchor loss and 

TE dissipation are for the support beams only, they are not the Q factors for the whole 

2D resonating system. In this section, we first convert the Q factors of the support 

beam into the ones for the whole resonator. Then, we combine all the Q factors 

derived from different energy dissipation mechanisms to form the overall quality 

factor Q of the resonator system. 

 

In our 2D resonator, the total energy Wtotal is comprised by two parts: the support 

beam energy and the 2D resonator energy. From the FEA models created in 

ANSYS10.0, the mechanical potential energy ratios of the resonator plate to the 

support beams for different designs are retrieved. For example, when an 80 µm 2D 

resonator with dual 48 µm support beams resonating at its operational mode, the FEA 
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model tells that the energy ratio Wtotal/ Wbeam = 495. Figure 4.6 illustrates the resonant 

mode shape obtained from the FEA simulation.  

 
Figure 4.6: The colored contour of mode shape obtained from FEA 

 

 

Once the energy ratio is known, one can simply convert the beam level quality factor 

into the whole system quality factor by multiplying it with this ratio such as: Qan = 

495Qban = 93,543; QTE = 495QbTE = 1,762,200, where Qan and QTE are the system 

level quality factors due to the anchor loss and TE damping in the support beams. 

 

According to the definition of the quality factor Q of a resonating system, 

    
W

W
Q total

∆
= π2     (4.19) 

where: ∆W denotes the energy dissipated per cycle of vibration; 

Wtotal is the total energy of the resonating system. 

 

In the above study, each energy dissipation source is treated separately. Since, these 

energy dissipation sources are independent to each other, one can simply sum all the 

energy loss terms to obtain the total energy loss ∆W as, ∆W = ∑∆Wi, where ∆Wi 

represents the energy loss from each different dissipation mechanism. Based on this 
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relation, the total quality factor Q can be calculated d by the individual quality factor 

Qi, 

    ∑=
i iQQ

11
    (4.20) 

After applying equation (4.20), the total quality factor Q of the resonator system is 

then determined. Table 4.7 and 4.8 summarize the overall quality factors for all the 

cases that we fabricated and tested. 

 

Table 4.7: Q factors of the 2D resonators with support beam width b = 5 µm 

 

Resonator 

Size W 
100 µm 80 µm 60 µm 

Beam 

Length L 

110 

µm 

130 

µm 

150 

µm 

50 µm 90 µm 130 

µm 

30 

µm 

Quality 

Factor Qair 

 

18,165 

 

20,378 

 

23,684 

Quality 

Factor Qan 

 

13,608 

 

16,632 

 

26,628 

 

7,287 

 

9,031 

 

10,725 

 

8,361 

Quality 

Factor QTE 

 

3.65M 

 

3.64M 

 

3.61M 

 

7.12M 

 

3.96M 

 

2.97M 

 

25.20M 

Quality 

Factor Q 

 

7,763 

 

8,662 

 

10,766 

 

5,364 

 

6,248 

 

7,010 

 

6,178 

 

 

Table 4.8: Q factors of the 2D resonators with support beam width b = 2 µm 

 

Resonator 

Size W 
80 µm 60 µm 40 µm 

Beam Length 

L 
48 µm 5 µm 41 µm 38 µm 5 µm 

Quality 

Factor Qair 

 

20,378 

 

23,684 

 

29,384 

Quality 

Factor Qan 

 

95,343 

 

4,713 

 

28,460 

 

56,304 

 

5,269 

Quality 

Factor QTE 

 

1.82M 

 

41.05M 

 

1.20M 

 

6.93M 

 

15.93M 

Quality 

Factor Q 

 

16,636 

 

3,824 

 

12,789 

 

19,254 

 

4,467 
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The above quality factor calculations are based on the first-order theoretical models 

from three major energy dissipation sources, apparently, the other secondary energy 

loss mechanisms, such as surface loss, radius corners induced TE and anchor loss, are 

not considered. However, these estimated Q factors given in Table 4.7 and 4.8 still 

reveal much information about how the geometries of this resonator will affect its 

overall Q factor, and also bring out insights to this unique resonator system.  Several 

interesting points can be drawn from these results. 

 

Among the three damping mechanisms, the thermal elastic damping in the flexural 

bending support beams have the least effect to the overall quality factor Q of the 2D 

resonator system. Since the Quality factor from the TE damping are more than two 

orders of magnitude larger than the Q factors from anchor loss and air fluid damping.  

However, as [47] point out that the flexural bending mode is inevitably induced 

during oscillating due to non-perfect symmetry of the resonator plate, and the non 

ideal shear stress state around the beam joint area, in real world the TE damping 

could be much larger (2-3 times) than the ones calculated from the ideal shear mode 

conditions. But these additional TE damping effects are hardly predicted by 

theoretical models and they are usually determined by empirical measurements. 

 

In the case of short support beams, the anchor loss is the dominant loss mechanism 

and the support loss determines the upper limit on Q. If one can effectively reduce the 

anchor loss, then the quality factor of the system will be greatly improved. In this 

situation, placing the resonators in vacuum would not help to increase the Q factors. 
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As for the cases of long support beams, the air damping starts to play an important 

role in the overall Q factor. In this planar, contour mode 2D resonator, the air 

damping mostly comes from the sliding-film viscous friction, which has much less 

damping effect than the squeezing-film air damping in the out-of-plate resonators. As 

mentioned before, the end effect of air damping is not counted here, as the lateral size 

of the resonator plate become smaller; this end effect contributes more portions to the 

overall air damping. 

 

In general, the predicted quality factors are promising, and they are an order of 

magnitude higher than that of the beam type counterparts [48]. In the following 

chapter, the real Q factors of the prototypes are measured both in atmosphere and in 

vacuum. Measured Qs are compared with the estimated Qs given in Table 4.7 and 4.8, 

demonstrating the same trends as observed in the theoretical predictions. 
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Chapter 5 : Performance Characterization and Verification 
 

5.1 Introduction 

Regarding the application of resonator, the parameters of major interest are resonance 

frequency fr, motional resistance Rx, quality factor Q, dynamic range (power handling 

capability), and thermal stability.  In this study, the AlGaAs disk resonators are 

characterized in all the five aspects.  A variety of AlGaAs disk resonators, whose 

resonance frequencies range from 24 MHz to 62 MHz, with different support beam 

lengths are fabricated and characterized. The prototypes are made in two batches in 

this study. The first batch uses the contact film masks which have low cost, buy 

relative low resolution. It has the thickness 0.5µm/4µm/0.5µm correspondent to the 

heterostructure of Al0.3Ga0.7As:Si, Al0.3Ga0.7As, Al0.3Ga0.7As:Si multi-layers; four 

support beam with 5µm width are implemented and they are located at the nodal 

points of the disk. The second batch uses project masks which cost more but have 

higher resolution. The thicknesses of the Al0.3Ga0.7As heterostructure are 

0.5µm/1µm/0.5µm; dual support beams with 2µm width are employed in this case. 

The scaled schematic view of the fabricated prototypes is shown in Figure 5.1. The 

experimental results are compared with the analytical and numerical simulation 

results. Brief discussions on the tested results are given.  
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Figure 5.1: Perspective view of the single port AlGaAs disk resonator 

 

5.2 Motional resistance measurement 

The equivalent circuit model of a single-port piezoelectric resonator may be 

represented by the classical Butterworth-Van Dyke model shown in Figure 2.12. At 

resonance, the overall resonator impedance is equivalent to the motional resistance Rx 

in parallel with the piezoelectric static capacitance Co. The motional resistance Rx 

dominates, since the capacitive impedance due to Co is much larger than Rx at 

resonance. Motional resistance is a critical resonator parameter, with impedance 

matching to 50 Ω RF electronics generally desired. Motional resistance for the 

fabricated resonators was measured using a transmission/reflection test set (HP 

87512A) connected to a network analyzer (HP 4395A), with the resonators directly 

connected to the 50 Ω input and output ports of the network analyzer. Values for 
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motional resistance were determined through the measurement of insertion loss at 

resonance (IL), and applying the following relationship [5]: 

P

IL

x RR −−⋅Ω= )110(50 20    (5.1) 

In this equation, Rp is the total parasitic resistance in series with the device under test, 

which must be subtracted from the total measured resistance to determine the intrinsic 

value of Rx. For our resonators, the parasitic impedance is primarily defined by the 

resistance of the Al0.3Ga0.7As:Si electrodes connecting the bond pads with the 

resonator through the support beam. Using a measured value of resistivity for the 

silicon-doped Al0.3Ga0.7As electrodes of 0.002 Ω cm, together with the known 

electrode geometries, Rp is estimated.  In this measurement, the resonance frequency 

of the device is also identified. Figure 5.2 presents a typical frequency response of a 

40 µm disk resonator obtained from this measurement. 

 
Figure 5.2: Transmission response of 40 µm Al0.3Ga0.7As disk resonator 
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There are two batches of the prototypes have been fabricated and both of them were 

fully evaluated. The difference between these two batches of the AlGaAs disk 

resonators are summarized in Table 5.1. 

 

Table 5.1: The differences between the two batches of the prototypes 

 

 Number of 

support beams 

Beam 

width 

Thickness of 

hetero-AlGaAs 

films 

Batch 1 4 5 µm 0.5/4.0/0.5 µm 

Batch 2 2 2 µm 0.5/1.0/0.5 µm 

 

The measured values of fr, and Rx are summarized in Table 5.2 and 5.3, together with 

the analytical and finite element predictions for resonance frequency. Moreover, the 

intrinsic motional resistances of the AlGaAs disk resonators are extracted by 

subtracting the support beam impedance Rp from the total measured impedance and 

they are listed in Table 5.2 and 5.3.  

 

 

Table 5.2: Transmission test results from the prototypes of the first batch 

 

 

 

 

 60 µm disk 80 µm disk 100 µm disk 

modeled (FEM) 39.7 MHz 29.8 MHz 23.8 MHz 

modeled (analytic) 41.2 MHz 30.8 MHz 24.7 MHz 
Resonance 

frequency 
Experimental fr 38.1 MHz 29.0 MHz 23.3 MHz 

Measured total impedance (Rp+Rx) 3.62 kΩ 4.40 kΩ 4.50 kΩ 

Minimum motional resistance Rx 3.09 kΩ 2.22 kΩ 1.67 kΩ 
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Table 5.3: Transmission test results from the prototypes of the second batch 

 

 

 

Overall, the motional resistances show substantial improvement, more than 4 times 

reduction compared to the piezoelectric extensional-mode beam resonators when 

operating in the same frequency range [15]. Also, we have observed that regardless 

the beam length, the resonant frequencies for each disk size remained virtually 

unchanged, with less than 0.2% variation. This indicates that the nodal-point located 

support beams have minimum effect on the disk resonator. When comparing the 

motional resistances Rx between the two batches, it is interesting to see that when the 

resonance is same (same disk size), the motional resistances from the first batch are 

more than double that of the prototypes from the second batch. As shown in Table 5.1, 

the first batch has 4 support beams in each resonator and the width is 5 µm, whereas 

only 2 support beams with the width of 2 µm are used in the second batch. 

Consequently, the resonators from first batch suffer much more anchor loss than the 

ones from second batch. High energy loss will reflect on the higher motion resistance.  

In general, few support beams and narrow beam width will effectively cut down the 

anchor loss, and eventually yield better resonator performance. 

 

 40 µm disk 60 µm disk 80 µm disk 

modeled (FEM) 59.6 MHz 39.7 MHz 29.8 MHz 

modeled 

(analytic) 
61.0 MHz 41.2 MHz 30.8 MHz 

Resonance 

frequency 

Experimental fr 62.3 MHz 40.8 MHz 30.2 MHz 

Measured total impedance (Rp+Rx) 3.94 kΩ 3.70 kΩ 1.31 kΩ 

Minimum motional resistance Rx 2.43 kΩ 1.26 kΩ 1.11 kΩ 
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5.3 Quality factor Measurement 

Fabricated chips were characterized in air on an RF-1 probe station (Cascade 

Microtech, Beaverton, OR), with electrical contacts made using coaxial RF probes 

placed on adjacent metal bond pads. The prototypes from the second batch are also 

measured at moderate vacuum level (100 µTorr) on an RF vacuum probe station 

(Desert Cryogenics TT-Prober).  All the qualify factors were measured using an 

impedance bridge scheme [15], which is illustrated in Figure 5.3.  In this bridge, the 

resonator acts as one branch of a capacitive bridge circuit, with the opposite defined 

by matched an on-chip piezoelectric capacitor defined by an identical resonator which 

has not been released from the substrate. The remaining two branches are defined by 

passive off-chip capacitors which may be tuned to balance the bridge. When fully 

balanced, the output voltage between the two branches is zero, but as the device 

impedance drops near resonance the bridge becomes unbalanced, and the resulting 

output voltage is fed to a differential voltage amplifier monitored using an HP 4395A 

network analyzer.  A typical resonant response from this measurement is shown in 

Figure 5.4. Measured Q factors are listed in Table 5.3 and 5.4 

 

 
Figure 5.3: Impedance balanced bridge for Q factor measurement 
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Figure 5.4: Frequency response of 100 µm disk resonator with 150 µm long quad-

symmetric support beams 

 

 

 

Table 5.4: Measured Q factors from the first batch prototypes 

 

Resonator 

size W 
100 µm 80 µm 60 µm 

Beam length 

(b = 5 µm) 

110 

µm 

130 

µm 

150 

µm 

50 

µm 

90 

µm 

130 

µm 

30 

µm 

Estimated  

Qs in air 

 

7763 

 

8662 

 

10766 

 

5364 

 

6248 

 

7010 

 

6178 

Measured 

Qs in air 

 

2000 

 

4480 

 

11200 

 

3000 

 

5700 

 

6500 

 

3490 

 

 

Table 5.5: Measured Q factors from the second batch prototypes 

 

Resonator 

size W 
80 µm 60 µm 40 µm 

Beam length 

(b = 2 µm) 

48 µm 5 µm 41 µm 38 µm 5 µm 

Estimated 

Qs in air 

 

16636 

 

3824 

 

12789 

 

19254 

 

4467 

Measured Qs 

in air 

 

7031 

 

3114 

 

6515 

 

3300 

 

2777 

Estimated 

Qs in vacuum 

 

90600 

 

4712 

 

27800 

 

55850 

 

5267 

Measured Qs 

in vacuum 

 

15248 

 

3504 

 

10061 

 

9380 

 

4218 
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Over all from the above data, the analytical damping models presented in Chapter 4 

yields larger Q factors than the measured ones. This implies that the analytical Q 

models underestimate the energy dissipations in the disk resonator system. This can 

be explained by the two assumptions made in the theoretical damping model: first, the 

disk is considered in pure shear stress state, so it suffers no thermal elastic damping; 

second, when resonating, the disk only has in plan movement, there is no out-plane 

movement and bending mode deformations. But in the real world, the conditions are 

not ideal and the above assumptions may not be hold. Thus, for a real device the 

thermal elastic and air damping can be more severe than that predicted by the ideal 

model. Plus, the theoretical modeling ignores other energy dissipation sources such as 

surface loss, end edge air damping, and defect loss. 

 

Nevertheless, the measured quality factors followings the trend of the predicted Q 

factors very well. Specifically, when the support beams are short, the measured Qs 

are closely followed with the predicted values. Since, in this situation, the energy 

dissipation source in the disk resonator is dominated by the anchor loss of the support 

beams, and this loss mechanism is well described in the analytical model. Another 

situation is when the beam width is too wide, like in the prototype from first batch 

(b=5µm), the anchor loss from the support beams increases dramatically and becomes 

the dominant energy loss mechanism. From Table 5.2, one can see the strong 

influence of the anchor beams on the quality factors.  These observations agree with 

the anchor loss model – equation (4.11), which shows that the energy transmitted 

through the anchor to the substrate is proportional to (b/L)3. 
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The product of resonance and quality factor (frQ) is a good index to evaluate the 

performance of a resonator. Based on the measured data in Table 5.3, and 5.4, we 

obtained the average frQ products of the AlGaAs disk resonators: 

    at atmosphere 111011.2 ×=Qf r  

    in vacuum 111085.4 ×=Qf r  

Comparing to the extensional AlGaAs bar resonator [17], the above frQ values are 

double of the correspondent frQs of bar type resonators when operating at 

fundamental mode. 

 

From both the motional resistance measurements and the Q measurements, one can 

see the strong influence of the support beams, especially when the beam is very short 

or very wide. One interesting exercise can be conducted here: if only consider the 

anchor loss as the damping mechanism, what the optimal beam length should be? It is 

known that the electric resistance of the support beam is 

    
thicb

L
LR e

p ⋅

⋅
⋅=
ρ

2)(     (5.2) 

where: ρe is the resistivity of the Al0.3Ga0.7As:Si electrode layers; 

 thic is the thickness of the electrode layer. 

 

Also the motional resistance can be calculated based on the Butterworth-Van Dyke 

equivalent circuit shown in Figure 2.10, 
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where: Qan(L) is the quality factor due to the beam anchor loss and defined by 

equation (4.11). 

 

The electric parasitic resistance Rp is proportional to the beam length L, while the 

motional resistance determined by anchor loss Ranx is proportional to (1/L)
3
. The goal 

of optimization is to find the minimum value of (Rp+Ranx). Using the second batch 

80µm disk resonator as the example, the (Rp+Ranx) vs. the support beam length L is 

obtained and shown in Figure 5.5. In this case, the optimal beam length is identified 

as: L= 9.7µm. In reality, however, increasing the support beam length not only yields 

lower anchor loss, but it also alters other energy losses and this effect is hardly 

determined analytically. Therefore, the eventual search for the optimal support beam 

length has to combine with experimental measurements. 

 

Figure 5.5: Beam length vs. the motional resistance due to anchor loss and support 

beam impedance 
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5.4 Temperature Stability 

Temperature induced resonant frequency drift for the 80 µm and 100 µm resonators 

was measured from room temperature to 95 °C. The results are presented in Figure 

5.6. It shows a good linear relation between the resonance and temperature, this will 

facilitate the temperature compensation in applications. The temperature coefficient 

of frequency (TCF) for the disk resonators should be independent of resonant 

frequency. As expected, the interpolated TCF is similar for the two resonators, with 

an average TCF of -46.0 ppm/°C. This value is comparable to other microfabricated 

resonators, although significantly larger than that of AT-cut quartz crystal resonators 

[49]. This thermal drift of resonance has been proved that is largely due to the 

temperature dependence of Young’s modulus of thin film Al0.3Ga0.7As [17]. 

Frequency stabilization and compensation schemes may ultimately be needed to 

minimize temperature-induced frequency drifts of the AlGaAs resonators. 

 

 
(a) 
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(b) 

Figure 5.6: Measured temperature-induced frequency drift for (a) 100 µm and (b) 80 

µm piezoelectric disk resonators 

 

 

5.5 Power Handling Capability 

The ability of a resonator to handle practical power levels is an important parameter 

in real-world application. To assess the power handling limits of the AlGaAs disk 

resonators, the devices were driven by the network analyzer with incremental power 

level increases. The frequency responses of the resonators were observed and the 

power limit is determined when the nonlinear behavior showed up. Figure 5.7 shows 

the measured response curves of an AlGaAs bar resonator at different power levels 

from previous work [17]. Apparently, when the input power is 10 dBm (actual power 

on the resonator is -6 dBm), the frequency response starts to exhibits nonlinear 

phenomenon. 
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Figure 5.7: Transmission response of an AlGaAs bar resonator at various input 

power [17] 

 

 

It has to point out that the power level set by the network analyzer is applied through 

a standard 50 Ω source resistance, and it generates an appropriate driving signal based 

on the assumption of a matched 50 Ω load resistance.  But, in our cases, the 

impedance of the disk resonator is much larger than 50 Ω and it forms a voltage 

divider with the 50 Ω input resistance of the measurement instrumentation. 

Consequently, the actual power shared by the resonator is greatly reduced.  The actual 

power PR carried by the disk resonators can be calculated by, 

    
x

s

setR
R

R
PP 4≈      (5.4) 

where: Rs is the source impedance of the instrument (Rs = 50 Ω); 

 Rx is the motional resistance of the microresonator (Rx >> Rs); 

 Pset is the instrument set-up power. 
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Figure 5.8, 5.9, and 5.10 shows the measured frequency responses at different power 

levels of the 80 µm, 60 µm, 40 µm AlGaAs disk resonators, respectively. It is 

observed that up to the maximum power level -- 15 dBm of the network analyzer, 

there are no prominent nonlinear behaviors occurring in these microresonators. 

Assuming 15 dBm is the maximum input power in the microresonator test set-up, 

according to equation (5.4), the actual power levels dissipated on the microresonators 

are calculated as: 

  for 80 µm resonator, PR = 1.9 dBm 

  for 60 µm resonator, PR = 2.5 dBm 

  for 40 µm resonator, PR = 2.1 dBm 

These power handling values correspond to the absolute power level about 1.6 mW. 

To our knowledge, this is the highest power handling capability in the published 

microresonators.   Compared to the AlGaAs bar resonator developed in previous 

work [17], the power handling level is improved by an order of magnitude. In fact, 

these power handling levels are very close to the GSM communication requirements. 

Further improvements in power handling can be realized by increasing AlGaAs plate 

thickness or utilizing multiple resonators connected in parallel, although the trade-

offs of these measures are that the motional resistance increase or the complexity of 

fabrication. 

 



 

 72 

 

 
Figure 5.8: Transmission response of 80 µm disk resonator at various input power 

level 

 

 

 

 
Figure 5.9: Transmission response of 60 µm disk resonator at various input power 

level 
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Figure 5.10: Transmission response of 40 µm disk resonator at various input power 

level 
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Chapter 6 : Two-port Filters Based on AlGaAs Disk 

Resonator 
 

6.1 Introduction 

Filters are crucial components in RF and microwave circuits, which can select the 

signal from all the additional signals before it is processed. A filter can be formed by 

multiple single-port resonators which act as simple impedance elements, such as the 

ladder type band-pass filter [50]. A more direct approach to realizing RF filters based 

on MEMS resonators is through the use of two-port resonator elements. Two-port 

resonators are attracting significant attention for development high performance 

MEMS filters [1, 3, 4, 7, 12, 13, 51, 52]. Figure 6.1 and 6.2 illustrate a two-port 

piezoelectric beam resonator design by Piekarski et al. [52] and a capacitive disk filter 

design by Pourkamali et al. [1], respectively. In application, the RF electric signal is 

applied to the input port of the filter, which excites the mechanical resonator structure, 

subsequently the electric signal is transformed into the mechanical energy. On the 

output port of the filter, the electrode through electromechanical transduction senses 

the resonating mechanical energy and converts it back into electric energy. By the 

means of the high Q factor of a mechanical resonator, the electric signal is selectively 

passed through this two-port device.  
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Figure 6.1: Schematic of two-port piezoelectric beading mode resonator [52] 

 

 

 
 

Figure 6.2: SEM picture of a reported two-port silicon disk resonator [1] 

 

 

However, no two-port resonator designs based on a piezoelectric, 2-D, contour-mode 

resonator have been reported in the literatures. In this chapter, the design and 

fabrication of two-port AlGaAs disk resonators is described. Two different electrode 

configurations are considered. The working principles of both designs are verified by 

the FEA models in ANSYS 8.0. An equivalent circuit model for the two-port 

resonators is also developed, and the analytical transfer function is derived with the 

aid of electric net-work theory. Experimental results of fabricated 2-port resonator 

prototypes are presented. The theoretical model is verified by these test results. 

Furthermore, the optimal electrode design of the two-port resonator is determined. 
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6.2 Filter Design Based on AlGaAs Disk Resonator 

To make a filter out of the disk resonator, two electrically separated electrodes have 

to be placed on the top surface of the AlGaAs disk. One electrode is served as the 

input port, the other as the output port. Meanwhile, the bottom electrode layer is 

remained solid and connected to the ground of the circuit. To minimize the impact of 

the electrode pattern to the resonant mode shape, the layout of the top electrode 

should be kept in good symmetry. Two different electrode patterns for the two-port 

filter have been designed, and they are illustrated in Figure 6.3.  

 

 
(a) 

 

 
  (b) 

Figure 6.3: Two filter designs based on the disk resonator:  (a) circular electrode 

pattern, (b) half plane electrode pattern 

 

To verify these two electrode patterns, FEA simulations on the frequency responses 

between the input electrodes and the output electrodes are conducted in Ansys 8.0. 

Basically, a unit electric potential is applied to the input electrode, at different 

frequency the responding potential of the output electrode is obtained through the 
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FEA numerical simulations. Figure 6.4 presents the results from this FEA modeling. 

These frequency responsive curves are different from the one of a single-port 

resonator, which possesses a resonator peak and an anti-resonant peak. Only one 

prominent peak (correspondent to the resonance of the plate) shows in these 

frequency response curves, and it demonstrates a typical behavior of a filter. 

 
(a) 

 
(b) 

Figure 6.4: The FEA simulated frequency responses of the two proposed filter 

designs (a) circular pattern electrode (b) half plane pattern electrode 

 

6.3 Equivalent Circuit of the Two-port Resonator 

A piezoelectric device can be represented by an electric circuit with lumped, discrete 

L, R, C components. Doing so will help one to understand the device and bring 

insight to its working mechanism. Moreover, by means of the equivalent circuit, the 
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transfer function of the device can be easily derived with the aid of the electric 

network theory. The analytical formula of the transfer function will be a powerful tool 

for designers to optimize the performance and mathematically predict the behavior of 

the device. To this end, the equivalent circuit for the two-port filter has been 

developed and it is shown in Figure 6.5. From this circuit, it is vividly shown the 

input port (R1, C1) in coupled to the output port (R2, C2) through the mechanical 

resonator (Lm, Rm, Cm), and the transformers with ratio η1, η2 connect the mechanical 

domain to the electric domain. 

 
Figure 6.5: Equivalent circuit of the two-port AlGaAs 2D resonator 

 

where: R1, R2 are parasitic resistance (mainly from the support beams); 

   C1, C2 are input, output port electric capacitance; 

   Lm, Rm, Cm are modal mass, damping coefficient, compliance, respectively; 

   η1, η2 are piezoelectric transduction coefficients of input and output port. 

 

By applying the circuit network theory, the transadmittance Y(ω) between the input 

port and the output port of the filter is derived, 
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Plug the typical values from the 60µm two-port resonator into the equation (6.1), the 

transadmittance response curve can be plotted in the frequency domain and it is given 

in Figure 6.6. The sharp peat at the filter resonance indicates that this new filter 

design offers very good frequency selectivity. 

 

 
Figure 6.6: Transadmittance response in vicinity of resonance 

 

 

When C1 and C2 are small (in our devices C1 & C2 << 1pF), jωR1C1 ≈ 0, jωR2C2 ≈ 0, 

and Z2(ω) ≈ R2, the transadmittance expression (6.1) can be greatly simplified, 
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And at resonance, 
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Clearly, the parasitic resistance R1 and R2 contribute to the final resonance impedance 

(motional resistance Rx), and lower the resonator Q factor. 

 

6.4 Electrode Optimization 

Transduction coefficient η1, η2 that are associated to the first electrode port and the 

second electrode port are the measure that how well the mechanical resonator can 

convert its mechanical energy into electric energy and vice versa. According to the 

definition of piezoelectric transduction coefficient, 
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For a normalized resonance mode, η1, η2 can be calculated as, 

    ∫ ⋅⋅=
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where:  A1, A2 are the areas of input port and output port respectively; 

 τxy(x,y) the shear stress field of the resonant mode; 

 d36 the piezoelectric coefficient of AlGaAs. 

 

If there is no gap between input electrode and output electrode, then the 2-D plate 

area A = A1+A2, which leads to: 

   2136),( ηητη +=⋅⋅= ∫A xyT dAdyx    (6.6) 

where: ηT is the total transduction coefficient of the resonator plate. 
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Substitute equation (6.5) into equation (6.3) and replace η2, the transadmittance at 

resonance becomes, 
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To find the maximum of Y(η1), one can set the first order derivative of Y(η1) to equal 

zero, and obtains: Tηη
2

1
1 =       (6.8) 

This implies that when the transduction coefficient of input electrode equals to that of 

the output electrode (i.e. η1 = η2), the transadmittance of the filter reaches the 

maximum value. In other word, the insertion loss of the two-port filter achieves its 

minimum value at this condition. This important conclusion is further validated by 

the measurement results. 

 

6.5 Prototyping and Verification 

The prototypes of the two-port resonator using both the electrode designs are 

fabricated based on the 60µm single port AlGaAs resonator. The fabrication process 

is exactly same as the one for the single port AlGaAs resonator described in Chapter 

3, with the only difference in the pattern of the top electrode mask. Three different 

geometries of the circular two-port electrode design are employed in attempt to 

observe the trend of the electrode area on the performance of the filters. The details of 

the circular electrode designs are illustrated in Figure 6.7. The prototype of the half 

plane electrode design is also show in Figure 6.8. 
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(1) 

 

 
(2) 

 

 
(3) 

 

Figure 6.7: Three different prototypes of circular electrode pattern based on 60µm 

Al0.3Ga0.7As plate 

 

 

 
Figure 6.8: Prototype dimensions of the half plane electrode design  
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Two perspective views of the finished filter prototypes are presented in Figure 6.9. 

 

 
(a) 

 

 
(b) 

 

Figure 6.9: Persepective views of the fabricated two-port resonators (a) circular 

electrode design (b) half plane electrode design 
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The transmission frequency responses of the prototype filters are directly measure by 

a network analyzer (HP 4395A). The input port of the filter under test is connected 

with the source output of the network analyzer which generates sinusoidal RF signal; 

the output port of the filter is directly connected to the 50Ω input port of the network 

analyzer. The transfer function of the device is obtained through the scanning the 

input RF signals in the interested frequency range. Three major parameters of the 

filter can be derived from this measurement, i.e. resonance frequency, motional 

resistance, and quality factor Q. The measurements are conducted both in atmosphere 

pressure and in vacuum condition (pressure 60µTorr).  

Figure 6.10 and 6.11 shows the measured transmission curves in vacuum of the filters 

with the circular electrode pattern and half plane electrode pattern respectively. Table 

6.1 summarizes the results of all the prototypes from the transmission tests. It is seen 

that the filters with the half plane electrode design have lowest insertion loss 

(motional resistance) among all the prototypes we build. Regarding the filters of 

circular electrode pattern, the layout (2) in Figure 6.7 yields the smallest insertion loss. 

In general, for all the prototypes the insertion losses measured in vacuum condition 

are lower than that measured in atmosphere. 
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Figure 6.10: Transmission response of the 60µm filter with circular electrode layout 

(2) in vacuum (resonance @ 37.83 MHz) 

 

 

 
Figure 6.11: Transmission response of the 60µm filter with half plane electrode 

layout (resonance @ 38.14 MHz) 

 

 

Table 6.1: Measured insertion loss (IL) and Q factors of the prototype filters 

 

Circular Pattern Half Plane 

Pattern 

 

Layout(1) 

IL 

Layout(2) 

IL 

Layout(3) 

IL 

Q factor Layout(1) 

IL 

Q factor 

in 

atmosphere 

-48.5 dB 

(13.3 kΩ) 

-47.5 dB 

(11.8 kΩ) 

-50.3 dB 

(16.3 kΩ) 

2700 -43.9 dB 

(7.8 kΩ) 

2390 

In 

vacuum 

-47.0 dB 

(11.1 kΩ) 

-45.7 dB 

(9.6 kΩ) 

-48.2 dB 

(12.8 kΩ) 

4372 -42.8 dB 

(6.9 kΩ) 

3632 
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The lower insertion loss associated with the half plane design can be explained as that: 

first, the half-plane electrode configuration automatically satisfies the optimal 

electrode condition η1 = η2; second, the gap between the input and output electrode 

takes less area than the circular electrode configuration does, thus, the half-plane 

design more efficiently uses the area of the 2-D resonaotr, resulting in the higher 

piezoelectric transduction coefficients. In fact, the FEA simulation shows that  

 )/(1075.1: 5

21 VNpatternplanehalffor T

−×=+=− ηηη  

 )/(1050.1: 5

21 VNpatterncircularfor T

−×=+= ηηη  

Therefore, according to the transadmittance equation (6-7), the prototype with the 

half-plane electrode design will have the lowest insertion loss among any of the three 

prototypes with circular electrode configurations. In general, one can draw the 

conclusion that the halp-plane electrode design is more efficient than the circular 

electrode design. 

 

Among the circular electrode prototypes, the layout (2) is more close to the optimal 

electrode condition -- η1 = η2, according to equation (6.3), it should give higher 

transadmittance. To further verify the theoretical model, we plug the calculated as 

well as the FEA determined ηT in the equation (6.3), and plot the curve of insertion 

loss vs. transduction coefficient η2 against the measured results from the prototypes of 

the three circular electrode layouts in Figure 6.12. Fairly good agreement between the 

theoretical curve and the measured results is demonstrated. Clearly, the layout (2) is 

more close to the optimal condition. 
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Figure 6.12: Transduction coefficient η2 vs. insertion loss 

 

Comparing to the single port resonator, the insertion losses of the 2-port filter are 

larger. This phenomenon can also be explained from the admittance formula (6.3).  

The additional resistance R1 and R2 from the support beams contribute to the final 

impedance of the filter and they are doubled the value of the parasitic impedance of a 

single port resonator if same support beam length is used.  R1 and R2 as the electric 

loss element can also lower the measured Q values.  By choosing an optimal support 

beam length, one can dramatically improve the insertion loss of this filter and 

increase the Q factors as well. 

 



 

 88 

 

Chapter 7 : Conclusions and Future Work 
 

7.1 Single Port 2-D AlGaAs Resonator 

A new design for anisotropic piezoelectric disk resonators has been developed. The 

shape of the disk resonator is based on the velocity propagation profile of the elastic 

wave in the plane of the piezoelectric film, with lateral dimension scaled to the half 

wave length of the desired resonance frequency. FEA model for this new design is 

created in Ansys 8.0 software. The simulated frequency responses validate the design 

concept of the 2-D resonator. Moreover, the parameters extracted from the FEA 

model show that this new 2-D resonator has better performance than the beam type 

counterparts. The prototypes of the new resonator are realized based on single-crystal 

Al0.3Ga0.7As films. The well characterized epitaxial AlxGa1-xAs films possess 

moderate piezoelectric coupling coefficients. Moreover, to take the advantage of the 

low loss single crystal Al0.3Ga0.7As film, the heterostructure of the Si doped 

Al0.3Ga0.7As films on top and bottom of an undoped Al0.3Ga0.7As piezoelectric layer is 

employed. A unique 7-mask MEMS fabrication process has been developed and 

successfully implemented to make the prototypes of the new disk resonators. One 

salient feature in this process is the insolated contact pads and a metal bridge jump 

over the top electrode of the disk to the top contact pad. This feature greatly reduces 

the parasitic capacitance between the top and bottom contact pads and provides 

higher single-to-noise ratio in the measurements. 
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The prototypes of the disk resonators are made with the resonance frequencies 

varying from 24 MHz to 62 MHz. Different support beam lengths are also tried in 

order to assess their effect on the Q factors. Three major energy dissipation sources in 

this disk resonator system, namely anchor loss, thermal elastic loss, and air damping, 

are well described and modeled. Comparing to the measured Q factors with the 

estimated Q factors from the energy dissipation models, it is found that the Qs from 

the resonators with short support beams (5µm) are reasonably close to the analytical 

predictions, but, the Qs from the ones with longer support beams are much less than 

the analytical predictions. In the case of short support beam, the anchor loss through 

the support structure is the dominant energy dissipation source and this damping 

mechanism is well modeled in the analytical solution.  Whereas, in the cases of 

slender long support beams, the out of plane movement and bending vibration modes 

are inevitably introduced, thus the assumption of pure in-plane shear resonating mode 

in the disk resonator is not held any more, consequently the thermal elastic damping 

and air damping are significantly increased, making the estimated Qs based on the 

ideal conditions too optimistic. These rocking and bending movements, however, are 

difficult to be modeled analytically. In terms of achieving higher Q factors, the 

optimal beam length seems between the 5µm and 40µm (Refer to Table 5.3). In short, 

the Q calculation models presented in this work captures the essence of the damping 

phenomena in the disk resonator system, and they provide good design guidance and 

foundation for further optimization of the support structure. 
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The measured results from the prototypes of the disk resonator are very encouraging. 

In specific, the best performances obtained in atmosphere from the prototypes are: a 

Q factor of 7031 at 30.2 MHz with 1.11 kΩ intrinsic motional resistance, a Q factor 

of 6515 at 40.8 MHz with 1.26 kΩ intrinsic motional resistance, and a Q factor of 

3300 at 62.3 MHz with 2.43 kΩ intrinsic motional resistance. The measured power 

handling level is about 1.6 mW. Regarding all the above performance aspects, the 

disk resonator outperforms the extensional mode bar resonator. The measured 

temperature stability of the Al0.3Ga0.7As disk resonator is about -47 ppm/
o
C, which is 

equivalent to that of the beam type counterpart and is comparable to that of the Si 

capacitive resonators. The high Q and low motional resistance Rx demonstrated by 

this disk resonator indicate that this disk resonator possesses a dominant resonating 

mode and this mode traps more energy than the beam type counterparts.  

 

7.2 Two-port 2-D AlGaAs Resonator 

To take the advantage of the high quality disk resonator, two-port piezoelectric 

resonators, i.e. filters, are developed based on the Al0.3Ga0.7As disk resonator. Two 

unique electrode patterns are designed on the top electrode surface of the disk 

resonator. FEA simulations reveal that both designs have a typical filter response -- a 

single resonant peak in frequency domain. Theoretical equivalent circuit model for 

these filters is created with the parameters derived from the FEA results. From the 

transadmittance function of the equivalent circuit, the conclusion on the optimal input 

and output electrode design is obtained, that is to arrange the two electrodes so that 

the piezoelectric transduction coefficients of the input and output electrodes are equal. 
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Obviously, the symmetric half plane electrode pattern automatically satisfies this 

condition. Regard the circular electrode design, careful arrangement of the electrode 

geometries have to be conducted in order to meet this optimal condition. Prototype 

filters with three different circular electrode layouts and one half plane electrode 

pattern are fabricated using the same process developed for the Al0.3Ga0.7As disk 

resonator in this work. Very good performances are demonstrated by these prototypes, 

that are summarized here: for the circular patter design, the best insertion loss reaches 

-45.7 dB correspondent to gross motional impedance 9.7 kΩ at 37.8 MHz with 

quality factor 4372; for the half plane electrode design, the best insertion loss reaches 

-42.8 dB correspondent to gross motional impedance 6.9 kΩ at 38.1 MHz with 

quality factor 3632. The measured insertion losses from the three different circular 

layouts reasonably agree with the analytical predictions based on the equivalent 

circuit, which validates the optimal electrode condition retrieved from the analytical 

equation (6.6). The fact that the fundamental resonant mode of the 2-D Al0.3Ga0.7As 

disk is easily excited by either input electrode designs indicates that the 2-D plate 

with the propagation velocity profile of acoustic wave possesses a strong and 

dominant resonant mode and the electric signal can be efficiently transferred from the 

input electrode to output electrode through this resonant mode. 

 

7.3 Future Work 

While the Al0.3Ga0.7As disk resonators developed in this work outperform their beam 

type counterparts, there remain substantial areas for improvement. For instance, as it 

is shown in the prototype measurements, when the support beams are very short (as in 
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the cases of 5µm long support beams), the resonator suffer greatly from the anchor 

loss and this loss mechanism dominates all the other energy dissipation sources, 

resulting in the low quality factor of the 2-D resonator system.   On the other hand, if 

we increase the length of the support beams, according to the theoretical model 

(equation 4.11) the anchor loss will reduce rapidly. However, if the beam length is 

too long, the series electric resistance from the electrode layers of the support beams 

becomes a major energy loss source and this parasitic impedance is eventually 

reflected on the final motional resistance of the resonator. In addition, very long 

support beams can induce out-of-plane movement and bending deformation in the 2D 

plate which will dramatically increase the TE damping and air damping. These 

adverse effects will override the benefit of the reduction of anchor loss and end up 

with the quality factor much lower than what one expected. Therefore, there must be 

a beam length in between the short and long beams used in the prototypes, which will 

produce minimum energy dissipation and have tolerable parasitic impedance. If only 

the anchor loss and the parasitic electric resistance of the support beams are 

considered as the design factors, the optimal beam length can be easily found by the 

anchor loss formulae (4.11) combined with the equation of the electric impedance of 

the support beam, which is discussed in Chapter 5. But, in reality other loss sources 

will be introduced by the long support beam and this part of loss mechanism is 

difficult to be modeled analytically. Thus, experimental tests have to be conducted in 

the search of the optimal support beam length. Naturally, determining the optimal 

support beam length at a specific resonance frequency is one important topic for 

future work. 
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The motional resistance of the Al0.3Ga0.7As disk resonator is several folds lower than 

that of a beam type counterpart, but it is still much higher (in kΩ range) than the 

standard impedance – 50 Ω impedance of current RF devices. This impedance 

mismatch presents a hurdle to integrate these MEMS resonators and filters with the 

current standard RF systems. However, it has been demonstrated that a mechanically-

coupled and electrically connected in parallel resonator array can substantially reduce 

the motional resistance and also improve the power handling capability [53, 54]. 

Figure 7.1 and 7.2 shows the successful attempts in this approach which combine 

multiple high-impedance capacitive resonators to form a resonator array and much 

lower motional impedances are achieved. In [53, 54], it has shown that the impedance 

reduction is approximately equal to the reciprocal of the number of resonator used. 

This approach should be also applicable to the piezoelectric MEMS resonators. The 

challenge to implement this solution on the Al0.3Ga0.7As disk resonators is how to 

mechanically couple the 2-D resonators so that only one strong vibration mode ends 

up in this array, making it function as a single resonator. The mechanical coupler and 

location for the coupler in the 2-D resonator plate have to be carefully designed and 

selected. If this is achieved, then the road for the disk resonators and filters to be 

integrated with the current standard RF systems is paved. This will likely be an 

important topic for the future research. 
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Figure 7.1:  Mechanically coupled Si beam resonator array [53] 

 

 

 

 

Figure 7.2:  Mechanically-coupled Si plate resonator array [54] 
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Appendix A 
 

Matlab program for elastic wave velocity calculation of AlGaAs crystal 

 

clear all; close all; 

% Calculate Christoffel tensor and its eigenvalues 

% To obtain the phase velocity profile in (100) plane of AlGaAs crystal 

% Ken Deng 

% Last modification: June 15, 2004 

% Email: kenkdeng@yahoo.com 

 

% Program layout: 

% 1) Assign stiffness matrix(6x6) and convert to tensor 

% 2) Assign piezoelectric matrix(3x6) and convert to tensor 

% 3) Assign dielectric matrix (3x3) 

% 4) Define the direction vector (1x3) in X-Y plane 

% 5) Calculate the Christoffel tensor (3x3) ---- Main Task 

% 6) Calculate the eigenvalues of the Christoffel tensor 

% 7) Save the three phase velocities (sqr'eigenvalue/rho') in a data file 

% 8) Increase the direction angle and go back 4) 

 

% 1) Define standard stiffness matrix 

C=zeros(6,6); 

c11=118.8+1.4*0.3;   % AlGaAs stiffness variables 

c12=53.88+3.2*0.3;   % unit: GPa 

c44=59.4-0.5*0.3;      % cubic crystal system 

C(1,1)=c11; 

C(2,2)=c11; 

C(3,3)=c11; 

C(4,4)=c44; 

C(5,5)=c44; 

C(6,6)=c44; 

C(1,2)=c12; 

C(1,3)=c12; 

C(2,3)=c12; 

C(2,1)=c12; 

C(3,1)=c12; 

C(3,2)=c12; 

C=C.*10^9,    % display the standard stiffness matrix (unit: Pa) 

 

Cten=zeros(3,3,3,3);    % Convert to stiffness tensor 

for i=1:3 

    for j=1:3 
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        for m=1:3 

            for n=1:3 

                u=ten_mat(i,j); 

                v=ten_mat(m,n); 

                Cten(i,j,m,n)=C(u,v); 

            end 

        end 

    end 

end 

 

% 2) Assign piezoelectric matrix(3x6) and convert to tensor 

D=zeros(3,6); 

d14=2.69+1.13*0.3;   % AlGaAs piezoelectric coefficient (pC/N) 

D(1,4)=-d14*10^-12;  % unit C/N 

D(2,5)=-d14*10^-12; 

D(3,6)=-d14*10^-12; 

D,            % display the piezoelectric matrix 

E=D*C,        % calculate the piezoelectric strain coefficient 

 

 

Eten=zeros(3,3,3);    % Convert to piezoelectric tensor 

for i=1:3 

    for m=1:3 

        for n=1:3 

            v=ten_mat(m,n); 

            Eten(i,m,n)=E(i,v); 

        end 

    end 

end 

 

% 3) Assign dielectric coefficient matrix(3x3) 

Eps=zeros(3,3); 

kappa=10.89-2.73*0.3;   % AlGaAs relative dielectric constant 

eps0=8.85*10^-12;       % Absolute dielectric constant (F/m) 

Eps(1,1)=kappa*eps0; 

Eps(2,2)=kappa*eps0; 

Eps(3,3)=kappa*eps0; 

Eps,                   % display the dielectric matrix 

 

rho=5360-1600*0.3;       % density of AlxGa(1-x)As (unit: kg/m^3) 

 

% 4) Define propagation direction vector 

bdir=zeros(3,1); 

theta=0;    iang=1; 

darc=pi*5/180;          % 5degree increment 

theta=(iang-1)*darc; 
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bdir(1)=cos(theta);     % (001)GaAs wafer 

bdir(2)=sin(theta); 

bdir,                   % display the direction vector 

 

% open a file to save the eigenvalues(speed) 

fdata=fopen('C:\KEN\Piezo_MEMS_Resonator\velocity_XY.txt','a+'); 

% File for reading, writing, and appending (a+) 

 

% 4) Define propagation direction vector 

theta=0; 

darc=pi*5/180;          % 5degree increment 

for iang=1:73 

 bdir=zeros(3,1);   

 theta=(iang-1)*darc; 

 bdir(1)=cos(theta);     % (001)GaAs wafer 

 bdir(2)=sin(theta); 

 bdir,                   % display the direction vector    

     

% 5) Calculate the Christoffel tensor Gamma(3x3)----Major Task 

Ede=0; 

for s=1:3 

   for t=1:3 

       Ede=Eps(s,t)*bdir(s)*bdir(t)+Ede; 

   end 

end 

 

Gamma=zeros(3,3); 

 

for j=1:3 

    for k=1:3 

        Gamma(j,k)=0; 

         

        for i=1:3 

         for l=1:3 

          Eno=0; 

           

            for m=1:3 

             for n=1:3 

                Eno = Eten(m,i,j)*Eten(n,k,l)*bdir(m)*bdir(n) + Eno; 

             end 

            end 

           

          Gamma(j,k)=( Cten(i,j,k,l) + Eno/Ede )*bdir(i)*bdir(l) + Gamma(j,k); 

         end 

        end 
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    end 

end 

 

% 6) Calculate the eigenvalues of the Christoffel tensor 

comm1='The Christoffel tensor is:', 

Gamma, 

comm2='The eigenvalues are:', 

Ceig=eig(Gamma), 

 

% 7) Save the three phase velocities(sqr'eigenvalue/rho') in a data file 

v1=sqrt(abs(Ceig(1))/rho), 

v2=sqrt(abs(Ceig(2))/rho), 

v3=sqrt(abs(Ceig(3))/rho), 

fprintf(fdata,'%7.3f,3%8.2f,\n',theta,v1,v2,v3); 

 

end 

fclose(fdata); 
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